# DIAGONALIZABLE INDEFINITE INTEGRAL QUADRATIC FORMS 

By<br>LAILA E. M. RASHID<br>Mathematics Department, Faculty of Education, Kafer El-Sheikh, Tanta Univerrsity, Kafer El-Sheikh, Egypt


#### Abstract

This paper deals with some special cases on Hasse's principle about the diagonalization of Z-lattices $L$ of indefinite regular guadratic forms over $Q$. It is asserted that for some specific values of a certain set $D$ of discriminants of $L$, that the local condition of $L_{2}$ diagonalization is equivalent to the global condition that $L$ is an odd lattice.


## INTRODUCTION

Let $L$ be a Z-lattice on an indefinite regular quadratic $Q$-space $V$, of finite dimension $n \geqslant 3$, with associated symmetric bilinear form $f: V \times V \rightarrow Q$. Assume, for convenience, that $f(L, L)=Z$, namely the scale of $L$ is $Z$. Let $x_{1}, \ldots, x_{n}$ be a $Z$-basis for $L$ and put $d=d L=\operatorname{det} f\left(x_{i}, x_{j}\right)$, the discriminant of the lettice $L$. We study a Hasse principle for diagonalization, that is, we investigate the set $D$ of discriminants with the property that all indefinite lattices with discriminant in D , which diagonalize locally at all primes, also diagonalize globally over Z. Since all lattices diagonalize locally at the odd primes (see O'Meare [5]), the local condition is only significant for the prime 2 . A result of J . Milnor states that all odd lattices L with $\mathrm{dL}= \pm 1$ have an orthogonal basis (see Serre [6] or Wall [7]). Thus $\pm 1 \in \mathrm{D}$. It is also shown in James [3] that $\pm 2 q \in D$ for all primes $q \equiv 3 \bmod 4$, but $2.41 \notin D$. We prove here the following.

Theorem: Let $p \equiv 1 \bmod 4, p^{\prime} \equiv 5 \bmod 8, q \equiv 3 \bmod 4$ and $q^{\prime} \equiv 3 \bmod 8$ be primes with Legendre symbols $\left(\frac{q}{p}\right)=\left(\frac{p^{\prime}}{p}\right)=-1$. Then $\pm d \in D$ for the following values
of $d$ :
$1,2,4, q, 2 q, q^{2}, 2 q^{2}, 2 q^{\prime}, 2 p^{\prime}, p q, 2 p q, 2 p^{\prime}, 2 p^{\prime 2}, 2 p^{\prime} q$.
For each of the discriminants $d$ considered in the above theorem, except $d=4$, the local condition that $L_{2}$ diagonalizes is equivalent to the global condition that $L$ is an odd lattice, namely the set $\{f(x, x) \mid x \in L\}$ contains at least one odd number. An
exact determination of $D$ appears very difficult. In fact we will exhibit $d \in D$ with $d$ containing arbitrarily many prime factors (see proposition 2 ).

Let $i=i(L)=i(V)$ be the Witt index of $V$. Then $D(i)$ denotes the set of discriminants of Lattices $L$ on spaces $V$ with Witt index at least $i$ which diagonalize over $Z$ whenever the localization $L_{2}$ diagonalizes. It is also useful to introduce the stable version $D(\infty)$ of discriminants where $d L \in D(\infty)$ means the lattice $L \perp H^{\text {m }}$ diagonalizes for $m$ sufficiently large, assuming $L_{2}$ diagonalizes, where $H^{m}$ is the orthogonal sum of $m$ integral hyperbolic planes $H$ corresponding to the matrix
$\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ Trivially,
$\mathrm{D}=\mathrm{D}(1) \subseteq \mathrm{D}(2) \subseteq \ldots \subseteq \mathrm{D}(\infty)$.
We also establish some results for the sets $D(i)$. For example, $\pm q q^{\prime}$ is in $D(2)$ for primes $q \equiv q^{\prime} \equiv 3 \bmod 4$, but $\pm q q^{\prime}$ is not in $D(1)$. Thus $D(1) \# D(2)$. On the other hand, the discriminants $p, 4 p, p^{2}, p \ell$ and $4 p \ell$ are not in $D(\infty)$ for any primes $p, 1$ with $\mathrm{p} \equiv 1 \bmod 4$ and $\left(\frac{\ell}{\mathrm{p}}\right)=1$.
Although the theorem above only states the existence of a diagonalized form for any lattice with the given discriminant $d \in D$, the proofs are constructive and will determine a-diagonal matrix for the form (which need not be unique).

