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Abstract

Background: Malaria causes significant morbidity and mortality worldwide. There are several preventive measures
that are currently employed, including insecticide-treated nets (ITNs, including long-lasting insecticidal nets and
insecticidal-treated bed nets), indoor residual spraying (IRS), prophylactic drugs (PD), and untreated nets (UN).
However, it is unclear which measure is the most effective for malaria prevention. We therefore undertook a
network meta-analysis to compare the efficacy of different preventive measures on incidence of malaria infection.

Methods: A systematic literature review was undertaken across four medical and life sciences databases (PubMed,
Cochrane Central, Embase, and Web of Science) from their inception to July 2016 to compare the effectiveness of
different preventive measures on malaria incidence. Data from the included studies were analysed for the
effectiveness of several measures against no intervention (NI). This was carried out using an automated generalized
pairwise modeling (GPM) framework for network meta-analysis to generate mixed treatment effects against a
common comparator of no intervention (NI).

Results: There were 30 studies that met the inclusion criteria from 1998–2016. The GPM framework led to a final
ranking of effectiveness of measures in the following order from best to worst: PD, ITN, IRS and UN, in comparison
with NI. However, only ITN (RR: 0.49, 95% CI: 0.32–0.74) showed precision while other methods [PD (RR: 0.24,
95% CI: 0.004–15.43), IRS (RR: 0.55, 95% CI: 0.20–1.56) and UN (RR: 0.73, 95% CI: 0.28–1.90)] demonstrating
considerable uncertainty associated with their point estimates.

Conclusion: Current evidence is strong for the protective effect of ITN interventions in malaria prevention.
Even though ITNs were found to be the only preventive measure with statistical support for their
effectiveness, the role of other malaria control measures may be important adjuncts in the global drive to
eliminate malaria.
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Background
Malaria imposes a great health and socio-economic bur-
den on humanity, with an estimated 3.2 billion people at
risk of being infected with malaria [1]. In 2016, there
were approximately 216 million cases with 445,000
deaths, most of which were in children aged under 5

years in Africa [1]. Between 2000 and 2015, it has been
estimated that there was a 37% global reduction in mal-
aria incidence [2]. This improvement was likely made
possible by economic development and urbanization in
many endemic countries [3] as well as a substantial in-
crease in investment in tackling malaria [4], leading to
an increase in preventative activities, and improved diag-
nostics and treatment. The Global Technical Strategy for
Malaria 2016–2030 (GTS) has a target to eliminate mal-
aria in at least ten countries by 2020, 20 countries by
2025, and 30 countries by 2030 [2, 5].
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Vector control remains an essential component of
malaria control and elimination. The capacity of vectors
to transmit parasites and their vulnerability to vector
control measures vary by mosquito species and are influ-
enced by local environmental factors. Personal prevent-
ive measures that prevent contact between the adult
mosquitoes and human beings are the main methods of
prevention currently in practice. These include
insecticide-treated nets (ITNs), and indoor residual
spraying (IRS) [6]. ITNs are of two types: long-lasting in-
secticidal nets (LLINs) that have the insecticide incorpo-
rated into fibers during the manufacturing process,
which leads to a longer duration of effectiveness and
insecticide-treated nets (ITNs) which are impregnated
with insecticides every six months. Indoor residual
spraying (IRS) involves spraying insecticides on the walls
of the houses. Additionally, antimalarial chemoprophy-
laxis is used for prevention of malaria in children and
pregnant women. The commonly used prophylactic
drugs (PD) are sulphadoxine-pyrimethamine (SP), meflo-
quine (MQ), amodiaquine (AQ), dihydroartemisinin-
peperaquine (DP) and artesunate (AS). The main advan-
tage of using PD is that they only require a single dose
to achieve a full prophylactic effect [7, 8]. However, the
most common PD is SP and it is becoming less effective
due to resistance [9–13]. As a result, other drugs such as
MQ and AQ are increasingly being used as a substitute
for or in combination with SP [12, 14]. MQ provides a
longer period of prophylaxis but side effects (agranulo-
cytosis in 1 per 2000 patients) [15] are the main problem
[16, 17]. Similarly, AQ has been used in combination
with SP but AQ is not well tolerated [14]. Many other
less commonly utilized measures include insecticide-
treated curtains (ITC), mosquito coils, insecticide-
treated hammocks, and insecticide-treated tarpaulins.
There has been a decrease in malaria incidence world-

