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Abstract

In this letter we develop a new generalization of the two-dimensional differential transform method that will extend the
application of the method to linear partial differential equations with space- and time-fractional derivatives. The new generalization
is based on the two-dimensional differential transform method, generalized Taylor’s formula and Caputo fractional derivative.
Several illustrative examples are given to demonstrate the effectiveness of the present method. The results reveal that the technique
introduced here is very effective and convenient for solving linear partial differential equations of fractional order.
c© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Mathematical modeling of many physical systems leads to linear and nonlinear fractional differential equations in
various fields of physics and engineering. The numerical and analytical approximations of such systems have been
intensively studied since the work of Padovan [1]. Recently, several mathematical methods including the Adomian
decomposition method [2–8], variational iteration method [6–9], homotopy perturbation method [10,11] and fractional
difference method [12] have been developed to obtain exact and approximate analytic solutions. Some of these
methods use transformation in order to reduce equations into simpler equations or systems of equations and some
other methods give the solution in a series form which converges to the exact solution.

In this work, we develop a semi-numerical method based on the two-dimensional differential transform
method [13–15], generalized Taylor’s formula [16] and Caputo fractional derivative [17]. This new generalization
of the two-dimensional differential transform method will extend the application of the method to linear partial
differential equations of fractional order. To the authors’ knowledge, this work represents the first application of
the generalized differential transform method to solve partial differential equations with space- and time-fractional
derivatives.
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There are several definitions of a fractional derivative of order α > 0 [12,17]. The Caputo fractional derivative is
defined as

Dα
a f (x) = J m−α

a Dm f (x), (1.1)

where m −1 < α ≤ m. Here Dm is the usual integer differential operator of order m and Jµ
a is the Riemann–Liouville

integral operator of order µ > 0, defined by

Jµ
a f (x) =

1
Γ (µ)

∫ x

a
(x − t)µ−1 f (t)dt, x > 0. (1.2)

The Caputo fractional derivative is considered here because it allows traditional initial and boundary conditions to
be included in the formulation of the problem [12]. For more information on the mathematical properties of fractional
derivatives and integrals one can consult the aforementioned references.

2. Generalized two-dimensional differential transform method

The differential transform method was first introduced by Zhou [13] who solved linear and nonlinear initial value
problems in electric circuit analysis. This method constructs an analytical solution in the form of a polynomial. It is
different from the traditional higher order Taylor series method, which requires symbolic computation of the necessary
derivatives of the data functions. The Taylor series method computationally takes a long time for large orders. The
differential transform is an iterative procedure for obtaining analytic Taylor series solutions of ordinary or partial
differential equations. The method is well addressed in [13–15].

In this section we shall derive the generalized two-dimensional differential transform method that we have
developed for the numerical solution of linear partial differential equations with space- and time-fractional derivatives.
The proposed method is based on a generalized Taylor’s formula (for details, see [16]).

Consider a function of two variables u(x, y), and suppose that it can be represented as a product of two single-
variable functions, i.e. u(x, y) = f (x)g(y). On the basis of the properties of generalized two-dimensional differential
transform [14,15], the function u(x, y) can be represented as

u(x, y) =

∞∑
k=0

Fα(k)(x − x0)
kα

∞∑
h=0

Gβ(h)(y − y0)
hβ

=

∞∑
k=0

∞∑
h=0

Uα,β(k, h)(x − x0)
kα(y − y0)

hβ , (2.1)

where 0 < α, β ≤ 1, Uα,β(k, h) = Fα(k)Gβ(h) is called the spectrum of u(x, y). The generalized two-dimensional
differential transform of the function u(x, y) is as follows:

Uα,β(k, h) =
1

Γ (αk + 1)Γ (βh + 1)

[
(Dα

x0
)k(Dβ

y0
)hu(x, y)

]
(x0,y0)

, (2.2)

where (Dα
x0

)k
= Dα

x0
Dα

x0
· · · Dα

x0
, k-times. In this work, the lower case u(x, y) represents the original function while

the upper case Uα,β(k, h) stands for the transformed function. On the basis of the definitions (2.1) and (2.2), we have
the following results:

