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Abstract—The length of a cycle basis of a graph is the sum of
the lengths of its elements. A minimum cycle basis is a cycle basis
with minimum length. In this work, a construction of a minimum
cycle basis for the wreath product of wheels with stars is presented.
Moreover, the length of minimum cycle basis and the length of its
longest cycle are calculated.
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I. INTRODUCTION

For a given graph G, we denote the vertex set of G by
V (G) and the edge set by E(G). The set E of all subsets

of E(G) forms an |E(G)|-dimensional vector space over Z2

with vector addition X ⊕ Y = (X\Y ) ∪ (Y \X) and scalar
multiplication 1 · X = X and 0 · X = ∅ for all X, Y ∈ E .
The cycle space, C(G), of a graph G is the vector subspace of
(E ,⊕, ·) spanned by the cycles of G. Note that the non-zero
elements of C(G) are cycles and edge disjoint union of cycles.
It is known that for a connected graph G the dimension of the
cycle space is the cyclomatic number or the first Betti number,
dim C(G) = |E(G)| − |V (G)| + 1 (see [4]).

A basis B for C(G) is called a cycle basis of G. The length,
|C|, of the element C of the cycle space C(G) is the number
of its edges. The length, l(B), of a cycles basis B is the sum
of the lengths of its elements: l(B) =

∑
C∈B |C|. A minimum

cycle basis (MCB) is a cycle basis with minimum length. The
length of the longest element in an MCB is denoted by λ(G).
Since the cycle space is a matroid in which an element C has
weight |C|, the greedy algorithm can be used to extract an
MCB (see [9]). The following results will be used frequently
in the sequel (see [6]).

Lemma 2.2. (Jaradat, et al.) Let A,B be sets of cycles of
a graph G, and suppose that both A and B are linearly
independent, and that E(A)∩E(B) induces a forest in G (we
allow the possibility that E(A)∩E(B) = ∅). Then A∪B is
linearly independent.

In the present article we continue what we initiate in [1],
[4], and [7] by studying the problem of constructing an
MCB for the wreath product of wheels and stars, where an
MCB of graphs find applications in sciences and engineering:
for examples, biochemistry, structural engineering, surface
reconstruction and public transportations (See [2], [3] and [8]).

Let G = (V (G), E(G)) and H = (V (H), E(H)) be two
graphs. (1) The Cartesian product G�H has the vertex set
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V (G�H) = V (G) × V (H) and the edge set E(G�H) =
{(u1, v1)(u2, v2)|u1u2 ∈ E(G) and v1 = v2, or v1v2 ∈
E(H) and u1 = u2}. (2) The Lexicographic product G1[G2]
is the graph with vertex set V (G[H]) = V (G)×V (H) and the
edge set E(G[H]) = {(u1, u2)(v1, v2)|u1 = v1 and u2v2 ∈
E(H) or u1v1 ∈ E(G)}. (3) The wreath product GρH
has the vertex set V (GρH) = V (G) × V (H) and the
edge set E(GρH) = {(u1, v1)(u2, v2)|u1 = u2 and v1v2 ∈
H, or u1u2 ∈ G and there is α ∈Aut(H) such that α(v1) =
v2}.

In the rest of this paper, we let {u1, u2, . . . , un} be the
vertex set of the wheel Wn(the star Sn), with dWn(u1) = n−1
and {v1, v2, . . . , vm} be the vertex set Sm with dSm(v1) =
m− 1. Moreover, Nm−1 stands for the null graph with vertex
set {v2, v3, . . . , vm}. Wherever they appear a, b, c, d and l
stand for vertices and E(B) = ∪C∈BE(C) where B ⊆ C(G).

II. THE MINIMUM CYCLE BASIS OF WnρSm.

In this section, we present a minimum cycle basis of
WnρSm. To proceed in our work we set the following sets
of cycles:

Rlab =
{
R(j)

lab = (l, vj+1)(a, vj)(b, vj)(l, vj+1)|
2 ≤ j ≤ m − 1} ,

Mlab =
{
M(j)

lab = (l, vj+1)(a, vj)(b, vj+1)(l, vj+1) |
2 ≤ j ≤ m − 1} .