## PRELIMINARIES

It is convenient to adopt the convention that $p$ is always a prime with $p \equiv 1 \bmod 4$, while q is a prime with $\mathrm{q}=3 \bmod 4$. Let $<\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{n}}>$ denote the Z -lattice $\mathrm{Zx}_{1} \perp$ $\ldots \perp \mathrm{Zx}_{\mathrm{n}}$ with an orthogonal basis where $\mathrm{f}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{i}}\right)=\mathrm{a}_{\mathrm{i}}, 1 \leqslant \mathrm{i} \leqslant \mathrm{n}$. Most of our notation follows O'Meara [5]. Thus $L_{p}$ is the localization of $L$ at the prime $p$, while $s_{p} L$ is the Hasse symbol of the local space on which $L_{p}$ lies. Let $s(L)=s(V)$ denote the signature of the space V .

Since we only consider indefinite lattices $L$, the genus and the class of $L$ coincide, provided the discriminant dL is not divisible by any odd prime power $\ell^{e}$ with exponent $\mathrm{e} \geqslant 1 / 2 \mathrm{n}(\mathrm{n}-1)$, nor by $2^{7}$ (see Earnest and Hsia [2], Kneser [4]).

We also need to know when two Z-lattices $L$ and $M$ with the same rank $n$ and discriminant $d$ are locally isometric. At the infinite prime the spaces must have the same signature. General conditions at the finite primes $\ell$ are given in O'Meara ([5]), 92, 93). Assume first, as is necessary, that $L_{\ell}$ and $M_{\ell}$ have the same Jordan type. We will use the following special cases.
(i) If $L_{\ell}$ and $M_{\ell}$ are unimodular, then $L_{\ell} \cong M_{\ell}$.
(ii) Let $\mathrm{L}_{\ell}=\mathrm{J}_{\ell} \perp<\ell \mathrm{b}>$ and $\mathrm{M}_{\ell}=\mathrm{K}_{\ell} \perp<\ell \mathrm{c}>$
with $\mathrm{J}_{\ell}$ and $\mathrm{K}_{\ell}$ unimodular, of the same rank, and $\mathrm{b}, \mathrm{c} \ell$-adic units. Assume $\ell$ an odd prime. Then $L_{\ell} \cong M$ if and only if $S_{\ell} L_{\ell}=S_{\ell} M_{\ell}$ that is, if and only if the Hilbert symbol $\left(\frac{\mathrm{bc}, \ell}{\ell}\right)=1$.
(iii) If $\mathrm{L}_{2}$ and $\mathrm{M}_{2}$ are diagonalizable and have the same Jordan type consisting of a unimodular and a 2-modular component, then $L_{2}$ and $\mathrm{M}_{2}$ are isometric by O'Meara ([5], 93: 29).

## MAIN RESULTS

The theorem stated in the Introduction, along with the other comments given there, are consequences of the following more specific results and techniques.

Proposition 1. Let $\pm d$ be a product of $g$ distinct primes $q \equiv 3 \bmod 4$. Then
(i) $\pm 1, \pm 2, \pm 4 \in \mathrm{D}$,
(ii) $\mathrm{d}, 2 \mathrm{~d} \in \mathrm{D}(\mathrm{g})$,
(iii) $2 \mathrm{~d} \in \mathrm{D}(\mathrm{g}-1)$, provided $\mathrm{g} \geqslant 2$ and there exists a prime $\mathrm{q}^{\prime} \equiv 3 \bmod 8$ dividing d .

