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This paper introduces a simple 1-dimensional map-based model of spiking neurons. During the past dec-
ades, dynamical models of neurons have been used to investigate the biology of human nervous systems.
The models simulate experimental records of neurons’ voltages using difference or differential equations.
Difference neuronal models have some advantages besides the differential ones. They are usually simpler,
and considering the cost of needed computations, they are more efficient. In this paper, a simple 1-
dimensional map-based model of spiking neurons is introduced. Sample entropy is applied to analyze
the complexity of the model’s dynamics. The model can generate a wide range of time series with differ-
ent firing rates and different levels of complexities. Besides, using some tools like bifurcation diagrams
and cobwebs, the introduced model is analyzed.

� 2022 Elsevier Ltd. All rights reserved.
1. Introduction

Scientists use computational models to achieve a better insight
into biological complex systems (Ma and Tang, 2017; Wu et al.,
2019; Baer et al., 2021). There is a famous quote from Einstein that
everything should be made as simple as possible, but no simpler
(Sanchez, 2006). This quote can be considered in the line of holism
theory. It can be helpful to approach biological phenomena compu-
tationally (Ma and Tang, 2015). In this way, it is needed to neglect
lots of details about neurons as biological phenomena to pay atten-
tion to the principles of the main dynamics (Girardi-Schappo et al.,
2013; Ma et al., 2019). Mathematical models of neurons are used to
study the behaviors of neuronal populations (Wang and Ma, 2018;
Rouhani et al., 2021). The basis of these mathematical models is
dynamical equations of single neurons (Khaleghi et al., 2019). Var-
ious models have been developed to represent a single neuron’s
behaviors (Herz et al., 2006; Bhalla and Le Novère, 2012). One of
the first approaches to model neurons’ behaviors is based on the
cable/circuits theories (Liu et al., 2019). These models try to regen-
erate neurons’ responses and dynamics by paying attention to their
structures and topologies (Mainen and Sejnowski, 1996). These
models were not suitable for studying collective behaviors of neu-
rons in a network since they needed many computational opera-
tions (Bush and Sejnowski, 1993). To tackle this problem, several
models are introduced to ignore some unnecessary details and
reduce the number of equations (Brette and Pillow, 2015). These
models focus on the influence of the different ions’ currents on
spikes and sub-threshold states (Rotstein et al., 2006; Ge et al.,
2018). Hodgkin and Huxley have suggested a conductance-based
model capable of regenerating lots of neurons’ behaviors like peri-
odic, chaotic bursts and spikes (Hodgkin and Huxley, 1990). The
model was a 4-dimensional ordinary differential equation (ODE)
(Hodgkin and Huxley, 1990). More simplified versions of the Hodg-
kin Huxley (HH) model were used to decrease computational com-
plexity (B. A. y. Arcas, A. L. Fairhall, and W. Bialek, , 2003; Doya and
Selverston, 1994). For instance, a 2-dimensional version of HH was
used to model the muscle fibers (Morris and Lecar, 1981). FitzHugh
Nagumo was another 2-dimensional ODE model of neurons. It con-
siders the permeability of ions’ passing instead of ion channels’
conductance (Nagumo et al., 1962; FitzHugh, 1955). Another
model was developed by Wilson that was tuned based on experi-
mental data of ion currents (Wilson and Cowan, 1972). The 3-
dimensional Hindmarsh Rose model was developed based on the
membrane’s fast and slow currents. In the 2-dimensional model
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of Izhikevich, a resetting mechanism has been considered that
makes the 2-dimensional model capable of reproducing more com-
plex behaviors (Izhikevich, 2004). Besides, inspired by HH, some
other models have been designed based on the phase space analy-
ses (Izhikevich, 2004; FitzHugh, 1961). A piecewise model of neu-
rons has been introduced to investigate the mechanism of tabu
learning neurons (Bao et al., 2020). The interaction of the neurons
and their synaptic activities is a matter of interest for researchers
to design proper computational frameworks (Bao et al., 2020).
Moreover, some models have been developed to investigate the
magnetic inductions among neurons (Bao et al., 2020). For
instance, the effect of external magnetic flux on chaotic/hyper-
chaotic neurons has been investigated by modifying the Hind-
marsh Rose model (Wang et al., 2020). Besides, memristor based
models of neurons have been developed. They are popular because
of their capacity to showmagnetic interaction among neurons (Bao
et al., 2020; Zhang et al., 2020). For instance, a fractional order type
of memristor based model for neurons has been used to investigate
collective behaviors of neurons (He, 2020). In addition, there are
some simpler models like integrated and fire models, which are
not capable of generating bursts. However, because of their sim-
plicity, they have gotten a large amount of attention (Badel et al.,
2008). A light-driven neuron model was studied in (Gentili et al.,
2021). A new version of the fractional leaky integrate-and-fire
model was investigated in (AbdelAty et al., 2022). A Chua corsage
memristor-based neuron model and its dynamics were discussed
in (Dong et al., 2021).

