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Abstract: Near real-time data warehousing is an important area of research, as business organisations
want to analyse their businesses sales with minimal latency. Therefore, sales data generated by data
sources need to reflect immediately in the data warehouse. This requires near-real-time transformation
of the stream of sales data with a disk-based relation called master data in the staging area. For this
purpose, a stream-relation join is required. The main problem in stream-relation joins is the different
nature of inputs; stream data is fast and bursty, whereas the disk-based relation is slow due to high
disk I/O cost. To resolve this problem, a famous algorithm CACHEJOIN (cache join) was published
in the literature. The algorithm has two phases, the disk-probing phase and the stream-probing
phase. These two phases execute sequentially; that means stream tuples wait unnecessarily due to the
sequential execution of both phases. This limits the algorithm to exploiting CPU resources optimally.
In this paper, we address this issue by presenting a robust algorithm called PCSRJ (parallelised
cache-based stream relation join). The new algorithm enables the execution of both disk-probing and
stream-probing phases of CACHEJOIN in parallel. The algorithm distributes the disk-based relation
on two separate nodes and enables parallel execution of CACHEJOIN on each node. The algorithm
also implements a strategy of splitting the stream data on each node depending on the relevant part
of the relation. We developed a cost model for PCSRJ and validated it empirically. We compared
the service rates of both algorithms using a synthetic dataset. Our experiments showed that PCSRJ
significantly outperforms CACHEJOIN.

Keywords: semi-stream data; semi-stream join; parallelisation; performance evaluation; date
warehousing

1. Introduction

In traditional data warehouses, sales data are usually loaded into data warehouses in offline mode
on a, e.g., weekly or daily basis [1,2]. In that scenario, a data warehouse is not updated in real-time and
returns answers to queries based on stale data. On the other hand, businesses are growing rapidly and
they want to respond to their customers with the latest data. Therefore, data warehouses are migrating
from periodic data uploading to near-real-time data uploading.

In near-real-time data warehousing, stream of sales records S need to join with disk-based
relation R in the staging area under transformation phase of ETL (extraction, transformation, loading).
In the operation of transformation, source level changes are mapped into the data warehouse
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format. Common examples of transformations are unit conversion, removal of duplicate tuples,
information enrichment, filtering unnecessary data, sorting tuples, and translation of source data key.
This transformation operation requires a semi-stream join. Since the join is between stream S and
relation R, it is also called stream-relation join. Other examples of this type of join are network traffic
monitoring [3,4], sensor data [5], web log analysis [6,7], online auctions [8], inventory and supply-chain
analysis [9,10], and real-time data integration [11].

In near-real-time data warehousing typically, joining is performed between primary (unique) key
of R input and foreign key of S input. For example, Figure 1 implemented the example of information
enrichment. From the figure we consider that attributes product-ID, date, and quantity are extracted
from S. In the transformation operation, in addition to key replacement (from source key product-ID
to warehouse key W_key) there is some information added, namely, sales price denoted by price to
calculate the total amount, and the vendor information denoted by vendor. In the figure the information
with attributes’ names W_key, price, and vendor are extracted at runtime from R and are enriched to S
using a join operator.

Figure 1. An example of stream-relation join during the transformation phase.

The main problem with the stream-relation join is that the stream input S is fast and bursty in
nature, whereas the disk input R is slow due to high I/O cost. Many algorithms have been proposed
to implement the join operation between S and R. CACHEJOIN (cache join) is one of them which is
considered an optimal algorithm for skew data (non-uniform data). The algorithm consists of two
phases, the disk-probing phase and the stream-probing phase. However, these two phases execute
sequentially. In this case, the stream input has to unnecessarily wait and therefore the algorithm
cannot exploit CPU resources optimally. This ultimately causes the performance of the algorithm to be
suboptimal. This is further explained in Section 2.

In this paper we present a robust algorithm called the parallelised cache-based stream relation
join (PCSRJ) which enables the execution of both phases of the existing CACHEJOIN algorithm in
parallel. This means the disk-probing phase does not wait for finishing the stream-probing phase
and vice versa. The new algorithm in this way exploits CPU resources optimally, and that ultimately
improves its performance. The further details about the new algorithm are provided in Section 3.

In summary, this paper makes following contributions:

• A well-known stream-relation join algorithm CACHEJOIN has been explored with respect to its
limitations.
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• A robust algorithm PCSRJ has been introduced in order to improve the performance of
CACHEJOIN.

