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Abstract. Search for new geometries and materials that would serve in crashworthiness 

applications is a cumulative process. Recent studies investigated the performance of expanded 

metal tubes and the possible ways to enhance its energy absorption capability. The aim of this 

work is to investigate the crashworthiness characteristics of new concept is proposed where 

expanded metal tube is suited into a double-walled tube made of the same material to form one 

structure. The tube was then numerically tested through a verified model using ABAQUS 

software. Moreover, the influence of the size of the expanded metal cell was also investigated 

in the present study. The new concept showed an enhanced energy absorption characteristics 

related to the change in the mass of the tubular structure. The enhancement was related to both 

the change in deformation pattern, and the increase in crushed mass. 

1.  Introduction 

Number of factors makes thin-walled structures one of the most widely used structures for 

crashworthiness applications. These structures are relatively cheap, light and capable of absorbing 

high amount of energy through a stable progressive collapse. During collision thin-walled structures 

are plastically deformed and fractured what leads to the dissipation of collision’s kinetic energy [1]. 

The term “Crashworthiness” was adopted by the automotive safety community to describe the 

occupant’s safety performance afforded by all types of motor vehicles in different accident types. 

Meeting automotive industry standards made researchers and engineers look for methods to enhance 

the energy absorption capacity without increasing structure weight in their design of the energy 

absorbers. For this reason, maximizing specific energy absorption (SEA, amount of energy absorbed 

per unit mass) and attaining a unity value for crush force efficiency (CFE, the ratio of the average 

crushing force to the maximum force) are namely the main objectives in the design of thin-walled 

structures for crashworthiness applications [2]. A set of factors influence these performance indicators 

that can be summarized in first: the material properties represented in Young’s modulus, yield stress, 

and strain hardening. Second factor is the geometry of the energy absorber. The geometry parameters 

could be the walls’ thickness, cross-section width or diameter. Other factor is the initial imperfections 

like having patterns, corners, grooves or indentations in the structure [3]. 

Numerous studies have been published on the crushing response of empty and foam-filled tubular 

structures. The effect of internal geometries on the energy absorption performance of simple extruded 

profiles was explained thoroughly in studies [4-13]. Introducing multi-cellular structures to the column 

generally enhance the energy absorption performance of tubular structures [8]. Multi-cellular 

structures are mostly simple extruded profiles that can fill the tube partially or fully. 
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In studies [12-21] the influence of outer geometry of simple thin-walled structures on energy 

absorption characteristics was studied. Such geometries are mainly classified into prismatic and non-

prismatic members. The studies have shown that the energy absorption of thin-walled structures 

depends greatly on the cross-section of structure. In addition, increasing the perimeter to a certain limit 

shows higher energy absorption capability in most of the tested profiles [1]. 

Studying the energy absorption characteristics of thin-walled structures under impact was 

conducted both numerically and experimentally. Studies [22-24] showed that findings of numerical 

and experimental studies had almost matching results with inconsiderable variation. 

The aforementioned solutions are limited to the available manufacturing techniques commonly 

used in producing thin-walled structures. Even the most recent studies in the area of crashworthiness 

applications are still focused on simple geometries. With the advancement in manufacturing 

techniques like Direct Metal Laser Sintering (DMLS) it is now possible to produce complex 

geometries that can be integrated to the thin-walled structures. DMLS functions by melting metal 

powder layer by layer in a high vacuum with electron beam. This technology produces dense parts 

from metal powder with characteristics of target material what makes it a powerful tool in producing 

complex 3D shapes and parts. 

A continuous effort is made in investigating new materials and geometries that could improve the 

performance of tubular structures in crashworthiness applications. Very few information about the 

performance of expanded metal tubes is found in the literature. The process of manufacturing 

expanded metal sheets is achieved through an in-line expansion of partially slit metal sheets. The 

outcome of this process is a diamond-like pattern shown in Figure 1. Paper [25] summarizes the 

international patents on expanded metal. Major advantage of expanded metal sheets is its ability to 

absorb energy under different loading conditions like bending, shear, or axial compression. The use of 

concentric tubes in [3] showed a significant enhancement to both energy absorption capability and 

mean load due to the interaction between both tubes during collision. The aim of the present work is to 

investigate other possible mechanisms to further enhance the energy absorption of expanded metal 

tubes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Typical expanded metal 

sheet. 

1.1. Crashworthiness Indicators 

To indicate the crashworthiness performance the overall crash response was considered. Different 

variables were obtained to characterize the overall crash response: 

1.1.1. Peak Load. Peak load is the maximum force observed in the effective stroke of the tubular 

structure during impact. It is important to determine this value as it indicates possible consequences or 

damages that could be seen by the body being protected. 
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1.1.2. Energy Absorption. The total energy absorption E in a crash test equals the area under the load-

displacement curve. It is defined as equation (1). 

 

𝐸 = ∫ 𝐹𝑑𝑠
𝑑𝑚𝑎𝑥

0

 (1) 

 

For simplicity, dmax or stroke efficiency is taken to be 0.75L where L is the tube length. To relate how 

much energy a structure can absorb to it mass, specific energy absorption is obtained. It is defined as 

equation (2). 

