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Abstract: Reactive oxygen species (ROS) are natural byproducts of oxygen metabolism in the
cell. At physiological levels, they play a vital role in cell signaling. However, high ROS levels
cause oxidative stress, which is implicated in cardiovascular diseases (CVD) such as atherosclerosis,
hypertension, and restenosis after angioplasty. Despite the great amount of research conducted to
identify the role of ROS in CVD, the image is still far from being complete. A common event in
CVD pathophysiology is the switch of vascular smooth muscle cells (VSMCs) from a contractile to a
synthetic phenotype. Interestingly, oxidative stress is a major contributor to this phenotypic switch.
In this review, we focus on the effect of ROS on the hallmarks of VSMC phenotypic switch, particularly
proliferation and migration. In addition, we speculate on the underlying molecular mechanisms of
these cellular events. Along these lines, the impact of ROS on the expression of contractile markers
of VSMCs is discussed in depth. We conclude by commenting on the efficiency of antioxidants as
CVD therapies.

Keywords: cardiovascular disease; phenotypic switch; reactive oxygen species; vascular smooth
muscle cell

1. Introduction

Reactive oxygen species are oxygen byproducts of metabolic reactions taking place in the
cell. They include superoxide anion (O2

−), hydrogen peroxide (H2O2) and hydroxyl radical (HO•).
Superoxide anions are produced in a controlled manner by NADPH oxidases. They undergo
dismutation by superoxide dismutase (SOD), leading to the production of hydrogen peroxide. In turn,
hydrogen peroxide may be converted to HO•, a highly reactive ROS. At the cellular level, ROS play the
role of secondary messengers of signaling pathways that underlie key events, such as cell differentiation,
growth and death [1]. In addition, ROS are implicated in several physiological processes, such as
the regulation of vasotone, immune responses, and others [2,3]. Notably, an imbalance between pro-
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and anti-oxidants leads to exaggerated ROS production [4]. This increase in ROS levels results in
oxidative stress, which induces damage to cellular components such as DNA, lipids and proteins [5,6].
Furthermore, the resulting disturbance in the cellular redox balance mediates the pathogenesis of many
diseases [4,7].

An increasing body of evidence shows that oxidative stress is strongly involved in
the pathophysiology of cardiovascular diseases (CVD), including hypertension, atherosclerosis,
aortic aneurysms and vascular restenosis [8–10]. In fact, NAD(P)H oxidases (NOX), which are
expressed in vascular cells [9], are responsive to many chemical stimuli, such as angiotensin II
(Ag-II), physical stimuli, including mechanical stretch and pressure, and hypoxia [7,11]. Consequently,
the activation of these enzymes leads to excessive ROS production [12]. The resulting oxidative stress
sets the stage for CVD by reducing the bioavailability of nitric oxide (NO), promoting endothelial
dysfunction and altering vascular response [9]. Importantly, oxidative stress induces vascular smooth
muscle cell (VSMC) proliferation and migration, thus contributing to atheroma formation and restenosis.

VSMCs are crucial components of blood vessels and the major determinants of vasotone [13,14].
This critical and tightly regulated function is granted by the contractile phenotype of VSMCs [13–15].
In response to certain cues, VSMCs switch to a synthetic dedifferentiated phenotype characterized
by increased proliferative and migratory capabilities [16,17]. In addition, synthetic VSMCs show an
increased secretion of extracellular matrix (ECM) proteins [16,17].

Several factors that modulate VSMC phenotypic switch have been reported. These include
growth factors such as transforming growth factor (TGF)-β [18] and fibroblast growth factor (FGF) [19],
cytokines such as monocyte chemokine protein 1 (MCP-1) [20], and endothelial peptides such as
endothelin-1 [21]. Prostaglandin D2 [22], microRNAs [23], hyperhomocysteinemia [24] and cyclic
stretch [25] have emerged as more recent non-canonical modulators. Estrogen, especially by virtue of
its ability to increase the intracellular pool of cAMP, has also been shown to modulate VSMC function,
and thus phenotype [26–30]. Indeed, in addition to its role in promoting vasorelaxation [31], cAMP has
been shown to modulate the expression of adrenergic receptors as well as cellular phenotypes [26,32–36].
Importantly, this cAMP, which can act through its downstream PKA or Epac pathways [37,38], elicits the
aforementioned effects in microvascular smooth muscle cells mainly via Epac [26,32,37,38].

A rather controversial modulator of VSMC phenotypic switch is ROS [39]. In fact, the literature
presents some inconsistency regarding the role of ROS in VSMC differentiation. While a substantial
number of studies report a proliferative effect of ROS on VSMCs, thus inducing a dedifferentiated
phenotype [40], other studies show that ROS significantly increases the expression of VSMC
differentiation markers [41].

Several sources of ROS in VSMCs have been reported [42–44]. These include mitochondrial
respiratory chain, xanthine oxidase, lipoxygenases and NOXs [42–44]. Indeed, NOX1 and NOX4 are
expressed in the VSMCs of large arteries, while NOX2 is expressed in the VSMCs of resistance and
coronary arteries [45,46]. In addition, NOX5 has been found to be expressed in the VSMCs of human
aorta [47]. Interestingly, vascular NOXs differ in their subcellular localizations, responsiveness to
agonists, and amount of ROS released [42].

