
Between Immunity, Metabolism, and Development: A story 
of a Fly Gut!

In addition to its role in initiating immune response in the body, the innate immune system seems to also play a critical role in maintaining homeostatic balance in the

gut epithelium. Our recent studies in the Drosophila melanogaster fruit fly model suggest that different innate immune pathways contribute to this homeostatic balance

through activating the transcription of genes encoding antimicrobial peptides. We provide evidence that several metabolic parameters are altered in immune deficient

flies. We also highlight a role of the gut flora, particularly through its short chain fatty acid, in contributing to this metabolic balance. Interestingly, our data suggest that

impaired immunity and metabolic alteration, in turn, exhibit an effect on host development. Collectively, these findings provide evidence that innate immune pathways

not only provide the first line of defense against infection but also contribute to host metabolism and development.
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(A,C) Representative fluoresce images of fat body tissues and gut of adult yw (control), domeG0282, and

stat92EEY10528 JAK/STAT mutant female flies, respectively, with DAPI (blue) staining nucleus on the left, BODIPY

lipid staining (green) in the middle, and a merge of both on the right. Scale bar, 50µm. (B,D) Quantification of the

normalized total BODIPY florescence in fat bodies tissues in the indicated fly genotypes in A. Measurements

indicate the mean; error bars indicate the standard deviation. (E) Glucose (F) Triacylglyceride (TAG) levels in the

noted genotypes. (G-I) qRT-PCR of AstC, DH31, and Tk peptide hormones in the intestines of noted strains.
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Impaired Immunity and Alerted Metabolism Affects 

Development 

Dietary Acetate Activates IMD Pathway Signaling and Restores 

Metabolic Homeostasis to Germ-free Flies

(A) Representative image of 5 days old yw (control), domeG0282, and stat92EEY10528 JAK/STAT pathway mutant

female flies. (B) Measurement of body weight of indicated fly genotypes. (C,E) Representative images of 5

days old yw, dreddB118, key1, and relE20 IMD pathway mutants. (D) pupal length (F,G) weights of adult female

and male flies, and (H) time to larval pupation of noted IMD mutant genotypes.

Components of the IMD signaling pathway. When LPS

and peptidoglycan are sensed by IMD pathway

receptors such as PGRP-LC, a complex is formed

including the proteins IMD, FADD, and Dredd, which is

a caspase 8 homolog. Formation of this complex leads

to activation of Dredd. Activated Dredd is hypothesized

to cleave Relish. This complex also activates the

MAP3kinase Tak1 [2] and then the IKK complex,

leading to phosphorylation of Relish, a homolog of the

mammalian transcription factor NF-κB [3]. The IKK

complex includes IKKγ, otherwise known as Kenny,

and IKKβ, otherwise known as IRD5. When Relish

translocates to the nucleus it promotes the transcription

and production of antimicrobial peptides in response to

the bacterial infection.

Upon ligand (red) binding, pre-dimerized complexes

of the pathway including the receptor (grey) and

JAKs (blue) are activated. The phosphorylation

(purple circles) of the JAKs and the receptors, in

turn, create docking sites for the normally cytosolic

STATs that are recruited to the complex that have

been activated. Once these STATs get

phosphorylated, STAT dimers form and translocate

to the nucleus, promoting the transcription of target

genes [4].
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(A) Representative fluorescence images in the midgut of germ-free (GF) control flies (yw)

fed fly food alone or supplemented with 50mM acetate (Ac). (B) qRT-PCR of Tk and dilp3

in the intestines of noted strains.(C) Insulin signaling (D) Triacylglyceride (TAG) and (E)

Glucose levels in the noted genotypes.(F) qRT-PCR of anti-microbial peptides in the

intestines of noted genotypes. (G) Immunofluorescence images of the intestines of flies

using Rel 68 antibody and stained with DAPI.
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Adapted from Arbouzova and P. Zeidler, 2006
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Lipid accumulation (A-F) and Tk peptide hormone expression (G-L) in the intestine of yw, PGRP-

LCΔ5, PGRP-LE112, dreddB118, key1, and relE20 IMD pathway mutants. (M) Glucose (N)

Triacylglyceride (TAG) levels and (O-P) insulin signaling in the noted genotypes.(Q-S) qRT-PCR

of Tk in the intestines of noted strains.
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