 

𝑆𝐸𝐴 =
𝐸

𝑚
 (2) 

 

Where m is the crushed mass of the component. 

1.1.3. Crushing Force Efficiency. The crushing force efficiency is a ratio between the mean and peak 

crushing force, the two parameters that are related to the declaration occurring during a crash. It is 

defined as equation (3). 

 

𝐶𝐹𝐸 =
𝑃𝑚𝑒𝑎𝑛

𝑃𝑚𝑎𝑥
 (3) 

 

An ideal energy absorber would have a CFE value close to one. That is because an ideal absorber 

would preserve a peak load for its entire crushed length. 

2.  Design Methodology 

Findings of [3] showed that the deformation of expanded metal tubes lead to unstable structural 

response. In an attempt to solve this issue, expanded metal tube was fit in-between two metal sheets as 

shown in figure 2. A schematic view of an expanded metal cell is shown in figure 3. The major 

dimensions are the two orthogonal axis, l1 and l2, width (w), and thickness (t) of the expanded metal 

cell. The values are tabulated in table 1 for the different proposed designs. The thin-walled tube has a 

cross-sectional area of 80x80 mm and an overall thickness of 2.0 mm. The tube’s length is chosen as 

350 mm to assure the full potential deformation of the tube when it is crashed. Material assigned to all 

designs is A36 mild-steel. The test is conducted through an axial impact on the tubular structure using 

a striker of 275 kg mass with an initial velocity of 15.6 m/s as shown in figure 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Design concept. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Schematic view 

of an expanded metal cell. 
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Table 1. Geometry and dimensions of structures under study. 

 

 
Expanded Metal Sheets 

Dimensions 
Tube Dimensions 

Specimen 

ID 

l1  

 (mm) 

l2 

 (mm) 

w  

(mm) 

t  

(mm) 

Length 

(mm) 

Perimeter 

(mm) 

Mass 

(g) 
Profile 

S1 35.68 31.22 2.74 1 350 320 
 

1000  

S2 72.60 32.50 2.74 1 350 320 919  

S3 108.97 32.78 2.74 1 350 320 976  

S4 146.91 32.88 2.74 1 350 320 973  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Simulation test setup. 

 

2.1. Finite Element Model 

To find the continuum point’s time dependent deformation equation (4) is used. 

 

σij+ ρfi= ρxi ̈  (4) 
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Where, σij represents the Cauchy stress, ρ is the density, fi is the body force and xi ̈ is the acceleration. 

Using the divergent theorem equation (4) can be transformed into the virtual work principle given in 

equation (5). 

 

∫ ρxiδxidV̈
V

+ ∫ σijδxijdV
V

- ∫ ρfiδxidV
V

- ∫ tiδxidS
S

2
=0 (5) 

 

Equation (5) can be written in matrix form as shown in equation (6). 

 

∑ {∫ ρNtNadv
V

+ ∫ Btσdv
V

- ∫ ρNtbdv
V

- ∫ NtFdA
A

+ ∫NtFcds
s

}

i

=0
n

i=1
 (6) 

 

Where the number of elements is expressed as n, the stress column vector as σ, the interpolation 

matrix as N, the nodal acceleration vector as a, the body load column vector as b and the applied 

traction force as F. A general way to explain the matrix form is stated in equation (7). 

 

[M] [
d

2
u

dt2
] + [C] [

du

dt
] +[K]{U}=[F(t)] (7) 

 

Where M, C and K are the mass, damping and stiffness matrices respectively.  

First the initial and boundary condition are considered. Then the displacements are solved 

according to these conditions. After the displacements solution is obtained, the computation of other 

variables such as plastic strains, force and energies starts. The mentioned equation is usually solved by 

finite element software using implicit methods. However, explicit methods are desired for nonlinear 

dynamic problems like the crash test in our case. The main idea of such explicit methods is the 

division of total time into small time intervals or steps. Desired dynamic equations are solved and their 

variables are evaluated at increment t+1 based on knowing their previous values at t. The major 

difference between the explicit and implicit methods is that current step dependency. In implicit 

methods the evaluation of a step one relies on the information of the previous step and the current one 

where in explicit methods it only depends on the previous step value. This dependency on the current 

step value makes solving such equations harder, thus explicit methods are used in such cases. 

In this work the finite element model for thin-walled tube with the employed complex geometries 

were generated using ABAQUS. The non-linear finite element code ABAQUS explicit was used to 

predict the response of the tube and its complex structures after it is impacted by a plate of certain 

mass with certain velocity. To model the first section of the tubular structure, a square tube of 80.0 x 

80.0 mm, 350.0 mm length and 2.0 mm thickness is first modeled with a groove that goes through the 

total length on the tube with a thickness of 1.0 mm, inside this groove an expanded metal tube is 

modeled. A better picturing of the tube would be double walled tube with expanded metal cells in-

between. The thin walled tube was modelled using 4 node shell continuum (S4R) element with 

reduced integration points. The shell elements size is selected to be 2.50 mm. The top plate (striker) 

was modeled as a rigid body with a reference point mass of 275 kg and with a predefined velocity 

field of 15.6 m/s on one of its reference point. The motion of the top plate was restricted to only 

translational motion along the tube’s axes. The thin walled tube is fixed on the lower rigid plate using 

a constraint between their two surfaces. To account for the contact between the two plates and the 

tube, a general contact algorithm is chosen with a penalty coulomb friction coefficient of 0.2 [26]. 