Proof: Let L be an odd lattice with $\mathrm{d}=\mathrm{dL}$, rank $\mathrm{n} \geqslant 3$ and index $\mathrm{i}(\mathrm{L}) \geqslant \mathrm{g} \geqslant 1$. Let q be a prime dividing d. Consider the two Z-lattices $\mathbf{N}=\mathrm{J} \perp<\mathrm{q}>$ and $\mathbf{N}^{\prime}=\mathbf{K} \perp<-\mathbf{q}>$
where $J$ and $K$ are diagonalized lattices and $d N=d N^{\prime}=b q$, where $(b, q)=1$. Since $q \equiv 3 \bmod 4$, we have
$S_{q} N=\left(\frac{q, q b}{q}\right)=\left(\frac{q,-b}{q}\right)=-\left(\frac{b}{q}\right)$
and
$S_{q} N^{\prime}=\left(\frac{-\mathrm{q}, \mathrm{qb}}{\mathrm{q}}\right)=\left(\frac{-\mathrm{q}, \mathrm{b}}{\mathrm{q}}\right)=\left(\frac{\mathrm{b}}{\mathrm{q}}\right)$.
Hence we can choose $M$ equal to $N$ or $N^{\prime}$ such that $S_{q} M=S_{q} L$. In fact, more generally, since $\mathrm{i}(\mathrm{L}) \geqslant g$, we can choose
$\left.\mathbf{M}=< \pm q_{1}, \pm q_{2}, \ldots, \pm q_{g}, \pm 1, \ldots, \pm 1\right\rangle$
such that $d M=d L=d$, rank $M=n, s(M)=s(L)$ and $S_{q} M=S_{q} L$ for all primes $q$ dividing d. Then $S_{\infty} M=S_{\infty} L$ and $S_{\ell} M=M=S_{\ell} L$ for all odd primes $\ell$. By Hilbert reciprocity, $S_{2} M=S_{2} L$ and hence $M$ and $L$ can be viewed as lying on the same quadratic space. By earlier remarks, $L$ and $M$ are in the same genus and
hence the same class. Thus $L$ diagonalizes and $d \in D(g)$. A slight modification of the above, introducing a $\pm 2$ term into M , shows that $2 \mathrm{~d} \in \mathrm{D}(\mathrm{g})$. This proves (ii). The above argument also holds, with minor modifications, when $\mathrm{g}=0$ and $\mathrm{d}= \pm 1$, $\pm 2$ or $\pm 4$. In the case $d= \pm 4$, the sign of $< \pm 2^{2}>$ in $M$ must be chosen to ensure $M_{2} \cong L_{2}$ if $L_{2}$ has a 4-modular component. This proves (i).

Now assume $\mathrm{dL}=2 \mathrm{~d}$ and there exists a prime $\mathrm{q} \equiv 3 \bmod 8$ dividing d.Consider N $=\mathrm{J} \perp<\mathrm{q}>$ and $\mathrm{N}^{\prime}=\mathrm{K} \perp<2 \mathrm{q}>$ with J and K as before. Since $\left(\frac{2}{\hat{\mathbf{q}}}\right)=-1$, it follows that $S_{q} N=-S_{q} N^{\prime}$. A similar conclusion holds for the pair $J \perp \stackrel{q}{<}-q>$ and $\mathrm{K} \perp<-2 \mathrm{q}>$. Hence we can again arrange that $\mathrm{S}_{\mathrm{q}} \mathrm{L}=\mathrm{S}_{\mathrm{q}} \mathrm{M}$ by using the factor 2 and save one choice of sign. Thus $L$ now diagonalizes if $i(L) \geqslant g-1 \geqslant 1$, proving (iii).

