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Abstract: Metabolomics is an analytical approach that involves profiling and comparing the metabo-
lites present in biological samples. This scoping review article offers an overview of current
metabolomics approaches and their utilization in evaluating metabolic changes in biological fluids
that occur in response to viral infections. Here, we provide an overview of metabolomics methods
including high-throughput analytical chemistry and multivariate data analysis to identify the specific
metabolites associated with viral infections. This review also focuses on data interpretation and
applications designed to improve our understanding of the pathogenesis of these viral diseases.

Keywords: metabolomics; NMR; LC-MS; viral infections; COVID-19; HIV; HCV; HBV; HCMV;
influenza

1. Introduction

Metabolomics, or the profiling of metabolites, is an omics type that aims to offer a
comprehensive approach to identify, quantify, and characterize metabolites from biological
systems. Metabolites usually refer to small molecules that are produced or modified by the
biological metabolic processes of anabolism and catabolism. Detecting and appropriately
analyzing metabolites can provide a functional readout of the cellular state when these
are evaluated collectively or specifically. Metabolites provide directly detectable signa-
tures of cellular biochemical activity, and are thus often less challenging to correlate with
phenotypes than genes, which have functions that are subject to variable expression and
epigenetic regulation, or proteins, which may also be regulated by complex chaperone
systems or be post-translationally modified [1].

Metabolomics can be used along with genomics, transcriptomics, proteomics, lipidomics,
and other omics methods to understand host−pathogen interactions at a molecular level [2].
Metabolomics is currently used in biomarker discovery as well as toxicology, personalized
medicine, and drug discovery [3]. Diseases can cause specific changes to the metabolic
profiles present in biological fluids and tissues before clinical symptoms manifest. Conse-
quently, metabolomics has been used in both the prognostication and prediction of clinical
outcome [4].

The study of viruses by metabolomics techniques is an excellent option. The study
of the impact of viruses on metabolism during in vitro replication or infection in animal
models or humans has produced original insights into these networks and introduced novel
targets for therapy and biomarker development. The identification of common metabolic

Metabolites 2023, 13, 948. https://doi.org/10.3390/metabo13080948 https://www.mdpi.com/journal/metabolites

https://doi.org/10.3390/metabo13080948
https://doi.org/10.3390/metabo13080948
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/metabolites
https://www.mdpi.com
https://orcid.org/0000-0002-4361-506X
https://orcid.org/0000-0001-7592-2788
https://doi.org/10.3390/metabo13080948
https://www.mdpi.com/journal/metabolites
https://www.mdpi.com/article/10.3390/metabo13080948?type=check_update&version=1


Metabolites 2023, 13, 948 2 of 16

pathways utilized by viruses can reveal potential targets for broad-spectrum antiviral and
vaccine strategies [5].

In addition to their applications in infectious disease diagnostics, metabolomics has
been successfully been used for non-communicable diseases; for example, to identify inborn
metabolic errors in newborns. The screening of newborn samples with mass spectrometry
(MS) has become widely accepted [6]. However, relatively few metabolic biomarkers are
currently being evaluated in large-scale clinical trials. A set of reliable predictive biomarkers
would also be very helpful for the development of translational medicine initiatives related
to drug discovery. In drug discovery and development, metabolomics can enable the iden-
tification of predictive biomarkers in vitro and in vivo, thus decreasing the risk in the drug
approval process and facilitating clinical trial design [7]. Cancer has been an area of particu-
larly intensive biomarker research. The use of liquid chromatography−mass spectrometry
(LC-MS) and gas chromatography–mass spectrometry (GC-MS) to run metabolomics pro-
filing of prostate cancer patient samples indicated several metabolic pathways that are
altered, particularly including those supporting cell growth and proliferation, such as
glycolysis, the tricarboxylic acid cycle, transcription and translation, and purine and pyrim-
idine metabolism [8]. Despite the extensive literature available for understanding the many
aspects of viral pathogenesis and disease, the consequences of viral infections and the
utility of metabolomics for the management of viral diseases remain highly challenging
and generally lacking enough literature documentation to facilitate systematic reviews and
meta-analyses [9–11]. In this qualitative scoping review, we describe the metabolomics
approaches that are currently in both development and practical use that will facilitate
the identification of common metabolic pathways in viral pathogenesis. We compare the
clinical design, technical aspects, and statistical analyses of the published studies, found in
PubMed and published up until 2023, with the purpose of identifying the most relevant
biomarkers reported to date in viral pathogenesis by using metabolomics.

2. Metabolomics Analysis Workflow

A standard metabolomics analysis involves appropriate sample preparation, metabo-
lite detection, data analysis, and interpretation. These methods have been widely reviewed
previously and will be only briefly described below.

2.1. Biofluids Used in Metabolomics and Sample Preparation

A metabolomics workflow begins with the extraction and isolation of metabolites
from biological samples. Previous reports have detailed several approaches for sample
preparation involving homogenization, protein precipitation of samples, and comprehen-
sive extraction methods [12–14]. A wide variety of biological matrices can be used in
metabolomics studies, such as easily accessible biofluids (including plasma, whole blood,
serum, urine, and saliva) and breath, as well as feces, organs, tissues, and cerebrospinal fluid
(CSF), thus supporting their widespread use as diagnostic tools in clinical practice [15,16].
However, CSF is not suitable for large-scale screening, owing to its invasiveness, risk, and
expense; thus, serum, plasma, and urine biomarkers are typically preferred [17].

