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A B S T R A C T   

Modeling and optimization of various processes enable more efficient operations and better planning activities 
for new process developments. With recent advances in computing power, data driven models, such as Machine 
Learning (ML), are being extensively applied in many areas of chemical engineering topics. Compared to 
mechanistic models that often do not reflect the realities of field conditions and the high costs associated with 
them, these techniques are relatively easier to implement. Data-driven models generated via ML techniques can 
be regularly updated, thereby giving an accurate picture of the system. Due to these inherent benefits, such tools 
are increasingly gaining a lot of traction in process systems. Even though data-driven models have the potential 
to be used as a replacement for traditional optimization tools that can be implemented in various process in
dustries, it was found that applications of such models in process systems were quite limited to reactor modeling, 
molecular design, as well as safety, and relatability. The challenge still exists for data-driven modeling due to the 
lack of specialized tools tailored for macro systems and scale up. Most datasets were found to be derived from 
experimental studies which are limited in nature and only fit into microsystems. Hence, this paper provides a 
state of the art review on recent applications for data driven modeling research in process systems, and discusses 
the prominent challenges and future outlooks that were observed.   

Introduction 

Modeling, Control, and Optimization are essential components of 
any process industry, enabling stakeholders to incorporate changes for 
improving daily process operations. They also help industries achieve 
strategic objectives of financial savings and environmental and safety 
impact. Although the mathematical foundation has been in existence for 
quite some time, the past decade has provided a real boost in this field 
due to the vast advancement in computational methods combined with 
an ease of accessibility for such resources. A lot of recent work has 
focused on the application of data-driven models for accurately pre
dicting a variety of target variables. Due to the benefits achieved, these 
models are being adopted for predictive maintenance, as well as for 
increasing automation and efficiency in daily operations (Cohen, 2021). 
Compared to mechanistic modeling, machine learning has proved to 
offer significant advantages in terms of flexibility, cost of computing, 
and speed of execution. Such benefits along with self-learning abilities 
that can recognize common patterns in input data set provide a lot of 

opportunities in the area of real-time optimization, and the modeling of 
assets (Dobbelaere et al., 2021). 

Mechanistic models are generally very common to describe a given 
process or system. Such models are often dynamic and are developed 
based on descriptions of processes that exist within a given process or 
system. As such, they provide a structured mechanism that can generate 
predictions for process/system behavior and are often constructed using 
algebraic equations, ordinary differential equations (ODEs), and/or 
partial differential equations (PDEs). However, unlike mechanistic 
models that are developed based on a strong foundation in mathematical 
equations which are developed after detailed study, data driven models 
are black box models with individual components that interact with 
each other, without possessing any mathematical knowledge related to 
how a given system or process operates. Hence, they possess powerful 
automation features. It should be noted that automation often increases 
vulnerability to hacking and inappropriate data use. Hence, such tools 
may become especially risky in the process industry as the impact of any 
data misuse can be devastating. However, with tremendous 
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advancements being made in data security, a healthy balance can be 
achieved in process industries, whereby the benefits of using machine 
learning can outweigh the risks involved (Zhou et al., 2022). 

In recent years, data-driven Machine Learning tools have been 
extensively used in the area of chemical engineering, especially in Sys
tem Identification (Gao et al., 2022). Be it Model Predictive Control 
(MPC), Optimization, or Real Time Online models (RTO), such models 
were found to be applicable to an extensive range of applications (Pra
tap and Sardana, 2022). Machine Learning has changed the way data 
extraction and interpretation are performed, whereby traditional sta
tistical techniques are replaced by automated generic methods and al
gorithms. In recent literature, Fuentes-Cortés et al. (Fuentes-Cortés 
et al., 2022) provide a general overview of machine learning algorithms 
that are used in chemical engineering. Shi et al. (Shi et al., 2021) discuss 
several applications for Artificial intelligence in process systems engi
neering. Bogle (Bogle, 2017) discusses the technical challenges that are 
often encountered by process systems engineers in developing tools and 
techniques (involving flexibility and uncertainty, responsiveness, agil
ity, robustness, and security), as well as new modeling and mathematics 
paradigms. The paper aims to highlight the areas of the process industry 
which have witnessed enhanced usage of data-driven models. 
Rangel-Martinez et al. (Rangel-Martinez et al., 2021) provide a 
comprehensive overview on the latest advancements of ML applications 
within the manufacturing sectors, with particular emphasis onto appli
cations that have a significant influence on sustainability and the envi
ronment, specifically in the domains of renewable energies (such as 
solar, wind, hydropower, and biomass), smart grids, catalysis industry, 
and power storage and distribution. Guan et al. (Guan et al., 2022) re
view the latest developments in applying ML to solid heterogeneous 
catalysis, as well as present many of the notable achievements in this 
field. Additionally, Guan et al. (Guan et al., 2022) explore the limitations 
and challenges that ML faces when applied to catalysis. Additionally, we 
explore prospective avenues for effectively leveraging ML in the design 
of solid heterogeneous catalysts. Ifaei et al. (Ifaei et al., 2023) review the 
fundamental principles, significant applications, and existing challenges 
of machine learning in sustainable energies, as well as delves deeper into 
these topics, by providing more advanced insights and analyses specif
ically tailored for experts in the fields of artificial intelligence and sus
tainable energy. Wu et al. (Wu et al., 2019) reviews MPC systems for 
nonlinear processes, employing an ensemble of Recurrent Neural 
Network (RNN) models to forecast nonlinear dynamics. Wu et al. (Wu 
et al., 2019) also discusses the initial construction of RNN models, which 
are essentially trained using a dataset derived from extensive open-loop 
simulations conducted within the desired operating region of the pro
cess, so as to ensure that such models accurately capture the process 
dynamics, and exhibit minimal modeling errors. Stephanopoulos (Ste
phanopoulos, 1990) reviews the potential benefits of enhanced 
knowledge-representation schemes and advanced reasoning control 
strategies in various aspects of process development, design, planning, 
scheduling, monitoring, analysis, and control. Forootan et al. (Forootan 
et al., 2022) review the underexplored domain of deep learning algo
rithms that possess significant problem-solving capabilities. Specifically, 
it focuses on Deep Learning (DL) algorithms such as RNN, Artificial 
Neural Network with Fuzzy INference System (ANFIS), Resource Based 
Network (RBN), Deep Belief Network (DBN), Wavelength Neural 
Network (WNN), and others, which have received comparatively less 
attention in previous studies. Their paper leverages knowledge discov
ery from research databases to gain insights into the current state and 
future prospects of ML and DL applications in energy systems. 

ML plays a pivotal role in process systems engineering by enabling 
data-driven decision-making, enhanced process modeling, optimal 
operation, fault detection and diagnosis, control strategies, process 
optimization, and design. By leveraging ML techniques, PSE practi
tioners can achieve improved process performance, efficiency, safety, 
and sustainability. In effect, this paper tries to categorize the work done 
in the area of the process systems and present a brief highlight of notable 

achievements. In subsequent sections, we define the generic component 
of data-driven models and their applications in various fields. Various 
scientific papers published in this area and new areas that involve data- 
driven applications in the process systems have also been presented 
(Rattan et al., 2022). Moreover, an outlook on the observed challenges 
associated with the use of such models is also provided, while high
lighting some of the key findings pertaining to the use of such models in 
process systems research. 

Method of the literature search 

Effectively identifying appropriate literature studies from publicly 
accessible citation databases was a very important step. First off, all 
relevant keywords that describe the subject matter were identified. After 
conducting trial keyword searches in citation databases such as Scopus 
and Google Scholar, which were selected as the citation databases for 
this study. This was determined based on their ease of use, compre
hensive coverage, and quick citation update. 

The second step involved narrowing down the keyword search. 
Machine learning in chemical engineering produced a wide spectrum of 
results. This included research articles, opinion papers, databases, re
view articles, and general introductions. Each subfield of chemical en
gineering from catalysis to supply chain optimization produced work 
applying machine learning. The objective of this work is to get a review 
of process systems engineering applications. In order to encompass all 
pertinent literature, it was necessary to utilize a variety of distinct search 
terms. In the preliminary searches, using narrowly defined keywords 
such as "machine learning + process systems engineering" failed to yield 
the relevant literature. Therefore, a combination of search keywords was 
utilized. Moreover, a filtering criterion was introduced to find the state 
of the application of the art and avoid duplication and older applica
tions. Table 1 summarizes the literature criteria that was used for this 
review. 

The next section explains the basics of machine learning algorithms 
that were deployed. Section 4 shows an overview of the bibliographic 
analysis obtained from a generalized literature search. Section 5 then 
summarizes the results of a more classified search that was conducted 
based on the above-mentioned criteria. 