Remark: Proposition 1 establishes $\pm q^{\prime} \in D(2)$ for primes $q \equiv q^{\prime} \equiv 3 \bmod 4$. However, $\pm q q^{\prime}$ is not in $D(1)$. We may assume $\left(\frac{q}{q^{\prime}}\right)=1$. By Dirichlet's Theorem there exists a prime $\ell \equiv 3 \bmod 4$ with $-\left(\frac{\ell}{\mathbf{q}^{\prime}}\right)=\left(\frac{\ell}{\mathrm{q}}\right)=1$. Then $\left(\frac{-\mathrm{qq}^{\prime}}{\ell}\right)=1$ and there exists $\mathrm{c} \in \mathrm{N}$ with $\mathrm{c}^{2} \equiv-\mathrm{qq}^{\prime} \bmod \ell$. Put $\mathrm{a}=\left(\mathrm{c}^{2}+\mathrm{qq}^{\prime}\right) \ell^{-1} \in \mathrm{~N}$ and let B be the binary Z-lattice corresponding to the symmetric matrix $\left[\begin{array}{l}\ell \\ c \\ c\end{array}\right]$. Put $L=<1,1$, $\ldots, 1,-1>\perp B$. Then $L$ has index $i(L)=1$ and $d L=-q q^{\prime}$. Also $S_{q} L=\left(\frac{\ell}{q}\right)=1$ and $S_{q} L=-1$. If $L$ diagonalizes, then $L=\cup \perp J$ where $U=<1,1, \ldots, 1>$ and $J$ is one of the five lattices $\left.<1,1,-\mathrm{qq}^{\prime}>,<1,-1, \mathrm{qq}^{\prime}>,<1, \mathrm{q},-\mathrm{q}^{\prime}\right\rangle,<1,-\mathrm{q}$, $\mathrm{q}^{\prime}>$ or $<-1, \mathrm{q}, \mathrm{q}^{\prime}>$. But none of these five lattices has the same Hasse symbols as $L$ at $q$ and $q^{\prime}$. Hence $L$ does not diagonalize and $-q q^{\prime}$ is not in $D(1)$. The lattice obtained from $L$ by scaling by -1 also does not diagonalize. Hence $q q^{\prime} \notin D(1)$. Proposition 2: Let $p_{i} \equiv 5 \bmod 8,1 \leqslant i \leqslant m$, be distinct primes with $\left(\frac{P_{i}}{p_{j}}\right)=1,1 \leqslant i \neq j$ $\leqslant m$, and $d= \pm 2 p_{1} p_{2} \ldots p_{m}$. Then $d$ and $d_{q}$ are in $D$ for any prime $q \equiv 3 \bmod 4$. Proof: Consider the binary Z-lattice $B=<-p_{1} \ldots p_{r}, 2 p_{r+1} \ldots p_{m}>$ where $o \leqslant r$ $\leqslant m$. By varying $r$ and permuting the primes $p_{i}$, there are $2^{m}$ distinct choices for $B$. Since, for $1 \leqslant i \leqslant r$,
$\mathrm{S}_{\mathrm{p}_{\mathrm{i}}} \mathrm{B}=\left(\frac{-\mathrm{p}_{1} \ldots \mathrm{p}_{\mathrm{r}},-|\mathrm{d}|}{\mathrm{P}_{\mathrm{i}}}\right)=\left(\frac{2}{\mathrm{p}_{\mathrm{i}}}\right)=-1$,
while for $r+1 \leqslant j \leqslant m$,
$S_{p_{j}} B=\left(\frac{2 p_{r+1} \cdots p_{m},-|d|}{p_{i}}\right)=1$,
the values of the Hasse symbols $S_{p} B$ are distinct for each of these $2^{m}$ choices of $B$. Let $L$ be an odd indefinite Z-lattice with $d L=d$. Then we can find $M=U \perp B$ with
$\mathrm{U}=< \pm 1, \ldots, \pm 1>$ and $\operatorname{rank} M=\operatorname{rank} L$ such that $s(M)=s(L)$ and $S_{\ell} M=S_{\ell} L$ for all odd primes $\ell$. Again, by Hilbert reciprocity, $S_{2} M=S_{2} L$ so that $M$ and $L$ are on the same quadratic space and are isometric. Thus $L$ diagonalizes and $d \in D$.