In this review, we highlight the effect of ROS on VSMC phenotype, a critical determinant of vascular
function and physiology [29]. Specifically, we examine the major hallmarks of VSMC phenotypic switch,
namely cell proliferation, migration and expression of contractile markers. In addition, we speculate
on the underlying signaling pathways and factors accounting for the differential response of VSMCs
to ROS.

2. Effect of ROS on VSMC Proliferation and Migration

Cell proliferation is a major hallmark of VSMC phenotypic switch [16]. The effect of ROS on
this cellular process has been overwhelmingly documented [7]. Contextually, most reports indicate
that ROS promote VSMC proliferation [7,8,48,49]. Furthermore, ROS mediate the proliferative
effects of hormones and growth factors on VSMCs. For instance, H2O2 facilitates the proliferative
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effects of bradykinin, Ag-II and growth factors such as platelet-derived growth factor (PDGF) and
thrombin [50–54], whereas O2

− mediates plasminogen urokinase-induced VSMC proliferation [55].
The proliferative effect of ROS may be achieved by activating distinct signaling pathways (Figure 1).

For example, O2
−, but not H2O2, stimulates VSMC proliferation via the rapid PKC-dependent activation

of ERK1/2 [49]. Alternatively, O2
−-induced cell proliferation has been reported to be mediated by

the dominant negative helix–loop–helix protein, Id3 [56]. On the other hand, cyclophilin A (CyPA),
a chaperone protein secreted in response to oxidative stress, dictates the proliferative effect of
H2O2 on VSMCs [57,58]. This H2O2-induced proliferation is associated with the upregulation of
proto-oncogenes c-myc, c-fos and c-jun [59,60]. The aforementioned ROS-induced proliferative effect
has been contradicted by some reports. The HO• production by H2O2 treatment provokes growth
arrest by gut-enriched Kruppel-like factor (GKLF) (Figure 1) [56]. The apparent discrepancies may
be attributed to the differentially regulated redox sensitive genes, Id3 and GKLF, which provide new
insights towards understanding the regulatory effect of ROS on VSMC proliferation and potential
differentiation [56]. In addition, the source of ROS, whether endogenous or exogenous, may also
contribute to the differential effects of ROS. In agreement with this, it has been shown that treatment with
H2O2 triggers growth arrest [56], while the inhibition of basal H2O2 attenuates VSMC proliferation [61].
Furthermore, ROS concentration may represent an important factor in determining the role of ROS in
VSMC proliferation. Relevantly, H2O2 induces VSMC proliferation at a concentration of 200µmol/L [58],
but it arrests cell growth at 100 µmol/L [56]. In line with these observations, a 100 µM concentration of
H2O2 has been shown to arrest cell cycle, while the endogenous H2O2 levels have proven to be crucial
for cell proliferation [9].

Importantly, the evidence shows that cardiovascular pathologies involving vascular remodeling
are accompanied by the upregulation of NOX subunits [62–64] and increased ROS release [65,66].
The association of oxidative stress with vascular remodeling reflects a relation between ROS and
remodeling events, including migration [43]. Indeed, ROS modulates several events critical for
VSMC migration, a characteristic feature of dedifferentiated VSMC [16]. These events include
lamellipodia formation, focal adhesion kinase activation and actin polymerization. In response to a
certain chemoattractant, ROS mediates Rac-induced actin polymerization, leading to lamellipodia
formation [67]. Subsequently, ROS mediates the activation/deactivation of several focal adhesion
proteins, which form sites of cell attachment to ECM [43]. Finally, ROS alter actin polymerization by
oxidizing the thiols of cytoskeletal reorganization proteins Src [68] and actin [69]. Notably, the rate and
the extent of actin polymerization are increased under oxidative conditions [70].

In the vasculature, ROS are implicated in the migratory effects of growth factors and
hypertrophic hormones [7]. These include phenylephrine, thrombin, vascular epidermal growth
factor (VEGF), basic fibroblast growth factor (bFGF), PDGF, insulin-like growth factor-I–induced
(IGF-I), and Ag-II [71–73]. Moreover, ROS mediate bradykinin-induced VSMC migration and collagen
production [53]. Given that the signaling pathways activated by ROS greatly overlap with those
driven by the aforementioned ligands, it has been speculated that ROS act as second messengers for
growth factors and hypertrophic hormones [40]. Consistently, it has been shown that phenylephrine-
and VEGF-induced VSMC migration is mitigated by the antioxidants N-acetylcysteine (NAC) and
pyrrolidine dithiocarbamate [71,72]. In addition, the NOX inhibitor apocynin attenuates VSMC
migration, suggesting that NOXs serve as important mediators in the VSMC migratory signaling
pathway [74]. Contextually, NOX4 mediates Ag-II- and IGF-I- induced VSMC migration [75,76],
while NOX1 facilitates migration stimulated by bFGF and PDGF [73,77].
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Figure 1. Redox signaling pathways regulating vascular smooth muscle cell (VSMC) proliferation.
Superoxide anion, O2

−, induces cell proliferation by activating the mitogen-activated protein kinase
(MAPK), ERK1/2, or upregulating the transcription factor Id3. Hydrogen peroxide, H2O2, promotes
VSMC proliferation by activating the p38 MAPK, the CypA chaperone protein and the proto-oncogenes
c-myc, c-fos and c-jun. The inhibitory actions of H2O2 are elicited via the redox sensitive transcription
factor gut-enriched Kruppel-like factor, GKLF. Figure key: arrow: activation, block arrow: inhibition,
up-arrow: upregulation, question mark: potential crosstalk.