Technical background 

The ability of the computer to identify/predict the output using 
programmed algorithms that receive and perform analysis on input data 
are essential for any data-driven models (Kotu and Deshpande, 2019). 
Initially, and before the emergence of such techniques, data analysis 
mainly relied on trial and error predictions, and those are increasingly 
impractical especially when large, heterogeneous data sets are involved. 
As such, automated search algorithms provide a great alternative to trial 
and error predictions, which becomes particularly useful for large-scale 
data analysis (Subasi, 2020). This section presents different techniques 
of Machine Learning which are being applied in the field of PSE. Apart 
from four broad categorizations, it also discusses the major algorithms 

Table 1 
Filtering of literature.  

Criterion 
number 

Criterion Description 

1 English language articles 
2 Studies indexed in google scholar and Scopus databases. Exclude 

Google search. 
3 Peer-reviewed journal articles, editorials, proceedings and book 

chapters are considered, thesis and dissertations are out of scope. 
4 Peer-reviewed journal articles, editorials, proceedings and book 

chapters using machine learning algorithms in process systems 
applications of reactor modeling, safety, and molecular design are 
considered.  
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within them and their applications in tackling various kind of modeling 
problems. 

Before discussing the details of how those algorithms work, it is 
important to identify the basic components. Three main components 
that are critical in data-driven models are: (1) data, (2) representation, 
and (3) model. Such techniques can produce accurate results, due to 
their ability to generate fast and efficient algorithms and data-driven 
models for real-time data processing. As such, the input data sets are 
one of the crucial factors that are necessary for ensuring the success of 
output predictions. In other words, using the right data is critical to the 
success of any applied data-driven model, which in turn mainly consists 
of two different phases. Phase 1 involves the data training stage, 
whereas Phase 2 involves the prediction phase, as depicted in Fig. 1 
(Subasi, 2020). 

Data training consists of three different parts: (1) pre-processing, (2) 
learning, and (3) error analysis. First off, since it is always crucial to 
enhance the quality of the data used in machine learning, data pre- 
processing enables the extraction of meaningful data insights from the 
input data sets. Pre-processing may include activities such as the 
removal of duplicates, normalization, dimension reduction, and trans
formation, in addition to data extraction and selection. Following this, 
the data becomes more organized and structured for use in the learning 
stage (Cohen, 2021; Bonetto and Latzko, 2020). Depending on the na
ture of the data sets being used, different pre-processing activities can be 
applied, such as normalization, dimension reduction, etc. Following 
this, all pre-processed data are used to generate a trained model, using a 
certain learning technique. The “learning” technique used a key stage, 
since four different learning methods exist: (1) supervised, (2) unsu
pervised, (3) semi-supervised, and (4) reinforcement (Cohen, 2021; 
Subasi, 2020). Such different categories have been defined based on 
different system configurations, and will mainly affect how the data is 
being trained and subsequently how the trained algorithm will identify 
the mathematical model. A brief description of each learning method is 
provided below: 

Supervised learning 

This algorithm trains the machine by example. As indicated by its 
name, this technique has a supervisor. The supervisor refers to a virtual 
representation of the entity which enables the entity to analyze and 
present conclusions to the user. These conclusions can be in form of 
classification or regression. In classification, the algorithms help in 

placing any new value in pre-defined classes whereas regression pro
vides numerical predictions. In this technique, the program is trained on 
well-labeled historical data. This dataset is provided in the form of input 
and output and the algorithm then finds a correlation between the two 
sets. It identifies the pattern in data and makes predictions on a set of 
new data. These predictions contain errors depending on the quality of 
data and the kind of algorithm being used and are constantly updated by 
the user to increase the accuracy. 

Supervised learning can be used for solving two different classes of 
problems: (1) classification problems where the output variable is a 
category or a particular class such as classification of cancer vs non- 
cancer prognosis based on the input values of the model, and (2) 
regression problems which involve the prediction of real values for a 
given set of input e.g. prediction of home price based on input variables. 
Different supervised learning techniques include: Support Vector Ma
chine, Linear/Polynomial Regression, Logistic Regrression, K-Nearest 
Neighborhood, Decision Tree, Random Forest and the Naïve Bayes 
Classifier. 

Semi-supervised learning 

In semi-supervised learning, the data set consists of both labeled data 
and unlabeled data. Labeled data is essential information that has 
meaningful tags so that the algorithm can understand the data, whilst 
unlabeled data does not have this information. The class of algorithms 
uses a similar input-output model as supervised learning, but they 
analyze the hidden information in large amounts of unlabeled data to 
enhance the accuracy of the supervised learning model constructed with 
labeled data. 

Unsupervised learning 

Unsupervised Learning are used to identify patterns in a given 
dataset. This class of learning does not provide the algorithm with 
labeled data of the previously known dataset. The algorithm analyzes 
the features of the input data and endeavors to identify similarities 
among them. The dataset consists of N examples that are not labeled. 
The algorithm employs only these input vectors to construct a model 
capable of uncovering and extracting concealed patterns within the 
features. These algorithms classify and group the data points given to 
them without any assisting “supervisor” as was in the case of supervised 
learning. Here the algorithm will sort the dataset based on their 

Fig. 1. A general overview of data-driven algorithm execution.  
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similarities and dissimilarities even though it does not have information 
about the categories beforehand. The most common unsupervised 
learning problems are clustering, association, and dimensionality 
reduction. 

Clustering is the process of grouping unlabeled data based on their 
similarities or differences. This data mining technique is a handy tool for 
exploratory data analysis and provides insights into data that is not clear 
for an unlabeled dataset. Clustering algorithms are classified into four 
classes:  

• Exclusive: Groupings formed on the assumption that data points can 
exist only in one kind of group.  

• Overlapping: Allows data points to belong to multiple clusters.  
• Hierarchical: Method of clustering technique where a hierarchy of 

clusters is developed. It can be agglomerative or divisive.  
• Probabilistic: Probabilistic clustering helps in solving the density 

estimation of a dataset. Data points are grouped based on the like
lihood that they belong to a particular distribution. 

Clustering is beneficial in scenarios where the dataset does not have 
predefined class labels or when the nature of the data is not well un
derstood. It helps reveal hidden structures, discover inherent similarities 
or differences, and identify potential subgroups or clusters within the 
data. Clustering can be applied in various domains, including customer 
segmentation, document clustering, image segmentation, anomaly 
detection, and recommendation systems. 

By organizing unlabeled data points into clusters based on their 
similarities or differences, clustering enables exploratory data analysis, 
provides insights into unlabeled datasets, and serves as a foundation for 
further analysis and decision-making processes. 

Association a method for finding relationships between variables in a 
given dataset. E.g.: Analysis of market datasets to gain insights into the 
consumption habits of customers to develop better cross-selling strate
gies or recommendation engines. The key concept in association analysis 
is the notion of "itemsets" or sets of items that frequently co-occur 
together. The most common form of association analysis is known as 
"frequent itemset mining," which identifies sets of items that appear 
together frequently in the dataset. The Apriori algorithm is a popular 
method for finding frequent itemsets efficiently. 

The presence of high-dimensionality in process systems poses several 
modeling challenges. With a large number of variables, the available 
data points may be sparsely distributed across the feature space. This 
sparse sampling can lead to unreliable model estimation and poor 
generalization performance. Increased complexity is always a concern 
when dealing with high-dimensional data. Moreover, high-dimensional 
datasets often contain redundant or irrelevant features that do not 
contribute significantly to the underlying patterns or relationships. 
Including these features in the modeling process can lead to noise and 
overfitting, making it difficult to extract meaningful insights or build 
accurate models. The computational cost associated with modeling and 
analysis increases exponentially with the number of variables. High- 
dimensional datasets require substantial computational resources and 
time for training, optimization, and prediction tasks. Dimensionality 
reduction helps alleviate this burden by reducing the number of vari
ables and simplifying the modeling process. As such, dimensionality 
reduction is a method deployed to reduce the dimension of data without 
any loss of information. It helps in dealing with the cases of overfitting 
and visualization of data. It reduces the number of data inputs to a 
smaller size while preserving all the information contained in it. It is a 
critical step involved in all machine learning problems and is used in the 
preprocessing stage. Following are some of the dimensionality reduction 
techniques widely used:  

• Principal Component Analysis  
• Singular Value Decomposition  
• Auto-Encoders 

Details regarding the aforementioned dimensionality reduction 
techniques methods could be found in Velliangiri et al. (Velliangiri et al., 
2019). 