• We propose the cost model for our algorithm, and we validated that cost model.
• We present an experimental analysis of PCSRJ with the existing CACHEJOIN.

The rest of the paper is organised as follows. Section 2 presents a review of existing approaches.
Section 3 presents the new algorithm, including its architecture, algorithm, and cost model. Rigorous
experimentation on our algorithm is presented in Section 4. Finally, Section 5 concludes the paper.

2. Related Work

In near-real-time (online) data warehousing, we require an efficient stream-relation join that joins
the incoming stream tuples with R using low resources in an effective way. In this section we present
an overview of various stream-relation joins in detail.

A seminal algorithm MESHJOIN (Mesh Join) [11] has been designed to join R with S. In
MESHJOIN, R is divided into partitions. Additionally, S is divided into chunks; the size of each
chunk is w. In each iteration the algorithm loads w tuples of S and a partition of R in memory. Every
tuple of S is then joined with every partition of R. The algorithm ensures that each tuple from S is
joined with the whole of R before it is removed from the join window. Once the whole R gets read, the
algorithm restarts its reading. MESHJOIN’s authors report that the algorithm does not perform well
with skewed data (frequent tuples). The limitation of MESHJOIN is that when the number of tuples in
R changes, the size of disk buffer also changes; that makes memory distribution suboptimal. Therefore,
in MESHJOIN, the service rate is inversely proportional to the size of R.

Reduced Mesh Join (R-MESHJOIN) [12] is an extension of MESHJOIN. R-MESHJOIN removes the
complexities of MESHJOIN. In that algorithm, performance is improved by allocating optimal memory
to the disk buffer and a hash table. Disk buffer is split into variety of logical segments l. In R-MESHJOIN
l is greater than one. If l is equal to one then R-MESHJOIN is equal to MESHJOIN. Although in
R-MESHJOIN the service improves due to removing unnecessary constraints, the algorithm does not
consider common characteristics (skewed distribution) in S.

Partition-based join [13] is an improved version of MESHJOIN. The algorithm finds out the often
repeated stream tuples and joins these tuples with a small memory buffer. This is the main distinction
between the partition-based join and MESHJOIN. In this algorithm, a wait-buffer is maintained that
stores every stream tuple. The disk probe is invoked when wait-buffer is full or the number of stream
tuples related to a partition is greater than the threshold. The algorithm ensures that one stream
tuple is only joined with a single read from R, which minimises the frequency of disk access. In a
partition-based join, there is no limit of waiting time for a stream tuple to be joined. For infrequent
stream tuples, the waiting time of a partition-based join is greater than in MESHJOIN.

Semi-stream index join (SSIJ) [14], is an improved version of MESHJOIN. In the SSIJ algorithm,
there are three phases—pending, online, and join. In the pending phase, the algorithm fills the input
buffer with incoming stream tuples to make a batch. When the input buffer filled, the online phase
starts. In the online phase, incoming tuples are ordered based on the frequently used index. The output
of tuples is generated immediately if tuples match with the cache. Remaining tuples that are not
matched with cache pages of R wait for the last phase—that is, the join phase. When the online phase
is complete, the join phase starts, which matches the incoming tuples with the tuples of R that are on
the disk. When the join phase is complete, the algorithm again starts the pending phase. The authors
of SSIJ reported that there is a worst case when no stream tuple is matched with cache in online phase.

HYBRIDJOIN (Hybrid Join) [15] is combination of index nested loop join (INLJ) [16] and
MESHJOIN. HYBRIDJOIN minimises the waiting and processing time of stream tuples by using
index on R and deals with stream effectively. However, the algorithm performs suboptimally for
non-uniform distributions, which means it is not robust if some tuples from R appear frequently in S.

X-HYBRIDJOIN [17] is a further extension of HYBRIDJOIN that uses indexing on R and caches
the most frequent portion of R. In X-HYBRIDJOIN the disk buffer is split into two parts. The first
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part is non-swappable part that holds frequent pages of R. The second part is the swappable part that
one-by-one loads the rest of the partitions of R. Although X-HYBRIDJOIN outperforms HYBRIDJOIN,
however, some tuples in the non-swappable part can be infrequent. This does not fully exploit the
cache and leaves the room for improving performance.