Besides ODE models, map-based models have grabbed lots of
attention themselves (Girardi-Schappo et al., 2013). Although
these models are simpler, they can generate complex neural
behaviors (Ibarz et al., 2011). These models are compatible with
the principles of the holistic theory while they focus on the overall
functions of neurons (Khaleghi et al., 2019). The equations of map-
based models are usually more elegant than ODE-based neural
models (Maslennikov and Nekorkin, 2014). In these models, details
are ignored as much as possible (Rulkov et al., 2004). Therefore,
their computational costs are much lower (Ibarz et al., 2011). For
instance, in the 1-dimensional map-based models, the membrane’s
voltage is the only variable (Pasemann, 1997). Various map-based
models have been introduced (Ibarz et al., 2011). Some of them are
based on the discretization of ODEmodels. For example, the Izhike-
vich map-based model was developed using the discretization of
the Izhikevich by the Euler method (Izhikevich, 2003). Other mod-
els like the 2-dimension Rulkov model were designed based on the
fast and slow neuronal dynamic (Rulkov, 2002). Some map-based
models have been analyzed using phase space and cobweb
(Channell et al., 2007; Ibarz et al., 2008; Courbage and Nekorkin,
2010). Piecewise map-based models of neurons usually were
designed in this way (Izhikevich and Hoppensteadt, 2004; LoFaro
and Kopell, 1999). These piecewise models were capable of being
coupled in different modes (Cazelles et al., 2001). A 1-
dimensional map based on the logistic map was designed that
shows a large variety of neuronal behaviors (Mesbah et al.,
2014). A 1-dimension map-based model with important parame-
ters has been designed in (Medvedev, 2005). The memristor-
based implication of the Rulkov model, which is a discrete map,
has also been proposed to investigate the magnetic induction
effects on the neurons’ behaviors (Li et al., 2022).

The firing rate of spiking neurons is one of the crucial features of
neural signals (Obeid and Wolf, 2004). To encode the function of
the brain, researchers pay lots of attention to this feature (Rolls
and Treves, 2011; Gibson et al., 2012). Considering its importance,
different models have been developed to generate spikes with
wide ranges of firing rates (Schwalger and Chizhov, 2019; Pietras
et al., 2020). Besides, the complexity of neuronal systems has
always been a matter of interest for neuroscientists (Guo et al.,
2

2020; Churchland and Shenoy, 2007). Sample entropy is a valuable
measure of the complexity of the neuronal signals (Zhang et al.,
2009; Jia et al., 2017).

In this paper, a new map-based model with a simpler equation
than most previous neuronal models is introduced. The dynamics
of the model are investigated using cobweb plots and analytical
tools in section 2. The model’s capability to generate wide ranges
of firing rates, inter-spike interval (ISI), and complexities is demon-
strated in section 3. The conclusion of the paper is presented in
section 4.