2.2. Metabolomics Analytical Tools

Several technologies have been used to run metabolomics profiling in biological
samples. Most of the metabolomics data produced to date have been generated using two
main analytical techniques: nuclear magnetic resonance (NMR) and mass spectrometry
(MS) [4]. Meanwhile these tools and the methods of using them are continually being
improved, as are the analysis techniques for data interpretation.

NMR spectroscopy uses the properties of certain magnetic nuclei to measure the num-
bers and types of atoms in a molecule. For example, 1 H (“proton”) NMR spectroscopy can
detect soluble hydrogen-containing molecules with a molecular weight of approximately
25 kDa or less, from proteins to small molecules. The resultant NMR data can also be multi-
dimensional when homonuclear or heteronuclear experiments are operated, allowing for
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coupling with other 1 H, 13 C, and 15 N, and more magnetic nuclei. NMR spectra are
subjected to pattern recognition analyses, in which complex multivariate and potentially
overlapping data are simplified into two or three dimensions that can be readily understood
and evaluated [18]. Clean or deconvoluted NMR spectra can be searched against available
public, private, and/or proprietary databases for tentative metabolite identification.

MS is a technique that is used to measure and distinguish molecules on the basis of
their molecular weight by the proxy of mass/charge (m/z) ratio of ionized species. This
method requires three components: an ion source to generate ionized species, a mass
analyzer, and a detector. Various types of each of these three components are suitable for
different experiments. One MS analysis that can be performed with modern quadrupole
instrumentation is tandem mass spectrometry (MS/MS), which is highly robust and sensi-
tive, but has a lower mass resolution than other methods [19]. In contrast, a quadrupole
linear ion trap (Q-TRAP)-MS provides fragmentations with a higher sensitivity and mass
resolution than traditional quadrupoles, and is a more costly but generally superior form
of tandem mass spectrometry [20]. The most common high-resolution MS is a hybrid
quadrupole time of flight (QTOF)-MS, which has the advantage of fast simultaneous anal-
yses of many compounds, as well as a high mass accuracy at the tradeoff of instrument
expense and extremely large data sets [21]. For orbitrap-MS, the mass resolution, mass
accuracy, and dynamic range are all high, the limit of detection is low, but the capital cost is
accordingly expensive [22].

MS analysis is usually preceded by the chromatographic separation of molecules using
liquid chromatography (LC) or gas chromatography (GC), depending on their physical
properties. Different ionization methods will be operated in-line between the chromatogra-
phy system and MS, such as electrospray ionization (ESI), atmosphere pressure chemical
ionization (APCI), or atmospheric pressure photoionization (APPI) for LC-MS. LC-MS
provides high metabolome coverage, and can be operated in normal phase LC for detecting
polar metabolites and reverse-phase LC for detecting high hydrophobicity or relatively
non-polar molecules. GC-MS, despite having somewhat lower coverage than LC-MS, is
ideal for volatile compounds [23]. GC-MS typically offers a significantly superior chro-
matographic resolution of metabolites, and is most frequently operated using electronic
ionization or “electronic impact ionization” (EI) although other ionization methods are
available and used less often.

MS and NMR are each useful and complementary methods for conducting metabolomics
studies, which must be selected appropriately based on the properties of the metabolites to
be studied, the type of sample being evaluated, and the advantages and disadvantages of
each analytical technique (Table 1) [24–26].

Table 1. Advantages and disadvantages of individual approaches.

Variable NMR MS

Sample preparation No sample preparation or sample
extraction Extraction, desalting, filtration

Number of detectable metabolites Tens of metabolites from a single
spectrum collected at or above 600 MHz

Can detect hundreds of metabolites from a
single chromatogram (based on whether

GC-MS or LC-MS is used)

Sensitivity
Lower than MS

(nanomolar);
lack of sensitivity

Higher than NMR
(picomolar)

Quantification No standard is required; linear response
Standard required (isotope-labeled

standard); matrix and
ionization-dependent response

Repeatability/Reproducibility Both techniques are highly precise and reproducible
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Table 1. Cont.

Variable NMR MS

Instrument Cost More expensive option and takes up
more space than MS Cheaper and occupies less space than NMR

Specific advantages Non-destructive detection, good
replication, and structure information

Sensitivity, a high number of detectable
metabolites

Specific disadvantages Low sensitivity and peak overlap Ion depression effect, no structure
information, and destructive detection