This is to avoid the interpenetration between the tube walls. 

To account for the structure materials, the A-36 mild-steel models were adopted and verified from 

[1]. The steel verified mode showed 2% deviation from the one in [1], and thus it was used in the 

simulation for this study. The mild-steel has a young modulus E=200 GPa and Poisson’s ratio of 0.3. 
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The plastic behavior of the steel was modeled using Johnson-Cook model with the parameters shown 

in table 2. 

 

Table 2. Johnson-Cook parameters [1]. 

 

Parameters Values 

A 146.7 MPa 

B 896.9 MPa 

Strain Power Coefficient, N 0.32 

C 0.033 

Temperature Power Coefficient, M 0.323 

Reference Strain Rate  1.0 s
-1

 

Density 7850 kg/m
3
 

Melting temperature, Tm 1773 K 

Specific Heat, Cp 486 J/kg-K 

 

3.  Results and Discussion 

 

3.1. Force-displacement characteristics and deformation patterns. 

Figures 5 and 6 show the force-displacement curves for the four numerically tested samples of the 

present study. The displacement represents the change in position of the striker which was brought to a 

full contact with tube at the test beginning. Samples with the same force-displacement curve features 

were grouped together to simplify the analysis. 

The deformation pattern of S2 is very similar to S4 with a slight phase-out of the location at which 

folds starts to form. Force of S2 is generally larger than S4 as more interaction is happening between 

the expanded metal sheets and the double-walled tube. 

The behavior of S1 and S3 is different as the number of expanded metal cells is higher in the case 

of S1 sample leading to formation of more folds. Observing the deformed tubes shows that S1 had the 

most stable collapse among tested samples. This is also evident in the value of CFE. Compared to 

models where expanded metal sheets is solely used in forming the tubular structure, the outward 

buckling has not occurred for any of the tested tubes as the double-walled tube controls the 

deformation of the expanded metal sheets. In all tested sample, progressive collapse starts with the 

formation of regular lobes then some irregularity starts to appear at the end of the effective stroke 

length. 

 

Table 3. Summary of crashworthiness parameters for studied concepts. 

 

 
E (kJ) SEA (kJ/kg) P Mean (kN) P Max (kN) CFE (%) 

S1 12.1 16.1 46.4 121.1 38.3 

S2 5.2 7.6 20.1 118.4 17.0 

S3 10.7 14.6 41.2 129.8 31.7 

S4 9.9 13.6 38.0 130.4 29.1 
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Figure 5. Crushing force vs. displacement curves for S1 and S3 models. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Crushing force vs. displacement curves for S2 and S4 models. 

 

3.2. Energy Absorption 

In figure 7, the energy absorption is plotted as a function of the deformation length of the different 

structural design concepts. From these figures, it can be seen that S1 with the smallest cell size 

attained the highest energy absorption value among tested samples. 

The relation between cell size and energy absorption isn’t clear in figure 7. However, a closer look 

at other factors affecting the energy absorption shows that as the total mass of the tube increases the 

energy absorption increases as well. This is demonstrated in figure 8. In this particular case, increasing 

the mass of the tube increases the deformed mass and enhances the energy absorption performance of 

the tube with a minimum influence of cell size on the energy absorption characteristics. Finally, 

comparing the present models with the ones presents in [21] and of the same mass and overall 

thickness shows a significant enhances in energy absorption capabilities of the tubular structure. 

 

  

3rd International Conference of Mechanical Engineering Research (ICMER 2015) IOP Publishing
IOP Conf. Series: Materials Science and Engineering 100 (2015) 012063 doi:10.1088/1757-899X/100/1/012063

7



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Energy vs. displacement for studied concepts. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. SEA vs. tube mass of studied concepts. 

4.  Conclusion 

In this study, expanded metal sheet was placed between the two sides of a double-walled tube made of 

the same material. Crushing of the tubes was conducted numerically through a verified model on 

ABAQUS software. It was observed that the proposed design enhanced the energy absorption over 

ordinary expanded metal tubes. The major reason for that is the change in the deformation modes that 

leads to a progress folding during the collision instead of outwards buckling. Such behavior results 

from the restriction caused by the double-walled tube. Increasing the cell size by varying the two 

orthogonal axis showed no correlation to the energy absorption; however, the tubes with more mass 

regardless of the size of their cells showed better energy absorption compared to the ones with less 

mass. Further work needs to be done to understand the influence of expanded metal cells thickness on 

the performance of the tubes for the same cell size and double-walled tube overall wall thickness. 
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