Reinforcement 

Reinforcement Learning enables in solving the class of problem 
referred to as Markov Decision Process. Markov Decision Process in
volves solving for sequence of decisions to be taken with an objective of 
maximizing the reward. This kind of problem is found in Real Time 
Optimization problems in PSE. Here the objective is to determine the 
optimal control moves so that the economic objective function can be 
maximized. It is a focused learning process, where an intelligent agent 
(computer program) interacts with the environment by moving one state 
of the system to another using various actions under different policies 
with a goal is to learn an optimal policy that selects the best action for a 
given state of the system. The algorithm tries to explore different options 
and possibilities, monitoring and evaluating each result to determine 
which one is optimal. The algorithm demonstrates dynamic interaction 
with its environment through the execution of actions designed for 
varying states of the environment. Subsequently, the algorithm adapts 
its behavior based on the feedback received, either positive or negative, 
after each action. It is a trial-and-error method that learns from past 
experiences and adapts its response to a given situation to achieve the 
best result. Reinforcement learning differs from other techniques in the 
following ways:  

• Does not require a data collection step as the algorithm learns from 
directly interacting with the environment.  

• Works in dynamic and uncertain environments. 

In fact, a very practical application to reinforcement learning was 
illustrated by Bangi and Kwon (Bangi and Kwon, 2020). Their work 
employed a reinforcement learning controller that does not rely on 
explicit models. The controller learns an optimal control policy by 
actively interacting with the process. The deep reinforcement learning 
(DRL) controller that was developed by Bangi and Kwon (Bangi and 
Kwon, 2020) was based on the Deep Deterministic Policy Gradient al
gorithm, which combines the Deep-Q-network with an actor-critic 
framework. To expedite the learning process, dimensionality reduction 
and transfer learning techniques were also employed. Bangi and Kwon 
(Bangi and Kwon, 2020) demonstrated that the controller successfully 
learns an optimal policy to achieve a uniform proppant concentration, 
overcoming the complexities inherent in the process. Furthermore, the 
controller ensures compliance with various inputs. 

Following the implementation of a suitable algorithm from above 
mentioned methods, the error analysis stage mainly measures how well 
the trained model predicts the output variables. Hence, an appropriate 
error analysis technique (e.g. overfitting, cross-validation, etc.) must be 
utilized to be able to predict the extent of error between the input data 
sets and the generated “trained model” predictions. Low error pre
dictions are key to ensuring a successfully predicted output in phase 2. 
Once the trained model is attained from stage 1, new data sets are used 
to test the trained model’s performance in the prediction phase (phase 
2). It is very important to note that the data used to test the model in the 
prediction stage should be different than the data used in Phase 1. 
Following this stage, the desired output can then be attained, as depicted 
in Fig. 1. 

According to Fig. 1, any data driven algorithm must first involve 
input data being fed into the algorithm. Input data can be obtained from 
various sources, such as sensors, databases, logs, or external data feeds. 
This data may include process measurements, operational parameters, 
environmental conditions, or any other information necessary for 
analysis or decision-making. Following this, and once the input data has 
been obtained, data training can then be carried out, which typically 
involves three different stages: (1) Pre-processing, (2) Learning and (3) 
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Error Analysis (Bonetto and Latzko, 2020). The data preprocessing stage 
involves collected data being preprocessed, so as to ensure its quality, 
integrity, and compatibility with the algorithms or models. This step 
may involve cleaning the data, handling missing values, normalizing or 
scaling variables, and transforming the data if required (Severson, 
2018). Following this, the learning stage involves the extraction of 
relevant features or variables are extracted from the collected data. 
Feature selection techniques may be applied to identify the most infor
mative and discriminative features that have the most significant impact 
on the target variable or desired outcome. Generally speaking, there are 
four different learning techniques including supervised, unsupervised, 
semi-supervised and reinforcement learning (Cohen, 2021). The next 
stage is error analysis, refers to the process of analyzing and under
standing the errors or discrepancies between the predictions made by a 
trained model and the actual ground truth values in the training dataset. 
It involves examining the types and patterns of errors made by the model 
and gaining insights into the areas where the model struggles or per
forms poorly. The purpose of the error analysis stage is to identify the 
sources of errors and potential issues in the training process, as well as to 
guide the improvement of the model’s performance (Subasi, 2020). 
Once the model or algorithm is trained, it can be executed using new or 
unseen data to make predictions, classifications, or other desired out
puts. The algorithm leverages the patterns and relationships learned 
during training to generate predictions or perform specific tasks. The 
performance of the executed algorithm must then be evaluated using 
appropriate metrics or criteria (Subasi, 2020). This evaluation helps 
assess the accuracy, robustness, and generalizability of the algorithm. 
Based on the evaluation results, the algorithm may be refined, retrained, 
or adjusted to improve its performance (Bonetto and Latzko, 2020). Any 
insights, predictions, or outputs generated by the executed algorithm are 
used to inform decision-making or trigger specific actions in the given 
domain. These decisions or actions can range from process adjustments, 
resource allocation, anomaly detection, risk assessment, or any other 
operational or strategic choices. 

Literature analysis results 

When it comes to the area of process systems in chemical engineer
ing, PSE is an area that mainly targets the understanding of a “bigger” 
picture for a given system/process, by breaking large and complex 
processes/systems into more manageable and well-defined sub-systems. 
First off, an artificial intelligence tool, VOSviewer, was deployed to trace 
relevant literature in the area and establish areas of connectivity be
tween published articles (Perianes-Rodriguez et al., 2016; van Eck and 
Waltman, 2010). The tool was found very helpful in tracking relevant 
literature from key databases and establishing network visualizations. 
Network visualizations are very useful for representing connected data, 
such as graphs, using techniques adapted from graph analytics. Such 
network graphs usually consist of a set of nodes and edges that illustrate 
individual data points and display the relationships between them. A 
node is a single data point, while an edge represents how two given 
nodes are connected. All of which is then stored in a single graph 
database. 

Network visualizations usually involve numerous nodes and edges 
that can help understand patterns in a certain dataset and spot any 
useful trends or anomalies. VOSviewer employs highly efficient graph 
algorithms that can establish bibliographic coupling, and keyword co- 
occurrences, and generate co-citation maps that are based on existing 
bibliographic data. For this, a general search on Scopus was performed, 
using the keywords “Machine Learning”, “Chemical Engineering” and 
“Process Systems Engineering”. Only journal articles were considered in 
the search. The search resulted in 813 results as follows: articles (423); 
conference papers (226); reviews (103); book chapters (30); conference 
reviews (18); books (8); editorials (2); and short surveys (2). All of the 
search attained results were then imported to the VOS viewer tool, to 
generate some informative network visualizations that can help us 

better understand the existing trends between published work, as 
illustrated in Figs. 2-4 below. Fig. 2 illustrates the co-occurrence of 
keywords in the published work extracted from the search made above, 
it is evident that there exist many keywords that have been extracted 
from the dataset of published sources, many of which utilize “Machine 
Learning” as a keyword while the occurrence of “Process Systems En
gineering” and “Chemical Engineering” as major keywords was less 
prominent. As for the most cited work, Fig. 3 illustrated the biblio
graphic coupling network of published work based on the citations of all 
published work obtained from the search. What is quite noticeable and 
interesting is the work published by Oztemel et al. in 2020 (Oztemel and 
Gursev, 2020), which is a relatively recent publication that was equally 
prominent to older ones such as Kohonen et al. published in 1996 
(Kohonen et al., 1996), and Gutierrez-Osuna et al. published in 2002 
(Gutierrez-Osuna, 2002). Finally, Fig. 4 presents the bibliographic 
coupling of published work based on countries, and it is clear that most 
of the work has been published in countries such as the United States and 
China. 

Computational applications using data driven modeling in 
process systems 

Data-driven modeling in chemical and industrial applications are 
widespread since many previous studies have utilized such tools for a 
variety of different purposes. This section provides a glimpse of the 
application of ML tools in areas of Process Systems Modelling. Various 
works highlighting the ML application in areas of Reactor Modelling, 
Computer Assisted Molecular Design & Safety, Reliability & Control are 
mentioned here. The section first highlights applications in areas of 
Process Industries and then deep dives into the three sections mentioned 
above. 