Optimised X-HYBRIDJOIN [18] is an updated version of X-HYBRIDJOIN. Optimised
X-HYBRIDJOIN resolved the problem of unnecessary processing cost by introducing two phases
that can work independently. However, the issue of cache suboptimality is still remained.

In [19] the authors defined a new operator for stream-relation join that uses two mechanisms,
out-of-order processing and batch processing, in order to increase the service rate. This algorithm
splits the fast-arriving stream tuples into miss and hit tuples using two separate threads (batch and
out-of-order). In that algorithm, a cache is made that maintains its content by least recently used
(LRU) policy. Fast-arriving stream tuples first join with the cache: if a match is found then that tuple is
considered as hit tuple and is processed immediately. The tuples that are not matched are known as
missed tuples. In that algorithm missed tuples are not processed individually; tuples are processed in
the form of batches. Missed tuples are added to the waiting queue; when the waiting queue gets full,
key values of all missed tuples are queried to R. The authors of that algorithm reported that when the
cache is less useful, then memory allocation between the waiting queue and the cache is suboptimal.

Semi-stream balanced join (SSBJ) [20] deals with many-to-many equijoins efficiently. In SSBJ
cache, inequality is used for minimum memory consumption and increase the service rate. There are
two phases of SSBJ. First is the cache phase and second is the disk phase. In SSBJ each stream tuple
first passes through the cache phase; if a match is found, then output is generated and if a match is not
found, then that tuple shifts to the disk phase. In SSBJ, cache size is variable. Cache size is changed
based on every join value. This helps to increase the service rate of the SSBJ algorithm.

CACHEJOIN (Cache Join) [21] introduces a cache module that stores frequent tuples of R and
joins these with S. CACHEJOIN has two phases; one is the stream-probing phase, and the other is the
disk-probing phase. The stream-probing phase deals with only a limited portion of R. A big part of
R is dealt with by the disk-probing phase. For every tuple that comes from the stream, it first passes
through the stream-probing phase to find a quick match. If a match is found, that tuple is generated
in the output; otherwise that tuple goes to the disk-probing phase. After that disk-probing phase,
the algorithm again switches back to the stream-probing phase. However, in CACHEJOIN, due to
sequential execution of both phases, stream tuples unnecessarily wait to complete the join, which
decreases the performance of the algorithm. The performance can be improved if the two phases can
execute in parallel which has not been considered in CACHEJOIN.

3. Parallelisation of CACHEJOIN

In this section, we present a robust algorithm called the parallelised cache-based stream relation
join (PCSRJ). The algorithm distributes R at two different computer nodes using hash partitioning
strategy. The hash function is based on even and odd values of a join attribute, e.g., productid in
R. Additionally, an index has been applied at R using the same join attribute. At each node the
algorithm implements both phases of the CACHEJOIN algorithm. The incoming stream tuples are
directed towards the relevant node based on even and odd values of its join attribute using a mapper.
The mapper implements the same hash function that we used for partitioning R. The following
subsections present the architecture, algorithm, and cost model of PCSRJ.

3.1. Architecture

The major components of PCSRJ at each node are: a cache HR for caching frequent tuples of R,
a queue Q that stores join attribute values, a hash table HS that stores the stream tuples that are not
matched in the stream-probing phase, and a disk buffer that stores a partition of R. Three other minor
components are the mapper, stream buffer, and frequency recorder. The mapper is used to distribute
the incoming stream tuples to the each node, and the stream buffer is used to hold the stream tuples
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for a short interval while the tuple in memory gets processed. The frequency recorder is used to find
the frequent tuples of R in S and is responsible for loading them to HR. The memory taken up by these
three components is very little so we do not include that in our memory cost calculation. However, to
show their working we include these components in the architecture. The execution architecture of
PCSRJ is shown in Figure 2.

Figure 2. Execution architecture of PCSRJ.

At each node PCSRJ consists of a stream-probing (also called cache) phase and a disk-probing
phase. Every new stream tuple arrives from the mapper and the node is first directed to the
stream-probing phase. If the tuple matches with corresponding tuple in the stream-probing phase,
the output is generated; otherwise it is directed to the disk-probing phase where it is stored in HS
and its join attribute value is stored in Q. The algorithm then loads a partition of R into the disk
buffer using the most old join attribute value from Q as an index. After loading a partition of R,
the algorithm looks at each tuple from the disk buffer HS. If the matched tuple is found in HS, the
algorithm processes that tuple in the output and removes it from HS along with its join attribute
value from Q. Once the algorithm matches all the tuples from the disk buffer, the algorithm switches
back to the stream-probing phase. By using parallel execution of the join at two different nodes, our
experiment showed that the number of tuples joined per second significantly increased as compared
to existing CACHEJOIN.