Next consider $<q>\perp \mathrm{B}_{1}$ and $<-\mathrm{q}>\perp \mathrm{B}_{2}$ where $\mathrm{B}_{1}$ and $\mathrm{B}_{2}$ are variants of B with $\mathrm{dB}_{1}=-\mathrm{dB}_{2}$ achieved by changing a sign in the coefficients (since $\left(\frac{-1}{\mathrm{p}}\right)=1$, this has no effect on $S_{p} B$ ). These two lattices have the same Hasse symbols at all odd primes except $q$ where they have the opposite values. Proceeding as before, we now have $d q \in D$.

Remark: Many variations of the above two propositions can be established for other combinations of primes. Also the method can be used when d is not square free, although there will now be more Jordan types to consider. For example, as is indicated in the statement of the main theorem, it can be shown that $\pm q^{2}$ and $\pm 2 q^{2}$ are in $D$ for any prime $q \equiv 3 \bmod 4$.

On the other hand, there are many choices for $d=d L$ of a similar nature where $L$ need not diagonalize.
Proposition 3: Let $\mathrm{p} \equiv 1 \bmod 4$ be prime and $\mathrm{D}, \mathrm{E} \in \mathrm{N}$ with $\left(\frac{1}{\mathrm{p}}\right)=1$ for any prime $\ell$ dividing $D$. Then $\pm \mathrm{pDE}^{2} \notin \mathrm{D}(\infty)$.
Proof: By Diriclet's theorem there exists a prime $\mathrm{q} \equiv 3 \bmod 4$ with $\left(\frac{\mathrm{p}}{\mathrm{q}}\right)=-1$. Hence there exists $c \in N$ such that $c^{2} p \equiv-1 \bmod q$. Put $a=\left(1+c^{2} p\right) q^{-1} \in N$ and let $B=Z_{1}+Z_{x_{2}}$ be the binary lattice where $f\left(x_{1}, x_{1}\right)=a, f\left(x_{1}, x_{2}\right)=p c$ and $f\left(x_{2}, x_{2}\right)$ $=$ pq. Then $\mathrm{dB}=\mathrm{p}$. Let $\mathrm{L}=\mathrm{U} \perp<-\mathrm{DE}^{2}>\perp \mathrm{B}$ where $\mathrm{U}=< \pm 1, \ldots, \pm>$ is unimodular. Then L is an indefinite lattice with $\mathrm{dL}= \pm \mathrm{pDE}^{2}$ and the localization $L_{2}$ diagonalizes. If $L$ diagonalizes, then $L=Z x \perp N$ with $\operatorname{ord}_{p} f(x, x)=1$. Hence $f(x, L) \subseteq p Z$ and consequently $x=p u+v+w$ where $u \in U, v=\alpha x_{1}+\beta x_{2} \in B$ and $w \in<-D^{2}>$ with $f(w, w) \equiv 0 \bmod p^{2}$. Hence
$f(x, x)=f(v, v) \equiv \alpha^{2} a+2 \alpha \beta p c+\beta^{2} p q \bmod p^{2}$.
Consequently $p$ divides $\alpha$ and $f(x, x) \equiv \beta^{2} p q \bmod p^{2}$. Let $f(x, x)=p b$. Then $b$ divides $\mathrm{DE}^{2}$, and $\left(\frac{\mathbf{b}}{\mathbf{p}}\right)=-1$ by choice of q . If $\ell$ is a prime dividing b , then either $\ell$ divides D and hence $\left(\frac{\ell}{\mathbf{p}}\right)=1$, or $\ell$ divides E in which case ord $\ell \mathrm{b}$ is even (from considering the Jordan type of $L \ell$ ). This leads to the contradiction $\left(\frac{b}{p}\right)=1$, since $p \equiv 1 \bmod 4$. Hence $L$ does not diagonalize and, since $U$ can have arbitrarily large index, necessarily $\mathrm{dL}= \pm \mathrm{pDE}^{2}$ is not in $\mathrm{D}(\infty)$.
Corollary: If $p \equiv 1 \bmod 4$ and $\ell$ are primes with $\left(\frac{\ell}{p}\right)=1$, then $\pm d \notin D(\infty)$ for $d=$ $\mathrm{p}, 4 \mathrm{p}, \mathrm{p} \ell$ and $4 \mathrm{p} \ell$.