Also, for j = 1, 2, . . . , m we set the following cycle

U (j)
lab = (l, vj)(a, vj)(b, vj)(l, vj).

Let
Ulab = ∪m

j=2U (j)
lab

Lemma 2.1. Slab= U lab∪Rlab∪Rbal∪Rabl∪Mlab∪Mlba is
a linearly independent set.
Proof. Since each of Ulab,Rlab,Mlab,Mlba,Rbal, and Rabl

consists of edge disjoint cycles, as a result each of which is
linearly independent. Now, any linear combination of cycles
of Rlab contains an edge of the form (l, vi+1)(a, vi) for some
2 ≤ i ≤ m − 1 which occurs in no cycle of Ulab. Thus
Ulab∪Rlab is linearly independent. Any linear combination of
cycles of Mlab contains an edge of the form (b, vi+1)(a, vi)
for some 2 ≤ i ≤ m − 1 which does not occur in any
cycle of Ulab ∪ Rlab. Hence Ulab ∪ Rlab ∪ Mlab is linearly
independent. Similarly, since any linear combination of cycles
of Mlba contains an edge of the form (a, vi+1)(b, vi) for some
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2 ≤ i ≤ m−1 which occurs in no cycle of Ulab∪Rlab∪Mlab,
as a result Ulab∪Rlab∪Mlab ∪Mlba is linearly independent.
Also, since any linear combination of cycles of Rbal contains
an edge of the form (b, vi+1)(l, vi) for some 2 ≤ i ≤ m − 1
which does not belong to any cycle of Ulab ∪ Rlab ∪ Mlab

∪Mlba, we have Ulab∪Rlab∪Mlab ∪Mlba ∪Rbal is linearly
independent. Finally, any linear combination of cycles of
Rabl contains an edge of the form (a, vi+1)(l, vi) for some
2 ≤ i ≤ m − 1 which does not appear in any cycle of
Ulab∪Rlab∪Mlab ∪Mlba ∪Rbal. Therefore, Slab is linearly
independent. �

Now, for each 2 ≤ j ≤ m − 2, we define the following set
of cycles:

E(j)
lab =

{
E(j,i)

lab = (l, vi+j−1)(a, vi)(b, vi+j)(l, vi+j−1) |
2 ≤ i ≤ m − j} .

Let

Elab = ∪m−2
j=2 E(j)

lab

Lemma 2.2. The set Z(j)
lab= E(j)

lba∪E(j)
lab∪E(j)

abl∪E(j)
alb∪E(j)

bla∪E(j)
bal

is linearly independent.
Proof. Since each of E(j)

lba , E(j)
lab , E(j)

abl , E(j)
alb , E(j)

bla and E(j)
bal

consists only of edge disjoint cycles and since

E(E(j)
lab) ∩ E(E(j)

lba) = E(E(j)
lab) ∩ E(E(j)

abl)

= E(E(j)
lba) ∩ E(E(j)

abl)
= ∅,

E(j)
lba ∪E(j)

lab ∪E(j)
abl is linearly independent by Lemma 1.2. Any

linear combination of cycles of E(j)
alb contains an edge of the

form (l, vi)(b, vi+j) for some 2 ≤ i ≤ m − j which does
not occur in any cycle of E(j)

lba ∪ E(j)
lab ∪ E(j)

abl . Hence, E(j)
lba ∪

E(j)
lab ∪ E(j)

abl ∪ E(j)
alb is linearly independent. Since any linear

combination of cycles of E(j)
bla contains an edge of the form

(l, vi)(a, vi+j) for some 2 ≤ i ≤ m−j which does not appear
in any cycle of E(j)

lba ∪ E(j)
lab ∪ E(j)

abl ∪ E(j)
alb . Thus E(j)