2. The proposed model

To design a map that mimics the behavior of spiking neurons, a
neuronal spiking signal is considered as Fig. 1 (A). The figure is an
extracellular recorded signal of a neuron (Palmieri et al., 2015;
Henze et al., 2000). Voltage fluctuations can be seen when the neu-
ron is in its rest state. The sources of these fluctuations can be
external noise and the dynamics of neuron ion channels
(Bahramian et al., 2019; Kasimova et al., 2018; Destexhe et al.,
2001). In this paper, a map with the potential of representing these
fluctuations is designed. Fig. 1 (B) demonstrates action potential
simulated with a Hodgkin-Huxley model (Naundorf et al., 2006).
This action potential can be considered as a single spike. In this fig-
ure, the points A, B, and C are in the rest state. Point D shows the
peak of the spike. Points E and F again are located in the rest state.
Considering Fig. 1 (C), if a map (with values between 0 and 1) tries
to regenerate the time series of Fig. 1 (B), its phase space and the
cobweb should be like Fig. 1 (C). Points A, B, C, and F should be
in the blue square named the rest state region. When a spike hap-
pens, point D, as the peak of the spike is located in the green region
(spike region). Point E in the assumed phase space is located in the
red region.

In this paper, a piecewise map is designed with two pieces. The
first piece represents the rest state (blue region in Fig. 1 (C)). The
second piece is supposed to empower the map to spike (green
region) and then reset the map time series to the rest state (red
region). The 1-dimensional equation of the proposed spiking neu-
ron is shown in Eq. (1).

x iþ 1ð Þ ¼ aþ bx ið Þmoduleð1Þ ð1Þ
Where x is considered as the voltage of a neuron.a and b are the

model parameters. The module (1) of the right side of the equation
is calculated, and its result is considered the value of xðiþ 1Þ. The
equation is piecewise since it uses the module (1) function. Instead
of writing two different equations for each piece, in this work,
module (1) is used for breaking (aþ bx) into two separated parts.
The map is designed in the interval [0, 1], and the initial value is
considered in it. So x values change just in that interval. Applying
module (1) allows consideration of a lower number of equations
for the introduced piecewise map. In all simulations of this paper,
parameters are considered a 2 ½0:15;0:25� and b 2 ½�1:15;�1�: The
model has two equilibrium points in the studied interval of param-
eters (the yellow points in Fig. 2). The values of the equilibrium
points can be calculated as follows:

if 0 < aþ bx ið Þð Þ < 1 ! module aþ bx ið Þð Þ;1ð Þ ¼ aþ bx ið Þð Þ !

Eð1Þ ¼ a
1� b

if ðaþ bxðiÞÞ < 0 ! module aþ bx ið Þð Þ;1ð Þ ¼ aþ bx ið Þ þ 1ð Þ !

x ið Þ ¼ aþ bx ið Þ þ 1;! x ið Þ ¼ aþ 1
1� b

;! Eð2Þ ¼ aþ 1
1� b

ð2Þ

Therefore, an equilibrium point exists in each of the two pieces.
The types of these equilibrium points are determined considering
the results of Eq. (3):



Fig. 1. Inspiration from spiking time series to design map-based model of a spiking neuron. A) time-series of a neuron’s membrane voltage (extracellular) (Palmieri et al.,
2015; Henze et al., 2000). Before and after spikes, when the neuron is in the rest state, fluctuations in the voltage can be seen. B) Action potential simulated with the Hodgkin-
Huxley model (Naundorf et al., 2006). The points A, B, C, D, E, and F are considered to explain the main dynamic of a spike and get inspiration to design a map that can model
spikes. C) Inspired from the spike time series, in phase space, the blue region of the map represents the rest state, the green part represents spike, and the red part sends back
the cobweb trajectory to the rest state.
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for the first equilibrium point ðE 1ð ÞÞ a
1� b

� �
:

y ¼ aþ bx ! _y ¼ b !bj j>1
E 1ð Þ is unstable

for the second equilibrium point ðE 2ð ÞÞ aþ 1
1� b

� �
:

y ¼ aþ bxþ 1 ! _y ¼ b !bj j>1
E 2ð Þ is unstable ð3Þ

So, the system has two unstable equilibrium points in the stud-
ied parameters. The map plot is shown in Fig. 2 (A) with black lines
when the identity line is plotted with a red line (a ¼ 0:15 and
b ¼ �1:1). The cobweb of the system is demonstrated in Fig. 2
(B). The module (1) function breaks the linear equation into two
pieces. The piece in the neighborhood of E (1) is responsible for
generating the rest state fluctuations of the voltage. The unstable
E (1) gradually moves the trajectory away from it (Fig. 2 (C)).
Finally, the trajectory jumps to the other piece, and this jump is
considered as a spike (Fig. 2 (C), (D)). The piece in the neighbor-
hood of E (2) causes the trajectory to be placed in the neighbor-
hood of E (1) again, after its jump (spike) (Fig. 2 (B), (D)). Fig. 2
(D) shows how these two pieces represent the rest state region,
spike region, and resetting (back to rest) regions.
3. The studied measures