In area of Petrochemical Refining, Min et al. (Min et al., 2019) 
applied ML techniques in the production unit of a petrochemical factory, 
in which their model was trained via industrial (Internet of Things (IoT) 
data and used to realize intelligent production control based on 
real-time data. Steurtewagen and Poel (Steurtewagen and Van den Poel, 
2020) used machine learning refinery sensor data to predict catalyst 
saturation levels in a Fluid Catalytic Cracking Unit (FCCU). To achieve 
this, Steurtewagen and Poel (Steurtewagen and Van den Poel, 2020) 
utilized a new soft sensor model in an input mix optimization to 
continuously optimize the use of the catalyst within the FCCU. Hel
miriawan (Helmiriawan, 2018) evaluated the scalability of machine 
learning techniques for predictive maintenance in an oil refinery. The 
study involved modeling the normal behavior of the refinery plant, and 
using the prediction error to detect anomalies that have the potential to 
result in failures. Helmiriawan (Velliangiri et al., 2019) investigated 
various methods and learning algorithms to model the normal behavior 
of multiple components. Harp et al. (Harp et al., 2021) utilized a 
physics-informed machine learning (PIML) approach is used to manage 
reservoir pressures. In their study, the effect of the size of the training 
dataset, on the accuracy and efficiency of the PIML framework was also 
tested. Severson (Severson, 2018) focused on key algorithmic advances 
that bridge the gap between data and system insights using a series of 
hands-on case studies. Schweidtmann et al. (Schweidtmann et al., 2018) 
presented a novel optimization algorithm for self-optimization using 
multi-objective machine learning was introduced, which effectively 
determined a range of optimal conditions representing the trade-off 
curve (Pareto front) between economic and environmental objectives. 
They applied this algorithm to two chemical reactions carried out in a 
continuous flow system to illustrate its efficacy. Petsagkourakis et al. 
(Petsagkourakis et al., 2020) applied a Policy Gradient method from 
batch to batch to update a control policy parametrized by a recurrent 
neural network. Zhou et al. (Zhou et al., 2021) discussed hybrid 
data-driven and mechanistic modeling computational methods to guide 
material selection and design. 

Quah et al. (Quah et al., 2020) combined an artificial neural network 
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Fig. 2. Co-occurrence of all keywords in published work using VOSviewer network visualization (van Eck and Waltman, 2010).  

Fig. 3. Bibliographic coupling of published work based on authors using VOSviewer network visualization (van Eck and Waltman, 2010).  
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(ANN) model together with the particle swarm optimization (PSO) 
method, into a combined ANN-PSO procedure. The ANN-PSO’s perfor
mance and applicability were then applied to a steady-state economic 
optimization of a chemical process, and compared to more conventional 
procedures. Ma (Ma, 2021) studied reaction modeling, optimization, 
and control using several deep learning-based approaches. Bogojeski 
et al. (Bogojeski et al., 2021) adopted machine learning tools to accu
rately forecast industrial aging processes. Sircar et al. (Sircar et al., 
2021) presented a summary of various works on machine learning and 
artificial intelligence applications and limitations in the upstream oil 
and gas industry. Wang et al. (Wang et al., 2020) developed a large-scale 
mixed-integer linear programming model for refinery planning, which 
was also combined with a deep learning method employed to capture 
the uncertainties of product prices. Their technique has been proven to 
be quite efficient, especially when a high-dimensional price is utilized. 

When looking more closely at ML tools that are particularly used in 
PSE, the following three main popular areas have been noted: (1) 
Modeling of Reactors, (2) Computer-Aided Molecular Design, and (3) 
Safety, Reliability & Control. Each area has been discussed separately in 
the following subsections. 

Reactor modeling 

Optimal reactor design and finding suitable operating conditions is a 
topic of great importance for many process industries. The benefits 
achieved are generally very significant compared to the cost involved in 
finding the optimal parameters. The main drawback of using mecha
nistic models for such predictions is the lack of flexibility in changing 
constant parameters in the model with time. These changes are associ
ated with the current state of the reactor and it is quite impossible to 
account for them if mechanistic models are used. It has been consistently 
observed that mechanistic models are cost-intensive, time-consuming, 
and do not factor in non-idealities and degradation aspects of the system 

while modeling. The lack of such features renders them ineffective for 
real-time modeling of reactors. Given these drawbacks, reactor design is 
one of the areas where ML has been effectively used to determine more 
accurate models (shown in Table 2). Moreover, various predictions 
regarding the critical operating parameters can be conducted if an ML 
model is generated using the reactor feed stream information, together 
with the desired product specifications. For instance, an example of such 
predictions is the identification of a Weighted Average Bed Temperature 
(WABT). As such, ML-based models do consider these non-idealities and 
are constantly updated using a constant stream of fresh data. These 
models can then ideally be used for design, online optimization, and the 
control of reactors. 

Early work of Bhat et al. (Bhat and McAvoy, 1992) highlighted the 
benefits of using Neural Networks in solving chemical engineering 
problems due to their parallel architecture. Bochereau et al. (Bochereau 
et al., 1991) explored the application of a multilayer artificial neural 

Fig. 4. Bibliographic coupling of published work based on countries using VOSviewer network visualization (van Eck and Waltman, 2010).  

Table 2 
Summary of the algorithms used in reactor design.  

Algorithm Application 

Artificial Neural Networks 
(ANN) 

Modeling batch reactors, catalyst degradation 
behavior, hydrocracking unit, fluidized catalytic 
cracking unit, crude fractionation, chemical 
reactor behavior; predicting polymer quality, 
data rectification, product properties, yields of 
various products 

Recurrent Neural Networks 
(RNN) 

Modeling semi-generative catalytic reformer 

Support Vector Regression (SVR) Modeling Transportable Fluoride-salt-cooled 
High-temperature Reactor 

Least Absolute Shrinkage and 
Selection Operator (LASSO) 

Variable selection for fluidized catalytic cracking 
unit 

Machine Learning-based 
predictive model 

Feasibility of methanol steam reforming process  
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network for modeling the dynamic system of batch reactors. Chessari 
et al. (Chessari et al., 1994) developed an online model for a 
semi-generative catalytic reformer, which consists of a reactor that 
converts heavy naphtha to higher octane products. Chessari et al. 
(Chessari et al., 1994) utilized recurrent neural networks to model the 
catalyst degradation behavior. Himmelblau (Himmelblau, 2008) de
scribes the characteristics of ANNs including their advantages and dis
advantages. Himmelblau (Himmelblau, 2008) mainly focuses on two 
different types of neural networks, Feedforward and Recurrent. Both 
types of ANNs discussed have similar architectures, except for the fact 
that recurrent neural networks incorporate the factor of time. Himmel
blau (Himmelblau, 2008) discusses the main elements of such networks 
and utilizes four different examples in the field of chemical engineering 
to demonstrate them: fault detection, prediction of polymer quality, data 
rectification, and modeling and control. Elkamel et al. (Elkamel et al., 
1999) used Feed-forward neural networks to model the reactor of a 
hydrocracking unit using actual plant data. The model developed was 
used to predict the yields of various products coming out of HCU. Yield 
predictions enable the refinery to optimize, control, and plan. Long et al. 
(Long et al., 2019) developed a model that uses the least absolute 
shrinkage and selection operator (LASSO) method for variable selection 
and the back-propagation neural network (BPNN) method for predictive 
model construction for fluidized catalytic cracking units. Fakhr-Eddine 
et al. (Fakhr-Eddine et al., 1996) developed an ML model for LPCVD 
Reactors using neural networks. The objective of the work by 
Fakhr-Eddine et al. (Fakhr-Eddine et al., 1996) was to provide a black 
box model which can be used to compute online the film thickness. 

Chaffart & Ricardez-Sandoval (Chaffart and Ricardez-Sandoval, 
2018) developed a hybrid multiscale model for tin film deposition 
process. This model uses both mechanistic model & ANN for modeling 
this process. Lee et al. (Lee et al., 2020) developed a hybrid model for a 
partially known intracellular signaling pathway. Their work combines a 
mechanistic model and an ANN model to give better prediction than 
mechanistic models. The ANN model minimizes the discrepancy be
tween the model predictions and available measurements. Nkulikiyinka 
et al. (Nkulikiyinka et al., 2020) developed a soft sensor model for 
sorption-enhanced steam methane reforming products. This model 
aimed for a smooth scale-up of the system as properties of hydrogen and 
sorption material hinder upscaling the system. Bawazeer and Zilouchian 
(Bawazeer and Zilouchian, 1997) applied supervised Neural Network 
architecture in a crude fractionation section of an oil refinery. The main 
objective of their work was to provide inferential product properties for 
enhancing the efficiency of the operations of the concerned unit. The 
properties that were predicted were the Naphtha 95% Cut point, in 
addition to the Naphtha Reid Vapor pressure. Data for three months has 
been utilized to develop the ML models and the simulated results for the 
above-mentioned properties were also analyzed. Bawazeer and Zilou
chian (Bawazeer and Zilouchian, 1997) tested several neural network 
architectures. Wang et al. (Wang et al., 2019) modelled a pilot-scale 
entrained flow gasifier using ANN. The data driven model was gener
ated from a large data which was generated from a pilot-scale gasifier 
reduced order model (ROM) and was validated with this model. Their 
ANN model was able to provide accurate predictions at much lower 
computational cost compared to ROM model. Bangi & Kwon (Bangi and 
Kwon, 2020) used deep hybrid modeling of hydraulic fracturing. Bha
driraju et al. (Bhadriraju et al., 2019) used Machine learning-based 
adaptive model identification of systems for finding a highly 
non-linear model of Continuous Stirred Tank Reactor (CSTR). Lithox
oidou et al. (Lithoxoidou et al., 2020) developed a Machine Learning 
based classification model for studying the behavior of chemical re
actors. Lithoxoidou et al. (Lithoxoidou et al., 2020) proposed a 
data-driven methodology for depicting three distinct states of a chemical 
reactor, (1) normal, (2) warning, and (3) alert, all using ML. Predicting 
the classification of data input was found helpful in the early prognosis 
and the prevention of possible malfunctions. The objective of using the 
three distinct stages was to reveal the number of clusters based on past 