wide, but what remains unclear is which of the common
preventive interventions is the most effective for preven-
tion of malaria infection. This knowledge may help pri-
oritise resourcing of these interventions. There has been
one comparative study of preventive efficacy that com-
pares mortality across ITN, IRS and PD and this study
demonstrated that the impact of IRS is equal to that of
ITN on reducing malaria-attributable mortality in chil-
dren [18]. There have also been several systematic re-
views and meta-analyses focusing on single preventive
measures. These reviews of existing data suggest that PD
[19–22], is effective in preventing malaria infection in
children when treated on a monthly basis with no pro-
tection when given three-monthly. The reviews of both
ITN [23–25] and IRS [26, 27] provide support for their
effectiveness as malaria preventive measures, but there is
no data on the effectiveness of one measure over
another.

Therefore, this study aims to present an up-to-date
comparison of the effectiveness of the four common
malaria preventive measures (ITNs, UNs, IRS and PDs)
for which data are readily available and compare these
against no intervention [NI, defined as no intervention
or placebo or a study group with standard care (any
intervention given to all participants)]. A network meta-
analysis methodology was chosen to pool the data as it
allows comparisons of multiple preventive measures
simultaneously and allows comparisons across prevent-
ive measures not directly tested in the included trials
(indirect comparisons across a pair of studies that share
a common comparator). In addition, this method allows
ranking of the effectiveness of these measures for deci-
sion making.

Methods
Search strategy and eligibility criteria
A systematic literature review was undertaken using four
medical and life sciences databases (PubMed, Cochrane
Central, Embase and Web of Science). They were
searched from their inception to March 2016 for trials
that compared the effectiveness of malaria preventive
measures. Search terms included were “malaria”, “Plas-
modium falciparum”, “Plasmodium vivax”, “bed net”,
“mosquito control”, “antimalarial”, and “insecticides”; the
specific keywords and connectors for each database are
listed in the Additional file 1: Table S1.
The inclusion of studies were restricted to (i) interven-

tional studies; (ii) conducted in humans (with no restric-
tion of age or sex); (iii) that compared two or more of
the following malaria preventive measures: ITN, UN,
IRS, PD or NI; and (iv) reported the number of new
malaria cases diagnosed through microscopy or rapid
diagnostic tests (RDT) after each intervention compared
amongst a population at risk over time. Exclusion cri-
teria included: (i) non-intervention studies; (ii) confer-
ence abstracts; and (iii) other less commonly utilized
malaria preventive measures including ITC, mosquito
coils, insecticide-treated hammocks and insecticide-
treated tarpaulins. No language restrictions were im-
posed. Since we used a generalized pairwise modeling
approach (see below), odd numbers of treatments (e.g.
three treatment arms) required selection of a pair for in-
clusion in this study and we therefore excluded the arm
that had the most available data in this synthesis [(i)
arms that we excluded do not make a difference, (ii)
concurrent interventions and no effect modification].

Study selection and data extraction
The citation search was developed and executed by JC,
followed by selection of citations by title and abstract in-
dependently by two researchers (KW and LFK). The se-
lected studies underwent a full-text review for all
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potentially relevant studies. Data from the included
studies were then independently extracted in a spread-
sheet by the same two researchers. The extracted data
included: (i) the country of study; (ii) year(s) when the
study was conducted; (iii) study design; (iv) study popu-
lation characteristics; (v) preventive measures employed
in the trial; and (vi) the number of new cases of malaria
and person-months at risk. The extracted data were then
cross-checked by the two researchers and any discrepan-
cies during the selection of studies or data extraction
were resolved through discussion and consensus follow-
ing independent evaluation by another author (SARD).

