A Two-Point Boundary Value Problem for a Second Order Differential Equation with Parameter

by

I. A. Goma

Math. Dept. Qatar University In this paper we study the problem of finding the value of the parameter λ for which the differential equation.

$$\frac{d^2x}{dt^2} = f(t,x, \frac{dx}{dt}, \lambda)$$
(1)

has a solution satisfying the boundary conditions

$$x(o) = x'(o) = o$$
 , $x(T) = x_T$, (2)

where $t \in [0,T]$, x,x',λ are elements of some Banach space E. Sufficient conditions for the existence of a unique solution are found as well as an iterative procedure for finding the solution $(x^*(t),\lambda^*)$.

Assume that the following conditions are satisfied:

1) The operator $f(t,x,y,\lambda)$ is continuous with the totality of its arguments in $Q = \{ [0,T], ||x|| \le R, ||y|| \le R', ||\lambda|| \le \rho \}$ and satisfies the Lipschitz condition

$$\parallel f(t,x,y,\lambda)-f(t,\bar{x},\bar{y},\bar{\lambda})\parallel \leqslant L\parallel x-\bar{x}\parallel +M\parallel y-\bar{y}\parallel +N\parallel \lambda -\bar{\lambda}\parallel$$
 (3)

2) There exists a linear bounded and continuously invertible operator B, such that in Q the following inequality is satisfied:

$$\|\int_{0}^{\Lambda} (T-t) \{ f(t,x,y,\lambda) - f(t,x,y,\overline{\lambda}) \} dt - B(\lambda - \overline{\lambda}) \| \leq \epsilon \| \lambda - \overline{\lambda} \|$$

$$(4)$$

3) The Lipschitz constants and ∈ are such that

$$\frac{\mathrm{T}^2}{2} \left(LR + MR' + N \rho + m \right) \leq R \tag{5}$$

$$T(LR+MR'+N\rho+m) \leq R', \tag{6}$$

$$\|B^{-1}\|\{\in \rho + \underline{T}^{2}(LR + MR') + m + \|\times_{T}\|\} \le \rho$$
 (7)

where
$$m = MAX \parallel f(t,o,o,o)\parallel$$
, $o \le t \le T$

For the solution of problem (1), (2) wee construct the following two sequences.

$$\lambda n + 1 = \lambda n - B^{-1} \{ X(T) - X_T \}$$
 (8)

$$X_{n+1}(t) = \int_0^t (t-s)f(s,x_n(s), x_n^{-1}(s), \lambda_n)ds, \quad n = 0,1,2, \dots,$$
 (9)

where
$$\vec{x}_o(t)$$
 is continuous in $[o,T]$, $\vec{x}_o(o) = o$

$$\parallel \vec{x_o}(t) \parallel \leq \vec{R}, \parallel x_o(t) \parallel \leq R \text{ and } \parallel \lambda_o \parallel \leq \rho$$
.

Theorem

Let the conditions (3) - (7) be satisfied and let the

$$Matrix A = \begin{bmatrix} \frac{LT^2}{2} & \frac{MT^2}{2} & \frac{NT^2}{2} \\ LT & MT & NT \\ \frac{LT^2}{2} \|B^{-1}\| & \frac{MT^2}{2} \|B^{-1}\| \in \|B^{-1}\| \end{bmatrix}$$

be an a-matrix i.e. the determinants of all principal minors of the matrix (I_3-A) are positive, where I_3 is the unit 3×3 matrix (see $\begin{bmatrix} 3 \end{bmatrix}$). The problem (1), (2) has a unique solution $(x^*(t), \lambda^*)$ which is the limit of the sequences (8), (9) and the speed of convergence is given by

$$\begin{bmatrix}
\max \| \mathbf{x}_{n}(t) - \mathbf{x}^{*}(t) \| \\
O \leq t \leq T \\
\max \| \mathbf{x}_{n}^{*}(t) - \mathbf{x}^{*}(t) \| \\
o \leq t \leq T \\
\| \lambda_{n} - \lambda^{*} \|
\end{bmatrix} \leq 2\mathbf{A}^{n}(\mathbf{I}_{3} - \mathbf{A})^{-1} \quad \mathbf{R}^{n}$$
(10)

Proof

Let \widetilde{E} be a space of vector functions

$$X(T) = \begin{bmatrix} x(t) \\ \dot{x}(t) \\ \lambda \end{bmatrix}$$

where x(t) is a continuously differentiable abstract function in [0,T] with values in E, x'(t) its derivative and $\lambda \in E$ - with the following norm.

$$\|X(t)\|\widetilde{E} = \begin{cases} \max & \|x(t)\| \\ o \leq t \leq T \end{cases}$$

$$\|x(t)\|\widetilde{E} = \begin{cases} \max & \|x'(t)\| \\ o \leq t \leq T \end{cases}$$

$$\|\lambda\|$$

Define in \widetilde{E} an operator

$$G(X(t)) \equiv \begin{bmatrix} \int_{\sigma}^{t} (t-s)f(s,x(s), x'(s), \lambda) & ds & \equiv U(X(t)) \\ \int_{\sigma}^{\dagger} f(s,x(s), x'(s), \lambda) & ds & \equiv V(X(t)) \\ \lambda & -B^{-1} \left\{ X(T) - X_{T} \right\} & \equiv W(X(t)). \end{bmatrix}$$

