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ABSTRACT 

In this paper, several characterizations for s-closed spaces are obtained using regular 

semiclosed sets and some sets having two properties of near openness and near 

closedness in the same time. Images of s-closed spaces under some noncontinuous 

mappings are investigated. The relations between s-closedness and near compactness, 

co-compactness, almost co-compactness, light compactness, mild compactness are 

obtained. S-closed subsets relative to a semi-T 2-spaces are also discussed. 

INTRODUCTION AND PRELIMINARIES 

Throughout this paper, X andY mean topological spaces on which no separation 

axioms are defined unless otherwise stated explicitly. X is s-closed Thompson 

( 197 5 ) if any semi -open cover of X has a finite subfamily, the closures of whose 

members cover K. For a subset A c X, A-, A 0 and A c denotes, the closure, the 

interior and the complement of A, respectively. An open set A is co-open 

( Mashhour and Atia 1974 ), if A- is open and the complement of a co-open set is 

Ic-closed. ( Mashhour and Atia 1974 ). A subset S c X is regular open, R. o, 

( resp.o<.. -open,D(. o. ( Niastad 1965 ), semi-open, s. o. (Levine 1963 ), preopen, 

p. o. ( Mashhour et. a/1982 ), B-open, B. o. ( Abd El-Monsef eta/. 1982) if 

s = S0 ( resp. s c so-o, s c so-. s c s-o. s c s-o-) each of these sets is 
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called nearly open. The complement of a R. o. ( resp.o<,. o., s. o., p. o., B. o.) is 

called regular closed ( resp. o<. -closed, semi closed, preclosed, B-closed ). Each of 

these sets is called nearly closed. The symbol RO ( X ) ( resp. o< 0 ( X ), SO ( X ), 

PO (X), BO (X)) indicates the family of all R. o. ( resp. o<.. o., s. o., p. o., B. o.) 

subsets of X. A subset A of X is regular semi-open, R. s. o. (Cameron 1983) if 

there exists a regular open set U c X such that U c A c u-. A subset A of X is 

regular semi closed, R, s. c. if there exists a regular closed set F c X such that 

F
0 

c A F. X is an extremally disconnected space if the closure of every open 

subset of X is open. X is H ( i) if any open cover of X has a finite subfamily, the 

closures of whose members cover X. X is co-compact if any co-open cover of X 

has a finite subcover. X is almost co-compact if any co-open cover of X has a 

finite subfamily the closures ofwhose members cover X. X is lightly compact if any 

countable open cover of X has a finite subfamily the closures of whose members 

cover X. X is mildly compact if any countable open cover of X has a finite 

subfamily the interiors of the closures of whose members cover X. X is a ... 
semi-T 2 -space if for each x, y E X, x =F y, there exist U, V E SO (X), x E. U, 

y € V such that u- n y- = 0. A function f: X ~ Y is semi-continuous 

(Levine 1963) ifr1 
( U) € SO (X) for every U is open in Y. 

CHARACTERIZATIONS FOR S-CLOSED SPACES 

Theorem 2.1. The following statements are equivalent for a space X. 

( I ) X is S-closed. 

( 2) For any family { F. : i € I } of regular semi-closed sets of X for which 
I 

i ~ I F i = 0, there exist a finte subfamily I 
0 

c I such that i ~ I F 0 = 0. 
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( 3 ) . ~ B. ¥= 0, where { B. : i E. I } is a family of regular semi -closed subsets 
I 'I:. I I I 

of X for which. ~ B0 ¥= 0 for a finite subfamily I of I. 
1-Io o 

( 4 ) . ~ A. =# 0, where { A. : i E: I } is a family of semi closed subsets of X for 
I 0:::. I I 1 

which. !} I A 0 ¥= 0 for a finite subfamily I of I. 
I ~ 0 0 

( 5) . ~ R. ¥= 0, where { R.: i €. I }is a family of regular open subsets ofX for 
I 'I:. I J I 

which . ~·I R. ¥= 0 for a finite subfamily I of I. 
I O 1 0 

( 6) For any family { F. : i E: I } of B-closed and semi-open subsets of X for 
. n 1 

wh1ch . c F. = 0, there exists a finite subfamily I of I such that 
I<;.. I I 0 

n 
. E. IF = 0. 
I O 0 

( 7) . E.n I F. ¥= 0, where { F. : i E I } is is a family of B-closed and semi-open 
I 0 1 I 

subsets of X for which 
1
. ~ F 0 ¥= 0 for a finite subfamily I of I. 
~ Io o 

( 8 ) Any B-open and .x. -closed cover of X has a finite subcover. 