lba ∪ E(j)
lab ∪

E(j)
abl ∪E(j)

alb ∪E(j)
bla is linearly independent. Similarly, any linear

combination of cycles of E(j)
bal contains an edge of the form

(a, vi)(l, vi+j) for some 2 ≤ i ≤ m − j which belongs to no
cycle of E(j)

lba ∪ E(j)
lab ∪ E(j)

abl ∪ E(j)
alb ∪ E(j)

bla . Therefore, Z(j)
lab is

linearly independent. �

Lemma 2.3. Any linear combination of cycles of
∪m−2

j=2 Z(j)
lab contains at least one edge of the following forms:

(a, vi)(b, vi+j), (b, vi)(a, vi+j), (b, vi)(l, vi+j), (l, vi)(b, vi+j), (l,
vi)(a, vi+j) and (a, vi) (l, vi+j) where 2 ≤ j ≤ m − 2 and
2 ≤ i ≤ m − j.
Proof. Assume that C is a linear combination of the cycles of
O = {O1, O2, . . . , Or} ⊆ ∪m−2

j=2 Z(j)
lab and C does not contain

any edge of the above stated forms. Then we split our work
into the following cases:
Case 1: O contains at least one cycle of ∪m−2

j=2 E(j)
alb , say

E(j0,i0)
alb = Z1. Note that e = (l, vi0)(b, vi0+j0) ∈ E(E(j0,i0)

alb )
which does not occur in any other cycle of ∪m−2

j=2 Z(j)
lab . Thus,

e does not belong to any other cycle of O. Therefore e ∈
E(

r⊕
i=1

Oi) = E(C). This contradicts the fact that e /∈ E(C).

Case 2: O contains no cycle of ∪m−2
j=2 E(j)

alb , but contains at least

one cycle of ∪m−1
j=2 E(j)

bla , say E(j0,i0)
bla = O1. As in case one,

e = (l, vi0)(a, vi0+j0) ∈ E(E(j0,i0)
bla ) which does not occur

in any other cycle of (∪m−2
j=2 Z∗(j)

lab ) − (∪m−2
j=2 E(j)

alb). Thus, e
does not belong to any other other cycle of O. Therefore, e ∈
E(

r⊕
i=1

Oi) = E(C). This contradicts the fact that e /∈ E(C).

Case 3: O contains no cycle of (∪m−2
j=2 E(j)

alb)∪(∪m−2
j=2 E(j)

bla), but

contains at least one cycle of ∪m−2
j=2 E(j)

lab or ∪m−2
j=2 E(j)

bal . Then
we consider the following subcases:

Subcase 3.a: O contains cycle of ∪m−2
j=2 E(j)

lab . Let j0 (2 ≤
j0 ≤ m − 2) be the largest integer such that E(jo)

lab ∩ O �= ∅.
Let i0 (2 ≤ i0 ≤ m − j0) be the largest integer greater
such that E(j0,i0)

lab ∈ O, say Z1 = E(j0,i0)
lab . Note that e1 =

(a, vi0)(b, vi0+j0) ∈ E(O1) and e1 /∈ E(C). Moreover, the
only other cycle of (∪m−2

j=2 Z(j)
lab)− (∪m−2

j=2 E(j)
alb)∪ (∪m−2

j=2 E(j)
bla)

that contains e1 is E(j0+1,i0)
bal . Hence, E(j0+1,i0)

bal ∈ O, say
O2 = E(j0+1,i0)

bal . Note that e2 = (a, vi0)(l, vi0+(j0+1)) ∈
E(Z2) which does not occur in O1. Thus, e2 ∈ E(O1⊕
O2). Since e2 /∈ E(C) and E(j0+2,i0)

lab is the only other
cycle of (∪m−2

j=2 Z(j)
lab) − (∪m−2

j=2 E(j)
alb) ∪ (∪m−2

j=2 E(j)
bla) which

contains e2, E(j0+2,i0)
lab ∈ O, say O3 = E(j0+2,i0)