Statistical analysis
The outcome of interest was the rate ratio (RR) of new
malaria cases in intervention-A vs intervention-B follow-
ing the implementation of different preventative mea-
sures. An automated generalized pairwise modeling
(GPM) framework [28] was used to generate mixed
treatment effects against a common comparator (NI).
This framework is an extension of the Bucher method
[29] that automates the single three-treatment loop
method. This analysis starts by pooling effect sizes based
on direct comparisons between any two interventions
using meta-analytic methods. The indirect comparison
was then performed by automated generation of all pos-
sible closed loops of three-treatments such that one of
them was common to the two studies and formed the
node where the loop began and ended but where the
common node was never NI, while one of the other
nodes was always NI. Finally, the mixed effects (multiple
direct/indirect effects) were pooled using the same
meta-analysis model as used for pooling direct effects.
The analysis therefore led to a final mixed treatment ef-
fect estimate for different interventions versus NI. Esti-
mates of preventive effectiveness were then ranked by
their point estimates. It should be pointed out that it is
common for network plots based on Bayesian methods
to rank treatments by the surface under the cumulative
ranking curve (SUCRA). From our frequentist perspec-
tive, treatment effects are thought of as fixed parameters
and thus, strictly speaking SUCRA does not apply. A fre-
quentist alternative called the P-score has been proposed
but SUCRA or P-scores have no major advantage com-
pared to what we have done, i.e. ranking treatments by
their point estimates [30].
All direct estimates were pooled using the inverse vari-

ance heterogeneity (IVhet) model [31] as were all mixed
estimates, but this synthesis process was also repeated
using the random effects model for comparison (the ran-
dom effects analysis was undertaken under the GPM
framework as well as under the frequentist multivariate
meta-analysis framework for comparison (see Additional
file 1: Tables S2 and S3 for details).

Cluster randomized controlled trials (RCT) were com-
bined with other study types after accounting for cluster-
ing using the design effect (DEFF). The DEFF was
calculated as follows:

DEFF ¼ 1þ ρ c−1ð Þ
where ρ is the intra-class correlation for the statistic in
question and c is the average size of the cluster. We then
divided the numbers in each 2 × 2 table of the study by
the DEFF to calculate a corrected sample size, which
was then utilized in the meta-analysis. Different units of
clusters such as villages and households were used in
different studies. The intra-class correlation coefficient
(ρ) was provided only in one study [32], and this (ρ =
0.048) was used for calculation of the DEFF for other
cluster RCT studies.
Statistical heterogeneity across direct effects pooled in

the meta-analysis were assessed by the Cochran’s Q and
the H index which is the square root of H2, the esti-
mated residual variance from the regression of the stan-
dardized treatment effect estimates against the inverse
standard error in each direct meta-analysis. H was com-
puted as follows:

H ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

max max 1; n−1ð Þ;Q½ �
max 1; n−1ð Þ

s

where n is the number of study estimates pooled and Q
represents the Chi squared from Cochran’s Q.
Transitivity was assessed statistically by looking at in-

consistency across the network as a whole using the
weighted pooled H index (H ) which was computed as
follows from the Cochran’s Q statistic for the k final
comparisons:

H ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pk
j¼1 max max 1; n−1ð Þ;Q½ �

Pk
j¼1n

� �

−k þ s

v

u

u

u

t

where n is the number of estimates pooled across each
comparison and s is the number comparisons (out of k)
were n = 1. The minimum value H or H can take is 1, it
is not influenced by n, and H < 3 was taken to be min-
imal inconsistency based on our simulations of H in
homogenous direct meta-analyses [28].
Sensitivity analyses were undertaken through limiting

the network to (i) studies conducted in children or (ii)
studies including only Plasmodium falciparum infection
and then re-running the GPM analysis.
Publication bias was assessed using a ‘comparison ad-

justed’ funnel plot where on the horizontal axis the dif-
ference of each study’s observed ln(RR) from the
comparison’s mean ln(RR) obtained from the pairwise
fixed effect meta-analysis was plotted. In the absence of
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small-study effects, we expect the studies to form an
inverted funnel centred at zero [33]. All the analyses in-
volved in the generalised pairwise modelling (GPM)
framework for multiple indirect and mixed effects were
conducted using MetaXL v5.2 (EpiGear International,
Sunrise Beach, Australia) [28]. Funnel and network plots
were produced using Stata version 13 (Stata Corpor-
ation, College Station, TX, USA).

Quality assessment
The quality of the included studies was assessed using a
modification of a quality checklist used in another study
by one of the authors [34]. The studies were assessed on
inclusion of safeguards relating to study design, selec-
tion, information, blinding of study assessors, and ana-
lytical biases. There were 12 questions with a possible
maximum count of 17 safe-guards (Additional file 1:
Table S4).

Results
Data extraction
The search strategy identified 7940 citations (Cochrane
Central = 353, PubMed = 2698, Web of Science = 1534
and Embase = 3355). After deleting duplicate citations, a
total of 4941 citations were retrieved for the initial
screening. Of these, 4692 citations were excluded based
on title only. Records of 249 citations were screened and
161 citations were excluded based on the title and ab-
stract. Eighty eight articles were assessed for eligibility,
of which 58 articles were excluded (Additional file 1:
Table S5). Thirty citations fulfilled eligibility criteria and
were included in the meta-analysis (Fig. 1). Data from
the included studies were extracted and summarized in
a spreadsheet (Table 1).

Characteristics of included studies
The literature search on malaria control and preventive
measures led to the identification of the five treatment
groups across the studies (ITN, UN, PD, IRS and NI). A
total of 30 studies were included in the current meta-
analysis. These studies were conducted from 1988 to
2015. Eighteen studies were conducted in Africa [35–52],
11 studies were from Asia [32, 53–62] and one study from
South America [63]. Ten studies did not restrict study
participants to any age [36, 41, 51, 55, 57, 58, 60–63], four
studies only included adults as study participants
[40, 53, 56, 59], and the rest of the studies (16) were
conducted in children and adolescents (0–19 years)
[32, 35, 37–39, 42–50, 52, 54]. There were 21 stud-
ies that reported P. falciparum infection rates separately
[32, 35, 37–43, 45–48, 50–52, 54, 55, 58, 60, 62]. The lat-
ter two groups were used in a sensitivity analysis (see
below). The most common study design was the RCT
with 16 studies [37–40, 42, 43, 46–48, 50, 51, 53, 54, 56,
59, 62], eight studies were cluster RCT [32, 36, 44, 49, 52,
57, 58, 60], and the rest (6) were quasi-experimental stud-
ies with a control group [35, 41, 45, 55, 61, 63]. Twenty
one studies had two arms [32, 36–42, 44, 49, 50, 52–55,
57, 59–63], eight studies had three arms, [35, 45–48, 51,
56, 58] and one had four arms [43]. Of those with three
arms we dropped the curtain arm in two studies [31, 51]
(not part of this review) and one of the PD arms in four
other studies [43, 46, 48, 56] that reported PD compari-
sons at different dosages or intervals. Microscopy was
used for detection of Plasmodium parasites in 25 studies
[32, 35, 37–40, 42–48, 50–61], three studies used both mi-
croscopy and RDTs [49, 62, 63], and one study each used
RDT [41] and polymerase chain reaction (PCR) and mi-
croscopy [36] for diagnosis (Table 1).

