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Abstract: Nanofibers have been attracting growing attention owing to their outstanding physicochemical
and structural properties as well as diverse and intriguing applications. Electrospinning has been
known as a simple, flexible, and multipurpose technique for the fabrication of submicro scale
fibers. Throughout the last two decades, numerous investigations have focused on the employment of
electrospinning techniques to improve the characteristics of fabricated fibers. This review highlights
the state of the art of melt electrospinning and clarifies the major categories based on multitemperature
control, gas assist, laser melt, coaxial, and needleless designs. In addition, we represent the effect of
melt electrospinning process parameters on the properties of produced fibers. Finally, this review
summarizes the challenges and obstacles connected to the melt electrospinning technique.

Keywords: nanofibers; setup; melt electrospinning; laser melt; coaxial; melt electrospinning
multitemperature control; gas assist melt electrospinning

1. Introduction

Since the breakthrough in nanoscience and nanotechnology, many efforts have been devoted
to developing simple, reproducible, and variable techniques for the fabrication of nanomaterials.
Owing to their unique properties, a huge variety of nanostructured materials and composites have been
fabricated for diverse applications such as energy storage, catalysis, food industries, and biomedical
applications [1]. One of these nanoscale materials is the one-dimensional (1D) nanomaterial, which has
gained a great deal of attention due to its high surface area-to-volume ratio as well as superb
performance in many areas [2–4]. One-dimensional nanostructures, such as wires, fibers, rods, spirals,
and tubes, could be fabricated using different synthetic methods and techniques and varying specific
parameters [5,6].

Nanofibers are considered an important class of 1D nanomaterials and there has been increased
interest in their applications in different domains including biomedical/health applications [7–9].
Electrospinning has been established and described as the most widely used technique to fabricate
nanofibers with uniform shape [10–14]. Furthermore, electrospinning is characterized by simplicity,
flexibility, and versatility, which means that it is able to fabricate various nanofibers using a wide
range of materials such as polymers, semiconductors, ceramics, and composites [15,16]. Therefore,
it is not surprising to find a huge increase in the published journal articles related to electrospinning
throughout the last two decades (see Figure 1) due to the reproducibility of the technique as well as
ease of production [17].
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Figure 1. The annual number of English-written journal articles published in the period from 1998–2018,
as derived from SciFinder Scholar using the keyword “electrospinning”. As of 6 May 2019, there are
1855 publications.

In spite of all the reported advantages of electrospinning, it still has some limitations concerning
the rate and scale of production. To illustrate, for some applications, large scale or massive quantities
of the fabricated electrospun nanofibers are required to be produced by the traditional setup, which is
relatively time consuming [18]. The literature revealed many studies aimed at mitigating this drawback,
either by using double-layered electrospinning setup with multiple nozzles [19–22] or by using a hollow
tube with adjustable lengths and holes to obtain multiple jets, which in turn could speed up the
production process [23,24]. In addition, several modifications have targeted the electrospinning process
to improve the quality, size, and functionalization of the fabricated fibers.

The major objectives of this review are: (a) to demonstrate the main types of melt electrospinning
technique and briefly discuss the history of each one; (b) to address the development of melt
electrospinning design with relevant examples of the produced nanofibers; (c) to shed light on the most
recent published applications of electrospun nanofibers using different melt electrospinning processes;
and (d) to discuss in brief the challenges of dragging melt electrospinning in practical applications.

2. Melt Electrospinning

The first work on melt electrospinning was done by Charles Norton in a 1936 patent [25–27],
where he introduced his invention for the fabrication of viscous materials after liquefying them
using fusion or adding a volatile solvent. The patent noted that the influence of electrostatic work in
conjunction with air blast could lead to the production of fine fibers. Norton’s invention was illustrated
in two design forms which are fundamentally alike with minor variations in the materials used such
as gums, pitches, and fused glass. In the first design, the container was made of metal or clay which
can be heated by an electric heating unit and placed at one to six feet from the target. An electrostatic
machine (100 kV) was connected to both the target and the container with positive and negative
charges, respectively. The liquid was discharged from the container through a spout, then blown
towards the stationary plane target by compressed air. The blown liquid flowed between two parallel
plate electrodes (2.2 kV) while being connected to an alternating current of the same charge as the
container. The second design, on the other hand, was heated by directing the burning glass flames at
the bottom of the container, a rotating cylindrical target. As well, a doctor removed collected fibers
and compressed air was subjected perpendicular to the liquid flow path from a rotatory valve instead
of the plate electrodes.