2.3. Metabolomics Approaches and Their Application

In metabolomics, two different approaches are used with different objectives: targeted
and untargeted metabolomics. Both approaches can be used to identify biomarkers; how-
ever, several challenges remain before metabolomics can be widely applied into clinical
research [27]. In general, targeted approaches analyze a relatively small and specific num-
ber of metabolites, typically as many as 20 metabolites at a time. These metabolites must
have been chemically characterized before the start of data acquisition, and to select them
would also typically require prior biochemical annotation with the established biological
importance. However, targeted metabolomics approaches have significantly better selec-
tivity and sensitivity than untargeted methods can offer [28]. This approach can be useful
for pharmacokinetic (PK) studies of drug metabolism and for measuring the influence of
therapeutics or genetic modifications on specific enzymes or proteins of interest that can
be determined before the experimental design [29]. In contrast, the untargeted approach
can more comprehensively analyze metabolites and reveal potentially unexpected changes,
and is often used for conducting comparative metabolomics. Hundreds to thousands of
metabolites from each sample can typically be measured in a single evaluation, although
their identities may be unknown before the study, and even after. Due to the large volume
and complexity of metabolomics data, high-performance bioinformatics tools are typically
required for post-processing and analysis [30].

2.4. Statistical Analysis and Data Visualization

Metabolomics experiments lead to the generation of large and often complex data
sets, which can include hundreds of metabolites or more per sample. The comprehensive
evaluation of these outputs requires specialized data analysis that includes aspects of
cheminformatics, bioinformatics, and statistics.

A data normalization step for raw data is generally required if the experimental design
is to accurately quantify the features detected in the metabolomics analysis. Normaliza-
tion can minimize undesirable systematic biases and background signals, thus yielding a
modified data set that better highlights the relevant metabolite differences [31].

Differential analysis statistical methods are frequently used in untargeted metabolomics
for biomarker discovery. Each feature or metabolite is considered to be a variable, and thus
univariate and multivariate statistical tests can be used. Initial interrogation of this type
of data typically is achieved using principal component analysis (PCA) for an unsuper-
vised evaluation. Data visualization of PCA outputs is performed to identify outliers and
common sample clusters. The differences in metabolite abundance can be presented, for
example fold-change differences between samples and controls. The statistical significance
of the differences is then measured by analysis of variance (ANOVA) and t-tests [32].

Both unsupervised and supervised multivariate tests can be performed. Supervised
analyses, such as partial least squares regression discriminant analysis (PLS-DA) and
orthogonal PLS-DA (OPLS-DA), can be used to generate models with groups assigned a
priori. These types of models are usually used to classify the most important variables that
can be used to separate predefined sample groups or can connect unclassified materials
to samples with known class distributions (e.g., standards) for the purpose of making



Metabolites 2023, 13, 948 5 of 16

hypothetical or actual class assignments [33,34]. A summary of the metabolomics analysis
workflow showed Figure 1.
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3. Metabolomics Challenges

Metabolome complexity poses a major challenge in metabolomics studies. The organ-
ismal metabolome contains a wide variety of chemically diverse compounds such as lipids,
organic acids, carbohydrates, amino acids, nucleotides, and steroids. The vast number
of reported metabolites represent 52 different classes of compounds according to some
metrics, resulting from the incorporation of a wide range of atoms, functional groups, and
chemical structural moieties. In comparison, the building blocks of genes and proteins are
relatively little. Genes comprise combinations of only four basic nucleotides, and proteins
comprise combinations of 20 amino acids, and yet the order and spatial arrangement of
these yield a huge number of identified genes and proteins with more left to be discovered.

The huge variability present in chemical structures results in a collection of analytes
with markedly different physicochemical properties, such as polarity, solubility, and volatil-
ity. Furthermore, metabolites in the human body can be hard to evaluate because they
are present in a broad and dynamic concentration range (picomolar to millimolar). A
third hurdle is that not every metabolite is present in each tissue or biofluid, and they are
certainly not expected to be present at the same concentration in different sample types.
Finally, the organismal metabolome may be expected to contain exogenous metabolites, or
xenobiotics, from food, medications, to environmental exposure, which may not be uniform
among individuals. Therefore, performing comprehensive metabolomics is challenging.
No single metabolomics method can measure the entire metabolome accurately [35].