Theorem 2.1. Suppose that Uα,β(k, h), Vα,β(k, h) and Wα,β(k, h) are the differential transformations of the functions
u(x, y), v(x, y) and w(x, y), respectively;

(a) if u(x, y) = v(x, y) ± w(x, y), then Uα,β(k, h) = Vα,β(k, h) ± Wα,β(k, h),
(b) if u(x, y) = av(x, y), a ∈ R, then Uα,β(k, h) = aVα,β(k, h),

(c) if u(x, y) = v(x, y)w(x, y), then Uα,β(k, h) =
∑k

r=0
∑h

s=0 Vα,β(r, h − s)Wα,β(k − r, s),
(d) if u(x, y) = (x − x0)

nα(y − y0)
mβ , then Uα,β(k, h) = δ(k − n)δ(h − m),

(e) if u(x, y) = Dα
x0

v(x, y), 0 < α ≤ 1, then Uα,β(k, h) =
Γ (α(k+1)+1)

Γ (αk+1)
Uα,β(k + 1, h).
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Theorem 2.2. If u(x, y) = f (x)g(y) and the function f (x) = xλh(x), where λ > −1, h(x) has the generalized
Taylor series expansion h(x) =

∑
∞

n=0 an(x − x0)
αk , and

(a) β < λ + 1 and α is arbitrary, or
(b) β ≥ λ + 1, α is arbitrary and an = 0 for n = 0, 1, . . . m − 1, where m − 1 < β ≤ m.

Then the generalized differential transform (2.2) becomes

Uα,β(k, h) =
1

Γ (αk + 1)Γ (βh + 1)

[
Dαk

x0
(Dβ

y0
)hu(x, y)

]
(x0,y0)

. (2.3)

Proof. The proof follows immediately from the fact that Dγ1
x0 Dγ2

x0 f (x) = Dγ1+γ2
x0 f (x), under the conditions given in

Theorem 2.2. �

Theorem 2.3. If v(x, y) = f (x)g(y), the function f (x) satisfies the conditions given in Theorem 2.2, and u(x, y) =

Dγ
x0v(x, y), then

Uα,β(k, h) =
Γ (α(k + 1) + γ )

Γ (αk + 1)
Vα,β(k + γ /α, h). (2.4)

3. Applications and results

In this section we consider a few examples that demonstrate the performance and efficiency of the generalized
differential transform method for solving linear partial differential equations with time- or space-fractional derivatives.

Example 3.1. Consider the following linear inhomogeneous time-fractional equation:

∂αu

∂tα
+ x

∂u

∂x
+

∂2u

∂x2 = 2tα + 2x2
+ 2, t > 0, (3.1)

where 0 < α ≤ 1, subject to the initial condition

u(x, 0) = x2. (3.2)

Suppose that the solution u(x, t) can be represented as a product of single-valued functions. Selecting β = 1 and
applying the generalized two-dimensional differential transform to both sides of Eq. (3.1), the linear inhomogeneous
time-fractional equation (3.1) transforms to

Uα,1(k, h + 1) =
Γ (α + 1)

Γ (α(h + 1) + 1)

[
−

k∑
r=0

h∑
s=0

δ(r − 1)δ(h − s)(k − r + 1)Uα,1(k − r + 1, s)

− (k + 1)(k + 2)Uα,1(k + 2, h) + 2δ(k)δ(h − 1) + 2δ(k − 2)δ(h) + 2δ(k)δ(h)

]
. (3.3)

The generalized two-dimensional differential transform of the initial condition (3.2) is

Uα,1(k, 0) = δ(k − 2). (3.4)

Utilizing the recurrence relation (3.3) and the transformed initial condition (3.4), we get Uα,1(2, 0) = 1,
Uα,1(0, 2) = 2 Γ (α+1)

Γ (2α+1)
and Uα,1(k, h) = 0 for k 6= 2, h 6= 2. Therefore, according to (2.1), the solution of

Eq. (3.1) is given by

u(x, t) = x2
+ 2

Γ (α + 1)