lab . Note that
e3 = (a, vi0)(b, vi0+(j0+2)) ∈ E(O3) which does not occur in
O1⊕ O2. Thus, e3 ∈ E(O1⊕ O2 ⊕ O3). Now, e3 /∈ E(C)
and E(j0+3,i0)

lab is the only other cycle of (∪m−2
j=2 Z(j)

lab) −
(∪m−2

j=2 E(j)
alb) ∪ (∪m−2

j=2 E(j)
bla) which contains e2. By continuing

in this process, we get the following: There is r0 such that
Or0 = E(m−i0,i0)

lab ∈ O or Or0 = E(m−i0,i0)
bal ∈ O. Note that

in both cases er0 = (a, vi0)(b, vm) ∈ Or0 which occurs in
no other cycles of (∪m−2

j=2 Z(j)
lab) − (∪m−2

j=2 E(j)
alb) ∪ (∪m−2

j=2 E(j)
bla).

Thus, er0 ∈ E(
r⊕

i=1

Oi) = E(C). This contradicts the fact that

er0 = (a, vi0)(b, vi0+(m−i0)) /∈ E(C).
Subcase 3.b: O contains cycle of ∪m−2

j=2 E(j)
bal . The we use the

same arguments as in Case 3.a to have a similar contradiction.

Case 4: O contains no cycle of (∪m−2
j=2 E(j)

alb) ∪ (∪m−2
j=2 E(j)

bla) ∪
(∪m−2

j=2 E(j)
lab) ∪ (∪m−2

j=2 E(j)
bal) but contains at least one cycle

of ∪m−2
j=2 E(j)

abl . As in Case 3.a, let j0 (2 ≤ j0 ≤ m − 2) be

the largest integer such that E(jo)
abl ∩O �= ∅. Let i0 (2 ≤ i0 ≤

m−j0) be the largest integer greater such that E(j0,i0)
abl ∈ O, say

O1 = E(j0,i0)
abl . Note that e1 = (b, vi0)(l, vi0+j0) ∈ E(O1) and

e1 /∈ E(C). Also note that E(j0+1,i0)
lba is the only other cycle

of (∪m−2
j=2 Z∗(j)

lab )− (∪m−2
j=2 E(j)

alb)∪ (∪m−2
j=2 E(j)

bla)∪ (∪m−2
j=2 E(j)

lab)∪
(∪m−2

j=2 E(j)
bal) which contains e1. Thus, O2 = E(j0+1,i0)

lba ∈ O.
By continuing in the process as in Case 3, taking into account
only Subcase 3.a, we get a similar contradiction.
Case 5: O contains no cycle of (∪m−2

j=2 E(j)
alb) ∪ (∪m−2

j=2 E(j)
bla) ∪

(∪m−2
j=2 E(j)

lab) ∪ (∪m−2
j=2 E(j)

bal) ∪ (∪m−2
j=2 E(j)

abl). Then O contains

at least one cycle of ∪m−2
j=2 E(j)

lba , say O1 = E(j0,i0)
lba . Then,

e = (b, vi0)(l, vi0+j0) ∈ E(O1) and does not occur in any
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other cycle of (∪m−2
j=2 Z(j)

lab) − (∪m−2
j=2 E(j)

alb) ∪ (∪m−2
j=2 E(j)

bla) ∪
(∪m−2

j=2 E(j)
lab)∪(∪m−2

j=2 E(j)
bal)∪(∪m−2

j=2 E(j)
abl). Thus, e ∈ E(

r⊕
i=1

Oi).