The mechanism of PDGF-induced VSMC migration has been extensively studied (Figure 2).
It is mainly mediated by H2O2 [50,78], and occurs through the PDGF-β receptor [79], as α

and β receptors are barely expressed in VSMCs [80,81]. One study showed that ROS mediates
PDGF-induced VSMC migration by activating the ROS/NF-κB/mTOR/P70S6K signaling cascade,
which also induces VSMC proliferation [82]. In addition, ROS mediates PDGF-induced Slingshot1L
(SSH1L) phosphatase and LIM kinase (LIMK) activation [77,83]. In turn, SSH1L and LIMK catalyze
cofilin phosphorylation/dephosphorylation, leading to VSMC migration [83]. Interestingly, cofilin
is involved in lamellipodium protrusion and actin filaments reorganization, crucial events in VSMC
migration [84]. Furthermore, PDGF-induced ROS activate the Src/phosphoinositide-dependent kinase-1
(PDK1)/Rac-effector p21-activated protein kinase (PAK1) signaling pathway [78]. PAK1 activation
potentially leads to cytoskeletal rearrangements, and thus facilitates VSMC migration. Src seems to
represent a regulatory point from which another pathway diverges. PDGF-activated Src phosphorylates
the CaV1.2 channel, leading to an increased intracellular Ca2+ concentration. The intracellular
Ca2+ increase causes actinomyosin rearrangement, culminating in VSMC migration [85]. Finally,
the PDGF-mediated migratory signaling cascade is known to comprise the mitogen-activated protein
kinases (MAPKs) ERK1/2, JNK and p38 [86]. Whether these pathways are ROS-dependent is still to
be determined.
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Figure 2.  Platelet-derived growth factor-β (PDGF-β)-activated pathways mediating vascular smooth 
muscle cell (VSMC) migration. After platelet-derived growth factor receptor-β (PDGF-R ββ ) 
activation, NADPH oxidase-1 (Nox1)-released peroxide (H2O2) activates Slingshot1L (SSLH1) and 
LIM kinase (LIMK), cofilin phosphatase and kinase, respectively. The net result is 
cofilin.dephosphorylation leading to actin reorganization and ultimately migration. Furthermore, 
PDGF-induced H2O2 activates the Src/ (phosphoinositide-dependent kinase-1) PDK1/ (p21-activated 
protein kinase) PAK1 signaling pathway mediating VSMC migration. Additionally, Src activation 
increases L-type voltage-dependent calcium channel (CaV1.2) activity leading to increased 
intracellular calcium (Ca2+) concentration, and consequently VSMC migration. In addition, ERK1/2, 
JNK and p38 mediate PDGF-induced migration. Whether the activation of these MAPKs is ROS-
dependent is yet to be determined. Figure key: arrow: activation, question mark: potential crosstalk.  

It is worth mentioning that VSMC migration and proliferation is facilitated by matrix 
degradation and reorganization impelled by matrix metalloproteinases (MMPs) [87-89]. 
Interestingly, MMP expression and activation are regulated by ROS. Indeed, stress-induced ROS 
upregulate the transcription of MMP-2 [90]. In addition, ROS promote the expression of MMP-2, 
MMP-9, MMP-14, collagen, fibronectin, integrin α5 and β1 [91]. The secretion of these proteins leads 
to ECM disorganization, characteristic of synthetic VSMCs [91]. Additionally, ROS activate the pro- 
MMP-2 and pro-MMP-9 secreted by VSMCs [92]. Remarkably, H2O2 activates MMP-2 at a 
concentration of 4 mM, while higher doses (10–50 mM) lead to MMP-2 inactivation [92]. The biphasic 
response of MMP to oxidative stress may further contribute to our understanding of the differential 
effects of ROS on VSMC migration and proliferation.  

3. Effect of ROS on VSMC Cell Cycle and Cell Fate  

Increasing evidence highlights the role of ROS in the VSMC cell cycle and cell fate, whether 
senescence or apoptosis [93,94]. These events play key roles in the development of atherosclerosis 
and restenosis [95,96]. Of note, increased VSMC apoptosis and senescence promote plaque rupturing 
in the atherosclerotic vessels [96,97].  