Γ (2α + 1)
t2α, (3.5)

which is the exact solution of the linear inhomogeneous time-fractional equation (3.1).
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Table 1
The first components of U1,1/2(k, h) for Eq. (3.6)

U1,1/2(0, h) U1,1/2(1, h) U1,1/2(2, h) U1,1/2(3, h) U1,1/2(4, h) U1,1/2(5, h)

U1,1/2(k, 0) 1 0 1 1
Γ (5/2)

0 1
Γ (7/2)

U1,1/2(k, 1) −1 0 −1 −
1

Γ (5/2)
0 −

1
Γ (7/2)

U1,1/2(k, 2) 1
2!

0 1
2!

1
2!Γ (5/2)

0 1
2!Γ (7/2)

U1,1/2(k, 3) −
1
3!

0 −
1
3!

−
1

3!Γ (5/2)
0 −

1
3!Γ (7/2)

U1,1/2(k, 4) 1
4!

0 1
4!

1
4!Γ (5/2)

0 1
4!Γ (7/2)

U1,1/2(k, 5) −
1
5!

0 −
1
5!

−
1

5!Γ (5/2)
0 −

1
5!Γ (7/2)

Example 3.2. Consider the following linear space-fractional telegraph equation:

∂1.5u

∂x1.5 =
∂2u

∂t2 +
∂u

∂t
+ u, x > 0, (3.6)

subject to the initial conditions

u(0, t) = exp(−t), ux (0, t) = exp(−t). (3.7)

Suppose that the solution u(x, t) can be represented as a product of single-valued functions, u(x, t) = v(x)w(t)
where the function v(x) satisfies the conditions given in Theorem 2.2. Selecting α = 1, β = 0.5 and applying the
generalized two-dimensional differential transform to both sides of Eq. (3.6), the linear space-fractional telegraph
equation (3.6) transforms to

U1,1/2(k + 3, h) =
Γ (k/2 + 1)

Γ (k/2 + 5/2)

×
[
(h + 1)(h + 2)U1,1/2(k, h + 2)(h + 1)U1,1/2(k, h + 1) + U1,1/2(k, h)

]
. (3.8)

The generalized two-dimensional differential transforms of the initial conditions (3.7) are given by

U1,1/2(0, h) = (−1)h/h!,

U1,1/2(1, h) = 0,

U1,1/2(2, h) = (−1)h/h!.

Utilizing the recurrence relation (3.8) and the transformed initial conditions, the first few components of
U1,1/2(k, h) are calculated and given in Table 1.

Therefore, from (2.1), the approximate solution of the linear space-fractional Telegraph equation (3.6) can be
derived as

u(x, t) =

(
1 − t +

1
2!

t2
−

1
3!

t3
+

1
4!

t4
−

1
5!

t5
)

+

(
1 − t +

1
2!

t2
−

1
3!

t3
+

1
4!

t4
−

1
5!

t5
)

x

+

(
1 − t +

1
2!

t2
−

1
3!

t3
+

1
4!

t4
−

1
5!

t5
)

x1.5

Γ (5/2)

+

(
1 − t +

1
2!

t2
−

1
3!

t3
+

1
4!

t4
−

1
5!

t5
)

x2.5

Γ (7/2)
, + · · ·

that is

u(x, t) = exp(−t)

(
1 + x +

x1.5

Γ (5/2)
+

x2.5

Γ (7/2)
+

x3

Γ (4)
+

x4

Γ (5)
+

x4.5

Γ (11/2)
+ · · ·

)
, (3.9)

which is the same solution as was obtained in [18] using the Adomian decomposition method.
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Table 2
The first components of U1/2,1/4(k, h) for Eq. (3.10)

U1/2,1/4(0, h) U1/2,1/4(1, h) U1/2,1/4(2, h) U1/2,1/4(3, h) U1/2,1/2/4(4, h)

U1/2,1/4(k, 0) a0 a1 a2 a3 a4

U1/2,1/4(k, 1) 0 0 0 0 0

U1/2,1/4(k, 2) b0 b1 b2 b3 b4

U1/2,1/4(k, 3)
Γ (7/4)