This contradicts the fact that e /∈ E(C). �

Remark 2.4. By using same arguments as in Lemma 4.3, we
can show, by taking into account Cases 1, 4, and 5 and Sub-
case 3.a, that any linear combination of (∪m−2

j=2 Z(j)
lab)−(∪m−2

j=2

(E(j)
bla∪E(j)

bal)) contains at least one edge of the following
forms: (a, vi)(b, vi+j), (b, vi)(a, vi+j), (b, vi)(l, vi+j), and
(l, vi)(b, vi+j) where 2 ≤ j ≤ m − 2 and 2 ≤ i ≤ m − j. �
Lemma 2.5. The set Slab∪(∪m−2

j=2 Z(j)
lab) is linearly indepen-

dent.
Proof. We use mathematical induction on m to show that
(∪m−2

j=2 Z(j)
ab ) is linearly independent. If m = 4, then

(∪m−2
j=2 Z(j)

lab) consists only of Z(2)
lab . Thus, the result

follows from Lemma 2.2. Assume that m is grater
than 4 and the result is true for less than m. Note that
(∪m−2

j=2 Z(j)
lab) = (∪m−3

j=2 Z(j)
lab)∪Z(m−2)

lab . By a similar argument
to that in proof of Lemma 2.3, any linear combination of
cycles of Z(m−2)

lab contains at least one edge of the following:
(a, v2)(b, vm), (b, v2)(a, vm), (b, v2)(l, vm), (l, v2)(b, vm),
(l, v2)(a, vm), and (a, v2)(l, vm). Since non of them occurs
in any cycle of (∪m−3

j=2 Z(j)
lab), (∪m−2

j=2 Z(j)
lab) is linearly

independent. By Lemma 2.1 Slab is linearly independent.
Now, by Lemma 2.3 any linear combination of cycles of
(∪m−2

j=2 Z(j)
lab) contains at least one edge of the following

forms: (a, vi)(b, vi+j), (b, vi)(a, vi+j), (b, vi)(l, vi+j),
(l, vi)(b, vi+j), (l, vi)(a, vi+j), and (a, v1)(l, vi+j) for some
2 ≤ i ≤ m − j and 2 ≤ j ≤ m − 2, which does not occur in
any cycle of Slab. Therefore, Slab ∪ (∪m−2

j=2 Z(j)
lab) is linearly

independent. �

Let

S∗
lab = (Slab ∪ (∪m−2

j=2 Z(j)
lab))− (Rabl ∪ (∪m−2

j=2 (E(j)
bla ∪ E(j)

bal))).

Lemma 2.6. Any linear combination of cycles of Slab−Rabl

contains at least one edge of the following forms:
(l, vi+1)(b, vi), (l, vi)(b, vi+1), (l, vi)(b, vi), (a, vi+1)(b, vi)
and (a, vi)(b, vi+1).
Proof. Let C be a linear combination of the cycles of
O = {O1, O2, . . . , Or} ⊆ Slab − Rabl. Then we consider
the following cases:
Case 1: O contains at least one cycle of Mlba, say O1 =
M(i)

lba. Note that e = (a, vi+1)(b, vi) ∈ O1 and does not occur
in other cycles of S∗

lab. And so e does not occur in any other

cycle of Slab Thus, e ∈ E(
r⊕

i=1

Oi) = E(C).

Case 2: O contains no cycle of Mlba, but contains at least one
cycle of Rlab, say O1 = R(i)

lab. Note that e = (l, vi+1)(b, vi) ∈
E(O1) and does not occur in other cycles of S∗

lab−Mlba. And
so e does not occur in any other cycle of Slab −Mlba. Thus,

(l, vi+1)(b, vi) ∈ E(
r⊕

i=1

Oi) = E(C).

Case 3: O contains no cycle of Mlba ∪ Rlab, but contains
at least one cycle of Rbal, say O1 = Rbal. Note that e =
(l, vi)(b, vi+1) ∈ E(O1) and does note occur in other cycles of
S∗

lab−Mlba∪Rlab. And so e does not occur in any other cycle

of Slab −Mlba ∪ Rlab. Thus, (l, vi)(b, vi+1) ∈ E(
r⊕

i=1

Oi) =

E(C).
Case 4: O contains no cycle of Mlba ∪ Rlab ∪ Rbal, but
contains at least one cycle of Mlab, say O1 = M(i)

lab. Note
that e = (a, vi)(b, vi+1) ∈ O1 and does not occur in other
cycles of S∗

lab − Mlba ∪ Rlab ∪ Rbal. And so e does not
occur in any other cycle of Slab −Mlba ∪Rlab ∪Rbal. Thus,

(a, vi)(b, vi+1) ∈ E(
r⊕

i=1

Oi) = E(C).