In 1981, Larrondo and Manley [28] published the first melt electrospinning experiment as
an alternative to solution electrospinning using high-density polyethylene (melt flow index (MFI) = 2),
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isotactic polypropylene (MFI = 0.5), and polyethylene in paraffin. As illustrated in Figure 2, the melted
polymer was placed in a vertical chamber with stainless steel walls. An electric heater was deployed
around an aluminum jacket that surrounds the chamber walls, where a thermocouple was used to
control the temperature in the chamber. An insulating material covered the sides and the bottom of the
device and an air piston cylinder was used to pump out the melt polymer through a stainless steel
capillary. The hollow metallic collector palate was placed on a non-conductive lever rod. To control
the vertical distance between the capillary and the plate, a shaft connected to the lever rod was fixed.
Experiments were performed to determine the minimum voltage at which a stable electrospun jet was
formed for each one. During the operations, the temperature of the spun polyethylene in paraffin
solutions was about 100 ◦C, while polyethylene and polypropylenes melts were spun at ranges of
200–220 ◦C and 220–240 ◦C, respectively. Additionally, the capillary diameter used was 1 mm for the
solutions and 2.2 mm with a 4.5 length/diameter (L/d) ratio of the capillary for the melt. The electrospun
fibers showed different surface structures at 6 kV/cm, a shish-kebab-like structure formed from 1%
polyethylene in paraffin solution, while the melt polymers formed a random lamellar arrangement and
a spherulitic shape for polyethylene and polypropylene, respectively. All the fibers were electrospun at
the ambient air temperature without controlling the spun region temperature [28].
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Figure 2. First experimental melt electrospinning setup (1) chamber, (2) stainless steel wall, (3) aluminum
jacket, (4) heater, (5,6) insulator, (7) thermocouple, (8) nozzle, (9) air cylinder, (10) collector, and (11)
shaft [28].

2.1. Multitemperature Control

Zhou et al. [29] presented multitemperature control electrospinning technique as a convenient
method to spin melt polymers on a submicron scale fiber as an alternative to solution electrospinning
using polylactic acid (PLA). Throughout the proposed design as shown in Figure 3, the melt polymer
was subjected to four heating zones: syringe, nozzle, spinning area, and the collector to enhance and
control the fiber size and morphology. Several investigations have been reported to study the change
on the fiber diameter by altering the nozzle temperature and diameter, spinning temperature, electric
field, and flow rate. By taking these parameters into consideration, the PLA melt was successfully
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electrospun to form 800 nm average fiber diameter at 0.01 mL/min, 20 kV, 0.16 mm nozzle diameter,
where the temperature of the syringe, nozzle, spun region, and the collector was 200, 255, 80 and
25 ◦C, respectively. It is worth noting that the group investigated for the first time the whipping
motion of the melt jet, reporting that the melt jet experienced a further thinning just like the solution jet
as confirmed on several studies and models [30–33]. Whereby, varying the applied voltage at 25 ◦C
spinning temperature, the jet motion started to bend more near the collector. On the other hand, at 80 ◦C
a vigorous melt jet motion accorded which increased the residence time of the jet in the spinning
region. Proving the merit of the multi-control electrospinning design, numerous studies [34–38] and
models [39–41] used the same or similar setup designs.
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2.2. Gas Assist

Zhmayev et al. [42] introduced the concept of gas-assisted melt electrospinning (GAME) as
a simple alternative for Zhou’s complicated design, eliminating the difficulty of controlling both the
needle and the spinneret temperature to avoid polymer degradation. GAME’s configuration holds
a coaxial setup, where the melt flow of polylactic acid (PLA) was spun at 1.67 × 10−10 m3/s from an
inner nozzle with 4.13 × 10−4 and 7.18 × 10−4 m inner and outer diameters, respectively. The jet of hot
air, on the other hand, was blown at 300 m/s from the outer nozzle of 1.194 × 10−3 m inner diameter.
The temperature of both nozzles was at 483 k and 0.09 m away from the collector which held 2 × 104 V
of potential. In terms of process, the initial attenuation force for GAME was based on the electric field,
not the air velocity or its temperature, unlike the electro-blowing [43–45]. Through the experimental
investigation, it was observed that turbulent air applied a drag force resulting in an increase of the
production and a decrease of the melt jet diameter by 10% and an extra 20-fold further thinning
occurred upon increasing the air jet temperature, such that the melt PLA fiber diameter in 300 k initial
air stagnant decreased from 3.5 to 0.18 µm.