Let
$$X(t) \in \widetilde{S}$$
, where
$$\widetilde{S} = \left\{ X(t) \in \widetilde{E}, \|X(t)\| \widetilde{E} \leq \begin{bmatrix} R \\ R \\ \rho \end{bmatrix} \right\}$$

Then from (4) — (8) we get:

$$\| \ U(X(t) \ \| \leq \| \int_{0}^{t} (t-s)f(s,x(s),\ x^{'}(s),\ \lambda \) \ ds \ - \int_{0}^{t} (t-s)f(s,o,o,o,) ds$$

$$ds \parallel + \underline{mT^{2}}$$

$$\leq \underline{T^{2}} (LR + MR + NP + m) \leq R;$$

$$2$$

$$\parallel V (x(t)) \parallel \leq \parallel \int_{-t}^{t} f(s, y(s), y'(s)) ds$$

$$\| V_{s}(x(t)) \| \le \| \int_{0}^{t} f(s,x(s),\dot{x}(s),\lambda) ds - \int_{0}^{t} f(s,o,o-ds \| + mT,$$

$$T(LR+MR+N + m) \leq R$$
;

Then it follows that

$$\|G(X(t))\|_{\widetilde{E}} \leqslant \begin{bmatrix} R \\ R \\ \rho \end{bmatrix},$$

I.E.
$$G(X(t)) \in \widetilde{S}$$
. (11)

Let X(t) and $\overline{X}(t) \in \widetilde{S}$. then it follows from (3) that:

$$\parallel U(X(t)) - U(\overline{X}(t)) \parallel \leq \underline{L}\underline{T}^2 \max \parallel x(t) - \overline{x}(t) \parallel + \underline{M}\underline{T}^2 \max \parallel x'(t)$$

$$2 \quad o \leq t \leq T$$

$$-\overline{x}(t) \parallel + \underline{NT}^2 \parallel \lambda - \overline{\lambda} \parallel ;$$

$$\parallel V(X(t)) - V(\overline{X}(t)) \parallel \leq LT, \ \max \parallel x(t - \overline{x}(t) \parallel + \ MT \ \max \parallel x(t) - \overline{x}(t) \parallel$$

$$O \leq t \leq T \qquad \qquad o \leq t \leq T$$

$$+ \ NT \parallel \lambda - \overline{\lambda} \parallel ;$$

$$\left\| \begin{array}{c} W(X)(t)) - W(\overline{X}(t)) \end{array} \right\| \leqslant \left\| \begin{array}{c} B^{-1} \end{array} \right\| \left[\begin{array}{c} \underline{L} T^2 \ \text{max} \end{array} \right\| x(t) - \overline{x}(t) \parallel + \underline{M} T^2 \ \text{max} \\ 2 \ \text{o} \leqslant t \leqslant T \end{array} \right.$$

$$\left\| \begin{array}{c} x(t) - \overline{x}(t) \parallel + \underline{K} T^2 \text{max} \\ 2 \ \text{o} \leqslant t \leqslant T \end{array} \right.$$

These inequalities lead to:

$$\|G(X(t)) - G(\overline{X}(t))\|_{E}^{2} \leq A \|X(t) - \overline{X}(t)\|_{E}^{2}$$

$$\tag{12}$$

From (11), (12) using the generalized principle of contraction mapping [3], it follows that the operator G posseses in \tilde{S} a unique stationary point $x^*(t) = G(X^*(t))$ and this point is the limit of the successive iterations.

$$X_{n+1}(t) = G(X_n(t)), n = 0,1, \dots,$$

starting with an arbitrary element $X_O(t) \in \widetilde{S}$; the speed of convergence is determined by

$$\parallel X_{n+1}(t) - X^{\star}(t) \parallel_{\widetilde{E}}^{\sim} \leq A^{n}(I_{3}-A)^{-1} \parallel X_{o}(t) - G(X_{o}(t)) \parallel_{\widetilde{E}}^{\sim}$$

from which (10) follows. This proves the theorem.