data, to train normal, warning, and alert behavior models, and finally 
validate them and third to test and verify their accuracy against real data 
sets. Mendiola-Rodriguez & Ricardez-Sandoval (Mendiola-Rodriguez 
and Ricardez-Sandoval, 2022) applied principles of Reinforcement 
Learning for developing an optimal control scheme for anaerobic 
digestion. Deep Deterministic Policy Gradient was employed as a 
learning strategy for single stage and two stage anaerobic digestion to 
manage Tequila vinasses. Zeng et al. (Zeng et al., 2018) developed a 
gray-box model for a Transportable Fluoride-salt-cooled 
High-temperature Reactor (TFHR). The prediction model that was 
used by Zeng et al. (Zeng et al., 2018) consists of a reactor physics 
model, a thermal-hydraulic model, and a Support Vector Regression 
(SVR) model. Several important transient parameters such as the reac
tivity insertion timings were also studied. Ding et al. (Ding et al., 2021) 
modelled a plasma-enhanced atomic layer deposition of hafnium oxide 
thin films. RNN was used for process modeling. This model accurately 
simulated the deposition process and gas phase transport profile and was 
computationally less expensive. 

Byun et al. (Byun et al., 2021) developed a machine learning-based 
predictive model to find out the technical, environmental, and eco
nomic feasibility of a methanol steam reforming process. The effects of 
twelve different techno-economic parameters were studied by Byun 
et al. (Byun et al., 2021) and the predictive model was able to estimate 
the hydrogen production rate, the amount of carbon dioxide emissions, 
in addition to unit production costs. Attia et al. (Attia et al., 2020) 
developed a closed-loop optimization of fast-charging protocols for 
batteries with machine learning. The aim of this work was to optimize 
the parameter space specifying the current and voltage profiles of 
six-step, ten-minute fast charging protocol for maximizing the battery 
cycle life. Rahnama et al. (Rahnama et al., 2020) utilized machine 
learning techniques for the modeling of a basic oxygen steelmaking pilot 
plant. In doing so, Rahnama et al. (Rahnama et al., 2020) were able to 
obtain several correlations between key input parameters concerning 
the overall reactor performance. A neural network-based regression 
model was used to predict the decarburization rate in a basic oxygen 
steelmaking furnace. The reactor model was assumed to take place in an 
actual manufacturing plant based on a given lance height and total ox
ygen flow. Tom et al. (Tom et al., 2022) applied ANN for modeling the 
atomic layer processes with application in semiconductor industry. 
Ochoa-Estopier et al. (Ochoa-Estopier and Jobson, 2015) combined an 
ANN model together with an optimization framework to enhance the 
operational performance of crude oil distillation units. A new method
ology was proposed by Ochoa-Estopier et al. (Ochoa-Estopier and Job
son, 2015) wherein the crude distillation units and the heat exchanger 
network (HEN) were both optimized using ANN models and a Simulated 
Annealing (SA) algorithm. The overall outcome was a two-stage process 
in which the distillation column is first optimized using an objective 
involving both the product yield and the energy demand. The HEN 
network was then optimized in the second stage. Abdullah et al. 
(Abdullah et al., 2021) developed a data driven reduced-order modeling 
of nonlinear processes that exhibit time-scale multiplicity. Using 
time-series data from all the state variables of a nonlinear process, an 
approach that involves nonlinear principal component analysis and 
neural network function approximators is employed to identify the fast 
and slow process state variables. Shah et al. (Shah et al., 2022) devel
oped a Deep neural network-based hybrid modeling and experimental 
validation for an industry-scale fermentation process. Yun et al. (Yun 
et al., 2022) applied data driven algorithms for modeling and operation 
of thermal atomic layer etching of aluminum oxide thin films. 

Liu et al. (Liu et al., 2021) developed an ANN model to study the 
effects of chemical additions onto nanoparticles (NPs) on hydrogen yield 
and hydrogen evolution rate. This included studying changes in the size 
and concentration of nanoparticles. Based on the results of this model, it 
was determined that Fe-based nanoparticles are more effective in 
enhancing the hydrogen yield, unlike Ni-based NPs ones. Gu et al. (Gu 
et al., 2020) has applied the concepts of deep learning for fast screening 
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of heterogenous catalyst. Zhang et al. (Zhang et al., 2019) integrate 
neural network models with first principle models in both RTO and MPC 
for a system involving a continuous stirred tank reactor (CSTR) and a 
distillation column. The neural network part was used to model the 
nonlinear reaction rate of the CSTR, which is then combined with a 
first-principles model in RTO and MPC. The RTO was used to find the 
optimal reactor operating conditions for which a minimum energy cost 
within the system is attained. This was all made while ensuring optimum 
reactant conversion are maintained. The MPC was then used to ensure 
that the process functions under optimal operating conditions. In a 
second example, the neural network approach was used to develop a 
model for phase equilibrium properties, which was then integrated with 
the first principles model in RTO with aim of maximizing profit and 
optimal set-point identification. Zhong et al. (Zhong et al., 2020) 
modelled the Cu-Al electrocatalyst using density functional theory (DFT) 
& active machine learning. This hybrid model is computationally less 
expensive and is valuable in guiding the experimental exploration of 
multi-metallic electrocatalyst system. Choi et al. (Choi et al., 2023)used 
concepts of unsupervised learning and RNNs to develop a Long Short 
Term Memory (LSTM) model for multimode chemical process. This 
model was validated with real world data for distillation column. 

Table 2 lists down various algorithms used for modeling various 
aspects of reactor modeling design. Algorithms like ANN, RNN, Support 
Vector Regression (SVM), Least Absolute Shrinkage and Selection 
Operator (LASSO) use principles of Supervised Learning and use labelled 
data to train the models. In case of lesser availability of labelled training 
data, Unsupervised learning is utilized for clustering of data and 
generating labelled data. 

Computer-aided molecular design 

Computer Aided Molecular Design (CAMD) problems are often 
geared toward the development and design of new molecules and 
enhanced molecular structures. Such improved molecules can then be 
utilized for a variety of unique applications, to attain enhanced process 
performance. Hence, mathematical formulations in CAMD must identify 
optimal molecules in a given solution space. CAMD searches through a 
design space of bond, aromaticity, and other chemical properties. Mo
lecular modeling theories are then combined with thermodynamic 
properties, to be able to quantify the desired properties of the generated 
molecular structure. As a result, efficient and robust mathematical 
optimization techniques must be used to search the molecular design 
space and identify the optimal structure. The design of molecules may 
generally either involve improving the current version of molecules, or 
developing new ones altogether. Solutions to this kind of problem have 
led to major progress in the areas of power generation, medical treat
ment, climate change fighting techniques, etc. Machine learning algo
rithms are used in CAMD, which are summarized in Table 3. 

When designing such molecules, Qualitative Structure-Property Re
lationships (OSPR) are commonly used to describe the properties of the 
desired molecular design, based on their structure. Group contribution 
theory, signature descriptors, and topological indices are some examples 
of QSPR models that could be utilized in this regard. With regards to the 
modeling and optimization methods that are involved in solving CAMD 
problems, they become computationally exhaustive and algorithmically 
very costly when implemented using mechanistic models. This 
complexity, therefore, has created a much-needed avenue for the utili
zation of ML techniques within this area. The use of ML techniques in 
CAMD has proven to be quite efficient, as they can very easily generate 
the required outputs without going through the complex computational 
mechanisms that are utilized by conventional mechanistic models. Many 
of the different Machine Learning techniques that have been applied in 
the area of CAMD have shown encouraging results. Moreover, the ability 
of deep learning techniques in handling high dimension data can make 
them effectively yield robust solutions when used in complex CAMD 
problems (Fuentes-Cortés et al., 2022). Furthermore, generative models 

can also very easily be used in conjunction with predictive QSPR models 
that relate learned feature representations of molecular descriptors to 
target chemical, physical, or biological properties of structures. For 
example, Autoencoders, Variational Autoencoders, Recurrent Neural 
Networks with Reinforcement Learning & Generative Adversarial Net
works are some of the ML methods that have been utilized for solving 
CAMD problems. 