Γ (5/2)Γ (2/4)
a3

Γ (8/4)
Γ (5/2)Γ (3/4)

a4
Γ (9/4)

Γ (5/2)Γ (4/4)
a5

Γ (10/4)
Γ (5/2)Γ (5/4)

a6
Γ (11/4)

Γ (5/2)Γ (6/4)
a7

U1/2,1/4(k, 4) 0 0 0 0 0

U1/2,1/4(k, 5)
Γ (7/4)

Γ (7/2)Γ (2/4)
b3

Γ (8/4)
Γ (7/2)Γ (3/4)

b4
Γ (9/4)

Γ (7/2)Γ (4/4)
b5

Γ (10/4)
Γ (7/2)Γ (5/4)

b6
Γ (11/4)

Γ (7/2)Γ (6/4)
b7

Example 3.3. Consider the following linear space–time-fractional wave equation:

∂1.5u

∂t1.5 =
1
2

x2 ∂1.25u

∂x1.25 x > 0, t > 0, (3.10)

subject to the initial conditions

u(x, 0) = f (x) =

∞∑
n=0

an xn, ut (x, 0) = g(x) =

∞∑
n=0

bn xn . (3.11)

Suppose that the solution u(x, t) can be represented as a product of single-valued functions, u(x, t) = v(x)w(t)
where the functions v(x) and w(t) satisfy the conditions given in Theorem 2.2. Selecting α = 0.5, β = 0.25 and
applying the generalized two-dimensional differential transform to both sides of Eq. (3.10), the linear space–time-
fractional wave equation (3.10) transforms to

U1/2,1/4(k, h + 3) =


1
2

Γ (h/2 + 1)Γ (k/4 + 7/4)

Γ (h/2 + 5/2)Γ (k/4 + 2/4)
U1/2,1/4(k + 3, h), k ≥ 2

0, k < 2.

(3.12)

The generalized two-dimensional differential transforms of the initial conditions (3.11) are given by

U1/2,1/4(k, 0) = ak,

U1/2,1/4(k, 1) = 0,

U1/2,1/4(k, 2) = bk .

Utilizing the recurrence relation (3.12) and the transformed initial conditions, the first few components of
U1/2,1/4(k, h) are calculated and given in Table 2.

Therefore, from (2.1), the approximate solution of the linear space–time-fractional wave equation (3.10) can be
derived as

u(x, t) =

(
a0 + b0t +

Γ (7/4)

Γ (5/2)Γ (2/4)
a3t3/2

+
Γ (7/4)

Γ (7/2)Γ (2/4)
b3t5/2

)
+

(
a1 + b1t +

Γ (7/4)

Γ (5/2)Γ (2/4)
a4t3/2

+
Γ (7/4)

Γ (7/2)Γ (2/4)
b4t5/2

)
x1/4

+

(
a2 + b2t +

Γ (7/4)

Γ (5/2)Γ (2/4)
a5t3/2

+
Γ (7/4)

Γ (7/2)Γ (2/4)
b5t5/2

)
x2/4

+

(
a3 + b3t +

Γ (7/4)

Γ (5/2)Γ (2/4)
a6t3/2

+
Γ (7/4)

Γ (7/2)Γ (2/4)
b6t5/2

)
x3/4,

+

(
a4 + b4t +

Γ (7/4)

Γ (5/2)Γ (2/4)
a7t3/2

+
Γ (7/4)

Γ (7/2)Γ (2/4)
b7t5/2

)
x + · · · .
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4. Conclusions

A new generalization of the two-dimensional differential transform method has been developed for linear partial
differential equations with space- and time-fractional derivatives. The new generalization is based on the two-
dimensional differential transform method, generalized Taylor’s formula and Caputo fractional derivative. It may
be concluded that this technique is very powerful and efficient in finding the analytical solutions for a large class
of linear partial differential equations of fractional order. This technique provides more realistic series solutions as
compared with the Adomian decomposition technique.
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