Here three measures are used to study the dynamics of the neu-
ronal model. These measures are discussed in the following.
3

A sample of the map’s time series is demonstrated in Fig. 3 for
a ¼ 0:15 and b ¼ �1:1. The threshold value of 0.4 is selected to cal-
culate the firing rate of spikes. Therefore, when a point of time ser-
ies has a value larger than 0.4, it is considered a spike.

The firing rate of spikes is calculated as:

firing rate ¼ the number of spike points
the number of all points

ð4Þ

The spike points are the ones with values larger than 0.4. The
number of all the time series’ points is set at 1000.

Besides the firing rate of spikes, the sample entropy of the time
series is calculated. The sample entropy is an index of complexity.
It calculates how many samples of a time series (for instance ; t
number) are needed to predict the following sample ððt þ 1Þth).

For a given time series xðiÞf g, ði ¼ 1; � � � ;NÞ, the sample entropy
algorithm is calculated as following (Richman and Moorman,
2000):

(1) Reconstruct a group of time series based on the given signal:

XiðmÞ ¼ xi; xiþs; � � � ; xiþðm�1Þs
� �

; i ¼ 1;2; � � � ;N �mþ 1 ð5Þ
where Xi 2 Rm, s, and m are time delay and embedding dimen-

sions, respectively. s ¼ 1 is set.

(2) For Xi and Xj, the distance is calculated with the following
assumptions (for m dimensional embedded state space):

r ¼ 0:2� ðStandardDev iationÞ



Fig. 2. A) The map plot with black lines when the red line demonstrated the identity line. B) The map has two unstable equilibrium points, which are shown with the yellow
dots. The trajectory’s directions are shown with arrows. C) The E (1) gradually moves the trajectory away from itself. When the trajectory is in the E (1) neighborhood, it is
considered that the neuron is in the rest state. D) the piece in the E (1) neighborhood can represent the rest state (the blue region). The piece in the E (2) neighborhood
empowers the map to generate spikes.
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Fig. 3. A sample of the map’s time series. A) the values of the dynamical variable (x) in parameters a ¼ 0:15 and b ¼ �1:1. B) the zoomed version of part (A) for better
visualization. The considered threshold that separates spike points from the rest ones is plotted with an orange line. Red arrows show the value of some points which are
considered spikes. ISI is the number of samples among every two spikes, and its schematic is drawn with the green arrows.
Bm
i rð Þ ¼ 1

N �m� 1

XN�m

j¼1; i– j

Heavsideðr � Xi ¼ XjÞ1
4

Bm rð Þ ¼ 1
N �m

XN�m

j¼1

Bm
i rð Þ



Fig. 4. The bifurcation and cobweb diagrams of the proposed map. A) the bifurcation diagram by changing b and constant a ¼ 0:2; B) the system’s bifurcation versus a and
constant b ¼ �1:1; C) Lyapunov exponent by varying b; D) Lyapunov exponent by varying a; E) cobweb diagram for a ¼ 0:2 and b ¼ �1:12; the trajectory after a spike is reset
to a value that is near to E (1). F) cobweb diagram in a ¼ 0:2 and b ¼ �1:03; the trajectory after a spike is reset to a value that has more distance from E (1) rather than the
trajectory in part (E).
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B rð Þ ¼ 1
2
ðN �m� 1ÞðN �mÞðBm rð ÞÞ ð6Þ

where B rð Þ is the total templates that are matched in m dimen-
sion. The same calculations have been done for mþ 1 dimension
embedded state space:
5
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A rð Þ ¼ 1
2
ðN �m� 1ÞðN �mÞðAm rð ÞÞ ð7Þ

where A rð Þ is the total templates that are matched in m
dimension.