( 9 ) Any B-open and semi closed cover of X has a finite proximate subcover. 

Proof. The pattern ofthe proofwill be I ~ i, i £ { 2, 3, 4, 5, 6, 7, 8, 9 } . 

1 ~ 2. Let { F. : i E: I } be a regular semi closed family of subsets of X for 
I 

which . ~ F. = 0, then . ~ F~ = X. Thus, { Fe : i €. I } is a regular 
I..::. I I I ~ I 1 

semi-open cover of X which iss-closed, then there exists a finite subfamily I ofl 
0 

such that X = . Y Fe- = . U Eioc = ( n F0 )c. Hence, . ~· I F 0 
= 0. 

I"<:.Io 1f.I0 1 1~ 1 

2 ~ 1. Let { U. : i E. I } be a regular semi-open cover of X, then 
I 

X = . ~ U. and . ~ u.c 0. Thus, { uc : i E. I } is a family of regular semi 
I~I I 1oei 1 1 

closed subsets of X for which n uc = 0, then there exists a finite subfamily I 
i ~I I o 

of I such that . ~I ( Uc )~ 0. Since . ~ I ( U.c )0 =. ~ I u.-c = (. UE I U:- )c = 0. 
I 

0 
1o::;. O 1 I O 1 I 0 S. 

Then, X = . ~ u- and X is s-closed. 
I "" I 1 

1 ~ 3. 
0

Suppose the inverse, i.e., i ~I Bi = 0, then i~ I Bt = X and so, 
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{ Be : i E. I } is a regular semi-open cover of X which iss-closed, then there exists 

a finite subfamily I of I such that X = . ~ I B~- = . ~ I B.0 c = (. nE I Bt )c. Thus, 
0 I~ 0 1 I<:;;.

0
t, I O 

. ~ I B.
0 

= 0, a contadiction. Hence,. n I B. # 0. I<;;. 1 IE I 

3 ~ 1. Assume the inverse, i.e., X is not s-closed, then there exists a 

regular semi-open cover { U. : i E. I } which does not have any finite proximate 
I 

subcover, thus . ~ u- # X for any finite subfamily I of I. So, 0 # 
I ~ Ia o 

i2,u-c=i~Iouco c i~IoU~=(i~IoUi)c c (i~IUi)c.Hence,X # 

. !;! U., a contraduction. Therefore, X is s-closed. 
I~ I I 

1 ~ 4. Using Thompson's definition for s-closedness and by the same 

manner of 1 ~ 3, the result follows. 

1 ~ 5. Assume the inverse, i.e.,.~ R. = 0, then.~ R~ =X and { Rc 
I""'I I I'C,.I 1 

: i ~ I } is a regular closed cover of X which is s-closed. So, there exists a finite 

subfamily I of I such that X = . ~ R.c = (. ~ R. )c implies. 0 R. = 0, a 
0 I~I 1 I..:;.I I Io:.I I n o o o 

contradiction. Hence,. E. R. # 0. 
I I I 

5 ~ 1. Assume the inverse, i. e., X is not s-closed, then there exists a 

regular closed cover { U. : i €. I } which does not have any finite subcover. So, for 
I 

any finite subfamily I of I, . ~ U. # X which implies . ~ I uc # 0. then, 
0 1"C.I 0 1 1~ 0 \ 

. ~ I uc # 0 implies. ~ U. # X, a contradiction. Hence, X iss-closed. 
I -.::. -1 I ... I I 

1 ~ 6. Since each B-closed and semi -open set is semi closed ( Abdel 

-Mosef et. a/1982 ), the result follows. 

1 ~ 7. Obvious. 

1 ~ 8. Using the fact that "any B-open and o< -closed set is regular 

closed", the result is obtained. 

