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This paper proposes a new approach to estimate the phase synchrony among nonstationary multivariate
signals using the linear relationships between their instantaneous frequency (IF) laws. For cases where
nonstationary signals are multi-component, a decomposition method like multi-channel empirical mode
decomposition (MEMD) is used to simultaneously decompose the multi-channel signals into their
intrinsic mode functions (IMFs). We then apply the Johansen method on the IF laws to assess the phase
synchrony within multivariate nonstationary signals. The proposed approach is validated first using multi-
channel synthetic signals. The method is then used for quantifying the inter-hemispheric EEG asynchrony
during ictal and inter-ictal periods using a newborn EEG seizure/non-seizure database of five subjects. For
this application, pair-wise phase synchrony measures may not be able to account for phase interactions
between multiple channels. Furthermore, the classical definition of phase synchrony, which is based on
the rational relationships between phases, may not reveal the hidden phase interdependencies caused
by irrational long-run relationships. We evaluate the performance of the proposed method using the
differentiation of unwrapped phase as well as other IF estimation techniques. The results obtained
on newborn EEG signals confirm that the generalized phase synchrony within EEG channels increases
significantly during ictal periods. A statistically consistent phase coupling is also observed within the
non-seizure segments supporting the concept of constant inter-hemispheric connectivity in the newborn
brain during inter-ictal periods.
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1. Introduction (also, sometimes referred to as Phase-Locking Value) [3,4], Evolution
Map Approach [5], Instantaneous Period Approach [6], Mutual Predic-
tion Approach [6], General Field Synchronization [7], empirical mode
decomposition (EMD) based methods [8,9] and frequency flows
analysis [10]. All of these methods are restricted by the assump-
tion that the phase-locking ratio between signals is always rational.
This restriction has been lately relaxed by proposing a generalized
version using the concept of cointegration [11,12] where the phase-
locking ratio is allowed to be irrational. Such generalization covers
the classical definition as a special case, while it shares a broader

Phase synchrony has been used to investigate the dynamics of
complex systems which result from time-varying interactions of
several subsystems. The human brain is a complex system with dif-
ferent components interacting with each other dynamically. Pair-
wise phase synchrony is quantified using bivariate measures. How-
ever, pair-wise measures of single channels do not necessarily lead
to a complete picture of the global interactions within a nonsta-
tionary multi-channel signal (such as EEG) and nor does multivari-
able analysis [1].

The concept of analytic signals [2,3] and complex Gabor wavelet
filtering [4] are usually utilized to extract the instantaneous phase
of a real-valued signal. A measure of phase synchrony is then
computed from the resulting phase information [4]. Several meth-
ods were proposed for the evaluation of phase synchrony for bi-
variate and multivariate signals including Mean Phase Coherence
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view of phase interactions which can be observed in neuronal sig-
nals [13].

To address the above, this paper proposes a novel approach
for extracting generalized phase synchronicity for nonstationary
multivariate signals, based on an interpretation of the generalized
phase synchrony (GePS) using the linear relationship between in-
stantaneous frequency (IF) laws. The proposed method is evaluated
using several IF estimators on a simulated dataset as well as a
multi-channel newborn EEG seizure/non-seizure database of five
subjects.
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Table 1

Time-lag kernels of the TFDs and their parameters utilized in this study. The parameters N, Ly, and L, denote the time
length of the segment in samples, the window function length and the lag window length, respectively.

TFD Discrete form of the time-lag kernel G[n, m] Parameter(s)

SPEC w(n +m]w[n —m] Rectangular window w (Ly, = N/4)
cosh 2 n _ _

MBD T com n p=0.01, Ligg=N/4

CWD g g’ /Am? 0 =10, Ligg=N/4

The remainder of the paper is organized as follows: Section 2
provides a brief review of relevant time-frequency (T-F) signal
analysis and covers quadratic T-F distributions (QTFDs), EMD and IF
estimators. Section 3 explains the concept of bivariate phase syn-
chrony and its extension to GePS using the concept of cointegra-
tion. Section 4 introduces the proposed IF-based approach for GePS
assessment. Section 5 presents and interprets the results obtained
from the simulated data and newborn EEG datasets. Section 6 con-
cludes the paper.