Interventions utilized across studies
Twenty five studies had a NI arm [32, 35–46, 48–52, 55–
57, 59, 61–63], and seven studies had a UN arm [45, 47,
52–54, 58, 60]. Of the eleven studies that used a PD arms
[37, 38, 40, 42, 43, 46–48, 50, 56, 59], the regimens were
all different (Additional file 1: Table S6). Fourteen studies
reported the use of ITN in one arm [32, 35, 39, 44, 51,
53–55, 57, 58, 60–63]. In these studies, different types of
nets and insecticides for treating such nets were used
(Additional file 1: Table S7). The insecticides used for IRS
in the three studies of this intervention were also different
and are listed in (Additional file 1: Table S8) [36, 41, 49].

Quality assessment
The quality of the studies including types of study,
randomization and other characteristics was assessed
through 17 safeguards against bias as outlined in the
supplementary material. They were combined into a uni-
variate overall quality score consisting of counts of

Fig. 1 Search flowchart. Note: details of excluded studies in Additional
file 1: Table S5
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safeguards ranging between 7 and 17 out of a maximum
possible of 17. The ranges of the scores were 10–17, 7–
14, 9–16, 10–16, and 8–11 in PD vs NI, ITN vs NI, IRS
vs NI, ITN vs UN, and UN vs NI studies, respectively.
The most common safeguards missing were consider-
ation of confounders such as socio-economic status,
owning LLINs, malaria prevalence and blinding of asses-
sors in between 46.7–93.3% of studies (Additional file 1:
Table S9).

Quantitative synthesis
Seven direct estimates based on head-to-head compari-
son within 30 studies, which included 60 treatment
groups, were available (Table 2 and Fig. 2). In these dir-
ect comparisons, PD (RR: 0.21, 95% confidence interval
[CI] 0.13–0.33), ITN (RR: 0.57, 95% CI: 0.41–0.81), and
UN (RR: 0.67, 95% CI: 0.49–0.92) were significantly bet-
ter than NI. Similarly, UN (0.12, 95% CI: 0.01–0.94) was
better as compared to PD, and IRS (RR: 0.55, 95% CI:
0.20–1.56) was not significantly different from NI.
The indirect estimate for ITN (RR: 0.37, 95% CI: 0.24–

0.58) was consistent with the direct estimate, while that
for PD (RR: 5.70, 95% CI: 0.70–46.58) demonstrated an
inconsistent and very uncertain effect as opposed to the
direct estimate. UN had two indirect estimates possible
and both were inconsistent with the direct effect but in
opposite directions with either a grossly positive effect

(RR: 0.02, 95% CI: 0.003–0.21) or a negative effect (RR:
1.03, 95% CI: 0.64–1.66) (Table 2).
The final estimates were based on all evidence for

these interventions in comparison with NI and results
showed that, PD (RR: 0.24, 95% CI: 0.004–15.43), ITN
(RR: 0.49, 95% CI: 0.32–0.74), IRS (RR: 0.55, 95% CI:
0.20–1.56), and UN (RR: 0.73, 95% CI: 0.28–1.90) were
all less likely to be associated with incident infection as
compared to participants using no preventive measure
(NI). However, only ITN demonstrated a statistically sig-
nificant effect (Table 2 and Fig. 3).
There was overall minimal statistical network incon-

sistency (H ¼ 2:21Þ over comparisons despite the incon-
sistent direct and indirect effects, because of the huge
uncertainty associated with indirect effects possibly
reflecting heterogeneity in terms of the geographical lo-
cations and population characteristics of studies. One
final effect (PD-NI) demonstrated modest inconsistency
(H = 3.0) while the rest demonstrated minimal to no in-
consistency (H < 3, see Table 2), again because of uncer-
tainty around the individual mixed effects.