3.2. Algorithm

The pseudo-code for PCSRJ is presented in Algorithm 1. Since the identical threads of the PCSRJ
algorithm run at both nodes, we present the pseudo-code for one node. Line 1 in the algorithm
represents an infinite execution of the algorithm. This is the norm in such types of stream-based
algorithms. For each incoming stream tuple, the algorithm maps it to the relevant node by applying
the hash function on the join attribute value (line 2).

Lines 3 to 10 specify the stream-probing phase for either of the two nodes. In line 3, the algorithm
reads w stream tuples from the stream buffer and one-by-one matches each stream tuple t from w into
HR. If the matching tuple is found from HR, the algorithm generates tuple t as an output (lines 4 to 6).
If the matching tuple is not found, the algorithm then loads t into HS and enqueues its join attribute
value to Q (lines 7 to 10). In the first iteration, since hash table HS is empty, the value of w is equal to
the size of HS in terms of tuples. Meanwhile, from the second iteration and onward, the value of w
depends on the number of slots that are emptied from HS in the previous iteration.

Lines 11 to 21 specify the disk-probing phase where the algorithm processes the stream tuples
which are not matched in the stream-probing phase. In line 11 the algorithm loads b number of tuples
from R into the disk buffer. The algorithm then reads each tuple r from the disk buffer one-by-one
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and looks for matching tuple into HS. If the matched tuple is found, the algorithm generates output
for tuple r (lines 12 to 14). Since the join type is one-too-many, there can be more matches against
r. The total number of matches is stored in f (line 15). Lines 16 to 18 determine whether tuple r is
frequent. Therefore, the value of f is compared with the preset frequency threshold. If f is greater than
the frequency threshold, the algorithm loads tuple r to HR. If HR is full, the algorithm overwrites a
least frequent tuple in HR by r. Finally, the algorithm removes the matched tuples against r from HS
along with their join attribute values from Q (line 19). The algorithm also enables the tuning of the
threshold value based on the following principle. If tuples are removed from the cache frequently,
then there is need to increase the value of the threshold. Similarly, if the cache is not getting full even
after a complete round of R then threshold is too high and should be lowered down slightly.

Algorithm 1 PCSRJ algorithm for one node.
Input: Stream S and a master data relation R with index on the join attribute.
Output: R ./ S
Parameters: w (Where w = wS + wN) tuples of S, b number of tuples of R

1: while true do
2: MAP incoming stream tuples to the relevant node based on the even and odd hash function on

the join attribute value
3: READ w stream tuples from the stream buffer
4: for each tuple t in w do
5: if t ∈ HR then
6: OUTPUT t
7: else
8: LOAD stream t in HS and its join attribute value to Q
9: end if

10: end for
11: LOAD b number of tuples of R in the disk buffer
12: for each tuple r in b from the disk buffer do
13: if r ∈ Hs then
14: OUTPUT r
15: f← total number of tuples match in Hs against r
16: if f ≥ thresholdValue then
17: MOVE that tuple r into HR
18: end if
19: REMOVE r from HS with its joins attribute value from Q
20: end if
21: end for
22: end while

3.3. Cost Model

This section presents the cost model for our PCSRJ. The cost model is similar in nature to the
CACHEJOIN [21] cost model which consists of both memory and processing costs. Equation (1)
shows the memory cost for PCSRJ. As mentioned above, the components stream buffer, mapper,
and frequency recorder are tiny (0.05 MB was enough for all our experiments), and therefore, we do
not include these in our memory cost calculation. Equation (2) explains the processing cost for PCSRJ.
Symbols used in both cost calculations are presented in Table 1.
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Table 1. Symbols used in memory and processing cost calculation of PCSRJ.