(3) In this paper considering m = 2, sample entropy is calculated
with the following formula:
SamEn m; r;Nð Þ ¼ �logðAðrÞ
BðrÞÞ ð8Þ

The average ISI is also calculated for the time series. First, the
number of samples between two spikes is computed, and then
their average is presented as the average ISI. Besides, the Lyapunov
exponent (Batista et al., 2002) of the introduced pricewise map is
calculated.

In the next section, bifurcation diagrams of the system are plot-
ted. Also, the value of sample entropy, the firing rate of spikes, and
its average are calculated.
Fig. 5. Sample entropy for different values of a and b. The maximum value of
sample entropy is for time series in a ¼ 0:15 and b ¼ �1:15. Compared to Fig. 4 (A),
increasing b values from �1:1 to �1 causes the increase of the generated time
series’ complexities. Compared to Fig. 4 (B), increasing the value of a in b ¼ �1:1
does not change the value of the sample entropy so much.
4. Results

Bifurcation diagrams are powerful tools in the study of dynam-
ical systems. The bifurcation diagrams of the proposed map are
demonstrated in Fig. 4. In the simulations, the first 1000 samples
of the signal are removed as the transient time. The following
1000 samples are considered to plot bifurcation diagrams and cal-
culate measures. For the values of b near to �1, the map is not
proper to generate spikes (shown with the orange arrow in Fig. 4
(A)). For these b values, the map slope is low, and the cobweb tra-
jectory is getting away from E (1) very slow. In both parts (A) and
(B) of Fig. 4, two bands at the bottom and the top of bifurcation dia-
grams can be seen. The bottom band has two sub-bands. The top
bands show the values of spikes. The bottom bands demonstrate
the fluctuations of the trajectories in the rest state (in the neigh-
borhood of E (1)). The bottom band has two sub-bands in Fig, 4
(A). In b 2 ½�1:15;�1:1�, these two bands are so close and merge
(shown with green arrow). However, in b 2 ½�1:1;�1� (shown with
the blue arrow), the bottom band in Fig. 4 (A) has two branches.
This phenomenon happens because of the resetting mechanism
of the map, which is shown in Fig. 4 (E) and (F). In b 2 �1:1;�1½ �;
after each spike, the part of the map which is in the piece of E
(2), demonstrated with a blue square in Fig. 4 (E) and (F), sends
the trajectory to the piece of E (1). When the trajectory is near to
E (1), Fig. 4 (E), shown by the orange arrow, it spans almost all val-
ues that are in the neighborhood of E (1). When it gradually goes
away from a value that is very near to E (1), a fully dotted bottom
band in Fig. 4 (A) can be seen (b 2 [�1:15;�1:1�, shown by green
arrow). Increasing the value of b from �1:1 to �1 causes the trajec-
tories to have more distance from E (1) (Fig. 4 (F), shown by the
brown arrow). Consequently, for values around the E (1), there is
no data in b 2 ½�1:1;�1� shown in Fig. 4 (A) by the blue arrow.
Besides, the bottom band of Fig. 4 (A), for b values in the interval
�1:05 and �1, is more solid than the bottom band where b is in
the interval ½�1:15;�1:1�. Fig. 4 (C) demonstrates the Lyapunov
exponent of the introduced map-based neural model for various
b ([-1.15, �1]). Wolf method is used to calculate Lyapunov expo-
nents of the system with run time 10,000 (Wolf et al., 1985). The
Lyapunov exponents for smaller values of b (which has larger abso-
lute values) are larger positive values rather b larger values. There-
fore, larger absolute values of b have stronger chaotic dynamics.
Fig. 4 (C) shows the Lyapunov exponent of the map by varying
parameter a ([0.15, 0.25]). Changing the values of a does not affect
the Lyapunov exponent values.
6

The sample entropy is calculated for different values of param-
eters a and b (Fig. 5). The map can generate time series with sam-
ple entropy values in the interval ½0;0:3�. In small b values,
increasing the value of a 2 ½0:15;0:25� increases the sample
entropy. However, the largest value of sample entropy happens
when both a and b are very small. The smallest sample entropy val-
ues emerge when the value of a and b are around 0:15 and �1:054;
respectively. Comparing Fig. 4 (A) with Fig. 5 in a ¼ 0:2, the model
presents time series with more complexity. The complexity of the
time series in b 2 ½�1:05;�1� where the two sub-bands of the bot-
tom band are wholly separated is more than the situation of
b 2 ½�1:5;�1:1� where the two sub-bands of the bottom band are
nearer to each other. Therefore, the time series are more complex
for these sets of parameters, and their reset values have longer dis-
tances to E (1). On the other hand, the comparison can be made
between Fig. 4 (B) whereb = �1:12by changing a and Fig. 5. Since
b=�1:12, changing the value of a does not change the complexity
of the time series very much.