Sanchez-Lengeling et al. (Sanchez-Lengeling et al., 2017) utilized 
Generative Adversarial Network (GAN) and Reinforcement Learning 
(RL) to generate new molecules with a bias toward certain features. 
Their framework was based on Objective-Reinforced Generative 
Adversarial Networks (ORGAN). Sanchez-Lengeling et al. (Sanche
z-Lengeling et al., 2017) demonstrated their developed method using 
several case studies in the area of drug synthesis, and organic photo
voltaic material design. Popova et al. (Popova et al., 2018) used deep 
and reinforcement learning to integrate generative and predictive neural 
networks to develop novel molecules. Generative models were trained to 
produce chemically feasible simplified molecular-input line-entry sys
tem (SMILES) structure, and predictive models were used to forecast 
desired properties. Aliper et al. (Aliper et al., 2016) used deep learning 
networks for predicting the pharmacological properties of drugs. Their 
model was trained using large transcriptional response data and used to 
classify various drugs into therapeutic categories. Aliper et al. (Aliper 
et al., 2016) then compared their deep neural network model to a SVR 
model and the former was found to perform better. Segler and Waller 
(Segler et al., 2018) developed a model to mimic chemical reasoning to 
predict reaction outcomes. Based on the knowledge graph which con
tains 14.4 million molecules and 8.2 million binary reactions, this model 
was used to predict reaction outcomes for 180,000 binary reactions and 
was observed to outperform rule-based systems. 

Liu et al. (Liu et al., 2018) developed a probabilistic model for gated 
graph neural networks into the encoder and decoder of a variational 
autoencoder (VAE) for molecular design. Constraints for molecular 
structure generation are then incorporated into this framework for 
efficiently searching the solution space. Kang & Cho (Kang and Cho, 
2019) developed a model for a conditional molecular design framework 
for efficiently searching the solution space to generate new molecules 
with desired properties. The model improves the performance of prop
erty prediction by exploiting unlabeled molecules and efficiently gen
erates novel molecules fulfilling various target conditions. Kadurin et al. 
(Kadurin et al., 2017) developed an advanced adversarial autoencoder 
(AAE) to identify new molecular structures with desired anti-cancer 

Table 3 
Summary of the algorithms used in molecular design.  

Algorithm Application 

Autoencoders Generate new molecules and optimize 
molecular design space 

Variational Autoencoders (VAE) Generate new molecules and optimize 
molecular design space 

Deep Learning Networks Predict pharmacological properties of drugs 
Support Vector Machine (SVM) Predict pharmacological properties of drugs 
Reinforcement Learning (RL) Generate new molecules and optimize 

molecular design space 
Generative Adversarial Networks 

(GAN) 
Generate new molecules and optimize 
molecular design space 

Adversarial Autoencoder (AAE) Identify new molecular structures with 
desired anti-cancer properties 

Entangled Conditional Adversarial 
Autoencoder (ECAAE) 

Search across the solution space of 
molecular structures based on various 
properties 

Probabilistic Model for Gated Graph 
Neural Networks 

Molecular design 

Conditional Molecular Design 
Framework 

Generate new molecules with desired 
properties 

Molecular Hypergraph Grammar 
Variational Autoencoder 
(MHGVAE) 

Molecular design 

Chemical Reasoning Model Predict reaction outcome  
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properties. The proposed AAE framework by Kadurin et al. (Kadurin 
et al., 2017) was compared with the VAE technique. AAE was observed 
to perform better in terms of flexibility of solution generation, handling 
enormous molecular datasets, and unsupervised pre-training for the 
regression model. Polykovskiy et al. (Polykovskiy et al., 2018) devel
oped entangled conditional adversarial autoencoder, that is utilized for 
searching across the solution space of molecular structures based on 
various properties. This new model was used to generate a novel in
hibitor of Janus kinase 3, which has been found in rheumatoid arthritis, 
psoriasis, and vitiligo. The discovered molecule was tested in vitro and 
showed good activity and selectivity. Guimaraes et al. (Guimaraes et al., 
2017) proposed a method to guide the structure and quality of samples 
utilizing a combination of adversarial training and expert-based rewards 
with reinforcement learning which enables the search to be more 
effective when applied to a sequence-based generative model. This 
method is called an objective-reinforced generative adversarial network 
(ORGAN) and was applied to molecular synthesis problems. Kajino H. 
(Kajino, 2019) proposed a molecular hypergraph grammar variational 
autoencoder (MHG-VAE), which uses a single VAE to achieve 100% 
validity. This inspiration for the work was the fact that the normal VAE 
and Bayesian Optimization framework employed in solving the molec
ular synthesis problem has a complex architecture. A graph grammar 
encoding the hard chemical constraints called molecular hypergraph 
grammar (MHG) was developed to guide VAE to generate valid mole
cules. Putin et al. developed a DNN architecture named RANC (Rein
forced Adversarial Neural Computer) for designing small-molecule 
organic structures based on the generative adversarial network (GAN) 
paradigm and reinforcement learning (RL). This new methodology 
shows better performance than its DNN-based counterpart 
objective-reinforced generative adversarial network for inverse-design 
(ORGANIC). RANC is able to generate structures that match the distri
butions of the key chemical features and lengths of the SMILES strings in 
the training data set thereby allowing for a more thorough search for a 
given amount of time. Putin et al. (Putin et al., 2018) developed another 
deep neural network-based architecture called Adversarial Threshold 
Neural Computer (ATNC). This model combines GAN architecture and 
Reinforcement Learning. To generate more diverse molecules, a new 
objective reward function named Internal Diversity Clustering (IDC) is 
also introduced. This framework was compared to ORGANIC and found 
to perform better in terms of the exhaustiveness of solution space search. 

Ikebata et al. (Ikebata et al., 2017) combined machine learning 
models, Bayes law, the Monte Carlo technique, and natural language 
processing for generating molecular structures with a desired set of 
properties at a faster pace. Griffiths et al. (Griffiths and Hernández-Lo
bato, 2020) proposed an Automatic Chemical Design framework for 
generating novel molecules with the objective being having optimal 
specific properties. This method was compared with the original 
Bayesian Optimization over the latent space of a variational autoen
coder. The original Bayesian optimization was modified since the orig
inal framework without constraints has been observed to be less efficient 
when compared to the modified technique. This was attributed to the 
fact that the original framework generated a lot of infeasible solutions, 
leading to many invalid molecular structures. Maziarka et al. (Maziarka 
et al., 2020) developed an improved Mol-CycleGAN, a CycleGAN-based 
model that generates optimized compounds with high structural simi
larity to the original ones, using optimized values with specific prop
erties. Ooi et al. (Ooi et al., 2022) utilized ML techniques to identify 
fragrance molecules with desired product requirements. A case study 
where the objective was to design fragrance additives used in body lo
tions was used to demonstrate the effectiveness of the proposed model. 
Moreover, hyper box classifiers were used to predict the required 
fragrance properties. 

Table 3 provides a list of algorithms used for various application in 
area of CAMD. Algorithms like Autoencoders, VAE, Generative Adver
sarial Networks (GAN), AAE, Entangled Conditional Adversarial 
Autoencoder (ECAAE) and Molecular Hypergraph Grammar Variational 

Autoencoder (MHGVAE) are Unsupervised Learning algorithms. Neural 
Network & Support Vector Machine are Supervised Learning Algo
rithms. Reinforcement Learning has also been used. 

Process safety, reliability & control 

Process Safety, Reliability & Control have been the areas where ML 
has been applied to a great extent, especially in problems that are related 
to regulating inspections and operations within a chemical plant (see 
Table 4). Moreover, fault detection problems have been extensively used 
by stakeholders to obtain information for predictive maintenance and 
improve the overall safety levels of the plant. Early fault detection and 
the following remedies are very critical for ensuring safe operations in a 
plant. Applying ML techniques on plant data to identify, isolate and take 
corrective measures not only enhances the safety levels but also saves 
cost as proper resources can be allocated to assets that need immediate 
maintenance. Apart from fault detection, ML has been applied to obtain 
information about fault prognosis which in turn provides remaining 
useful life predictions. ML methods like CNN (convolutional neural 
network), SVM, kNN (k Nearest Neighborhood Algorithm), and RNN 
have been extensively used on plant data to identify faulty patterns and 
classify the faults detected. 