In recent years, the suction wind velocity has been considered a critical parameter on the fiber
diameter in yarn manufacturing [46,47]. Xiaolu Ma et al. [48] were able to fabricate yarn fibers with
440 nm average diameter while thinning and twisting multiple jets of polypropylene melt polymer.
The proposed design, as represented in Figure 4, was based on a needleless nozzle to increase the
production, which held an advantage over the needle creating multiple Taylor cones, a 200 mm
diameter collector placed 10 cm away from the needleless nozzle, and a rotating disc that affected the
fiber rotating angle. Additionally, a self-designed suction wind device that consisted of an air inlet,
annular airside, and air drain allowed the fibers to be drawn from the nozzle and then combined.
From the experimental results, the wind speed that showed the higher influence on the fiber diameter
as compared with the collector speed under the same applied voltage where the smallest fiber diameter
was obtained, was at 30 m/s wind speed. It was also concluded that the twisting angle of the fiber
could be controlled by adjusting the speed ratio of the collector to the rotating disk. Pre-investigation,
the smallest angle of twisting was 5◦ at a ratio of 30 and the highest was 43◦ at a ratio of 2. Even though,
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several recent methods were developed to manufacture nanofiber yarn, they were only applicable for
solution electrospinning [49–52].
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Figure 4. Yarn melt electrospinning: The small dotted circles located around the exit of needles nozzle
and the suction wind apparatus are magnified in big dotted circles on the right side, each is pointed out
by a red solid arrow to show the role of the suction wind apparatus in combining multiple fibers into
one fiber. The hollow red arrows show a vertical and horizontal rotation direction of the collecting
roller and rotating disk, respectively [48].

2.3. Laser Melt Electrospinning

2.3.1. Spot Laser Melt Electrospinning

PLA was the first polymer to be electrospun using the laser melt electrospinning technique by
Ogata et al. in 2007 [53]. Such a method of heating was easily utilized to spin high melting point
polymers with minimum thermal degradation and dispersion. Moreover, the laser melt electrospinning
did not cause electric discharge as compared with the work published by Lyons et al. [54] and
Warner et al. [55]. In Ogata’s experimental work, two-rod samples of 0.5 mm diameter were prepared
from 22.3 and 76.9 (g/min) MFI of PLA. The rod samples were then deployed in the laser melt
electrospinning at 2–4 mm/s flow. A copper wire was used as a medium to connect the end of the
rod sample with an aluminum electrode and high potential difference between the rod and the 1 m/s
rotating target was applied. Then, the laser beam was subjected on the other end of the sample rod from
three angles by using four mirrors and an absorber. The diameter and wavelength of the laser beam
were 5 mm and 10.6 µm, respectively. Additionally, nitrogen gas was used in conjunction with the
laser beam to prevent the sample rod from burning. The PLA nanofibers were successfully electrospun
from the laser melt electrospinning at a 20 mm collector distance, as the diameter of the low MFI PLA
had 804 nm at a laser power and voltage of 17 W and 30 kV. By comparison, the high MFI PLA had
a smaller diameter (712 nm) at 13 W and 26 kV, and the MFI of the polymer was considered as a factor
affecting the fiber diameter.

The same group continued working on the spot laser melt electrospinning process to spin different
polymers: rod polymer—poly(ethylene-co-vinyl alcohol), poly(ethylene terephthalate), and polyalirate
by Ogata et al. [56,57]; coated rod polymer—poly(l-lactide) with poly(ethylene-co-vinyl alcohol) by Tian
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et al. [58]; as well as fiber bundle—poly(lactide)/poly(ethylene-co-vinyl alcohol) by Shimada et al. [59].
Following the footsteps of this group, further studies have been reported by another group led by
Xiuyan Li [60–64] using the same spot laser design.