Remark: By varying the choice of $B$ in the proof of proposition 3 , it is possible to
produce more discriminants $\mathrm{d} \notin \mathrm{D}(\infty)$. We give three further examples.
Let $\mathrm{D}, \mathrm{E} \in \mathrm{N}$.
(i) Let $\mathrm{p} \equiv \mathrm{p}^{\prime} \equiv 1 \bmod 4$ be primes with $\left(\frac{\mathrm{p}^{\prime}}{\mathrm{p}}\right)=-1$.
then
$\pm \mathrm{pp}^{\prime} \mathrm{E}^{2} \notin \mathrm{D}(\infty)$.
(ii) Let $\mathrm{p} \equiv \mathrm{p}^{\prime} \equiv 1 \bmod 8$ be primes with $\left(\frac{\mathrm{p}^{\prime}}{\mathrm{p}}\right)=-1$.
then
$\pm 2 \mathrm{pp}^{\prime} \mathrm{E}^{2} \notin \mathrm{D}(\infty)$.
(iii) Let $\mathrm{p} \equiv 1 \bmod 4$ be a prime with $\left(\frac{\ell}{\mathbf{p}}\right)=1$ for all primes $\ell$ dividing $D$. Then $\pm \mathrm{p}^{2} \mathrm{DE}^{2} \in \mathrm{D}(\infty)$.

## REFERENCES

[1] Cassels, J.W.S. 1978. Rational Quadratic Forms, Academic Press, London.
[2] Earnest, A.G. and J.S. Hsia, 1975. Spinor norms of local integral rotations II, Pacific J. Math. 61, pp. 71-86.
[3] James, D.G. 1969. Indefinite quadratic forms of determinant $\pm 2$ p, Proc. Amer. Math. Soc. 21, 214-218.
[4] Kneser, M. 1956. Klassenzahlen indefiniter quadratischer Formen in drei oder mehr Varanderlichen, Arch. Math. 7, 323-332.
[5] O'Meara, O.T. 1963. Introduction to Quadratic Forms, Springer-Verlag, New York.
[6] Serre, J.P. 1973. A Course in Arithmetic, Springer-Verlag, New York.
[7] Wall, C.T.C. 1962. On the orthogonal groups of unimodular quadratic forms, Math. Ann. 147, 328-338.

# الصيغ التربيعيـــة التكاملية غير المحددة <br> والقابــــة للتحويل للصــورة القطريــــة 

## ليلــى رشــــيد

هذا البحث يتعلق ببعض الحالات الخاصة „ لقاعدة هاسة " عن التحويل للصودة القطرية للشبكيات (L) فوق (Z) ، الناتجة عن الصيخ الثنائية المنتظمة غير المدودة ، فوق (Q) ؛ حيت تتوصل الباحثة إلى أنه بالنسبة ليعض القيم الخاصة المنتمية للمجموعة المعيَّة (D) من مميزات (L) ، فإن الشرط الموضعي عن التحويل للصورة القطرية لـ (L2) ، يكافء الشرط الشمولي أن (L) شبكية فردية النوع •

