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In this paper we study the problem of finding the value of the parameter \ for
which the differential equation.

ax = f(t,x, dx,))
dt dt )]

has a solution satisfying the boundary conditions
x(0)=x"(0)=0 , x(T)=xp, (2)

where te [OT] X,x’, A are elements of some Banach space E. Sufficient conditions
for the existence of a unique solution are found as well as an iterative procedure for
finding the solution (x* (t),X*).

Assume that the following conditions are satisfied:

1) The operator f(t,x,y, X ) is continuous with the totality of its arguments
inQ = { [o.T] . | xll< R, [y|<KR". |All<p)
and satisfies the Lipschitz condition

| ftx,y, M) —f(t, X3, 2) | < L | x=% +M|| y=3] + N || x — X |

3)

2) There exists a linear bounded and continuously invertible operator B,
such that in Q the following inequality is satisfied:

1
“ f (T_t) { f(t,x,y,)\) ‘f(t’x,y}\) } dt—B(A— X ) ” =€ ” A - ?\ “

(0]

4)
3) The Lipschitz constants and & are such that
T (LR+MR+Np +m) <R ~ (5)
) ;
T(LR+MR +Np +m) <R, (6)
IB-'l{€ P+T*(LR+MR) +m + || x| } < p (7)
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where m = MAX | f(t,0,0.0)|

ost<T

For the solution of problem (1), (2) wee construct the following two

sequences‘
An+l=An-B' { X(T) - Xt} (8)
X (t) = f‘(t—s)f(s,xn(s),‘xn' (s),A\,)ds, n = 0,12, ...., (9)
n+t 0

where x, (t) is continuous in [o,T] , X,(0) = o
| @< R, | x| <R and [ X, [l <P .

Theorem

Let the conditions (3) — (7) be satisfied and let the

LT MT? NT*
2 2 2
Matrix A = LT MT NT
LT B MT B[ B
2 2

be an a-matrix i.e. the determinants of all principal minors of the matrix (I;—A) are
positive, where I is the unit 3 X 3 matrix (see [3] ). The problem (1). (2) has a
unique solution (x*(t), A *) which is the limit of the sequences (8). (9) and the
speed of convergence is given by

— — - —
max || x,(t) = x*(t) | R
O<t<T
max | 5,0 — X% | | <2A'G-A)" | R (10)
o <t<T
I An = A% o
3




Proof

Let E be a space of vector functions
x(t)

X(T) = X(t)
A

_ where x(t) is a continuously differentiable abstract function in [o T] with values in
E, X (t) its derivative and A €E - with the following norm,

— —
max  [[x(t)]
ost<T

IXOIE= | max ||X()]
ost<T

Al

Define in E an operator

[ ot
f (t—s)f(s.x(s). x'(s), \) ds = U(X(t)
g
GX()) =| [IHs.x(s).x" (5).0) ds = V(X()
ag
A B { X(T) — Xr } = W (X(1)).

Let X(t) €8S, where

§={X(ek, | X(1) | E <

v R X
——

Then from (4) — (8) we get:

t
| UX) || < | f(t—s)f(s,x(s), x"(s), A) ds —f‘(t—s)f(s,o.o.o,)
0 A




ds | + mT?
2

< T (LR+MR+N P +m) < R;
2

Vv )< | tf(s,x(s),x'(s), A) ds— tf(s,0,0-ds | +mT,
/ 5
T(LR+MR+N P +m) < R ;

Iwexap < IB=1 IB(}) - IT(T‘S’ {£(s.X(5), £(5). X ) ~£(5.x(s).
X (5). 0)} ds | ?

+l fT(T—S){ f(s,x(s), X (s),0) - (5,0,0,0) } .ds ||+ mT* |

2
+ I Xr ] < I B {&f + I x || + I LR+MR ) } <p.
2
Then it follows that
R
IexX@)lgs | R
LE. G(X(t)) € S. (11)

Let X(t) and X(t) € S. then it follows from (3) that:

| UXE)-UX®) | < LT max || x()—%(1) | + MT* max || x'(t)
2 o=<t<T 2 o=st<T

—X@® | + N A~ X |;
2

|| VEX(1)-V(X(®) || < LT, max | x(t-=%(t) || + MT max || x(t)—x(t) |
O=<t<T o<t<T

+NT| x - 2 ;




I W) -WX®) || < || B | [LT] max || x()=x(t) | +MT* max
2 ostsT T o=t=T

I x0-X0 | + €lx -X1]
These inequalities lead to:

IG(X(1) - GX(M) [E< Al X(t) - X(1) || T (12)

From (11), (12) using the generalized prmcnp]e of contraction mapping [3}.
follows that the operator G posseses in Sa unique stationary point x*(t) = G(X“t
(t)) and this point is the limit of the successive iterations.

Xnet(t) = GX, (). n = o,1, .......,

starting with an arbitrary element Xo(t) €3; the speed of convergence is
determined by

X 41 = X' | T < A(L=A)" | X()-G(X (1) | T
from which (10) follows. This proves the theorem.
Remarks 1:

If the R. H. S. of equation (1) can be written in the form
f(t.x,y,A) = b(t)A Te(tx,y, X ) and
lettxy, X)) —gex. Xy <o @l A = X Il
then we can take
B =[ (T-ob() dr

g

In this case

e =_(/)" (T—t) 8 (1) dt

Remarks 2:

The inequalities (5), (6) (7) can be replaced by the following:

e




I f(t.x,y, 2) || < (1)

f' (T-O)r(t)dt < R, f r(t)dt <R (13)

Q (6]

| fxy.0) || < p(0
1B (T-vp@dt+ixl}<a-elBp (19
g

Also the condition that the matrix A is an a-matrix can be replaced by the
assumption that|| A || = «< < 1 (15)
In the last case equation (10) will reduce to

R

A

[Xon(®) - XOF<2x" | R

1 - « P
Example:

To show that the conditions of the theorem are consistent, we introduce the
following example.

Consider the scalar differential equation of the detlection of a contilever of unit
length under the action of a weight X. at its end. The relevant eguation is

X (1) = =1 (1+(X ()™ A(1—1)
el




where e is the modules of\elasticity and I is the centroidal second moment of the
cross-section of the lever. It is required to calculate the value of A that will give a
maximum deflection x; at the end point.

Taking x; = 0.05 and el = 10 the problem becomes

X = =1 [1+& ©7]*ra-y
10

x(0) = X (0) = o and x(1) = 0.05

Here

E=(-00, +00), T=1, xr = 0.05

f(t,x,y, A) = =1 (1+y)™ X (1-v)
10

Choosing R = 0.1, R = 0.11 and f = 2,

Then r(t) = 0.21 (1-t), p(t) = 0 and the inequalities (13) are satisfied .

Taking b (t) = —1 (1—t) then B = —1
10 30
8 (t) = 0.0037(1—t)
e = 0.002

from which it follows that (14) is satisfied.

L=0,M=1008,N = 0.105

It can be easily seen that the matrix A has a norm less than unity and at the same

time it is an a-matrix

i.e. All the assumptions of the theorem are satisfied.
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