Kimaev & Ricardez-Sandoval (Kimaev and Ricardez-Sandoval, 2020) 
used ANNs to develop data-driven models that would enable optimal 
control of a stochastic multiscale system subject to parametric uncer
tainty. The system used for the case study was a simulation of thin film 
formation by chemical vapor deposition. The ANN was seen as a better 
option for optimization and control of the process as it was computa
tionally less expensive and was accurate. Zhang et al. (Zhang et al., 
2017) applied a multi-objective deep belief networks ensemble (MOD
BNE) method, which employs a multi-objective evolutionary algorithm 
integrated with the traditional DBN training techniques to obtain 
remaining useful life estimations in prognostics. Both accuracy and di
versity were utilized as the two main conflicting objectives. Evolved 
deep belief networks were then combined to establish an ensemble 
model, where combination weights were optimized using a single 
objective differential evolution algorithm using a task-oriented objec
tive function. The results obtained using the proposed method showed 
improved process performance when compared to standard methods. 
Kimaev & Ricardez-Sandoval (Kimaev and Ricardez-Sandoval, 2019) 
utilized ANN in area of process control. ANN was deployed in this work 
to develop data-driven models for model predictive control of a 

Table 4 
Summary of the applications of machine learning algorithms in safety.  

Algorithm Application 

Convolutional Neural Network (CNN) Fault detection 
Support Vector Machines (SVM) Fault detection, time-to-failure, and 

reliability forecasting 
k Nearest Neighborhood Algorithm Fault detection 
Recurrent Neural Network (RNN) Fault detection 
Multi-Objective Deep Belief Networks 

Ensemble (MODBNE) 
Remaining useful life estimations in 
prognostics 

Adaptive Kernel Spectral Clustering 
(AKSC) 

Finding machine anomaly behaviors 
from multiple degradation features 

Deep Long Short-Term Memory 
Recurrent Neural Networks (LSTM- 
RNN) 

Machine time failure prediction 

Deep Belief Networks (EDBN) Fault analysis 
Autoencoder Fault detection and fault diagnosis 
One-Class-SVM Fault symptoms detection 
Multilayer Feedforward Neural 

Networks based on Multi-Valued 
Neurons (MLMVN) 

Reliability and degradation prediction 

Health Index Similarity Prediction of the remaining useful life 
(RUL) based on condition-based 
maintenance 

Physics-based Fire Hazard Model Generating metamodel approximations  
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computationally intensive stochastic multiscale system of thin film for
mation by chemical vapor decomposition. Cheng et al. (Cheng et al., 
2019) used ML algorithms to handle the complexity of the problem of 
identifying heterogeneous features pertinent to fault diagnosis. In doing 
so, a novel ML-based approach was proposed using adaptive kernel 
spectral clustering (AKSC) and deep long short-term memory recurrent 
neural networks (LSTM-RNN). A Euclidean distance-based algorithm 
was then utilized to identify pertinent degradation features, and the 
AKSC algorithm was used for finding machine anomaly behaviors from 
multiple degradation features. Lastly, LSTM-RNN was utilized to predict 
the machine time failure. Nikita et al. (Tomin et al., 2016) developed an 
automated multi-model approach for online security assessment, in 
which they tested different state-of-art machine learning techniques and 
identified the best-performing ones. 

Çıtmacı et al. (Çıtmacı et al., 2022)applied ML in area of RTO. The 
system modelled in this work is an ethylene based electrochemical 
reactor. The prediction provided by the model is used in a 
proportional-integral (PI) controller. Wang et al. (Wang et al., 2020) 
used deep belief networks (EDBN) in fault analysis. When compared to 
other methods, no loss of any information occurred during feature 
compression in traditional deep networks, unlike other traditional 
methods. A dynamic EDBN-based fault classifier was constructed to 
consider the dynamic characteristics of process data. The data was then 
tested on a Tennessee Eastman (TE) process for fault classification. Park 
et al. (Park et al., 2019) developed an integrated learning framework for 
jointly achieving fault detection and fault diagnosis of rare events in 
multivariate time series data. Park et al. (Liu et al., 2021) employed an 
autoencoder trained with offline normal data for detecting anomalies. 
The predicted faulty data, which was captured by the autoencoder, was 
then used as input into a LSTM network to classify the types of faults. 

Bangi & Kwon (Bangi and Kwon, 2023) developed a Control Lya
punov–Barrier Function-based model predictive controller (CLBF-based 
MPC) which utilizes a deep hybrid model. The efficacy of the proposed 
control framework is demonstrated on a continuous stirred tank reactor. 
Narasingam & Kwon (Narasingam and Kwon, 2019) developed a pre
dictive control scheme where Koopman operator theory with Lyapunov 
based model predictor control. The feedback control design in this work 
uses machine learning models. Arunthavanathan et al. (Gu et al., 2020) 
developed a fault detection framework for multivariable complex sys
tems utilizing a CNN- LSTM approach to forecast system parameters. 
This approach was found to be effective in identifying fault symptoms in 
multivariate dynamic systems beforehand, thereby effectively detecting 
potential fault conditions. Additionally, unsupervised One-class-SVM 
was utilized for detecting fault symptoms using a forecasted data win
dow. The performance of the proposed method was evaluated using the 
time series data from the Tennessee Eastman process. Luo et al. (Luo 
et al., 2022) applied ML based models for electrochemical reactor 
modeling to handle the data variability and enhancement of the accu
racy of empirical models. Fink et al. (Fink et al., 2014) proposed a 
multilayer feedforward neural network based on multi-valued neurons 
(MLMVN), a specific type of complex-valued neural network. MLMVN 
was used for its good performance in extracting complex dynamic pat
terns from time series data, which resulted in a good performance in 
such reliability and degradation prediction problems. The performance 
of those algorithms was first evaluated using a benchmark study that 
provided railway turnaround data. According to Fink et al. (Fink et al., 
2014), MLMVN was able to outperform other machine learning algo
rithms in terms of prediction precision and is also able to perform 
multi-step ahead predictions, as opposed to other previously 
best-performing benchmark studies. 

Shah et al. (Shah et al., 2022) used machine learning model in 
developing optimal control to maximize industry scale fermentation 
process. A hybrid model has been used for modeling the fermentation 
process. Son et al. (Son et al., 2022) developed an offset-free Koopman 
Lyapunov-based model predictive control. mathematical analysis for 
zero steady-state offset condition considering influence of Lyapunov 

constraints on equilibrium point was also carried out. Linear model was 
developed using data driven modeling in this work. Bhadriraju et al. 
(Bhadriraju et al., 2021) developed Operable Adaptive Sparse Identifi
cation of Systems (OASIS) for fault Prognosis of chemical processes. This 
was application of ML in area of Process Safety. Operable adaptive 
sparse identification of systems (OASIS) is an adaptive modeling method 
developed based on sparse identification of nonlinear dynamics (SINDy) 
and deep learning. SINDy identifies nonlinear system dynamics using 
measured or simulated data but computationally expensive. OASIS 
solved this problem by implementing SINDy in real time using deep 
neural networks. Liu et al. (Liu et al., 2019) proposed a novel prognostic 
method for condition-based maintenance and the prediction of the 
remaining useful life (RUL)based on health index similarity. In their 
work, the nonlinear degradation evolution was revealed by the health 
index of cutting tools, and both the distance similarity and the spatial 
direction similarity were considered for similarity matching. The pro
posed method by Liu et al. (Liu et al., 2019) demonstrated great po
tential to outperform the LS-SVR method. das Chagas Moura et al. 
(Moura et al., 2011) used Support Vector Machines (SVMs) and carried a 
comparative analysis of different advanced learning techniques, 
including Radial Basis Function, MultiLayer Perceptron model, 
Box-Jenkins autoregressive-integrated-moving average and Infinite Im
pulse Response Locally Recurrent Neural Networks. The focus was on 
forecasting the time-to-failure and reliability of engineered components 
based on time series data. 

Narasingam & Kwon (Narasingam and Kwon, 2019) applied Koop
man operator for model-based control of fracture propagation and 
proppant transport in hydraulic fracturing operation. Narasingam & 
Kwon (Narasingam and Kwon, 2017)also applied dynamic mode 
decomposition for model predictive control of hydraulic fracturing. This 
was achieved by describing the local dynamics of the highly nonlinear 
process with terprally local reduced order models based on fully 
resolved data. Worrell et al. (Worrell et al., 2019) explored the appli
cation of machine learning for generating metamodel approximations of 
a physics-based fire hazard model, to improve the modeling realism in 
probabilistic safety assessments where the computational burden is 
prohibitive in the development of a high-fidelity model. In their work, 
Worrell et al. (Worrell et al., 2019) tested twenty-five different meta
model methods ranging in class and complexity were investigated, and 
kNN model fit the vast majority of calculations. The resulting kNN 
model was compared to an algebraic model typically used in fire prob
abilistic safety assessments. Gordon et al. (Gordon et al., 2020) devel
oped and applied a framework to obtain optimal future-failure-aware 
and safety-conscious production and maintenance schedules, to improve 
safety and system effectiveness. Nonlinear support ensembles for several 
vector machine classification models were utilized to predict the time 
and probability of future equipment failure from equipment condition 
data. Moreover, a multi-objective optimization was carried out, in which 
both profit and a safety were used to determine optimal maintenance 
schedules. Kumari et al. (Kumari et al., 2021)applied ML in process 
safety and developed a parametric reduced order model for consequence 
estimation of rare events in process industry. 

