Show simple item record

AuthorHusrevoglu, Y. Sinan
AuthorAl-Ansari, Ebrahim S.
Available date2022-03-17T05:31:14Z
Publication Date2016
Publication NameQatar University Life Science Symposium 2016: Biodiversity, Sustainability and Climate Change, with Perspectives from Qatar
Resourceqscience
CitationHusrevoglu YS, Al-Ansari ES. Prospects for climate-scale regional numerical modelling for the Arabian Gulf and Qatar's marine region. QScience Proceedings: Vol. 2016, QULSS 2016: Biodiversity, Sustainability and Climate Change, with Perspectives from Qatar, 35. http://dx.doi.org/10.5339/qproc.2016.qulss.35
ISSN2226-9649
URIhttps://doi.org/10.5339/qproc.2016.qulss.35
URIhttp://hdl.handle.net/10576/28207
AbstractPhysical oceanographic studies at the Environmental Science Center (ESC) entail observational and numerical aspects. The main objective of observational studies is to build a reference time series for Qatar's marine exclusive economic zone (EEZ), in which prominent spatial and temporal gaps in physical oceanographic knowledge exist due to scarcity of historical observational data. Numerical modelling studies are conducted to counteract the sparse nature of available marine observational data by complementing this space with simulated output. Numerical modelling of ocean circulation along with coupled atmosphere and marine ecosystem components involve high performance computational tools and model coupling interfaces. A high-resolution, multi-component regional numerical model capable of producing short and long-term data products for the Arabian Gulf and Qatar's EEZ is currently being implemented. The model system features a lower trophic level ecosystem module (nutrient-phytoplankton-zooplankton-detritus - NPZD) coupled to dynamical downscaling models of regional marine and atmosphere circulation. The output from this study is expected to: (i) provide a simulated picture of the present situation of Qatar's EEZ, as validated by historical and recent observational data; (ii) provide insight on the interaction among various components of the marine environment (i.e., atmosphere, ocean, ecosystem); (iii) predict regional marine physical-biogeochemical status as forced by forecasted natural and anthropogenic drivers; and (iv) assess and forecast marine resource availability for food, water, and renewable energy.
Languageen
PublisherHamad bin Khalifa University Press (HBKU Press)
SubjectThe Arabian Gulf
Qatar's marine region
climate-scale regional numerical modelling
TitleProspects for climate-scale regional numerical modelling for the Arabian Gulf and Qatar's marine region
TypeConference Paper
Issue Number4
Volume Number2016


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record