Remarks 1:

If the R. H. S. of equation (1) can be written in the form

$$f(t,x,y,\lambda) = b(t)\lambda + g(t,x,y,\lambda)$$
 and

$$\parallel g(t,x,y, \lambda) - g(t,x, \overline{\lambda}) \parallel \leq \theta (t) \parallel \lambda - \overline{\lambda} \parallel$$

then we can take

$$B = \int_{\sigma}^{\tau} (T - t)b(t) dt$$

In this case

$$\in = \int_{0}^{t} (T-t) \theta (t) dt$$

Remarks 2:

The inequalities (5), (6) (7) can be replaced by the following:

$$\| f(t,x,y,\lambda) \| \leq r(t)$$

$$\int_{0}^{\tau} (T-t)r(t)dt \leq R, \qquad \int_{0}^{\tau} r(t) dt \leq R$$

$$\parallel f(t,x,y,O) \parallel \leq p(t)$$
(13)

$$\| \mathbf{1}(\mathbf{t}, \mathbf{x}, \mathbf{y}, \mathbf{O}) \| \leq \mathbf{p}(\mathbf{t})$$

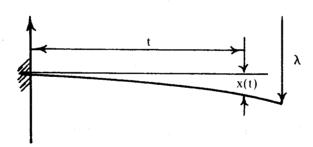
$$\|B^{-1}\| \{ \int_{\sigma}^{\tau} (T-t) p(t) dt + \|x_{T}\| \} \le (1 - \epsilon \|B^{-1}\|)$$
 (14)

Also the condition that the matrix A is an a-matrix can be replaced by the assumption that $\|A\| = \infty < 1$ (15) In the last case equation (10) will reduce to

$$\|X_{n+1}(t) - X(t)\|_{\widetilde{E}} \leq 2^{\alpha^{n}} \begin{bmatrix} R \\ R \\ f \end{bmatrix}$$

Example:

To show that the conditions of the theorem are consistent, we introduce the following example.



Consider the scalar differential equation of the deflection of a contilever of unit length under the action of a weight λ at its end. The relevant equation is

$$\vec{x}$$
 (t) = $\frac{-1}{eI}$ (1+(\vec{x} (t)^{213/2} λ (1-t)

where e is the modules of elasticity and I is the centroidal second moment of the cross-section of the lever. It is required to calculate the value of λ that will give a maximum deflection x_1 at the end point.

Taking $x_1 = 0.05$ and eI = 10 the problem becomes

$$x^{\lambda}(t) = \frac{1}{10} \left[1 + (x^{\lambda}(t))^2 \right]^{3/2} \lambda (1-t)$$

$$x(0) = x'(0) = 0$$
 and $x(1) = 0.05$

Here

$$E = (-oo, + oo), T = 1, x_T = 0.05$$

$$f(t,x,y, \lambda) = \frac{-1}{10} (1+y^2)^{3/2} \lambda (1-t)$$

Choosing R = 0.1, R' = 0.11 and f' = 2,

Then r(t) = 0.21 (1-t), p(t) = 0 and the inequalities (13) are satisfied

Taking b (t) =
$$\frac{-1}{10}$$
 (1-t) then B = $\frac{-1}{30}$

$$\Theta(t) = 0.0037(1-t)$$

from which it follows that (14) is satisfied.

$$L = O$$
 , $M = 0.08$, $N = 0.105$

It can be easily seen that the matrix A has a norm less than unity and at the same time it is an a-matrix

i.e. All the assumptions of the theorem are satisfied.

REFERENCES

- 1. Ciedovz, B. Boundary volume problem for differential equation in Banach space Seberski M. J. TOM 4, No. 1 1968.
- 2. Goma I. A., The method of successive approximation in a two point boundary value problem with parameter Ukrainski M. J. TOM 29, No. 6, 1977.
- 3. Pirov A. I., Kebenko A. V., About a general method for boundary value problems. Esvestia of the Academy of Sciences, U.S.S.R., TOM 30, No. 2, 1966.
- 4. Pasquali A., Allonne consideration numeriche relative allo sluwione gi un noto problema ai timiti per L'equation $x = f(t, x, \lambda)$ CALCOLO Vol. 11, 1969.
- 5. Petruv V., Remarks on the boundary value problems for differential equation in Banach space Gana Journal of Sciences, Vol. 10, No. 10, 1970.
- 6. Zanovello R., Sull Calcolo Numerica della solutione di un problema ai limita per l,equatione differential $y = f(x,y, \lambda)$ CALCOLO Vol. IV, 1967.

المسالة الحدية ذات النقطتان للمعادلات التفاضلية من الدرجة الثانية ذات البارامتر

ا. أ. جمعـــه

كلية العلوم - جامعة قطر

في البحث ندرس ايجاد قيمة البارامتر التي تجعل حل المعادلة التفاضلية المتجهة .

$$\frac{d^2x}{dt^2} = f(t, x, \frac{dx}{dt}, \lambda)$$

يحقق الشروط الحدية الآتيـــة:

$$X(o) = X'(o) = o, X(T) = X_T$$

t, Banach space متجهات في فراع بناخ x, λ متغير قياسى .

تعطى النظرية المثبته الشروط الكافية لأن يكون لهذه المسألة حل وحيد وكذلك تعطى طريقة الحل بتكوين متسلسلتين . كما تحدد النظرية أيضا سرعة تقارب المتسلسلتان من الحل المضبوط . وفي نهاية البحث تطبق النظرية على مثال للمعادلة التفاضلية المقياسية الخاصة بانحناء كوبولى محمل في نهايته بثقل λ ويبين هذا المثال تطابق شروط النظرية على المسألة المعطاه .