2. Time-frequency analysis and IF estimation: a brief review

T-F signal processing (TFSP) allows signal analysis in both time
and frequency domains simultaneously and is therefore an effec-
tive tool for dealing with nonstationary signals [2].

2.1. Quadratic TFDs

Dealing with nonstationary signals whose frequency content
changes over time is a common situation in many engineering ar-
eas including biomedical signal processing [6,14,15], radar [16-18]
and telecommunications [19,20]. For the analysis of nonstation-
ary signals, T-F distributions (TFDs) are the most suitable tools
as they provide two-dimensional representations that reflect the
time-varying spectral characteristics of the nonstationary signal
and show how the energy of the signal is distributed over the two-
dimensional T-F space. They also determine the number of signal
components, the start and stop times and frequency range of an
event in the signal. Quadratic TFDs (QTFDs) are the most com-
monly used TFDs and can be considered as smoothed versions of
the Wigner-Ville Distribution (WVD) [2]. The discrete version of a
QTFD with time-lag kernel G[n, m] is given by [2]:

pzln, k] =2 DPTk{G[n, m](zs[n +mlz{[n —m])},
k=1,....M, (1)

where * denotes the complex conjugation, the symbol  represents
discrete convolution over time and zs[n] is the analytic associate of
the real signal s[n], n=0,...,N—1, i.e,

zs[n] = s[n] + jH(s[n]) = a;[n]e ™, )

with H(.) being the Hilbert transform operator. The resulting
pz[n, k] is an M x N matrix where M is the number of frequency
bins. In (2), a;[n] and ¢@.[n] are respectively the instantaneous
amplitude and instantaneous phase (IP) of the signal. As reduced
interface TFDs (RIDs) have been shown to be efficient in the anal-
ysis and processing of EEG signals [21-23], three popular RIDs;
i.e. spectrogram (SPEC), modified-B distribution (MBD) and Choi-
Williams distribution (CWD), are used in this study for IF estima-
tion [2]. Our selection is also based on the comparison of TFDs in
[24] where SPEC, MBD and CWD are ranked within the first four
high-resolution TFDs. Table 1 summarizes the discrete forms of the
time-lag kernels and their parameters utilized in this study.

2.2. Instantaneous frequency: definition and estimation

The IF of a nonstationary signal shows how its frequency con-
tent changes over time. Following (2), the definition of IF f,[n] is
based on the derivative of the IP over time:

@z[n] — @z[n — 1]
2 ’

fzIn] = F; (3)
where F; is the sampling frequency. Several methods have been
suggested to estimate the IF of monocomponent and/or multicom-
ponent nonstationary signals [25-29]. In [30], a new form of the
Fourier transform and the local polynomial periodogram are de-
veloped for local polynomial approximation of the time-varying
phase. The ICI (intersection of confidence intervals)-based meth-
ods utilize a nonparametric IF estimation approach to make a
trade-off between bias and variance of the estimated IF [2,28,29].
Also, IF estimation using the properties of TFDs including adaptive
short-time Fourier transform [31], QTFDs [32], T-class of TFDs [33],
polynomial WVDs (PWVDs) [34,35] and complex-time distributions
(CTDs) [36,37] have received a lot of attention. A detailed review
on IF estimation algorithms can be found in [25-27]. Brief details
are given below. In this study, we utilize three TFD-based IF es-
timators as well as a delay demodulator to extract the IF laws of
monocomponent signals. The IF is also estimated using the phase
derivative of the analytic associate defined as (3).

2.2.1. Phase derivative of the analytic associate

The most straightforward way of extracting the IF is taking the
derivative of the IP. To this end, the underlying signal is converted
into its analytic associate using the Hilbert transform according
to (2). Then, the phase angles are corrected using an unwrapping
method to produce smoother IP traces. In this study, we used the
MATLAB command unwrap to smooth the IP by adding multiples
of +27 to the absolute jumps between successive points greater
than or equal to 7 radians. Finally, the IF is obtained based on its
original definition as the derivative of the IP given by (3).