Several studies have been published to investigate the process parameters, such as the process
temperature, as well as the electro-and thermodynamics of the melt electrospinning. A methodical
study by a Xu et al. [26] was published to build a predictive understanding of the basic mechanism that
sets the jet motion of the fibers. The authors tackled some addressed problems like molten Taylor cone
and thinning in addition to deformation and coiling of the jet. To do so, poly (l-lactic acid) (PLLA) was
used in CO2 laser-based melt electrospinning, which consisted of a nozzle, a beam splitter, reflector,
beam baffle, feeder, high voltage power supply, and laser transmitter, respectively as shown in Figure 5.
The feed flow rate and the collector distance were 259 mLh−1 and 50 mm, respectively. The fibers
were collected on flat target (90 × 90 mm) and a (2 rpm) rotating target with 90 mm outer diameter.
From Figure 5, Xu and his co-authors revealed that as the melt temperature increases, the solidification
points of the fiber get closer to the collector. It is important to mention, however, as the solidification
points decrease, the elongation rate is almost constant, hence, the jet velocity can be calculated by the
following equation:

v(x) = ξ ∗ xv(x) =
.
ε ∗ x (1)
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The authors were able to formulate Equation (3) to estimate the molten fiber diameter before its
solidification by combining Equation (1) with Equation (2):

v(x) = 4∗Q/π ∗ d2(x)v(x) =
.
ε ∗ x (2)

d(x) =
.
ε/ √ π ∗ (Q/ξ)0.5

∗ x−0.5v(x) =
.
ε ∗ x (3)

where v(x) and d(x) is the velocity and diameter at distance × respectively, ξ is the rate of elongation,
and Q is the flow rate.

Most recently, Xu [65] has utilized the laser melt electrospinning process to spin cellulose/BmimCl
solution homogeneously mixed with either water or ethanol. A crystallization process and film
casting were used to prepare the flexible gel rods of cellulose as represented in Figure 6, unlike melt
extrusion [66] and compression molding [56]. The laser-based system consisted of the feeder at 93 µm/s,
a laser with a 10 W/cm2 output power, and a power supply of 18 kV. The collector (90 × 90 mm) was
filled with liquid nitrogen and placed at 5 cm from the holder, where the surface of the collector was
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about −40 ◦C. Fine fibers of 1 µm were generated from a high degree of polymerization cellulose when
blending with BmimCl for two hours at 110 ◦C.Int. J. Mol. Sci. 2019, 20, × FOR PEER REVIEW 7 of 17 
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Figure 6. Preparation steps for cellulose fibers: (I) Dissolution, cellulose and BmimCl were mixed in the
presence of nitrogen for 2 h to form a homogeneous solution; ( II) gels rods preparation, high and low
concentration of cellulose were prepared using film casting and crystallization, respectively to be fed by
a holder; (III) melt-laser electrospinning setup, fabricating viscous polymer and collecting freeze fiber
at −40 ◦C; (IV) fibers coagulation, fibers were washed in ethanol bath then dried under vacuum [65].

2.3.2. Line Laser Melt Electrospinning

A new laser melt electrospinning process was introduced in 2010 by Shimada et al. [67]. It was
equipped by a line laser beam to increase the fiber production. The idea of this design was based on
projecting a line laser beam on the end of the polymer sheet to produce fibers from a bulk instead of
a rod. In the previous spot laser melt electrospinning technique, the rod samples were homogeneously
melted from three angles in the following manner: (1) the source laser beam was projected and absorbed
partially by the rod; (2) then, the unabsorbed beam was reflected twice to fall back on the sample; and
(3) then again, the unabsorbed beam continued on in this manner until it fell on the laser absorber. In
the line laser system, however, the line beam was generated by introducing the spot laser beam to an
optical system which consisted of three mirrors, a laser homogenizer, a collimator lens, and cylindrical
convex and concave lenses. The line laser system was designed to form a top hat shape with uniform
intensity over 150 and 2 mm of length and width, respectively. A sheet of poly(ethylene-co-vinyl
alcohol) (EVOH) and nylon 6/12 were electrospun at a voltage of 40 kV, laser power of 45 W, and
collector distance of 100 mm. The study investigated the effect of the flow rate and the thickness of
the polymer sheet on the fiber diameter. It was concluded that the average fiber diameter decreases
upon decreasing the flow rate or the sheet thickness. It is worth mentioning, in the previous study [59],
that an opposite result was obtained concerning the effect of the flow rate on fiber diameter on the
rod polymer.