4. Metabolomics Potential to Characterize Viral Infections

Wide varieties of disease-causing or pathogenic viruses infect humans, resulting in
different clinical outcomes, ranging from mild and self-limiting to deadly and rampant [36].
Viral families such as Filoviridae, Arenaviridae, Bunyaviridae, Paramyxoviridae, Coro-
naviridae, Orthomyxoviridae, Flaviviridae, Togaviridae, and Hepeviridae are known to
infect both humans and animals [37]. There have been many catastrophic viral disease
pandemics caused by newly emerging and/or re-emerging viral pathogens, and these
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have resulted in millions of human deaths. For example, the “Spanish flu” influenza
pandemic of 1918 was the most lethal pandemic in recent history, as over 50 million people
died from the disease during the period of a few years. The subsequent emergence of
additional influenza flu pandemics, such as the “Asian flu” and the “Hong Kong flu” in
1957 and 1968, respectively, resulted in about three million deaths [38]. Between 2002
and 2003, a novel severe acute respiratory syndrome coronavirus (SARS-CoV) disease
emerged and infected 8098 people, leading to 774 deaths, according to the World Health
Organization [39]. Although relatively few people died from this SARS outbreak, the
mortality rate by percentage was quite high, and an international response was initiated to
contain the spread. In 2009, a new strain of influenza A virus (IAV) H1N1 (H1N1pdm09)
disease emerged, which killed an estimated 151,700–575,400 people worldwide during
just the first year of circulation [40]. In 2013, a new strain of avian IAV (H7N9), known as
“Bird Flu”, and Middle East respiratory syndrome (MERS)-CoV were both discovered [37].
Some viruses re-emerge after a period of time without notable outbreaks, and such was
the case for Ebola virus (EBOV) in 2014 [41]. In addition, the resurgence of Zika virus
(ZIKV) occurred between 2015 and 2016 [42]. The World Health Organization in 2015
issued new guidance for best practices in viral disease nomenclature to lessen secondary
burdens from the incredible human health impact of these viral disease pandemics that
had been observed because “certain disease names provoke a backlash against members of
particular religious or ethnic communities, create unjustified barriers to travel, commerce
and trade, and trigger needless slaughtering of food animals” [43]. From 2019 through
to the present day, the ongoing corona virus disease 2019 (COVID-19) pandemic, caused
by SARS-CoV-2, has ravaged many communities worldwide and infections are still rising
globally. In the same time period, the re-emergence of EBOV occurred in parts of Africa
and the Orthopoxvirus disease “monkeypox” (MPOX) pandemic has affected upwards
of 100,000 people globally with over 98% of confirmed cases identified “in locations that
have not historically reported mpox” according to the US CDC, such as the regions of the
Americas and Europe.

The application of metabolomics to characterize infectious diseases is an emerging area
of research and practice. Infectious diseases are typically diagnosed as follows: (1) directly
via microscopy, culture, or viral diagnostic tests such as the antigen test or the nucleic
acid amplification test (NAAT), or (2) through indirect methods such as antibody tests [44].
Other laboratory parameters are also used in the diagnosis of infectious diseases, such as
blood cell count, erythrocyte sedimentation rate (ESR), detection of neutrophils at the site of
infection, and levels of non-specific inflammatory biomarkers (e.g., C-reactive protein (CRP)
and procalcitonin (PCT)). As a general principle, metabolomics approaches can be used to
detect pathogens directly or via target specific host response biomarkers to identify signs
of infection/disease progression [44]. A variety of viral infections have been studied using
metabolomics by employing the earlier discussed methodologies such as NMR, GC-MS, or
LC-MS, and using both targeted and untargeted approaches [45]. Metabolomics analyses
can also be used to investigate and understand the pathogen–host interaction in a defined
clinical perspective. In addition, specific disease states can have characteristic biomarker
signatures that can be detected by metabolomics. As a result, validated biomarkers can be
used for disease diagnosis, prognosis, and staging, as well as for the assessment of new
preclinical and clinical therapeutic agents [25]. A growing number of published studies
have outlined the use of metabolomics approaches to investigate viral infections. The
following subsections of this scoping review focus on the viral infections that have been
the subject of these metabolomics studies and are highly relevant to human health.

4.1. Metabolomics Study of Respiratory Pathogens

Viral respiratory infections can cause mild symptoms or severe morbidity and death,
and potentially spread rapidly due to exposure while breathing. Some of these viruses
circulate seasonally and result in recurring epidemics. The recent emergence of SARS-
CoV-2 exemplifies the high infection rates that can be demonstrated by acute respiratory
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viruses [46]. Patients with severe respiratory viral infections are primarily hospitalized
because they develop pulmonary inflammatory disorders, which often lead to lung tissue
damage, edema, and further exacerbated inflammation [47]. The most common acute
respiratory viruses are adenovirus (AdV), CoV, influenza virus (IV), parainfluenza virus
(PIV), respiratory syncytial virus (RSV), and rhinovirus (RV). These viruses are all linked to
the development of pneumonia, which causes a substantial burden of illness [48].

4.1.1. Coronaviridae

CoVs belong to the order Nidovirales, family Coronoviridae, and subfamily Ortho-
coronaviridae. All known CoVs are of zoonotic origin and cause respiratory and intestinal
infections in humans and other animals [49]. Three major CoV outbreaks have been re-
ported since 2002, including SARS-CoV, MERS-CoV, and most recently SARS-CoV-2 [50].
COVID-19 is a highly contagious respiratory illness caused by SARS-CoV-2 [51]. Accord-
ing to the World Health Organization, over 762 million confirmed cases and 6.8 million
confirmed deaths have been attributed to COVID-19 worldwide as of mid-April 2023. Mean-
while, many estimate significant undercounting due to unconfirmed or unreported cases.
In the absence of effective and available treatments for the massive patient population,
the ability to make a rapid and accurate diagnosis is crucial. Metabolomics is an excellent
tool to use for the diagnosis, prognosis, and drug development to combat COVID-19. The
advantages of this approach include: (1) the ability to generate vast amounts of comparable
data; and (2) the rapid screening of molecules to identify biomarkers for the diagnosis and
prediction of disease severity [25,44,52].