Several studies have shown that ROS exhibit an apoptotic effect in VSMC (Figure 3) [98,99]. In 
this regard, ROS are pivotal mediators of NO-induced apoptosis in VSMCs [100]. Conversely, ROS 
inhibition by melatonin decreases VSMC apoptosis by upregulation of sestrin2, a ROS scavenger 
[101]. However, contradictory results regarding the role of ROS in apoptosis have been reported by 

Figure 2. Platelet-derived growth factor-β (PDGF-β)-activated pathways mediating vascular smooth
muscle cell (VSMC) migration. After platelet-derived growth factor receptor-β (PDGF-R ββ ) activation,
NADPH oxidase-1 (Nox1)-released peroxide (H2O2) activates Slingshot1L (SSLH1) and LIM kinase
(LIMK), cofilin phosphatase and kinase, respectively. The net result is cofilin.dephosphorylation
leading to actin reorganization and ultimately migration. Furthermore, PDGF-induced H2O2 activates
the Src/ (phosphoinositide-dependent kinase-1) PDK1/ (p21-activated protein kinase) PAK1 signaling
pathway mediating VSMC migration. Additionally, Src activation increases L-type voltage-dependent
calcium channel (CaV1.2) activity leading to increased intracellular calcium (Ca2+) concentration,
and consequently VSMC migration. In addition, ERK1/2, JNK and p38 mediate PDGF-induced
migration. Whether the activation of these MAPKs is ROS-dependent is yet to be determined.
Figure key: arrow: activation, question mark: potential crosstalk.

It is worth mentioning that VSMC migration and proliferation is facilitated by matrix
degradation and reorganization impelled by matrix metalloproteinases (MMPs) [87–89]. Interestingly,
MMP expression and activation are regulated by ROS. Indeed, stress-induced ROS upregulate
the transcription of MMP-2 [90]. In addition, ROS promote the expression of MMP-2, MMP-9,
MMP-14, collagen, fibronectin, integrin α5 and β1 [91]. The secretion of these proteins leads to ECM
disorganization, characteristic of synthetic VSMCs [91]. Additionally, ROS activate the pro- MMP-2
and pro-MMP-9 secreted by VSMCs [92]. Remarkably, H2O2 activates MMP-2 at a concentration of
4 mM, while higher doses (10–50 mM) lead to MMP-2 inactivation [92]. The biphasic response of MMP
to oxidative stress may further contribute to our understanding of the differential effects of ROS on
VSMC migration and proliferation.

3. Effect of ROS on VSMC Cell Cycle and Cell Fate

Increasing evidence highlights the role of ROS in the VSMC cell cycle and cell fate, whether senescence
or apoptosis [93,94]. These events play key roles in the development of atherosclerosis and restenosis [95,96].
Of note, increased VSMC apoptosis and senescence promote plaque rupturing in the atherosclerotic
vessels [96,97].

Several studies have shown that ROS exhibit an apoptotic effect in VSMC (Figure 3) [98,99]. In this
regard, ROS are pivotal mediators of NO-induced apoptosis in VSMCs [100]. Conversely, ROS inhibition
by melatonin decreases VSMC apoptosis by upregulation of sestrin2, a ROS scavenger [101]. However,
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contradictory results regarding the role of ROS in apoptosis have been reported by many studies [59,102].
For instance, it has been shown that basal ROS inhibition by catalase overexpression triggers the
apoptosis of rat aortic smooth muscle cells [61,103], indicating that endogenous ROS is important for
cell survival and proliferation. Similar results have been obtained upon decreasing ROS levels using the
antioxidants pyrrolidinedithiocarbamate (PDTC) and NAC [61,103]. Interestingly, these antioxidants
have been used to prevent apoptosis in other cell types, such as lymphocytes, neurons and vascular
endothelial cells [104–106], suggestive of the cell-type-specific effects of ROS [103]. Taken together,
these results selectively highlight the potential benefits of ROS suppression in an atherosclerotic setting.
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release of arachidonic acid [107,108]. However, in contrast to O2−, H2O2-induced DNA synthesis 
results in VSMC death [109]. This has been explained by the fact that H2O2 downregulates α, δ and ϵ 
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Figure 3. Reactive oxygen species (ROS) regulation of cellular signaling pathways involved in vascular
smooth muscle cell (VSMC) fate and cell cycle progression. Superoxides anion, O2

−, -induces DNA
synthesis, and consequently cell cycle progression, by activating ERK1/2. Alternatively, O2

− mediates
angiotensin II (Ang-II)-induced cell cycle progression via upregulating Id3 transcription factor, which in
turn downregulates cell cycle proteins, including p27, p53 and p21, leading to cell cycle progression.
Nitric oxide (NO)-induced ROS induce VSMC apoptosis associated with DNA synthesis inhibition.
Hydrogen peroxide (H2O2) downregulates NADPH oxidase (NOX4), leading to cell senescence and
DNA synthesis inhibition. H2O2 also attenuates cell cycle progression by upregulating the transcription
factor gut-enriched Kruppel-like factor (GKLF) via p38. H2O2 regulates cell cycle proteins and
proto-oncogenes to induce cell cycle progression or cell death. Melatonin upregulates sestrin2 leading
to ROS inhibition, which decreases VSMC apoptosis. Basal ROS inhibition by catalase overexpression or
antioxidants, (Pyrrolidinedithiocarbamate) PDTC or (N-acetylcysteine) NAC, initiates VSMC apoptosis.