Case 5: O contains no cycle of Mlba ∪Rlab ∪Rbal ∪Mlaa.
Then O must contains at least one cycle of Ulab, say O1 =
U (i)

lab. Note that e = (l, vi)(b, vi) ∈ O1 and does not occur in
other cycle of S∗

lab −Mlba ∪Rlab ∪Rbal ∪Mlba. And so e
does not occur in any other cycle of Slab − Mlba ∪ Rlab ∪
Rbal ∪Mlba. Thus, (l, vi)(b, vi) ∈ E(

r⊕
i=1

Oi) = E(C). �

Lemma 2.7. ∪n−1
i=3 S∗

u1uiui+1
is linearly independent set.

Proof. We prove that ∪n−1
i=3 S∗

u1uiui+1
is linearly indepen-

dent using mathematical induction on n. If n = 4, then
∪n−1

i=3 S∗
u1uiui+1

= S∗
u1u3u4

which is linearly independent by
Lemma 2.5. Assume that n is grater than 4 and the result
is true for less than n. Note that ∪n−1

i=3 S∗
u1uiui+1

= (∪n−2
i=3

S∗
u1uiui+1

) ∪ S∗
u1un−1un

. By combining Lemmas 2.3 and 2.6,
any linear combination of cycles of S∗

u1un−1un
contains an

edge of the form (un−1, vi)(un, vk) or (u1, vi)(un, vk) for
2 ≤ i, k ≤ m which does not occur in any cycle of (∪n−2

i=3

S∗
u1uiui+1

). Thus, ∪n−1
i=3 S∗

u1uiui+1
is linearly independent. �

Let F = ∪n
i=1V (Wn)�Sm and L = Wn�v1. Then,

WnρSm = F ∪ L ∪K where K = WnρSm − E(F ∪ L).
Note that |E(K)| = |E(Wn[Nm−1]| = 2(m − 1)2(n − 1).
Thus,

dim C(K) = 2(m − 1)2(n − 1) − n(m − 1) + 1 (1)

Lemma 2.8. The set B(K) = (Su1u2u3 ∪ (∪m−2
j=2 Z(j)

u1u2u3)) ∪
(∪n−1

i=3 S∗
u1uiui+1

) ∪ (Uu1unu2 ∪ Mu1unu2 ∪ Mu1u2un ∪
Eu1unu2 ∪ Eu1u2un) is a cycle basis of K.
Proof. We know that Su1u2u3 ∪ (∪m−2

j=2 Z(j)
u1u2u3) and

(∪n−1
i=3 S∗

u1uiui+1
) are linearly independent sets by Lemmas

2.5 and 2.7. Note that Uu1unu2 ∪ Mu1unu2 ∪ Mu1u2un ∪
Eu1unu2 ∪ Eu1u2un ⊆ Su1unu2∪(∪m−2

j=2 Z(j)
u1unu2). Thus,

Uu1unu2 ∪ Mu1unu2 ∪ Mu1u2un
∪ Eu1unu2 ∪ Eu1u2un

is
linearly independent by Lemma 2.5. By same arguments
as in the proof of Lemmas 2.3 and 2.6, we get that any
linear combination of cycles of ∪n−1

i=3 S∗
u1uiui+1

contains an
edge of the form (ui, vj)(ui+1, vk) or (u1, vj)(ui+1, vk) for
2 ≤ j, k ≤ m and 3 ≤ i ≤ n − 1. Note that non of the above
forms occurs in any cycle of Su1u2u3 ∪(∪m−2