To date, several studies have used a metabolomics approach to determine factors
such as disease severity, intensive care unit (ICU) prioritization, and various associated
complications in patients with COVID-19. One of these studies showed that metabolic
changes could be used to predict recovery patterns in critically ill SARS-CoV-2-infected
patients [53]. In this study, a targeted metabolomics approach was used to analyze 39 serum
samples taken from patients with COVID-19 within 48 h of hospital admission. The patients
were subjected to invasive mechanical ventilation (IMV) in ICUs. Metabolites detected
in the patients’ serum one week later, including kynurenine, 3-methylhistidine, ornithine,
p-cresol sulfate, C24, and sphingomyelin, were determined to be accurate predictors of
their IMV duration [53]. Despite several other metabolomics studies of COVID-19 [54–56],
Elrayess et al. were the first to use metabolomics to show that patients with type 2 di-
abetes mellitus and hypertension were more likely to develop severe COVID-19 than
patients without these conditions [57]. Targeted metabolomics using serum samples from
patients with different COVID-19 severities, diabetes status, and hypertension status was
performed using LC-MS/MS, followed by multivariate and univariate data analysis mod-
els [57]. The results showed that patients with diabetes and hypertension had more severe
COVID-19 and lower levels of specific triacylglycerols, which are essential for regulating
the inflammation response [57]. In a previous study, the untargeted NMR analysis of
plasma-EDTA from 30 SARS-CoV-2-infected patients was used to identify the distinct
metabolomics and lipidomics signature of COVID-19 [54]. The same approach was also
used to assess tocilizumab treatment efficacy in a subset of patients with COVID-19, which
resulted in partial reversion of the metabolic alterations induced by SARS-CoV-2 infec-
tion [54]. Thus, NMR-based metabolomics and lipidomics profiling have been demon-
strated to provide novel insights into the pathophysiology of COVID-19 and the associated
treatment outcomes.

In conclusion, there has been a significant amount of research on the use of metabolomics
in studying coronavirus infections. More studies are needed to investigate the metabolic
changes that occur during various stages of COVID-19 disease progression and how these
changes relate to clinical outcomes.



Metabolites 2023, 13, 948 8 of 16

4.1.2. Orthomyxoviridae

The Orthomyxoviridae family of viruses includes four genera (Alphainfluenzavirus,
Betainfluenzavirus, Gammainfluenzavirus, and Deltainfluenzavirus) containing IVs type A,
B, C, and D, respectively, which are characterized by a segmented single-stranded negative-
sense RNA genome. Specifically, influenza A virus harbors eight fragments encoding at
least 11 proteins [58,59]. There have been several well-known pandemics of influenza IAV
disease: the Spanish influenza (H1N1) in 1918, the Asian influenza (H2N2) in 1957, the
Hong Kong influenza (H3N2) in 1968, avian influenza (HPAI) A(H5N1) in 2003, pandemic
swine influenza H1N1 (pH1N1), and the Mexican influenza (H7N9) in 2018 [60,61]. A
global epidemic of influenza causes a substantial amount of morbidity and mortality, in
spite of the fact that several viral vaccines and inhibitors are available. This is because
IVs have a high mutation rate and are constantly evolving, resulting in millions of new
infections per year [62]. Metabolomics and lipidomics approaches have been used to
understand the replication and pathogenesis mechanisms of IVs. In a recent study, non-
targeted metabolic profiling was performed using LC-MS in combination with tandem MS,
followed by multivariate analysis methods. Peripheral blood mononuclear cells (PBMCs)
were spinoculated with Influenza IVs A produced using the Madin-Darby canine kidney
cell culture system. The infected PBMCs underwent changes in their lipid, polyamine,
catecholamine, and vitamin biosynthesis pathways [63]. The metabolism of immune cells
was thus determined to explain the inflammation caused by IVs in that study. Niessen et al.
reported using LC-MS with tandem MS, operated in selected-reaction monitoring (SRM)
mode, to study small-molecule antiviral agents in the context of IV infections [60]. That
study demonstrated that LC-MS-based pharmacokinetics studies of IVs treatment could be
useful for therapeutic drug monitoring.

In conclusion, more comprehensive studies are needed to identify biomarkers and to
better understand the metabolic pathways involved in influenza infection.

4.2. Metabolomics in Chronic Viral Infections

The term “chronic” is used to describe viral infections in which the pathogens cannot
be cleared from the body. In these cases, the viruses persist in the infected individual,
usually in association with specific cells or cell types. Latent, chronic, and slow infections
are all types of persistent virus–host interactions with features that partially overlap one
another [64]. One example of this type of infection is viral hepatitis, which is a significant
public health challenge affecting millions of people in the world, with significant morbidity
and mortality. Despite being taxonomically unrelated, the hepatitis A-E viruses are respon-
sible for most of the viral hepatitis in the world. Among these, hepatitis B virus (HBV),
hepatitis C virus (HCV), hepatitis D virus (HDV), and sometimes hepatitis E virus (HEV)
infections may result in chronic disease. Several of the early metabolomics studies focused
on chronic infections of HBV, HCV, human immunodeficiency virus (HIV), and human
cytomegalovirus (HCMV) infections were performed using important methodologies that
are summarized in this review [64–67].