Sensitivity analysis and publication bias
Heterogeneity was evident when selection criteria were
modified to include only children or only P. falciparum

infections respectively (with H at 2.35 and 2.29,

Table 2 Direct, indirect and final results from comparison of different preventive measures

ID Comparison Active Control RR 95% LCI 95% HCI Ka H

Direct estimates

1 UN-PD UN PD 0.12 0.01 0.94 1 1

2 ITN-UN ITN UN 0.56 0.40 0.76 4 1.11

3 ITN-NI ITN NI 0.57 0.41 0.81 10 2.76

4 PD-NI PD NI 0.21 0.13 0.33 10 2.49

5 IRS-NI IRS NI 0.55 0.20 1.56 3 3.41

6 UN-NI UN NI 0.67 0.49 0.92 2 1

Indirect estimates (source IDs)

7 Indirect UN vs NI (1, 4) UN NI 0.02 0.003 0.21 2 3.01

8 Indirect ITN vs NI (2, 6) ITN NI 0.37 0.24 0.58 2 1.85

9 Indirect PD vs NI (1, 6) PD NI 5.70 0.70 46.58 2 3.01

10 Indirect UN vs NI (2, 3) UN NI 1.03 0.64 1.66 2 1.85

Final estimates from all evidence (source IDs)

PD (4, 9) PD NI 0.24 0.004 15.43 2 3.00

ITN (3, 8) ITN NI 0.49 0.32 0.74 2 1.85

IRS (5) IRS NI 0.55 0.20 1.56 1 1

UN (6, 7, 10) UN NI 0.73 0.28 1.90 3 2.59

Network H = 2.21

Abbreviations: ITC insecticide-treated curtain, ITN insecticide-treated net, PD prophylactic drug, NI no intervention, IRS indoor residual spraying, UN untreated nets,
RR rate ratio, LCI lower confidence interval, HCI higher confidence interval
aNumber of studies
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respectively (Additional file 2: Figure S1; Additional file
3: Figure S2). However, the rank of effectiveness of dif-
ferent preventive measures remained unchanged in both
analyses except that ITN was less effective than IRS in
only P. falciparum and effects were now less precise be-
cause numbers of studies were lower.
The comparison-adjusted funnel plot demonstrated lit-

tle evidence of asymmetry except for the PD-NI com-
parison, which was in keeping with the fact that there
was both considerable heterogeneity and inconsistency
across this comparison (Additional file 4: Figure S3).

Discussion
This meta-analysis showed that only ITNs had a signifi-
cant effect in protection against malaria infection. While

the effect size for PD was larger, the uncertainty was
high, thus making the impact of this intervention uncer-
tain. These findings confirm that impregnated insecti-
cides on ITNs offers better protection than UNs in
preventing mosquitoes from taking a blood meal from
the host through its excito-repellency effect [23, 64–70].
The insecticides on ITNs may also inhibit mosquitoes
from entering a house similar to the effect of IRS. Mor-
tality of mosquitoes in the range of 25–75% has been
observed after they enter huts in search of blood meals
irrespective of the various different pyrethroids used in
ITNs [67]. Individual studies on efficacy of this interven-
tion have shown that the risk of malaria infection due to
ITN use can reduce by up to 39–62% and child mortal-
ity by 14–29% [24, 71]. Interestingly, the impact of ITNs
on child mortality and morbidity have been reported to
extend out from areas with the actual ITN use to neigh-
bouring areas because of the impact of the insecticidal
nets on the entomological inoculation rate (EIR) of the
local vector population [72–74]. Similarly, mathematical
modelling has shown that ITNs can even protect against
mosquitoes that feed outdoors [75]. ITNs have also been
reported to protect women in pregnancy and in reducing
placental malaria, anaemia, stillbirths and abortions [65].
Of note, the combination of IRS and ITN has been
shown to offer better protection as compared to ITNs
alone [27, 41, 76–79]. Only one of the latter studies was
included in our synthesis which compared IRS vs NI
where both arms were also given ITNs and the RR was
0.42 (95% CI: 0.34–0.52) suggesting that the effects are
independent and additive on malaria prevention [41].
The other studies did not meet our inclusion criteria be-
cause these studies were cross-sectional and pre-post
interventional studies but evidence from them was also
supportive of this conclusion.
Despite reports of pyrethroid resistance in parts of the