Unlike Lyons et al. [54] and Shen et al. [68], Fujii et al. [69] succeeded to produce nanofibers
from polypropylene (PP) with an average diameter using a line-like carbon dioxide (CO2) laser beam.
Fujii and his team were able to achieve the aim of their study by fabricating (PP/EVOH/PP) three-layer
sheets, taking advantage of the melt flow rate between the two polymers. Hence, hollow shape PP fibers
were obtained by treating the spun fibers with 2-propanol/water solution to remove the EVOH. A melt
press at 5 MPa and 190 ◦C was performed for 10 min to convert the pellets to sheets (40 mm × 100 mm).
The sheets were then placed between the charged copper holders and fed at 4.0 mm/min in the melt
electrospinning. To linearly melt the sheet polymers, a beam expander and homogenizer along with
two cylindrical lenses were used to switch the spot beam to a line. The fibers were spun from a 100
mm distance and collected on a copper anode target (150 mm × 150 mm × 5 mm). A pure monolayer
of each polymer, as well as two-layer (PP/EVOH) and three-layer (PP/EVOH/PP) with three different
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melt flow rates of pellet PP, were spun with co-spinning material of EVOH in order to demonstrate
the change in the fiber diameter. It was noticeable that the thickness diameter of the polymer fibers
decreased in the two- and three-layer sheets as compared with the monolayers. Fujii explained that the
reason behind the change in fibers diameter was due to the towing effect between the two polymers.

2.4. Coaxial Electrospinning

The first encapsulation melt electrospinning system was invented by McCann et al. [70] to
fabricate phase change materials with a coaxial spinneret in the nanoscale. A conventional coaxial
electrospinning setup was used, the phase change polymer (octadecane) was held in a glass syringe,
where its temperature was set at 68 ◦C using a heating tape and a thermocouple to maintain its molten
state. The glass syringe was attached to a polymer-coated based silica capillary which was embedded
in a plastic syringe filled with the polymer solution (PVP/Ti(OiPr)4). Both melt and solution polymers
were pumped separately by two pumps at 0.2 mL/h and 0.7 mL/h for the 7% octadecane, and 0.3 mL/h
and 0.7 mL/h for the 45% octadecane of the fibers by weight. A high voltage was applied at the metallic
needle to spin the polymers on an aluminum foil.

Do et al. [71] used polyethylene glycol (PEG)/polyvinylidene fluoride (PVDF) in the melt-solution
coaxial system to enhance the results obtained from their previous study [72] using solution coaxial
electrospinning. As shown in Figure 7, stainless steel and plastic syringes were filled with melt PEG
and 20% of PVDF/N,N-dimethylformamide (DMF) solution, respectively. The steel syringe maintained
a constant temperature (70 ◦C) through the circulation of hot silicon oil. Both polymers were spun
coaxially at 12 kV and 17 cm voltage and collector distance, respectively through an inner diameter of
0.35 and 1.05 mm. While maintaining the flow of the solution polymer (shell) constant at 1.5 mL/h
through all the trials, increasing both the molecular weight and feed rate of the core polymer resulted
in an increase of the fiber diameter.
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A comparative study can be accomplished between the results of the two studies based on the
obtained capacity of the core/shell nanofibers in energy storage. From the Do et al. [71] study, the highest
enthalpy ratio was 42.5% for PEG4000 corresponding to 68 J/g latent heat among all the core/shell
fibers. On the other hand, McCann et al. [70] obtained value was 114 J/g from 45% octadecane by
weight of fibers. The possible explanation is based on the difference in enthalpy between octadecane
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and PEG. Nevertheless, the obtained results from the melt/solution coaxial electrospinning showed
better results than that of others [72–75]. In the same manner, Li et al. [76] used the same system to spin
Crystal violet lactone–bisphenol A–1-tetradecanol mixture/poly (methyl methacrylate) (CBT/PMMA)
core/shell nanofibers with a slight change in the setup. To ensure the flow of the melt CBT and avoid
clotting in the inner nozzle, a heating tape was wrapped around the entire system.