4.2.1. Human Immunodeficiency Virus (HIV)

HIV is a retrovirus that attacks and destroys the human immune cells. HIV specifically
destroys white blood cells that express the CD4 cell surface antigen (i.e., CD4+ cells). This
results in the loss of immunity, which leads to opportunistic infections, including tubercu-
losis, fungal infections, and severe bacterial infections, as well as some cancers [68]. The
World Health Organization (WHO) estimates that there are approximately 38.4 million peo-
ple living with HIV, with 2.7 million new infections having been reported in 2021 alone [69].
Despite the clear and inarguable success of combination antiretroviral therapy (cART), HIV
remains an enormous public health problem throughout the world. Although cART and
the availability of clinical testing have significantly increased the life expectancy of people
living with HIV, medical treatment presents challenges at the individual level and existing
clinical markers of disease progression remain unreliable [70]. Thus, it may be helpful to
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use metabolomics for identifying novel biological markers. A recent study [71] generated
metabolic profiles for various underlying non-communicable diseases (NCDs) exhibited by
individuals undergoing treatment for HIV infection. Untargeted metabolomics analysis was
performed on samples collected from 87 HIV-negative (–) healthy (normal) normal controls
(NCs), 87 HIV-positive (+) subjects with no known NCDs NCs, and 148 HIV+ subjects each
with only one known with only one type of NCDs. Other diagnoses among individuals in
these cohorts were included subclinical carotid atherosclerosis, neurological impairment,
liver fibrosis, and neurological or renal impairment. Among the results of this study, all
of the HIV+ participants exhibited viral suppression. Viruses and pathogenic bacteria can
spread through the respiratory system with potentially life-threatening consequences.

Tuberculosis (TB) is caused by infection with the bacterial respiratory pathogen, My-
cobacterium tuberculosis, and people living with HIV/AIDS (acquired immunodeficiency
syndrome) are at high risk of contracting TB. TB remains a global burden and pandemic
disease, and TB/HIV co-infections are becoming more prevalent as the number of new HIV
cases grows throughout the world. While the nature of immunological deterioration asso-
ciated with HIV infection has been well-established, the impact of these impairments on
specific metabolomics profiles remains poorly understood. To address this information gap,
Liebenberg et al. performed a study that used a metabolomics approach and compared the
metabolites of one co-infected patient cohort with another. This research identified several
metabolites that were differentially regulated specifically within immune cells, and the
authors of the study concluded that the pathogenesis of HIV infection shared some features
with TB infection, but was different in several other critical aspects [72]. Similarly, Hewer
et al. [73] used a series of NMR-based metabolic profiles to distinguish serum samples
from HIV-1-positive patients (both those who were and were not undergoing antiretroviral
therapy) from those of HIV-1-negative controls. Among the findings of this study, the
authors identified significant differences in lipid, glucose, and amino acid concentrations
based on the NMR spectroscopic regions. These results were further supported by the study
of Philippeos et al., which performed NMR metabolomics coupled with a logistic regression
that revealed the same significant differences between the spectra of HIV-infected and
HIV-uninfected individuals [74].

4.2.2. Hepatitis B Virus (HBV)

Hepatitis B virus (HBV) is a partial strand DNA virus and a member of the Hepad-
naviridae family. HBV infection can be either latent or chronic, depending on the nature of
the host cell. Chronic HBV infection can lead to liver cirrhosis and ultimately hepatocellular
carcinoma (HCC). In 2021, the WHO estimated that 12–25% of individuals diagnosed
with chronic HBV infection will require treatment, depending on the setting and specific
eligibility criteria [75]. Although an effective vaccine is available, HBV remains a major
global health issue associated with high rates of morbidity and mortality. To date, there
are still no drug regimens capable of curing HBV infection. The identification of typical
disease-associated metabolomics signatures together with a patient’s entire metabolic phe-
notype may help to improve our current understanding of this disease and to identify the
serum biomarkers that distinguish hepatocellular carcinoma (HCC) at an early stage from
chronic hepatitis B (CHB) and liver cirrhosis [76,77].

Pan et al. used a LC-MS approach with both positive-ion and negative-ion modes
to identify a series of serum biomarkers that distinguished early-stage HCC from CHB
and liver cirrhosis [78]. In this study, progression from CHB to liver cirrhosis to HCC was
accompanied by gradual decreases in serum levels of eicosapentaenoic acid, 5-hydroxy-
6E,8Z,11Z,14Z,17Z-eicosapentaenoic acid, and glycyrrhizic acid [78]. The authors also
identified metabolites that might contribute to a clinical diagnosis of HCC. Similarly, Yu
et al. used an untargeted metabolomics approach combined with multiple analyses (e.g.,
PCA, PLS-DA, volcano plots, and pathway analysis) to evaluate the metabolic data analysis
and to detect the metabolic effects of HBV replication on liver function and the progression
of hepatic disease (hepatitis, cirrhosis, and liver cancer) [79]. Samples were collected from
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199 patients with hepatic disease, including those with active and inactive HBV. The data
analysis revealed strong differences in the extent of amino acid depletion and phosphatidyl-
choline biosynthesis that contributes to HBV replication [79]. The patient model featured in
this study will require further validation by targeted metabolomics approaches designed to
provide new insight into HBV pathogenesis and treatment [79]. Finally, Nguyen et al. ana-
lyzed metabolomics data collected at different disease stages from patients diagnosed with
CHB. A combined analysis of the gut microbiome and metabolomics data revealed that am-
monia detoxification, glutamine, and glutamate metabolism, and methionine metabolism
pathways, as well as branched-chain amino acid imbalance and disorders of the tricar-
boxylic acid cycle were among the primary factors influencing the rate of CHB progression
in patients with chronic disease [80].

