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ABSTRACT 

This paper deals with some special cases on Hasse's principle about the 
diagonalization of Z-lattices L of indefinite regular guadratic forms over Q. It is 
asserted that for some specific values of a certain set D of discriminants of L, that 
the local condition of ~ diagonalization is equivalent to the global condition that L 
is an odd lattice. 

INTRODUCTION 

Let L be a Z-lattice on an indefinite regular quadratic Q-space V, of finite 
dimension n;::::: 3, with associated symmetric bilinear form f: V x V ~ Q. Assume, 
for convenience, that f(L,L) = Z, namely the scale of Lis Z. Let Xt. ... , xn be a 
Z-basis for L and put d = dL = det f(xi, xi), the discriminant of the Iettice L. We 
study a Hasse principle for diagonalization, that is, we investigate the set D of 
discriminants with the property that all indefinite lattices with discriminant in D, 
which diagonalize locally at all primes, also diagonalize globally over Z. Since all 
lattices diagonalize locally at the odd primes (see O'Meare [5]), the local condition 
is only significant for the prime 2. A result of J. Milnor states that all odd lattices L 
with dL = ±1 have an orthogonal basis (see Serre [6] or Wall [7]). Thus ±1 ED. It 
is also shown in James [3] that ±2 qED for all primes q = 3 mod 4, but 2.41 ¢.D. 
We prove here the following. 

Theorem: Let p = 1 mod 4, p' = 5 mod 8, q = 3 mod 4 and q' = 3 mod 8 be primes 
with Legendre symbols ( .9..) = ( ..£.:) = -1. Then ± d E D for the following values 
of d: P P 

1, 2, 4, q, 2 q, q2
, 2q2

, 2qq'' 2p'' pq, 2pq, 2pp'' 2p'2
, 2p'q. 

For each of the discriminants d considered in the above theorem, except d = 4, the 
local condition that L2 diagonalizes is equivalent to the global condition that L is an 
odd lattice, namely the set { f(x, x) I x E L} contains at least one odd number. An 
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exact determination of D appears very difficult. In fact we will exhibit d E D with d 
containing arbitrarily many prime factors (see proposition 2). 

Let i = i(L) = i(V) be the Witt index of V. Then D(i) denotes the set of 
discriminants of Lattices L on spaces V with Witt index at least i which diagonalize 
over Z whenever the localization L2 diagonalizes. It is also useful to introduce the 
stable version D(oo) of discriminants where dL E D(oo) means the lattice L..l Hm 
diagonalizes for m sufficiently large, assuming Lz diagonalizes, where Hm is the 
orthogonal sum of m integral hyperbolic planes H corresponding to the matrix 

[ ~ ij J Trivially, 

D = D(1) ~ D(2) ~ ... ~ D(oo). 

We also establish some results for the sets D(i). For example, ± qq' is in D(2) for 
primes q = q' = 3 mod 4, but± qq' is not in D(1). Thus D(1) # D(2). On the other 
hand, the discriminants p, 4p, p2

, pe and 4pe are not in D(oo) for any primes p, I 
with p = 1 mod 4 and (f) = 1. 

p 

Although the theorem above only states the existence of a diagonalized form for 
any lattice with the given discriminant d E D, the proofs are constructive and will 
determine a-diagonal matrix for the form (which need not be unique). 

PRELIMINARIES 

It is convenient to adopt the convention that p is always a prime with p = 1 mod 4, 
while q is a prime with q = 3 mod 4. Let< ab ... , an> denote the Z-lattice Zx1 ..l 
... ..l Zxn with an orthogonal basis where f(xi, xi) = ai, 1 ~ i ~ n. Most of our 
notation follows O'Meara [5]. Thus LP is the localization of L at the prime p, while 
sP Lis the Hasse symbol of the local space on which LP lies. Let s(L) = s(V) denote 
the signature of the space V. 

Since we only consider indefinite lattices L, the genus and the class of L coincide, 
provided the discriminant dL is not divisible by any odd prime power ee with 
exponent e ;;::= 1/z n(n-1), nor by 27 (see Earnest and Hsia [2], Kneser [ 4]). 

We also need to know when two Z-lattices L and M with the same rank n and 
discriminant d are locally isometric. At the infinite prime the spaces must have the 
same signature. General conditions at the finite primes e are given in O'Meara 
([5]), 92, 93). Assume first, as is necessary, that Le and Me have the same 
Jordan type. We will use the following special cases. 