2.5. Needleless Electrospinning

The needleless melt electrospinning design was first introduced by Fang et al. [77] providing
an efficient, continuous and high mass production of fibers as compared with the conventional
needle-based electrospinning design. The proposed design as shown in Figure 8, consisted of a melt
reservoir, where a rotating disc was partially immersed, drawing out the melt polymer through the
edge of the disc. Both the disc and the reservoir were heated separately using cartridge heaters while
being connected to the control system to maintain the melt temperature between 280 and 360 ◦C.
The collector was placed above the disc while applying a high voltage and the entire system was
inside a plastic box filled with argon. During the experiment, iron and aluminum discs were used
as the fiber generators at 16 cm and 75 kV collecting distance and applied voltage, respectively. Fine
fibers without beads were produced with 3.31 µm average diameter in the case of using the aluminum
disc. On the other hand, the iron disc produced rough surface fibers with some beads at 8.69 µm
average diameter. The result signified that the disc material has a major effect on the diameter and the
morphology of the fiber diameter, which is quite reasonable since the aluminum has a higher thermal
conductivity than iron at the same temperature. It is noteworthy to point out that the electric field
intensity had a small effect on thinning the fiber diameter, unlike other studies [29,78,79], which is
probably due to the absence of the needle restriction on the Taylor cone volume. Fang’s setup solely
depended on the electric field intensity to draw the melt polymer from the surface of the disc since no
pump was used, therefore, upon increasing the voltage above 80 kV, more of the melt polymer was
drawn away from the disc, in other words, increasing the fiber formation.
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Figure 8. Needleless/disc melt electrospinning, where, the melt polymer is drawn out for the reservoir
through the edge of the disc once it rotates (retrieved under the terms and conditions of the Creative
Commons) [77].

An umbellate nozzle-based electrospinning design was introduced by Haoyi Li et al. [80]
addressing the factors that affect the distance between the peak of the two adjacent Taylor cones,
referred to as the interject distance [81]. The equipment used consisted of a melt inlet, a distributor to
ensure a uniform flow on the circumference of the nozzle, an internal and outer surface umbellate
nozzle with 16 and 26 mm diameters with 60◦ cone angle, high power supply, and a circular copper
collector with 150 and 3 mm diameter and thickness, respectively. The experimental result showed
that the melt viscosity and the applied voltage had the greatest influence on the interject distance.
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The shortest interject distance at 250 ◦C achieved on the outer surface nozzle was 1.1 mm at 40 kV,
and 10 cm collector distance and 1.4 mm on the internal surface nozzle at 63 kV and 11 cm, while four
times the interject distance was reported by Komerek et al. [82].

A recent bubble melt electrospinning process was proposed by Li to increase the yield production
of microfiber [83]. The melt electrospinning setup was similar to that of Fang except for the rotating
disc, where an air pump was used instead. After the polymer melts in the metal container, the pump
was turned on and the flow gradually increased until bubbles formed on the surface of the melt
polymer. The bubbles burst due to its exposure to high voltage forming 5–45 µm fiber diameter of
polyurethane, the reason behind this variation in the fiber diameter is based on each bubble size,
viscosity, and its collector distance. Even though, it was challenging to control the production of
uniform fibers, the design is considered applicable for mass production.

2.6. Other Designs

Several designs were introduced over the past years to enhance the melt electrospinning process
and to decrease the fiber diameter, such as Rangkupan and Reneker [84] vacuum electrospinning.
Their attempt to spin polypropylene in a vacuum chamber to simulate a space environment enabled
them to exert a higher electric field since the vacuum has a higher electrical breakdown than air.
The fiber diameter tended to be affected greatly by the applied high voltage and the radiated heat
form melt jet such that at 200 kV/m and 300 ◦C, the spun fibers were in the range of 300 nm to 30 µm.
Dalton et al. [85] used circulating hot water to spin low melting point copolymers of poly(ethylene
glycol) and (polycaprolactone) (PEG-b-PCL) with different molecular weights. Whereas, Morikawa
et al. [86] introduced the wire melt electrospinning process where the geometry of the polymer spin
source used was a wire instead of the conventional needle. Despite the simplicity of the method, the
usage of the wire resulted in confining the Taylor cone size, which gave rise to decreasing the melt jet.

Deng et al. [79] introduced a simple and cheap melt electrospinning design to focus the spotlight
on the pros for melt electrospinning using a low-melt flow index polymer. This design was composed
of 45 steel cylinder and piston, whereas, the capillary was made from stainless steel. A flat wire mesh
collector was connected to a high-voltage supply device with a maximum voltage +60 kV and a current
of 2 mA. The electrical heating ring and thermal sensor were deployed to melt and measure the
temperature of low-density polyethylene (LDPE). To decrease the viscosity of the low-melt flow index
LDPE, the spinning temperature was set at the range (315–355 ◦C) right below the decomposition
temperature (360–400 ◦C). By eliminating the use of the pump, melt polymer was drawn out by
the electrostatic force, while the cylinder was fixed in a tilted position. In addition, the electrodes
were reversed to prevent interference between the high voltage and temperature sensor. Owing to
the mentioned modifications, this design is considered simpler as compared with other reported
designs [29,34,53,57,87,88]. The effects on the properties of LDPE were investigated after varying
different process parameters. For instance, the higher the temperature, the thinner the fibers formed
and since the operating spinning temperature was very high, the fabricated LDPE fibers (<15 µm) were
smaller than the fibers produced by Larrondo and Manley [28] with high-density polyethylene (HDPE).
Additionally, the electrospun melt fibers showed crystallinity unlike other reported studies [87–89].