ROS have been depicted as critical regulators of DNA synthesis in VSMC (Figure 3). In this context,
O2
− induces DNA synthesis in VSMC, leading to cell proliferation [49]. Likewise, H2O2 provokes

DNA synthesis in rat aortic VSMCs by upregulating c-fos and c-jun via the PKC and PLA2 release
of arachidonic acid [107,108]. However, in contrast to O2

−, H2O2-induced DNA synthesis results in
VSMC death [109]. This has been explained by the fact that H2O2 downregulates α, δ and ε isoforms,
but upregulates the ζ isoform of PKC, which stimulates DNA synthesis [109]. The stimulatory effect
of H2O2 on cell cycle progression and VSMC proliferation has been reported elsewhere, with the
implication of several intracellular proteins as mediators [110]. These include an upregulated cyclin
B1 and cyclin-dependent kinase (Cdk1), and a downregulated cyclin-dependent kinase inhibitor,
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Kip1/p27 [110]. Concomitantly, an increased expression of c-myc, an oncogene that promotes cell
growth, has been shown to associate with H2O2-induced VSMC proliferation [110]. On the contrary,
H2O2 has been reported to trigger cell cycle arrest by inhibiting Cdk2 and cyclin A, and upregulating
the cell cycle inhibitors p21 and p53 [99]. Thus, H2O2, by activating various signaling pathways,
may positively or negatively regulate the cell cycle, leading to different cellular events.

Accumulating evidence demonstrates a role for ROS in VSMC senescence. In fact, the treatment of
human primary VSMCs with H2O2 induces their premature senescence (Figure 3), which is accompanied
by a decreased expression of ROS-producing NADPH oxidase, NOX4 [111]. The attenuated activity or
expression of NOX4 results in not only cellular senescence but also the secretion of pro-inflammatory
cytokines [111]. Thus, further research must be conducted to elucidate the interplay between ROS and
NOX4 in inducing senescence in VSMC. In addition, the safety of using NOX4 inhibitors in treating
redox-related vascular diseases should be assessed.

The apparent discrepancy in ROS-induced cell fate may be due to several factors, including ROS
species, processing and concentration (Figure 4) [40]. While moderate H2O2 concentrations (100µmol/L)
promote cell cycle arrest, high concentrations (500 µmol/L to 1 mmol/L) lead to apoptosis [99].
Furthermore, the level of redox state is another contributing factor, determining the effect of ROS
on VSMC [112]. While the basic ROS level appears to promote VSMC proliferation [7,103], a high
oxidative stress setting paradoxically induces cell death [112]. In addition, the VSMC source seems to
be a key determinant of the response to ROS. Treatment with H2O2 (100 µmol/L) induces the senescence
of human primary VSMCs [111], while the same concentration provokes the cell proliferation of rat
aortic VSMCs [110]. Moreover, the ROS-activated pathway probably depends on the ROS-generating
stimulus, as well as their source and localization (Figure 5) [39,113]. Whereas H2O2 mediates
glucose oxidase/glucose (GO/G) or diethylmaleate (DEM)-induced VSMC apoptosis [94], the Ang
II-induced H2O2 leads to VSMC hypertrophy, a hallmark of many vascular diseases [112]. Furthermore,
xanthine/xanthine oxidase-produced H2O2 induces DNA synthesis via the PKC-upregulated expression
of proto-oncogenes c-myc and c-fos [59]. A similar proliferative effect is promoted by PDGF- and
braydakinin-induced H2O2 [50,53]. The presence of redox-sensitive genes in VSMCs adds another level
of complexity to the effect of ROS on these cells. An interesting example is the differential activation of
genes encoding for the redox-sensitive transcription factors Id3 and GKLF [56,114]. In this respect,
Ang II-induced O2

− increases the expression of Id3, which in turn inhibits the transcription factor E2A,
resulting in cell cycle progression [114]. This was accompanied by the downregulation of cell cycle
proteins p21WAF1/Cip1, p27Kip1, p53 and Rb [114]. On the other hand, H2O2 activates p38, which in turn
upregulates GKLF, leading to cell cycle arrest [56] (Figure 3).
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4. Effect of ROS on VSMC Differentiation Markers

It is well-established that ROS have a direct effect on VSMC phenotypic plasticity. Several lines
of evidence show that ROS can induce contractile, synthetic and osteogenic phenotypes.
The variation in the ROS-induced phenotypes appears to be dependent on the nature of the VSMC
microenvironment—whether quiescent, differentiating, atherosclerotic or diabetic.