world including Africa [80–85], ITNs treated with pyre-
throids continue to provide significant protection against
malaria [69, 71, 86, 87]. ITNs of the LLIN type have in-
secticides impregnated in the fibres of nets, which are
wash resistant for the four- to five-year lifespan of the
ITNs. ITBN types of ITNs require insecticides to be im-
pregnated every six months. Due to reduced costs and
ease of implementation, the LLINs have gained huge
popularity in recent years and given their superiority to
IRS in this analysis as well as in previous studies [27, 88],
this would represent a strong choice in terms of malaria
prevention.
The biggest effect size was for PD. This intervention

prevents or reduces the incidence of malaria primarily
through clearing existing parasitaemia (or reducing it to
a level below the fever threshold) and preventing new
infections [8, 89, 90]. In our analysis however, we found
the least precision for the effect estimate and the most

Fig. 3 Results of network meta-analysis of 30 studies comparing
listed interventions against NI. Only the PD-NI mixed effects showed
modest inconsistency and this is reflected in the marked uncertainty
(wide 95% confidence intervals) of the effect estimate

Fig. 2 Network plot showing the comparison groups. The circle size is
proportional to the number of studies including that intervention
while line width is proportional to the number of comparisons.
Abbreviations: ITN, insecticide-treated nets; UN, untreated net; IRS,
indoor residual spraying; NI, no intervention; PD, prophylactic drug
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inconsistency, suggesting that the effects varied widely
across studies. Whilst the effectiveness of prophylactic
drugs has been documented in children and pregnant
women in sub-Saharan Africa, it has not been substanti-
ated in other parts of the world [38, 42, 91, 92], possibly
because of the limited ability of drugs to prevent relapse
in P. vivax infection [8, 93, 94]. Nevertheless, in our ana-
lysis restricted to P. falciparum, the same uncertainty
was observed for PDs as in the full dataset. There are
other concerns apart from preventive efficacy with the
use of drugs as they can also result in impairment of
natural immunity, and rebound infections of the chil-
dren who received chemo-prophylaxis for 1–5 years
[95–98]. The widespread use of chemoprophylaxis in
children and pregnant women could possibly increase
the rate of spread of drug resistance [99].
The preventive measure with the next highest effect

estimate was IRS, a critical component of the WHO’s
Global Malaria Eradication Program from 1955–1969
and the main intervention attributed to the elimination
or dramatic reduction of malaria in parts of Europe, Asia
and Latin America [27]. The basic principle of IRS in
vector control is that IRS protects inhabitants against
mosquito bites by killing the blood-fed females who rest
on the walls after feeding and also protect inhabitants
against mosquito bites by diverting the vector from en-
tering a sprayed house an effect known as excito-
repellency [100, 101]. If the mosquito does enter the
house, after biting, the female mosquito eventually rests
on sprayed surfaces, where it picks up a lethal dose of
insecticide, thus preventing transmission of the parasite
to others. In a village with a high percentage coverage of
houses with IRS, the mean age of the village mosquito
population is expected to be reduced and very few mos-
quitoes will survive the approximately 12 days required
for sporozoite maturation to be able to transmit the par-
asites [71]. Thus, IRS reduces malaria transmission at
the community level by reducing mosquito longevity
and abundance, but it has also been reported to pro-
vide household-level protection [27]. Studies have
shown that IRS was more effective with high initial
prevalence, multiple rounds of spraying and in re-
gions with a combination of P. falciparum and P.
vivax [26]. Despite all the advantages of IRS, our ana-
lysis suggested a consistently better (or at worst
equivalent) efficacy for ITNs compared to IRS. Mos-
quito mortality has been shown to decline after the
third month following IRS and by the fifth month, ef-
fectiveness reduces by 12% [102]. Efficacy might wane
if walls are replastered or painted following implant-
ation of IRS, and mosquito resistance to insecticides
can emerge. In addition, there is a need for trained
personnel for application of insecticides, which means
IRS might not always be done effectively.