Wei et al. (Wei et al., 2018) employed variable importance analysis 
(VIA) and ML to investigate the reliability of structural systems through 
two novel reliability-based mode importance analysis (MIA) indices. 
They introduced a learning procedure that combined the multiple 
response Gaussian process (MRGP) model with Monte Carlo simulation 
(MCS) to efficiently and adaptively generate surrogate models for sys
tem failure surfaces. In the context of ensuring structural system reli
ability and simplifying reliability-based design problems, it was 
imperative to quantify the relative importance of random input vari
ables and failure modes. Table 4 provides a list of algorithms used in the 
area of Process Safety, Control & Reliability. These algorithms belong to 
Supervised, Unsupervised and Semi Supervised learning methods of 
Machine Learning. 
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Challenges and an outlook 

This section presents the challenges in modeling and adoption of 
data driven models in Industries. It also comments on the outlook of 
application of ML in PSE. Looking back at the application of ML in 
chemical engineering field, Subramanian (Liu et al., 2018) defines a 
timeline: 

• Phase 0: Early attempts such as the Adaptive Initial Design Synthe
sizer system, developed by Siirola and Rudd (Siirola and Rudd, 1971)  

• Phase 1: Bañares-Alcántara (Bañares-Alcántara et al., 1985) for 
predicting thermophysical properties of complex fluid mixtures and 
Stephanopoulos et al. (Stephanopoulos et al., 1990)  

• Phase 2: Application of Neural Networks.  
• Current Phase: Use of Deep Neural Networks. 

Subramanian (Subramanian, 2019) classifies multiple phases of the 
deployment of AI in PSE. The work concludes with the need to develop 
domain-specific representations and languages, compilers, ontologies, 
molecular structure search engines, chemical entities extraction sys
tems. It also argues for the true AI able to developing a theoretical 
framework or at least can reason using first-principles-based mecha
nisms as the first step. From the sections presented above we summarize 
below the key challenges that need to be addressed to enable wide scale 
applications of machine learning in chemical engineering. 

Challenge: data availability 

While AI has many potential applications in chemical engineering, 
chemical processes are often complex and high-quality data is not al
ways readily available or in a format that is easy to use for machine 
learning (Lee et al., 2018). There exist some databases such as the Na
tional Institute of Standards and Technology (NIST) including thermo
dynamic and transport property data for fluids and solids, as well as 
reaction kinetics data (Eric et al., 2013). The American Institute of 
Chemical Engineers (AIChE) has some information on chemical process 
systems, including data on process dynamics, control systems, and 
process design (Beck et al., 2017). Nevertheless, there is a lack of stan
dardized datasets that can be used to train and test machine-learning 
models for chemical engineering applications. These datasets can be 
used to train and test machine learning models for a variety of appli
cations, such as process control, predictive maintenance, and optimi
zation of chemical reactions. Apart from open sources, industrial data 
are not readily available due to the confidentiality associated with them. 
Moreover, a lack of specialized tools tailored for macro systems and 
scale up was also observed. Most of the datasets that were utilized in 
state of the art papers were mainly derived from experimental studies, 
and those were found to be limited in nature and are only fit for 
microsystem modeling (such as computer-aided molecular design). 

Issues with data-driven models 

Another challenge was pointed out by Wang et al. (Wang et al., 
2020). Their work highlighted that many machine learning models are 
not easily interpretable, which can make it difficult to understand why a 
model is making certain predictions. This means that it is essential to 
understand the underlying physics and chemistry of a process and ma
chine models are yet to be developed at that complexity level. 

At the same time, the scalability of machine learning models to 
industrial-size systems where processes often need to be optimized for 
large-scale production is a complex challenge that is yet to be addressed. 
Machine learning algorithms can be used to analyze process data and 
identify patterns that can be used to improve the control of chemical 
processes. Similarly, it can be used in predictive maintenance and fault 
detection, to predict when equipment is likely to fail and schedule 
maintenance before it occurs and to detect and diagnose faults in 

chemical processes. However, an issue that can rise is the safety and 
robustness of machine learning models to changes in the process, mak
ing it difficult to train a machine on a wide range of conditions Wei et al. 
(Wei et al., 2018). Compared to the mechanistic models, data-driven 
model focus on data fitting to mimic the system. Due to the lack of 
physics-based models, there is an inertia in adopting these models for 
operational purposes. The quality of data from sensors is also a suspect 
as there are a lot of disturbances due to harsh conditions. These issues 
need to be examined for better adoption of these models. 

To summarize, major challenges in data-driven modeling for PSE 
include the scarcity of available data. In many cases, collecting 
comprehensive and high-quality process data can be expensive, time- 
consuming, or even infeasible due to limitations in sensors, data 
acquisition systems, or process constraints. Insufficient data can lead to 
poor model performance, limited generalization, and difficulty in 
capturing complex process dynamics. Techniques such as data 
augmentation, domain knowledge incorporation, or transfer learning 
can be employed to mitigate data scarcity issues. Moreover, processes 
involved in PSE studies often exhibit multimodal behavior, where 
different modes or operational regimes coexist due to varying process 
conditions or external influences. Modeling such multimodal behavior 
poses challenges as traditional modeling techniques may struggle to 
capture and represent the diverse patterns or responses exhibited by the 
process. Identifying and characterizing the different modes and devel
oping appropriate models that can adapt to and predict the behavior in 
each mode is crucial for accurate data-driven modeling in PSE. Process 
operations can be subject to uncertainties arising from various sources, 
such as measurement noise, parameter variations, disturbances, or un
measured variables. Uncertainties can lead to deviations between the 
modeled and actual process behavior, affecting the performance and 
reliability of data-driven models. Addressing uncertainties requires 
robust modeling techniques that can handle noise, account for param
eter variations, incorporate uncertainty quantification, and provide 
reliable predictions even in the presence of uncertain process opera
tions. Hence, overcoming these challenges requires the development 
and application of advanced data-driven modeling techniques tailored 
to the specific needs of PSE. For instance, the use of hybrid models may 
help overcome such limitations since they often combine data-driven 
modeling approaches with physics-based models or domain knowl
edge can leverage the strengths of both approaches, improving model 
accuracy and capturing complex process behavior. Moreover, building 
ensembles of models that incorporate multiple algorithms, feature rep
resentations, or parameterizations can enhance model performance and 
robustness, especially in the presence of multimodal data or 
uncertainties. 

With the development of better algorithms and computing capabil
ities, adoption of ML models will be more common in future. Better 
algorithms will help in dealing in more complicated problems and as 
computing becomes more accessible and cheaper, these algorithms will 
be easily implemented. These developments will enable the user to 
model more uncertain systems in industries which operate in very harsh 
conditions. Based on industry experience, a comprehensive overhaul of 
data collection and addressing of sensor reliability issues is required. 
Resources should be allocated to sensor handling and maintenance so 
that better data is available for modeling. 

Future directions 

In conclusion, it has been observed by many researchers that 
computationally extensive problems are a lot easier to handle using 
machine learning techniques. They were also found to be quite powerful 
for assisting optimization algorithms (especially in the case of mecha
nistic model failure (Zhou et al., 2021; Chaffart and Ricardez-Sandoval, 
2018; Lee et al., 2020)). Many have reported that machine learning tools 
can greatly help increase the performance of their assets using historical 
data. Applications of data-driven techniques that rely on Reinforcement 
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Learning in the area of process control are also expected to grow on a 
larger scale, given the current status of the literature (Rangel-Martinez 
et al., 2021; Petsagkourakis et al., 2020; Quah et al., 2020; Mendio
la-Rodriguez and Ricardez-Sandoval, 2022; Popova et al., 2018). 
Moreover, it will also likely pave new directions for data-driven appli
cations in novel and underdeveloped subfields within process systems, 
which also could require the development of more versatile and efficient 
machine learning algorithms in the future. 

With more advanced algorithms being developed and computational 
power becoming cheaper, data-based models can be used for generating 
better system identification models. This will enable better process 
control actions in APC systems (Mendiola-Rodriguez and Ricardez-
Sandoval, 2022; Byun et al., 2021; Choi et al., 2023; Kimaev and 
Ricardez-Sandoval, 2019; Bangi and Kwon, 2023). Data-driven models 
can also be used for enhancing the pace of optimization solvers by 
enhancing the speed which can be achieved by looking at past data and 
then training the solver to search the solution space with greater effi
ciency. Apart from numerical data generated from sensors, images from 
catalysts can be used for determining the remaining life of the catalyst. 
Live video feeds and images can also be used in the area of process 
safety. The applications of data-driven modeling in process systems are 
expanding and the field has the potential to grow given that the chal
lenges of data availability and scalability are addressed. 
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