In quiescent VSMCs, oxidant activity is required for the increased expression of differentiation
markers, including calponin, smooth muscle (SM1 and SM2) myosins and α-actin (Figure 6) [41].
This ROS-induced upregulation is mediated via p38 [41]. Given that p38 increases the transcriptional
activity of the SMC-specific transcription factor serum response factor (SRF) [115,116], the potential
involvement of SRF in the ROS/p38-mediated increase in VSMC differentiation seems likely [41].
It is worth mentioning that ROS in quiescent VSMCs are derived from NOX4 [117]. In addition
to its functional role in inducing a contractile phenotype, Nox4 is thought to play a structural role
by maintaining VSMC differentiation [118]. This role stems from the observation that during the
early de-differentiation process, Nox4 translocates from the α-actin stress fibers in contractile VSMCs
to focal adhesions in de-differentiated cells [118,119]. Interestingly, an attenuated Nox4 activity
decreases the level of endogenous H2O2, and induces a synthetic VSMC phenotype and increased ECM
deposition [119]. Thus it appears that a basal level of ROS is needed to maintain a contractile phenotype.

Another niche where ROS induces contractile gene expression is during the differentiation of
embryonic stem cells to VSMCs (Figure 6) [42]. Indeed, NOX4-produced H2O2 induces the activation
of SRF, which translocates to the nucleus and recruits the muscle-specific co-activator myocardin [42].
The resulting SRF/myocardin complex binds to the promoter-enhancing region of the VSMC contractile
marker genes, such as calponin and myosin heavy chain, and induces their expression [120].

In the context of atherosclerosis, SRF plays the opposite role by attenuating the expression of
contractile markers genes [121], and promoting VSMC dedifferentiation (Figure 6). In fact, SRF may
bind to one of two competing partners, myocardin or Elk-1. Whereas the SRF–myocardin complex
induces the transcription of smooth muscle differentiation genes, the SRF–Elk-1 complex represses the
transcription of these genes [91]. Interestingly, ELK-1 is greatly upregulated in thoracic aortic aneurysm
(TAA) tissues and is undetectable in normal aortic tissues [91]. As such, in TAA patients, ROS rather
induce the VSMC synthetic phenotype via the Elk-1/SRF signaling pathway, by upregulating the
connective tissue growth factor (CTGF) [91]. The VSMC synthetic induction is accompanied by an
increase in the dedifferentiation markers, osteopontin and vimentin, as well as a decrease in the
contractile markers, smoothelin B and smooth muscle α [91]. Alternatively, in response to inflammatory
cues, ROS may induce VSMC dedifferentiation by activating the key transcriptional factor, NF-κB [53]
(Figure 6). NF-κB upregulates the transcription of osteopontin [122], a glycoptrotein involved in
the phenotypic transition of VSMCs towards the synthetic phenotype [123]. Additionally, NF-κB
suppresses the myocardin-dependent expression of the contractile marker, SM22 [124].

Advanced stages of atherosclerosis are characterized by vascular calcification [125]. Notably,
ROS, namely H2O2, have the potential to promote calcification by inducing the VSMC switch
to an osteoblast-like cell phenotype in a defined osteogenic medium [126]. This H2O2-induced
phenotypic switch is mediated via AKT-activated Runx2, a key transcription factor for osteogenic
differentiation [126].

Under diabetic conditions, excessive ROS production affects the VSMC phenotype [95,127,128].
Mesenteric VSMCs from type 2 diabetic Goto-Kakizaki rats show a decreased expression of calponin
(Figure 6) [128]. The downregulation of this contractile marker is associated with increased ROS levels
and enhanced ERK1/2 activation [128]. However, in aortic VSMCs extracted from the same diabetic
model, treatment with H2O2 upregulates microRNA-145, which increases the activity of myocardin,
thus inducing contractile gene transcription [127]. These effects are mediated via ERK1/2 [127].
The inconsistency in diabetic VSMC redox response could be explained by the distinct VSMC
origin—whether extracted from large vessels or microvessels.
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Figure 6. The impact of the vascular smooth muscle cell (VSMC) microenvironment on determining
the effect of reactive oxygen species (ROS) on phenotypic switch. Oxidative stress seems to be
crucial for maintaining the contractile phenotype of quiescent VSMCs and for the differentiation
of embryonic contractile VSMCs. NAPDH oxidase (NOX4)-produced hydrogen peroxide (H2O2)
activates the transcription complex serum response factor (SRF)/myocardin via p38. This complex
translocates to the nucleus and upregulates the transcription of contractile markers, such as calponin
and myosin heavy chain. NOX4 also seems to play a structural role in maintaining a contractile
phenotype by binding to α-actin stress fibers, characteristic of this phenotype. In the context of
atherosclerosis, ROS induces VSMC dedifferentiation by activating the NF-κB and/or Elk-1/SRF signaling
pathways. NF-κB upregulates the transcription of the synthetic marker osteopontin, and associates with
myocardin to repress the myocardin-dependent contractile gene expression of smooth muscle 22 (SM22).
Alternatively, ROS promote Elk-1/SRF complex formation, which activates the transcription of synthetic
markers, vimentin and osteopontin, via connective tissue growth factor (CTGF). The Elk-1/SRF
complex, alternatively, downregulates the contractile markers smoothelin B and α-smooth muscle
(αSM). In an osteogenic medium, ROS induce VSMCs, which induces transition to the osteoblast-like
cell phenotype, characteristic of vessel calcification in advanced atherosclerosis. The ROS-induced
osteoblast-like cell phenotype is mediated via AKT-activated Runx2, a key transcription factor for
osteogenic differentiation. In diabetic VSMC, ROS induce a synthetic phenotype by decreasing
calponin, probably via ERK1/2. Conversely, ROS provoke the contractile phenotypic switch of diabetic
VSMC by upregulating microRNA-145, which in turn increases the activity of myocardin in an
ERK1/2-dependent manner. Cyclic stretch evokes a VSMC synthetic phenotypic switch through
NOX1-derived ROS release via myocyte enhancer factor 2B (MEF2B), resulting in the upregulation of
osteopontin and the downregulation of contractile markers calponin1 and smoothelin B. Figure key:
up-arrow: upregulation, down-arrow: downregulation, arrow: activation, block arrow: inhibition,
question mark: potential crosstalk.
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Moreover, VSMC phenotypic switch has been reported to be influenced by microenvironment
mechanical cues, specifically cyclic stretch [25]. In fact, cyclic stretch upregulates myocyte enhancer
factor 2B (MEF2), a transcription factor known for its role in cell proliferation and differentiation [129].
MEF2B then potentiates NOX1-mediated ROS release, leading to VSMC phenotypic switch, as evidenced
by the upregulation of osteopontin and the downregulation of contractile markers, calponin1 and
smoothelin B [25].