1 ~ 9.0bvious. 
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Theorem 2.2. If X is an s-closed space, then any preopen cover of X has a finite 

proximate subcover. 

Proof. Let { P. : i E. I } be a preopen cover of X, then for every i £ I, we have 
I 

Pi c ~-o and so, pi- c ~-o-, thus { Pi : i € I } is a semi-open cover of X 

which is s-closed. Then there exists a finite subfamily I of I such that 
0 

u p­
X=iti i" 

Corollary 2.1. If X is s-closed, then any preclosed family { P. : i €. I } for 
I 

which i ~ I Pi = 0 has a finite subfamily { Pi : i E. I 
0 

}, I 
0 

c I such that 

n 
. r I P. = 0. 
I 'C. O I 

Corollary 2.2. If X is s-closed, then i ~ I ~0 # 0, where { Pi : i € I } is a 

family ofpreclosed subsets ofX for which.'} P.0 # 0 for any finite subfamily I 
I ..._ I

0 
1 0 

ofl. 

Corollary 2.3. If X is s-closed, then any regular open cover of X has a finite 

proximate subcover. 

Corollary 2.4. If X is s-closed, then . ~ I R. # 0, where { R. : i €. I } is any 
I 0:... I I 

family of regular closed subsets of X for which i ~ I Ri0 # 0, for any finite 

subfamily I of I. 
0 

0 

Corollary 2.5. If X is s-closed, then for any regular closed family { F. : i E: I } 
I 

for which . n F. = 0, there exists a finite subfamily I of I such fuat 
I I I 0 

i ~ I:o = 0. 

Remark The authors need a counters example illustrates that the converse of 

Theorem 2.2 is not true. 

Theorem 2.3 For a space X having the property that the interiors of the members 

of any cover of X is also a cover ofX, X iss-closed if any preopen cover has a finite 

proximate subcover. 
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Proof. Let { U. : i E: I } be a semi-open cover of X, then U. c Ut for each 
I I 

i t. I. So, U.0 c uo-o and U.0 E:: PO (X). Thus, { U? : i €. I } is a preopen 
1 t 1 :0 

cover of X, then there exists a finite subfamily I of I such that X = . ~ I u<r 
0 I 0 

Since, u~- c u;' then X = i ~ I II- and X is s-closed. 

3- S-CLOSED SETS RELATIVE TO A SPACE AND S-CLOSED 

SUBSPACES. 

Theorem 3.1. A semi-closed open subset of an s-closed Space X is an s-closed 

subspace of X. 

Proof. Follows from Corollary 3.2 in ( Noiri, 1978) since every semi-closed and 

open set is regular open. 

Theorem 3.2. The interior of a semi-open subset A is an s-closed subspace of X 

iff A 0 is s-closed relative to X. 

Proof. Follows from Theorem 1.2 in Noiri ( 1977 ). 

Theorem 3.3. The closure of a preopen set A c X is an s-closed subspace of X 

if A- is s-closed relative to X. 

Proof. Follows from Corollary 3.5 and Theorem 3.5 of Noiri, ( 1978) since the 

closure of a preopen set is regular closed. 
... 

Theorem 3.4. Let a be an s-closed subset relative to a semi T 
2 

-space X and 

p t. X-A, then there exist a semi-open set V and a closed set U such that 

p E. U, A c V and U n V = 0. 

Proof. Let a t. A, then there exist G , F E: SO ( X ) such that p € G , 
a a a 

a ~ F and G- n F- = 0 because X is semi- i . Thus, { F :a E. A } is a 
a a a 2 a 

semi-open cover of A which iss-closed relative to X. Then there exists a family 

16 



M. E. ABD EL-MONSEF and A.M. KOZAE 

""' "1\ 

{ F , F , ... , F } such that A c . U p- = w- = V, where W = . n F is a 
a1 a1 a" 1 = I t 1 1 :: I ai 

semi-open set, since it is the union of semi-open sets. Thus, V C yo- is a 

semi-open set containing A. Also, for every a. ~ A, i E:. { 1, 2, ... , n }, there 
I 

exist F , a €. SO ( X ), p f. a and a. €. F such that a- n p- = 0, then 
"' a. a. a, 1 ai a, lJ. 