j=2 Z(j)
u1u2u3). Thus,

(Su1u2u3 ∪ (∪m−2
j=2 Z(j)

u1u2u3)) ∪ (∪n−1
i=3 S∗

u1uiui+1
) is linearly

independent. Similarly, by using arguments as in Lemmas
2.3 and 2.6, we have that any linear combination of cycles of
Uu1unu2 ∪Mu1unu2 ∪Mu1u2un ∪Eu1unu2 ∪Eu1u2un contains
an edge of the following forms: (un, vi)(u2, vi), (un, vj+1)
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(u2, vj), (u2, vj+1)(un, vj), (u2, vk)(un, vk+j) and
(un, vk)(u2, vk+j) for 2 ≤ i ≤ m, 2 ≤ j ≤ m − 1
and 2 ≤ k ≤ m − j which does not occur in any cycle
of (Su1u2u3 ∪ (∪m−2

j=2 Z(j)
u1u2u3)) ∪ (∪n−1

i=3 S∗
u1uiui+1

). Thus,
B(K) is linearly independent. Now,

|Su1u2u3 | = |Slab| = |Ulab| + 3|Rlab| + 2|Mlba|
= (m − 1) + 3(m − 2) + 2(m − 2)
= 6m − 11, (2)

and

|Eu1unu2 | = |Elab|

=
m−2∑
j=2

|E(j)
lab |

=
m−2∑
j=2

(m − j − 1)

=
(m − 3)(m − 2)

2

=
m2 − 5m + 6

2
. (3)

Thus,

| ∪m−2
j=2 Z(j)

u1u2u3
| = 6 |Elab|

= 6(
m2 − 5m + 6

2
)

= 3m2 − 15m + 18, (4)

and

|S∗
u1uiui+1

| = |S∗
lab|

= |Slab| + | ∪m−2
j=2 Z∗(i)

lab | − (|Rlab| + 2 |Elab|)
= (3m2 − 9m + 7) −

((m − 2) + m2 − 5m + 6) (5)

= 2m2 − 5m + 3. (6)

But

|B(K)| = |Su1u2u3 | + | ∪m−2
j=2 Z(j)

u1u2u3
|

+| ∪m−2
j=3 S∗

u1uiui+1
| + |Uu1unu2 |

+2|Mu1unu2 | + 2|Eu1unu2 |.
Hence by equations (2)-(5),

|B(K)| = (6m − 11) + (3m2 − 15m + 18)

+
n−1∑
i=3

(2m2 − 5m + 3) +

(m − 1) + 2(m − 2) + 2(
m2 − 5m + 6

2
)

= 2(m − 1)2(n − 1) − n(m − 1) + 1
= dim(C(K)).

Therefore, B(K) is a cycle basis for K. �
Now, for each i = 2, 3, . . . , n consider the following sets

of cycles:

Nui =
{
N (j)

ui
= (u1, v1)(ui, v1)(ui, vj)(u1, v2)(u1, v1)|

2 ≤ j ≤ m} .

Also, set

T =
{
T (j) = (u1, v1)(u1, vj)(u2, v2)(u2, v1)(u1, v1) |

3 ≤ j ≤ m} .

Let

U (1) = ∪n
i=2U (1)

u1uiui+1
and N = ∪n

i=2Nui
.

Lemma 2.9. B(K)∪U (1) is a cycle basis of K∪L and so of
K ∪ L ∪ {(u1, v1)(u1, v2)}.
Proof. Note that U (1) is the set of all triangle bounded faces
of Wn�u1. Thus, U (1) is a cycles basis of L. Since B(K)
is a linearly independent set and E(B(K)) ∩ E(U (1)) = ∅,
B(K) ∪ U (1) is linearly independent. Now,

|B(K) ∪ U (1)| = |B(K)| + |U (1)|
= 2(m − 1)2(n − 1) − n(m − 1)

+1 + (n − 1) (7)