In addition to VSMC microenvironment, the differential phenotypic response to ROS may
be explained by other inhibitory pathways that may override the stimulatory effect of ROS [41].
For instance, although PDGF increases ROS in VSMCs [50], it attenuates the expression of differentiation
markers [130]. As a consequence, the PDGF-generated high oxidant activity in proliferating VSMCs
fails to stimulate differentiation [41]. Congruently, increased H2O2 production decreases and increases
the expression of contractile and synthetic markers, respectively [131].

5. ROS and VSMC Epigenetics

Evidence shows that epigenetic modifications regulate the phenotype of VSMCs [132,133].
These alterations, including DNA modifications, histone modifications and ATP-dependent chromatin
remodeling, affect the gene expression pattern contributing to the VSMC phenotypic switch [134].
For instance, the histone modifying enzymes, histone acetyltransferases (HATs) and histone deacetylases
(HDACs), potentially play a role in atherosclerosis and restenosis after coronary intervention by
promoting neointima formation, smooth muscle cell proliferation and inflammation [135]. In addition,
an increased susceptibility to atherosclerotic changes in the VSMCs of ApoE+/− mice is associated
with altered histone methylation and lysine methyltransferase expression [136]. Notably, epigenetic
pathways in the nuclear and mitochondrial genome involve ROS as signaling messengers [134].
Here, we present some reports that support the role of ROS in coordinating the effects of epigenetic
modifications in VSMC phenotypic switch.

ROS is known to affect DNA methylation by targeting the expression and/or activity of the
DNA-modifying enzyme ten-eleven translocation-2 (TET2) [134,137,138]. In human atherosclerosis and
in a mouse model of vascular injury, conditions known for their increased oxidative stress, the activity
of TET2 is reduced in VSMCs, contributing to their switch to the synthetic phenotype [133]. Thus,
it is tempting to speculate that TET2 activity is reduced by the increased ROS level in atherosclerotic
VSMCs. Furthermore, proliferating VSMCs exhibit decreased whole genome methylation content in
atherosclerotic aortas as compared with normal arteries [139]. VSMCs in atherosclerotic plaque show
also a reduced methylation in the extracellular superoxide dismutase (EC-SOD) gene [139]. Although
these observations do not provide a causal relationship between hypomethylation and atherosclerosis,
they unquestionably reveal that EC-SOD hypomethylation is associated with atherosclerosis [139] and
consequently VSMC phenotypic switch [139,140]. Given that ROS are increased in atherosclerosis and
regulate SOD [141], it is plausible to hypothesize that ROS signaling is involved in the hypomethylation
profile of SOD, and potentially in the whole genome.

Histone modifications contribute to VSMC’s phenotypic switch during atherosclerosis and intimal
injury [142]. In response to these conditions, SRF causes post-translational histone modifications,
suppressing smooth muscle cell differentiation [121]. Knowing that atherosclerosis and intimal injury
are characterized by high levels of ROS and that ROS regulate SRF, it can be assumed that ROS are
potentially implicated in the SRF-induced suppression of VSMC differentiation markers.