(i) If Le and Me are unimodular, then Le = Me. 

12 
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(ii) Let Le = Jf ..l. < t'b > and Me = Kf ..l. < t'c > 

with Je and Ke unimodular, of the same rank, and b, c t'-adic units. Assume e an 
odd prime. Then Le=M if and only if SeLe=SeMe that is, if and only if the Hilbert 
symbol (be, e) = 1. 

e 
(iii) If L2 and M2 are diagonalizable and have the same Jordan type consisting of a 
unimodular and a 2-modular component, then L2 and M2 are isometric by O'Meara 
([5], 93: 29). 

MAIN RESULTS 

The theorem stated in the Introduction, along with the other comments given 
there, are consequences of the following more specific results and techniques. 

Proposition 1. Let ±d be a product of g distinct primes q = 3 mod 4. Then 

(i) ± 1, ±2, ±4 E D, 

(ii) d, 2d E D(g), 

(iii) 2d E D(g-1), provided g ~ 2 and there exists a prime q' = 3 mod 8 dividing d. 

Proof: Let L be an odd lattice with d = dL, rank n ~ 3 and index i(L) ~ g ~ 1. Let q 
be a prime dividing d. Consider the two Z-lattices N = J ..l. < q > and 
N' = K ..l. < -q > 

where J and K are diagonalized lattices and dN = dN' = bq, where (b, q) = 1. 
Since q = 3 mod 4, we have 

and 

b -(-) 
q 

Hence we can choose M equal to N or N' such that Sq M = Sq L. In fact, more 
generally, since i(L) ~ g, we can choose 

M = < ± q~> ±q2 , ... , ±qg, ±1, ... , ±1 > 

such that dM = dL = d, rank M = n, s(M) = s(L) and Sq M = Sq L for all primes q 
dividing d. Then S00 M = S00 L and Se M = M = S e L for all odd primes e. By 
Hilbert reciprocity, S2M = S2L and hence M and L can be viewed as lying on the 
same quadratic space. By earlier remarks, L and M are in the same genus and 
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hence the same class. Thus L diagonalizes and d E D(g). A slight modification of 
the above, introducing a ±2 term into M, shows that 2d E D(g). This proves (ii). 
The above argument also holds, with minor modifications, when g = 0 and d = ±1, 
±2 or ±4. In the cased= ±4, the sign of< ±22 >in M must be chosen to ensure 
M 2 = L2 if L2 has a 4-modular component. This proves (i). 

Now assume dL = 2d and there exists a prime q = 3 mod 8 dividing d.Fonsider N 
= J ..l < q > and N 1 = K ..l < 2q > with J and K as before. Since ( q ) = -1, it 
follows that Sq N = -Sq N 1

• A similar conclusion holds for the pair J ..l < -q >and 
K ..l <-2q >. Hence we can again arrange that Sq L = Sq M by using the factor 2 
and save one choice of sign. Thus L now diagonalizes if i(L) ~ g -1 ~ 1, proving 
(iii). 

Remark: Proposition 1 establishes ±qq 1 E D(2) for primes q = q 1 = 3 mod 4. 

However, ±qq 1 is not in D(1). We may assume ( ~~) = 1. By Dirichlet's Theorem 
q I 

there exists a prime e = 3 mod 4 with -( 1..) = ( 1..) = 1. Then ( ~ ) = 1 and 
ql q e 

there exists c EN with c2 = -qq 1 mod e. Put a= ( c2 + qq 1 
) e-' EN and let B be 

the binary Z-lattice corresponding to the symmetric matrix [ ~ ~]. Put L = < 1, 1, 

... , 1, - 1 > ..l B. Then L has index i(L) = 1 and dL = - qq 1 • Also Sq L = ( 1..) = 1 
q 

and Sq L = -1. If L diagonalizes, then L = U ..l J where U = < 1, 1, ... , 1 >and J 
is one of the five lattices< 1, 1, -qq 1 >, < 1, -1, qq 1 >, < 1, q, -q 1 >, < 1, -q, 
q 1 >or< -1, q, q 1 >.But none of these five lattices has the same Hasse symbols as 
L at q and ql. Hence L does not diagonalize and -qq 1 is not in D(1). The lattice 
obtained from L by scaling by -1 also does not diagonalize. Hence qq 1 fj. D(1). 