= 2(m − 1)2(n − 1) − n(m − 1)
+2(n − 1) − n + 2 (8)

= dim(K ∪ U (1)). (9)

Thus, B(K) ∪ U (1) is a cycle basis of K ∪ L. The second
part follows from noting that the addition of (u1, v1)(u1, v2)
to the subgraph K ∪N does not create any cycles. �
Remark 2.10. Note that the addition of any edge of F −
{(u1, v1)(u1, v2)} to the subgraph K∪L∪{(u1, v1)(u1, v2)}
creates at least one new cycle and the shortest cycle of
WnρSm contains the added edge is of length 4. Moreover, any
cycle contains (u1, v1)(u1, v2) must contain at least another
edge of F . �
Lemma 2.11. N ∪ T is linearly independent.
Proof. We use mathematical induction on m to show that
Nui = ∪m

j=2N (j)
ui is linearly independent. If m = 2, then Nui

consists only of one cycle N (2)
ui . Thus Nui is linearly indepen-

dent. Assume that m is grater than 2 and the result is true for
less than m. Note that Nui = (∪m−1

j=2 N (j)
ui )∪N (m)

ui . Since the

cycle N (m)
ui contains the edge (ui, v1)(ui, vm) which occurs in

no cycle of ∪m−1
j=2 N (j)

ui , Nui
is linearly independent for each

i. Now, E(Nui) ∩ E(Nuj ) = {(u1, v1)(u1, v2)} whenever
i �= j. Therefore, N is linearly independent. Similarly we
can show that T is linearly independent. Since E(N ) ∩E(T )
= {(u1, v1)(u2, v1), (u2, v1)(u2, v2)} which is an edge set of
a path, N ∪ T is linearly independent by Lemma 2.2. �
Theorem 4.12. B(WnρSm) = B(K) ∪ U (1) ∪ N ∪ T is a
minimal cycle basis of WnρSm.
Proof. By Lemmas 2.9 and 2.11 each of N ∪ T and
B(K) ∪ U (1) is linearly independent. Note that any linear
combination of cycles of N ∪ T must contains at least one
edge of ∪n

i=1(ui�Sm) which does not belong to any cycle of
B(K)∪U (1). Thus, B(WnρSm) is linearly independent. Note
that

|Nui | = (m − 1) and |T | = (m − 2), (10)

and,

|B(WnρSm)| = |B(K) ∪ U (1)| + |N | + |T |.
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Thus by (2), (14) and (15), we get

|B(WnρSm)| = 2(m − 1)2(n − 1) − n(m − 1) +
2(n − 1) − n + 2 +
(n − 1)(m − 1) + (m − 2)

= (n − 1)(2m2 − 4m + 3)
= dim C(WnρSm).

Hence, B(WnρSm) is a cycle basis of WnρSm. Now, we
show that B(WnρSm) is a minimum basis. Since any cycle
of B(K) ∪ U (1) is of length 3 and B(K) ∪ U (1) is a basis
for WnρSm − E(F), as a result |B(K) ∪ U (1)| is the size
of a maximum linearly independent set of WnρSm− E(F)
consisting of 3-cycles. But any cycle of WnρSm that contains
an edge of F must be of length at least 4. Therefore,
|B(K) ∪ U (1)| is the size of a maximum linearly independent
set of WnρSm consisting of 3-cycles. Now, since each cycle
of N ∪T is of length 4 and since the cycle space is a matroid,
as a result B(WnρSm) is a minimum cycle basis for WnρSm.
�

Corollary 3.13 l(WnρSm) = 8nm2 − 17mn − 4m2 + 8m +
5n − 13, and λ(WnρSm) = 4. �

III. CONCLUSION

The works in this paper present some important results of
the minimum cycle basis and cycle spaces of the wreath prod-
uct of graphs. Some applications in sciences and engineering
are indicated. In particular we have drawn attention to the
use of MCB in biochemistry, structural engineering, surface
reconstruction and public transportations (See [2], [3] and [8]).
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