Parameter Name Notation

Size of the disk tuple (bytes) VR
Size of the disk buffer (tuples) b
Number of stream tuples processed in every iteration through HR wN
Number of stream tuples processed in every iteration through HS wS
Size of HR in tuples hR
Memory weight for HS α
Memory weight for Q 1 − α
Cost of matching one tuple to the either hash tables (nano seconds) cH
Cost of producing one tuple in the output (nano seconds) cO
Cost of deleting one tuple from the either hash tables and Q (nano seconds) cE
Cost of reading one stream tuple from the stream buffer (nano seconds) cS
Cost of loading one tuple in the either hash tables and Q (nano seconds) cA
Cost of match the frequency of one disk tuple with the specific threshold value (nano seconds) cF
Cost to denote for one loop iteration (seconds) cloop

3.3.1. Memory Cost

The major components to which memory is assigned are two hash tables HR and HS, the disk
buffer, and the queue Q. We calculate double memory for each components as the PCSRJ algorithm
runs in two computer nodes. To make it simple, we first calculate the memory for each component
separately and then sum-up the individual memory requirements to calculate the total. Therefore,
memory taken up by each component at both nodes is calculated as follows:

Memory for the disk buffer in bytes = 2b× vR

Memory for HR in bytes = 2hR × vR

Memory for HS in bytes = α[M− 2(b + hR)vR]

Memory for Q in bytes = (1− α)[M− 2(b + hR)vR]

By combining the above, the total memory for PCSRJ can be calculated as shown in Equation (1).

M = 2b× vR + 2hR × vR + α[M− 2(b + hR)vR] + (1− α)[M− 2(b + hR)vR] (1)

3.3.2. Processing Cost

In this section we compute the processing cost for PCSRJ algorithm. Similarly to the memory, we
calculate double the processing cost for each component due to running the two algorithm threads in
parallel on two nodes. Again, we first compute cost for each component separately and then add-up
all these costs to compute the total cost for one loop iteration.

Cost of reading b number of tuples from R to the disk buffer = 2cI/O(b)
Cost of matching wN tuples in HR = 2wN × cH

Cost of matching all tuples in the disk buffer to HS = 2b× cH

Cost of matching the frequency of all tuples in the disk buffer with the threshold value = 2b× cF

Cost to produce output for wN tuples = 2wN × cO

Cost to produce output for wS tuples = 2wS × cO

Cost to read wN tuples from the stream buffer = 2wN × cS

Cost to read wS tuples from the stream buffer = 2wS × cS

Cost to append wS tuples into HS and Q = 2wS × cA

Cost to delete wS tuples from HS and Q = 2wS × cE
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The total processing cost for one loop iteration can be computed by combining the above
individual processing costs, as shown in Equation (2).

cloop = 10−9[2cI/O(b) + 2b(cH + cF) + 2wS(cS + cA + cO + cE) + 2wN(cS + cH + cO)] (2)

In the above equation 10−9 is used to convert nanoseconds into seconds. In each iteration, since
the algorithm processes wN and wS tuples of S at one node, the total number of tuples process in one
second (also know as service rate µ) can be computed using Equation (3).

µ =
2(wN + wS)

cloop
(3)

4. Experimental Work

We conducted a rigorous experimental study for our algorithm. Before presenting our results,
we first describe the experimental setup, including the hardware and datasets we used in our
experiments.

4.1. Hardware Specification

We used a Core-i7 computer with 8 GB ram and a 1 TB hard drive. We implemented the both
algorithms in Java using its integrated development environment (IDE) Eclipse. For processing cost in
terms of time measurements, we used builtin function from Java API called nanoTime(). The master
data R were stored on the disk using the MySQL 5.7 database.

4.2. Data Specification

A Zipfian distribution of the foreign keys in the stream data matches distributions that are
observed in a wide range of applications [22]. We therefore created a data generator that can produce
such a Zipfian distribution. A Zipfian distribution is parameterized by the exponent of the underlying
Zipf’s Law [23]. The same distribution was used in evaluating original CACHEJOIN. We used size of
R from 1 million to 8 million tuples. The size of every tuple in R was 120 bytes and size of every tuple
in stream was 20 bytes. The size of each node in Q was 12 bytes. Same sizes of disk tuple, stream tuple,
and Q node were used in CACHEJOIN. For each measurement, we calculated the 95% confidence
interval of the mean based on at least 1000 runs for one setting. The detailed data specifications that
we used in our experiments are shown in Table 2.

Table 2. Synthetic dataset specifications.