Proposition 2: Let Pi= 5 mod 8, 1 ~ i ~ m, be distinct primes with(pi)= 1, 1 ~ i ¥-J' 
Pj 

~ m, and d = ±2 Pt P2 ... Prn· Then d and dq are in D for any prime q = 3 mod 4. 

Proof: Consider the binary Z-Iattice B = < -p1 ... p., 2pr + 
1 

... Prn > where o ~ r 
~ m. By varying rand permuting the primes Pi, there are 2m distinct choices for B. 
Since, for 1 ~ i ~ r, 

sp,B = ( -p~ ... p., - I d I ) = C2) -1, 
Pi Pi 

while for r + 1 ~ j ~ m, 

the values of the Hasse symbols SP B are distinct for each of these 2m ·choices of B. 
Let L be an odd indefinite Z-Iattice with dL =d. Then we can find M = U ..l B with 
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U = < ±1, ... , ±1 >and rank M =rank L such that s(M) = s(L) and Se M = Se L 
for all odd primes e. Again, by Hilbert reciprocity, S2M = S2L so that MandL are 
on the same quadratic space and are isometric. Thus L diagonalizes and d E D. 

Next consider< q > ..l B1 and< -q > ..l B2 where B1 and B2 are variants of B with 
dB1 = -dB2 achieved by changing a sign in the coefficients (since ( -1 ) = 1, this 

p 
has no effect on SP B). These two lattices have the same Hasse symbols at all odd 
primes except q where they have the opposite values. Proceeding as before, we now 
have dq E D. 

Remark: Many variations of the above two propositions can be established for 
other combinations of primes. Also the method can be used when d is not square 
free, although there will now be more Jordan types to consider. For example, as is 
indicated in the statement of the main theorem, it can be shown that ±q2 and ±2q2 

are in D for any prime q = 3 mod 4. 

On the other hand, there are many choices for d = dL of a similar nature where L 
need not diagonalize. 

Proposition 3: Let p = 1 mod 4 be prime and D, E EN with <-b) = 1 for any prime e 
dividing D. Then ±pDP $. D(oo). 

Proof: By Diriclet's theorem there exists a prime q = 3 mod 4 with ( ~ ) = -1. 

Hence there exists c E N such that c:p = -1 mod q. Put a = (1 +c2p )q-' E N and let 
B = Zx1 + Zx2 be the binary lattice where f(x~> x1) = a, f(x~> x2) = pc and f(x2 , x2) 

= pq. Then dB= p. Let L = U ..l < -DE2 > ..l B where U = < ±1, ... , ±>is 
unimodular. Then Lis an indefinite lattice with dL = ±pDP and the localization 
Lz diagonalizes. If L diagonalizes, then L = Z x ..l N with ordP f(x, x) = 1. Hence 
f(x,q ~ pZ and consequently x = pu + v + w where u E U, v =<X x1 + 13 x2 E B 
and w E < -DE2 > with f(w,w) = 0 mod p2

• Hence 

f(x,x) = f(v ,v) = a 2a + 2 a 13 pc + W pq mod p2
• 

Consequently p divides a and f(x,x) = Wpq mod p2
• Let f(x,x) = pb. Then b divides 

DE2
, and ( Jl) = -1 by choice of q. If e is a prime dividing b, then either e divides D 

p 
and hence ( ~) = 1, ore divides E in which case orde b is even (from considering 

the Jordan type of Lf). This leads to the contradiction ( ~ ) = 1, since p = 1 mod 4. 

Hence L does not diagonalize and, since U can have arbitrarily large index, 
necessarily dL = ±pDE2 is not in D(oo). 

Corollary: If p = 1 mod 4 and e are primes with (.f) = 1, then ± d fj. D( oo) for d = 
p 

p, 4p, pe and 4pe. 

Remark: By varying the choic~ of B in the proof of proposition 3, it is possible to 
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produce more discriminants d f/= D (oo). We give three further examples. 
LetD, E EN. 

(i) Let p = p' = 1 mod 4 be primes with ( ..£: ) = -1. 
p 

then 

±pp'E2 ~ D(oo). 

(ii) Let p = p' = 1 mod 8 be primes with ( X ) -1. 
p 

then 

±2pp'E2 ~ D(oo). 

(iii) Let p = 1 mod 4 be a prime with (1..) = 1 for all primes e dividing D. Then 
p 

±p2DE2 E D(oo). 
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~J~I J.:i ~lSl.ll .t !'~,;JI ~I 

~~~ ~JJ .oJJ ~~ 4.....i:tWIJ 
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