Additionally, Xie et al. [90] investigated the effect of pulsed electric field on the poly(lactic
acid) melt, which was first introduced by Baba et al. [91]. Xie reported that the pulsed electric field
tended to reduce the fiber diameter as a fine fiber were obtained at 29.8% duty cycle and the method
showed progress in the development of fiber structures. Finally, it is worth mentioning the latest
emerging technique, melt writing electrospinning (MWE). In terms of process, the MWE technique is
a combination of melt electrospinning and 3D printer producing micron and submicron fibers while
controlling their deposition in three dimensions [92–94]. The key parameters of the MWE are pressure,
temperature, collector distance, voltage, and collector speed [95]. A vast range of applications [96–101]
demonstrate the MWE potential to fabricate scaffolds making it ideal for tissue engineering scaffold
development [102].
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Table 1 summarizes the different methods of melt electrospinning used to synthesize a wide variety
of fibers. In addition, the table demonstrates the difference in process parameters for each example.

Table 1. Different approaches to melt electrospinning with their processing parameters.

Design Method Polymer Process Parameters Fiber Diameter Ref.

Conventional
PE T1 = 200–220 ◦C ND = 2.2 mm, V = 6 kV/cm &

Cd = 1–3 cm
- [28]

PP T1 = 220–240 ◦C -

Multitemperature
control

PLA T1 = 200 ◦C, T2 = 255 ◦C, T3 = 80 ◦C & T4 = 25 ◦C
F = 0.001 mL/min, V = 20 kV, Cd = 10 cm & ND = 0.16 mm 800 nm [29]

PP T1 = 230 ◦C, T2 = 280–290 ◦C, T3 = 100–140 ◦C, T4 = 85–95 ◦C,
V = 10–20 kV, F = 0.002–0.008 mL/min & Cd = 5–7 cm – [34]

PP T1 = 330–390 ◦C, T2 = 100–150 ◦C, T3 = 25 ◦C, V = 35 kV
& Cd = 10–18 cm ~20 µm [35]

iPP T1 = 240 ◦C, T2 = 180 ◦C, T3 = room temp, Cd = 2 inch,
Cv = 28 kV, Nv = −5 kv & F = 0.001 mL/min 2.4 µm [36]

N6 T1 = 270 ◦C, T2 = 280 ◦C, T3 = 210–220 ◦C, F = 0.03 mL/h,
Cd = 90 mm, Cv = 29 kV & Nd = 0.26 mm 0.9 µm [37]

Gas assist

PLA TM&A = 483 K, Av = 300 m/s, F = 1.67 × 10–10 m3/s
& Cd = 0.09 m

0.18 µm [42]

PP T2 = 260 ◦C, Av = 30 m/s, nozzle to electrode = 10 cm,
V = 35 kV, Cd = 200 nm & RDs = 0–500 rpm 400 nm [48]

PLA + 6 wt%
ATBC FA = 25 m/s, V = 40 kV, T = 240 ◦C & Cd = 9 cm 236 nm [47]

Laser

spot
PLA V = 26–30 kV, PL = 13–17 W, Cd = 20 mm & λ = 10.6 µm 712–804 nm [53]

EVAL F = 2–4 mm/s, V = 18–20 kV, Cd = 25 mm, PL = 8–22 W
& λ = 10.6 µm 740 nm–2.842 µm [56]

PLLA coated with
EVOH

F = 10 mm/min, V = 25 kV, PL = 12 w, CD = 5 cm, λ = 10.6 µm
& T3 = 40 ◦C 845 ± 500 nm [58]

line
EVOH/Nylon 6/12

sheets V = 40 kV, PL = 45 W, F = 0.25 mm/min & Cd = 10 mm 800 nm [67]