Parameter Value

Memory used by the algorithm 50 MB to 200 MB
Size of R 8 million tuples
Disk tuple size 120 bytes
Stream size infinite
Stream tuple size 20 bytes
Size of each node in the queue 12 bytes
Stream data based on Zipf’s law [23] (skew value from 0 to 1)

4.3. Performance Evaluation

We evaluated the performance (service rate) of PCSRJ by comparing it to CACHEJOIN.
We compared the service rate with respect to three external parameters, namely, available memory for
the algorithm, size of R, and level of skew in the stream data.
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4.3.1. Service Rate Analysis by Varying R

In our first experiment we evaluated the service rate of PCSRJ with CACHEJOIN by varying
the size of R from 1 million tuples to 8 million tuples. We fixed the other two parameters: memory
size was equal to 50 MB and the level of skew in the stream data was equal to 1. The results of our
experiment are shown in Figure 3a. From the figure it can be seen that PCSRJ performed ≈ two times
better than CACHEJOIN for |R| = 8 million tuples and ≈1.65 times better for |R| = 1 million tuples.

4.3.2. Service Rate Analysis by Varying Memory

In this experiment we evaluated the service rates of both algorithms by varying the size of memory
available for the algorithms. We varied the size of available memory for two different settings of R, i.e.,
2 million tuples and 4 million tuples. We fixed the level of skew in the stream data to be equal to 1.
The results of both experiments are shown in Figure 3b,c. From Figure 3b we observed that PCSRJ was
≈1.65 times faster than CACHEJOIN with very limited memory (50 MB) and ≈1.71 times faster for
200 MB. Similar behaviour can can be observed in Figure 3c. This shows that the gain in the service
rate was due to parrallelisation of the existing algorithm.

4.3.3. Service Rate Analysis by Varying Skew

In this experiment we evaluated the service rates of both algorithms by varying the level of skew
in the stream data. We varied the value of skew between 0 and 1. At the skew value of 0 the stream
was fully uniform, and at the skew value of 1 the stream was skewed (non-uniform). Again we tested
the skew for two different settings of R, i.e., 2 million tuples and 4 million tuples. We kept the size
of available memory fixed to 50 MB. The results of both experiments are shown in Figure 3d,e. It is
clear from the both figures that PCSRJ started performing better as soon as the skew appeared in the
stream data, and this improvement became more evident and visible as the value of skew increased.
For the high values of skew (i.e., equal to 1) PCSRJ performed ≈1.65 times better than CACHEJOIN.
Although CACHEJOIN also exploits the feature of skew in the stream data, due to non parallelisation
the algorithm can not perform maximally. We did not evaluate the performance for skew values higher
than 1, as the higher skew values would imply comparatively short tails. However, we presume that
the improvement in the service rate will continue for such short tails.

4.3.4. Cost Validation

Finally, we validated the cost models for the PCSRJ algorithms; we compared the calculated cost
for a central cost parameter, cloop, with measurements of cloop. Figure 3f depicts the results of the
experiment. From the figure it is clear that the calculated cost is very close to the measured cost. This is
a proof for the correctness of our implementation for the PCSRJ algorithms.
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(a) Size of R varies while memory = 50 MB and skew = 1 (b) Size of memory varies while R = 2 million tuple and
skew = 1

(c) Size of memory varies while R = 4 million tuple and
skew = 1

(d) Skew varies while memory = 50 MB and R = 2 million
tuple

(e) Skew varies while memory = 50 MB and R = 4 million
tuple

(f) cost validation

Figure 3. Performance evaluation.
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5. Conclusions

Minimising latency in processing streaming data is a primary objective of stream-relation
joins. Contributing to this, in the paper we presented a robust algorithm called PCSRJ (parallelised
cache-based stream relation join). PCSRJ extends the existing CACHEJOIN algorithm by distributing
the disk-based master data (relation R) on multiple nodes and parallelising the algorithm by
implementing the concept of multi-threading in it. This feature of parallelisation enables the algorithm
to exploit the use of CPU resources optimally. We proposed the design, implementation, and cost
model for our algorithm. Our experimental study showed that PCSRJ significantly outperformed
CACHEJOIN for all three external parameters, i.e., available memory, size of R, and level of skew
in the stream data. We also validated our cost model by comparing it with the empirical cost which
verified the correct implementation of PCSRJ. We have plans to extend our PCSRJ for joining streaming
data with multiple tables in the master data. Another direction for our future work is to implement the
algorithm on several nodes, e.g., a cluster of computers.
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