Spike’s firing rate is calculated for various parameters, as shown
in Fig. 6. The largest values of spike’s firing rate emerge where a
and b are small. In larger b, increasing the value of a increases
the spike’s firing rate. On the other hand, for smaller values of b;
increasing a decreases the spike firing rate. Comparing Fig. 4 (A)
with Fig. 6, in a ¼ 0:2, increasing the value of b from �1:15 to �1
causes the spike’s firing rate first to decrease and then to increase.
In the case of low firing rates, where the trajectory values after
each spike are reset near E (1) (like Fig. 4. (E)), the trajectory
remains in the rest for more time. Therefore, the number of its
spikes decreases for a fixed number of samples.

The average of ISIs for the time series is calculated by changing
a and b (Fig. 7). The average of ISIs has smaller values for both lar-
ger and smaller values of b. For larger b, increasing the value of a
results decreases the average ISI with a very small slope. For large
values of b, increasing a increases the average of ISIs. The average
ISI has its maximum values, where a has its smallest value, and the
value of b is �1:08. Comparing Fig. 6 and Fig. 7, the average ISI and
spike’s firing rate have an inverse relationship with each other.

In this work, a 1-dimensional map-based neuronal model of
spikes was introduced. In models like 1-dimensional modified
logistic map (Mesbah et al., 2014) and some other piecewise mod-
els of neuronal behaviors (Zandi-Mehran et al., 2020), the voltage



Fig. 6. The spike firing rate of the proposed map by changing a and b. For smaller
values of b, increasing a decreases the firing rate. On the other hand, for larger
values of b, increasing a increases the spike firing rate.

Fig. 7. The average of ISIs for the time series of the map by changing a and b. The
average ISI has its largest value, where a has its smallest values, and the b value is
�1:08. Compared to Fig. 5, an inverse relationship can be seen among values of the
ISI average and the spike firing rate.
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starts to increase just after its resetting. However, in experimental
data, between two spikes, the voltage has some fluctuation in its
rest state (Khaliq et al., 2003). The introduced model can represent
these fluctuations. Spike’s firing rate is an essential measure for
neuronal spiking signals. This measure has been used for studying
brain recorded signals (Rolls and Treves, 2011; Gibson et al., 2012).
Also, ISI has been used for analyzing neuronal models repetitively
in the literature (Zandi-Mehran et al., 2020; Sausedo-Solorio and
Pisarchik, 2017). The introduced model could generate time series
with a wide range of spiking firing rates, ISI, and complexity.
5. Conclusion

In this paper, a simple 1-dimensional map was introduced to
represent the neurons’ spiking. The map was designed inspired
by the recorded data of a neuron’s spikes. Considering the fluctua-
tions of the neurons in their rest state, this model was designed to
7

represent these fluctuations. The map equation was a line that its
module (1) was calculated for each iteration. Module (1) function
was used for breaking the line curve into two separate pieces.
The advantage of using module (1) was a smaller number of equa-
tions than other piecewise models of neurons. The piece of the
model in the neighborhood of E (1) has generated the rest state
fluctuations. The bifurcation diagrams of the system were studied.
Also, the value of sample entropy, the firing rate of spikes, and its
average were discussed. Considering the simplicity of the intro-
duced map, it can help to model the neuronal collective behaviors
in the networks. In other words, a holistic neural model was pro-
posed that can show various dynamics of spiking neurons with
wide ranges of firing rates and complexities. Although the a and
b parameters did not have a physiological meaning, they had a sig-
nificant effect on the dynamics of the spiking neurons, which was
studied using different measures in this paper.
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