. j 1 11. .. "W\ -..A 

(. n 
1 

a-) n ( . u 
1 

p-) = 0::.: n 
1
a- n v. Put u = . n 

1 
a-, then u is 

I :::: Lj, I : a.i I : ~ I : Ai 

closed set containing p and U n V = 0. This complete the proof. 

Theorem 3.5. The semi continuous image of an s-closed space X, in which every 

semi -open set is preclosed, into a Hausdorff space Y is closed. 

Proof. Follows from Theorem 5.2 ofNoiri ( 1980 ). 

Definition 3.1. A mapping f: X ~ Y is M-B-continuous if the inverse 

image of each B-open set in Y is B-open in X. 

Theorem 3.6. Let f: X ~ Y be an M-B-continuous mapping from an 

s-closed space X, in which every B-open set is semi-closed, into a spaceY. Then, 

f( X) iss-closed relative toY. 

Proof. To prove that f ( X ) is s-closed relative to Y, let { U. : i € I } be a cover 
I 

off( X) by semi-open subsets of X. So, X = . ~ r 1 
( u.) and thus { r 1 

( U.) 
I 0:. I I I 

:i E I } is a family of B-open sets of X. Since every B-open set in X Is 

semi-closed. then { r 1 ( U.) : i € I } is a semi-open cover of X which IS 
I 

s-closed, then there exists a finite subfamily I 
0 

of I such that, X = i ~ I ( r 1 

0 

( U i )}- = i ~ I r 1 
( U i} = r 1 

( i ~ I U i ). Therefore, f( X) c i ~ I U i .C i ~ I 
0 • • 

U .-and so, f( X) iss-closed relative toY. 
I 

4- RELATIONS BETWEEN S-CLOSEDNESS AND SOME TYPES OF 

COMPACTNESS 

Theorem 4.1. Each s-closed space is almost co-compact. 
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Proof. Since each s-closed space is H ( i ) space Cameron ( 1983 ), Thompson 

( 1975) and each H ( i) space is almost co-compact Mashhour and Atia ( 1974 ), 

then the result follows. 

Theorem 4.2 Each extremally disconnected and almost co-compact space is 

s-closed. 

Proof. Let { U. : i E: I } be a regular closed of X, then U. = U.0 - and from 
1 I 1 

extrema disconnectedness, we have u. = uo-o which implies U 0 = u. is open for 
I { 1 

each i E I. Also, U .-= uo- = U. = u1.o-o = U?, i. e., the closure of any open set U. 
I I 1 I 

is open and hence { U. : i E. I } is a co-open cover of X which is almost 
1 

co-compact. So, there exists a finite subfamily I of I such that X = . ~ U~ and X 
0 I ..... I I 

is s-closed. 
0 

Corollary 4.1. Each extremally disconnected co-compact space is s-closed. 

Proof. Obvious since each co-compact space is almost co-compact. 

Theorem 4.3. An s-closed space in which every open set is co-open is nearly 

compact. 

Proof. Let { U. : i € I } be an open cover of X, then { U. : i €. I } is a 
I I 

semi-open cover of X which iss-closed, then there exists a finite subfamily I ofl 
0 

such that X = . ~ U .~Since U~is co-open, U. = u-o for each i €. I. Hence X = 
I 0::. I I I I u 0 

i E. I -y-o. Thus, X is nearly compact. 

Corollary 4.2. An s-closed space in which every open set is co-open is mildly 

compact. 

We introduce the following diagram for a space X. 
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Lightly compact.-....------ H ( i) ------,~Almost co-compact 

Mildly lmpact Nea,l compru:t ,. -<1.)--"-( ~~zd 
I i ( 2 )__,---- ( 1) 

~ \ 
Countab y compact Compact Co-compact 

The implications 1, 2, 3 and 4 take place under the following conditions. 

( 1 ) X is extremely disconnected. 

( 2 ) Every open set in X is co-open and semi -closed, or X is regular. 

( 3 ) Every open set in X is co-open. 

( 4 ) X is extremaly disconnected. 
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