4.2.3. Hepatitis C Virus (HCV)

Hepatitis C virus (HCV) is a single-stranded RNA virus and a member of the Flaviviri-
dae family. Similar to HBV, HCV infections can be acute or chronic. Furthermore, HCV
is a major cause of advanced liver disease and can induce hepatocellular carcinoma and
its many extrahepatic manifestations. Based on current WHO estimates, about 58 million
people worldwide are infected with HCV, and approximately 1.5 million new infections
emerge every year. Most new HCV infections appear to be the result of unsafe healthcare
procedures and intravenous drug use [81]. While most genotypes of HCV respond effec-
tively to direct-acting antivirals, some genotypes are less susceptible to these treatments [82].
Similar to the situation with other viruses, there are specific geographical differences in
the distribution of HCV genotypes and the associated susceptibility of the infection to
available drug treatment [81]. Hence, new antiviral strategies based on the metabolic
characterization of HCV disease remain a primary goal. As one example, Shanmuganathan
et al. compared the results of metabolomics profiling obtained via multisegment injection-
capillary electrophoresis-MS with that resulting from NMR-based methods [83]. According
to their findings, both techniques can quantify the serum metabolites both quickly and
reliably for large-scale metabolomics studies with a high degree of consistency [83]. Thus,
metabolomics can provide insight into HCV infection and its associated sequelae. Similarly,
Fitian et al. performed a comprehensive metabolomics analysis using integrated and non-
targeted metabolomics methodology using both GC/MS and UPLC-MS/MS to identify
metabolic derangements in patients with HCV-associated HCC and cirrhosis [84]. Based
on their findings, abnormal dicarboxylic acid metabolism, elevated bile acid metabolism,
and elevated fibrinogen-cleaved peptides are all indicative of liver cirrhosis [84].

4.2.4. Human Cytomegalovirus (HCMV)

Cytomegalovirus is an endemic and ubiquitous double-stranded DNA virus belonging
to the Herpesviridae family. HCMV infections are typically detected in the salivary glands.
Many individuals with HCM=V infection present with few to no clinical symptoms. Thus,
this infection is diagnosed relatively rarely in the general population, despite the fact that
it can be life-threatening in immunocompromised individuals. While HCMV has been
studied and characterized extensively, we have only a minimal understanding of the effects
of HCMV infection on global metabolism [85–87].

As evidenced by the current literature, metabolomics can be a useful tool for the
study of HCMV-induced alterations in cell and tissue functions. One recent observational
study designed to improve our understanding of HCMV infection in infants featured
the use of 1 H NMR spectroscopy-based metabolomics approaches combined with mul-
tivariate statistical analysis [88]. The authors generated infant urine metabolic profiles to
determine whether this approach might be feasible and useful in clinical settings. The
1 H NMR spectra were analyzed with PLS-DA, which revealed metabolic changes asso-
ciated with HCMV infection that included increases in urine levels of alanine, betaine,
dimethylamine, and glycine compared with the controls [88]. Polyethylene glycol was
also detected and quantified in two samples, although this compound was determined to
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be most likely used as an intravenous vehicle for pharmacological treatment. In another
study, Li et al. analyzed the plasma samples from infants who developed HCMV-associated
liver damage using an untargeted GC/MS approach [89]. The findings were evaluated
using OPLS-DA to identify the differences between HCMV-associated infantile hepatitis
(HCMV-IH), infantile cholestatic hepatopathy (HCMV-ICH), extrahepatic biliary atresia
(HCMV-EBHA), and samples from normal controls [89]. The analysis identified numerous
potential biomarkers, including 29 differentially-detected metabolites associated with disor-
ders of amino acid, fatty acid, and energy metabolism [89]. Five metabolites (carbamic acid,
glutamate, L-aspartic acid, L-homoserine, and noradrenaline) were significantly overrep-
resented in samples from infants diagnosed with HCMV EHBA; this result suggests that
the pathogenesis and outcomes of this disease differ from those associated with HCMV
ICH [89]. Furthermore, these results provide a potential diagnostic tool that could be used
to distinguish ICH from EHBA, as well as to explore the pathogenesis of HCMV-induced
liver injury.

In conclusion, there is still a need for more comprehensive studies on the metabolic
changes that occur during the various stages of HIV, HBV, HCV, and HCMV infection and
how these changes are affected by comorbidities.