6. Conclusions

It is now evident that a basal ROS level is crucial for vascular homeostasis, particularly
in the maintenance of VSMC survival, contractility and intracellular signaling [143]. However,
the dysregulation in ROS generating- and/or ROS-scavenging enzymes leads to oxidative stress,
which induces VSMC proliferation and dedifferentiation [9]. The VSMC phenotypic switch is
implicated in the pathogenesis of vascular diseases [9]. Thus, it is reasonable to assume that



Int. J. Mol. Sci. 2020, 21, 8764 12 of 21

antioxidants play a vasculoprotective role. In support of this assumption, clinical trials have shown
that administering antioxidants such as vitamin C, vitamin E and resveratrol improves vascular
function [144–147]. On the other hand, other clinical trials have not succeeded in finding a relation
between antioxidants consumption and cardiovascular morbidity [148–151]. The failure of antioxidants
to grant cardiovascular protection could be ascribed to several factors, pertinent to the antioxidant
agent used, such as its pharmacokinetics, dosage, efficacy and selective scavenging activity [9,152–154],
and/or to the patients, such as their age, disease stage and presence of oxidative stress [9].

To date, there is no well-defined therapeutic strategy for the clinical prescription of
antioxidants [143], as the results of clinical trials in this aspect are not encouraging. In addition,
caution must be taken when using antioxidants, as they are able to play a pro-oxidant role by reducing
iron ions [155]. Iron reduction by antioxidants leads to ROS production, resulting in oxidative damage
to proteins, lipids and DNA [156,157]. Another cautionary note is that antioxidants may halt vital
ROS-dependent signaling pathways [143]. For instance, cold-induced vasoconstriction is mediated by
the α2C-adrenergic receptor, a receptor functionally rescued by ROS [158]. Thus, more investigations
and research must be conducted to specify the nature of the ROS implicated in a given CVD, on the
one hand, and to augment the efficiency of antioxidants on the other hand.
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Abbreviations

Ag-II Angiotensin II
bFGF Basic fibroblast growth factor
Cdk Cyclin-dependent kinase
CTGF Connective tissue growth factor
CVD Cardiovascular disease
CyPA Cyclophilin A
ECM Extracellular matrix
EC-SOD Extracellular superoxide dismutase
FGF Fibroblast growth factor
GKLF Gut-enriched Kruppel-like factor
H2O2 Hydrogen peroxide
HAT Acetyltransferase
HDAC Histone deacetylase
HO• Hydroxyl radical
IGF-I Insulin-like growth factor-I
LIMK LIM kinase
MEF2B Myocyte enhancer factor 2B
MCP-1 Monocyte chemokine protein 1
MMP Matrix metalloproteinases
NAC N-acetylcysteine
NO Nitric oxide
NOX NADPH Oxidase
O2
− Superoxide anion

PAK1 Rac-effector p21-activated protein kinase
PDGF Platelet-derived growth factor
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PDK-1 Phosphoinositide-dependent kinase-1
PTDC Pyrrolidinedithiocarbamate
TGF-β Transforming growth factor
ROS Reactive oxygen species
SM Smooth muscle
SOD Superoxide dismutase
SRF Serum response factor
SSHL1 Slingshot1L
TAA Thoracic aortic aneurysm
TET2 Ten-eleven translocation-2
VEGF Vascular epidermal growth factor
VSMCs Vascular smooth muscle cells

References

1. Zhang, J.; Wang, X.; Vikash, V.; Ye, Q.; Wu, D.; Liu, Y.; Dong, W. ROS and ROS-mediated cellular signaling.
Oxidative Med. Cell. Longev. 2016, 2016. [CrossRef] [PubMed]

2. Liu, Y.; Zhao, H.; Li, H.; Kalyanaraman, B.; Nicolosi, A.C.; Gutterman, D.D. Mitochondrial sources of H2O2
generation play a key role in flow-mediated dilation in human coronary resistance arteries. Circ. Res. 2003,
93, 573–580. [CrossRef] [PubMed]

3. Droge, W. Free radicals in the physiological control of cell function. Physiol. Rev. 2002, 82, 47–95.
[CrossRef] [PubMed]

4. Alfadda, A.A.; Sallam, R.M. Reactive oxygen species in health and disease. J. Biomed. Biotechnol. 2012, 2012.
[CrossRef] [PubMed]

5. Finkel, T.; Holbrook, N.J. Oxidants, oxidative stress and the biology of ageing. Nature 2000, 408,
239–247. [CrossRef]

6. Wu, J.Q.; Kosten, T.R.; Zhang, X.Y. Free radicals, antioxidant defense systems, and schizophrenia.
Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2013, 46, 200–206. [CrossRef]

7. Taniyama, Y.; Griendling, K.K. Reactive oxygen species in the vasculature: molecular and cellular mechanisms.
Hypertension 2003, 42, 1075–1081. [CrossRef]

8. Omar, H.; Cherry, P.; Mortelliti, M.; Burke-Wolin, T.; Wolin, M. Inhibition of coronary artery superoxide
dismutase attenuates endothelium-dependent and-independent nitrovasodilator relaxation. Circ. Res. 1991,
69, 601–608. [CrossRef]

9. Vokurkova, M.; Xu, S.; Touyz, R.M. Reactive oxygen species, cell growth, cell cycle progression and vascular
remodeling in hypertension. Future Cardiol. 2007, 3, 53–63. [CrossRef]

10. Guzik, B.; Sagan, A.; Ludew, D.; Mrowiecki, W.; Chwała, M.; Bujak-Gizycka, B.; Filip, G.; Grudzien, G.;
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