Untreated nets were the least effective in preventing
malaria infection as compared to other preventive mea-
sures. UNs can offer a barrier against the bite of mosqui-
toes; however, mosquitoes can rest on the UNs while
seeking opportunities to feed on the hosts sleeping
under the nets, which can be presented when any part
of a host’s body comes in contact with the nets. This
happens often when hosts are in a deep sleep, especially
under inadequately spaced or small nets. Untreated nets
can even offer resting places to mosquitoes in an IRS-
sprayed house and thus cannot be recommended given
the other alternatives that exist. Finally, torn untreated
nets have been shown to offer no additional protection
as compared to not using nets [45, 103].
A key strength of this analysis is the use of the GPM

framework which avoids approximations and assump-
tions that are not stated explicitly or verified when the
method is applied. On the contrary, the multivariate fre-
quentist framework assumes that if there is no common
comparator in the network, this then has to be handled
by augmenting the dataset with fictional arms with high
variance. This is not very objective and requires a deci-
sion as to what constitutes a sufficiently high variance
[104]. Another alternative, the Bayesian framework, also
has its problems such as requiring prior distributions to
be specified for a number of unknown parameters and
choices regarding over-dispersed starting values for a
number of independent chains so that convergence can
be assessed. While we have several choices for the meta-
analytic framework, this choice may be less important
than other choices regarding the modelling of effects
[105]. Indeed, we were able to use the inverse variance
heterogeneity model for direct estimates which has cor-
rect error estimation when compared with the random
effects model [31]. Results from a random effects model
(using both the multivariate meta-analysis framework as
well as the GPM framework) differ slightly from our
main results, especially regarding PD, which has spuri-
ously precise estimates using this approach (Additional
file 1: Tables S2, S3).
There are limitations of this study worth noting. Even

though clinical and statistical significance was found for
ITNs, in reality the effectiveness of interventions (ITN)
are dependent on a number of extrinsic factors such as
population behaviour and vector aetiology. Studies have
shown that ITN use is influenced by social behaviour in-
cluding education, level of knowledge on malaria, and
ease of use [106, 107]. In addition, other socio-economic
factors such as working and staying overnight in the for-
est decreases protection despite high proportion of
coverage by ITNs [108–110]. Secondly, different insecti-
cides being used for IRS and ITN over the study period
would have impacted the findings of this study and the
development of insecticide resistance would undermine
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the effectiveness of ITNs in preventing malaria. Thirdly,
the methods of diagnosis of incident malaria were differ-
ent in the studies. Since most of these studies were con-
ducted in intense malaria transmission areas, this effect
is however likely to be minimal. Fourthly, the vectors
were different depending on the region of the study; for
instance, the commonest malaria vectors in the Asian
region including Anopheles dirus, An. baimaii and An.
minimus [111, 112], are able to avoid indoor sprayed
surfaces because of their exophilic and exophagic char-
acteristics [113–115] rendering most domicile-based in-
terventions, like ITNs and IRS less effective [114, 116].
Of the three main vectors in the African region: An. ara-
biensis, An. funestus and An. gambiae [113, 117], only
An. arabiensis shows feeding preferences for both in-
doors and outdoors while the other two are indoor-
feeders [117]. Other challenges include insecticide resist-
ance [118]. Finally, the drug types and regimens varied
between studies. All of these limitations have the poten-
tial to increase heterogeneity between the included stud-
ies and make it more difficult to estimate the effects of
the different interventions more precisely than what we
have reported.

Conclusions
Even though ITNs were found to be the only preventive
measure with statistical support for its effectiveness in
this study, the role of all malaria control measures are
important in the global drive to eliminate malaria. How-
ever, when a choice needs to be made for resource allo-
cation, the results reported here tend to favour the use
of ITNs.
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