5. Metabolomics in Viral Neurological Infections

While most known viruses replicate in the peripheral tissue, some have developed
unique strategies that facilitate their entrance into the nervous system where they can cause
acute or persistent infections. Viral infections of the central nervous system (CNS, i.e., the
brain and spinal cord) can disrupt neurological homeostasis and promote dysfunction,
including serious, potentially life-threatening inflammation. In most cases, the CNS is
protected from the sequelae of acute viral infections by the effective responses of innate
and acquired immune cells, while others can elicit virus-induced immune-mediated CNS
pathogenesis. Infections can range from mild to severe, and some can result in death [90–92].
Several groups have reported that respiratory virus infections may result in neurological
symptoms. Examples of this phenomenon include human respiratory syncytial virus (RSV),
IAV, coronaviruses (CoVs), human metapneumovirus (hMPV), and enteroviruses [93,94].
Viral CNS infections with a particular impact on infants include measles, mumps, rubella,
and human parvovirus B19 [95,96]. Furthermore, rubella and parvovirus B19 can be
transferred vertically from mothers to fetuses and may result in congenital infections [95,96].

There has been very little exploration of metabolomics being applied to studying viral
infections of the CNS. Exploratory studies of the metabolomes of cerebrospinal fluid (CSF)
in one or more disease states may provide a valuable window for assessing the effects of
a given pathogen on metabolism within the CNS. These efforts might also lead to future
targeted diagnostics and therapeutics of viral CNS infections. Related to this, there are nu-
merous arboviruses and other viral causes of encephalomyelitis (EM) syndrome, including
rabies. EM is the term used to describe inflammation of the brain (encephalitis) and spinal
cord (myelitis) that frequently results in permanent disability. Clinicians face significant
challenges when confronted with the need for a rapid and accurate diagnosis of EM. In an
attempt to differentiate between these complex neurological infections, one recent study
featured the use of 1 H NMR spectroscopy to analyze CSF samples from 27 patients with
infections, which included Lyme disease, West Nile Virus meningoencephalitis, multiple
sclerosis, rabies, and Histoplasma meningitis [97]. The results from these samples were
compared with 25 controls. Cluster analyses permitted these samples to be distinguished
based on infection status and, to a moderate degree, by the pathogen, with both shared and
unique metabolic patterns observed in the various samples [97]. These preliminary results
suggest that CSF metabolomics may eventually be used as a rapid screening test to enhance
diagnostic accuracy and improve patient outcomes. Another study reported the first use
of 1 H NMR spectroscopy as a means to differentiate between bacterial meningitis (BM),
tuberculous meningitis (TBM), and viral meningitis (VM), the three most common forms
of meningitis in children [98]. CSF samples from children diagnosed with BM (n = 85),
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TBM (n = 47), and VM (n = 35), as well as controls (n = 24) who were between the ages
of 6 and 12 years of age, provided CSF samples over a 5-year period (1988–2003) [98].
Among the metabolites that were characterized, the authors reported differential detec-
tion of beta-hydroxybutyrate, lactate, alanine, acetate, acetone, acetoacetate, pyruvate,
glutamine, citrate, creatine/creatinine, glucose, and urea [98]. Formal analysis revealed
that the control group could be distinguished from the disease group with 96.4% accuracy;
in contrast, the diagnosis of tuberculous meningitis achieved only 77.2% accuracy [98].
After the exclusion of cyclopropane levels, bacterial meningitis was classified correctly
84.4% of the time, while viral meningitis was classified correctly 83.3% of the time [98].
Taken together, the results suggest that the use of a combination of NMR spectroscopic
data together with other routine clinical features may enhance the differential diagnosis of
meningitis in children.

Patients with severe respiratory virus infections have also developed clinically-significant
neurological manifestations. The most common respiratory viruses associated with these
sequelae include IAV, parainfluenza viruses, RSV, adenoviruses, CoVs, enteroviruses,
rhinoviruses, and hMPV. One recent study aimed to identify specific biomarkers of IAV-
associated encephalopathy in infected patients. To address this question, serum samples
were evaluated using capillary electrophoresis time-of-flight mass spectrometry (CE-TOF-
MS). The analysis of these results identified five metabolites as potential biomarkers for
IAV-associated encephalopathy and suggested that the tryptophan-kynurenine metabolic
pathway might contribute to disease pathology [99].

In conclusion, limited studies have been conducted on viral neurological infections
and metabolomics, and there is a need for more research in this area.

6. Conclusions and Future Perspectives

Despite the tremendous progress that has been made in recent decades, viral infections
and their sequelae remain among the most challenging and demanding problems in current
clinical practice. The COVID-19 era has shown that emerging viral infection can pose a seri-
ous health risk for the world, hence, there is an urgent need for improved viral metabolomic
techniques. Likewise, while we now have a greater understanding of many aspects of
viral pathogenesis and disease, many others have yet to be clarified. An improved under-
standing of the properties of viruses and their interactions with hosts will provide us with
the tools that we need for the effective management of viral diseases. The metabolomics
approaches described in this qualitative scoping review, it is important to acknowledge the
limitations associated with the study, that are currently in both development, and practical
use will facilitate the identification of common metabolic pathways used by viruses and
the development of broad-spectrum antivirals and vaccines. The results highlighted in this
qualitative scoping review suggest that metabolomics is a useful method for studying viral
diseases, with plenty of future promise. The confirmation of many preliminary findings
described in this review await future study. Summary of the main human metabolomics
studies on virus infections. (Table S1). Abbreviations list (Table S2).
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