PP/EVOH/PP Cd = 100 mm, V = 20–70 kV, λ = 10.6 µm & F = 4 mm/min 0.64–1.08 µm [69]

Coaxial PEG/PVDF
V = 12 kV, Cd = 17 cm, N1ID = 0.35, N1OD = 0.65 mm,

N2ID = 1.05, N2OD = 1.2 mm, FN2 = 1.5 mL/h &
FN1 = 0.09–0.24 mL/h

637–911 nm [71]

Needleless

PP T = 320 ◦C, V = 75 kV, Cd = 16 cm 3.31 µm [77]

Pp T = 260 ◦C, V = 39–63 kV, Cd = 11 cm & ND = 16 mm 14.6–5.3 µm [80]

TPU T = 240 ◦C
V = 18–25 kV

20 µm [83]
PLA T = 200–250 ◦C 30 µm

Others

Pp T = 300 ◦C, V = 200 kV/m & vacuum pressure 300 nm–30 µm [84]

PEG-b-PCL V = 20 kV, F = 0.02–5 mL/h & T = 80–90 ◦C 560 ± 90 nm–
16 ± 10.7 µm [85]

PCL T = 100, Cd = 5 cm, Csp = 270 rpm & V = 15–17 kV 1 ± 0.9 µm [86]

PCL Csp = 310–400 mm/min, Cd = 7–13 mm, P = 0.6–1 bar,
V = 5.5–7 kV 48.31–75.12 µm [95]

ND: nozzle diameter, N1ID/ N1OD: inner and outer diameter for inner nozzle, N2ID/ N2OD: inner and outer
diameter for outer nozzle, T = temperature, T1: syringe temperature, T2: nozzle temperature, T3: spin area
temperature, T4: collector temperature, V = voltage, F/FM: melt flow, FA: air flow, FN1: flow in inner nozzle, FN2:
flow in outer nozzle, Cd: collector distance, Csp: collector speed, RDs: rotating disc speed, Cv: collector voltage,
Nv: nozzle voltage, TM & A: melt and air temperature, Av: air velocity, PL: laser power, λ: laser wavelength &
P: pressure.

3. Challenges and Obstacles of Melt Electrospinning

Although melt electrospinning was first reported in the 1936 by Charles Norton [25], however,
it has not been investigated as deeply as solution electrospinning. To illustrate, until 2011, only 0.3%
of the publications from electrospinning literatures are found to be focusing on melt electrospinning
scaffold design [94]. This is due to notable limitations and challenges in using melt electrospinning
such as the relative complexity of the design and the operation process, larger fiber diameter, and few
portable commercialized melt electrospinning apparatus. Efforts have been devoted by researchers
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to tackle the problem of producing fibers with relatively large diameters (tens of microns) [103,104].
However, the setup required for maintaining high temperature, which is added to obtain the desired
reduced fiber diameter, is considered as a limitation for the low conductivity and thermo-sensitive
natural polymers such as chitosan [79,105,106].

In addition, unstable surface tension and spin line cohesive fractures have been reported
as challenges in obtaining electrospun fibers of consistent diameter under the submicrometer
scale [28,34,107]. Although several attempts have been implemented to improve the productivity of
melt electrospun fibers, few commercialized large-scale industrialized apparatus are available for melt
electrospinning production nowadays [67,77,108,109]. In spite of the fact, that the small hand-operated
Wimshurst generator melt electrospinning setup was designed for in-situ wound dressing, researchers
are still struggling to develop a portable melt electrospinning apparatus [110]. Furthermore, one of the
important concerns about melt electrospinning is to achieve sufficient flows through small diameter as
the flow of the melt through small diameter orifices is limited. This is due to the elevated viscosity of fluid
passing to the spinneret, which is tenfold higher as compared with solution electrospinning [79]. Finally,
it is worth mentioning that most of electrospinning theories have relied on solution electrospinning so
far. Hence, deep investigation studies on melt electrospinning are considered a prerequisite to improve
our knowledge about this technique.

4. Conclusions

Throughout this review, we can conclude that the electrospinning technique is considered
a simple technique with a great ability to produce a huge variety of fibers of different size ranges and
applications. Various setup designs have been developed throughout the last two decades for the
purpose of enhancing the structure and functionalization of the fabricated fibers. New techniques have
been recently articulated such as using the melt writing electrospinning to develop tissue engineering
scaffolds. Such novel designs open up the door for more progress and innovation in research to gain
additional advantages and applications.
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