2.2.2. TFD-based IF estimation

The first order moment of a digitized QTFD p,[n, k] with re-
spect to frequency (aka the normalized linear moment IF estima-
tor) is defined as [38]:

Fs Z,Iy:_ol kp;[n, k]
2M Y paln, k]

Based on (4), f;[n] is the weighted mean frequency of the signal.

fzIn] = (4)

2.2.3. Real base-band delay demodulator (RBBDD)
In order to estimate the IF of the analytic associate zg[n] in this
method [39], it is first normalized, i.e.:

Zg[n]

|zs[n]]

Zsn[n] = = z¢[n] + jz;[n]. (5)
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Vany

+ gln] fz[n]

Fig. 1. Block diagram of the real base-band delay demodulator.

The block diagram depicted in Fig. 1 is then used to extract the IF.
The term g[n] in Fig. 1 can be written as:

gln] = sin(g[n1) cos(¢z[n — 11) — sin(¢;[n — 11) cos(¢-[n])
= sin(gz[n] — ¢ln — 1]) (6)

which results in the estimated IF having the general form of (3).
It is worth mentioning that although this approach results in the
same estimation for the IF as the first derivative, it has the advan-
tage of not requiring the computation of the IP of the signal which
can be problematic.

2.3. Monocomponent signals vs. multicomponent signals: necessity of
signal decomposition for IF estimation

In practice, the vast majority of real signals are multicompo-
nent. In such cases, ¢,[n] in (2) will represent an ambiguous
or meaningless weighted squared average of the phases corre-
sponding to different components of the signal [10]. Therefore,
the definition of IF in (3), based on the Hilbert transform, be-
comes useless [40]. Filtering in the frequency domain to isolate T-F
components may lead to distortion of the waveforms. Therefore,
IF estimation of the nonstationary signals requires a separation
of the T-F components prior to estimating the IFs [10]. Although
there are other methods in the literature to deal with the multi-
component nonstationary signals (e.g., see [41,42]), we adapt EMD
for decomposing the signals in our proposed approach. In con-
trast to most existing methods, the EMD follows a fully data-driven
scheme which does not need any a priori knowledge about the
signal. The technique is an adaptive method which breaks down
a nonstationary and nonlinear signal into its intrinsic mode func-
tions (IMFs) [43]. Each IMF is a monocomponent signal which gen-
erates no interference in a QTFD [44]. In other words, the IMFs
represent simple oscillatory modes with time-varying amplitude
and frequency:

M
stnl =y IMFy[n] + r[n], (7)
k=1

where s[n] is a real-valued multicomponent signal with M com-
ponents and r[n] is the residue [40,43]. By applying the Hilbert
transform to (7), the analytic associate zg[n] can then be expressed
as [40,43]:

M
k (k)
zgln) =Y a[n]edvs 1M, 8)
k=1
where agk) and goék) are respectively the instantaneous amplitude

and phase associated with of the kth IMF. Each IMF contains a lim-
ited frequency content of its original signal, as EMD acts basically
as a dyadic filter bank [45]. It turns out that with adequate length,
an IMF satisfies the assumption of an asymptotic signal. The EMD
process is described in Appendix A.

3. Formulation and assessment of phase synchrony
3.1. Bivariate phase synchrony

Let z¢[n] and zy[n] be the analytic associates of two one-
dimensional stochastic real-valued signals x[n] and y[n], respec-
tively; that is:

zx[n] = x[n] + jX[n] = ay[n)e ", 9)

zy[n] = y[n] + jyn] = ay[n]e/*r, (10)

where x[n] and y[n] are the Hilbert transforms of x[n] and y[n],
respectively. The original signals are assumed to be asymptotic sig-
nals [2]. The two signals x[n] and y[n] are said to be phase-locked
of order Py:Py if [3]:

Agx y[n] = Pxpx[n] — Py@y[n] = const. (11)

Such a strict condition is rarely satisfied for real-life signals. There-
fore, this condition is often replaced with a more relaxed condition
called phase entrainment condition expressed by [3]:

’Pxfpx[n] - Pygoy[n]‘ < const. (12)

The ratio Pyx/Py is assumed to be rational. In the case of discrete
signals and for the case Py =Py, =1 (phase locking of order 1:1),
the phase synchrony measure is given by [3]:

R= , (13)

1Nl
m Z el (@xInl—gyn])
k=1

where N is the length of the two signals in samples. The mea-
sure R is often referred to as mean phase coherence (MPC) or phase-
locking value (PLV) [3,4]. The measure R varies between 0 and 1,
while the small phase difference between two signals makes R
close to 1.

3.2. Generalized phase synchrony (GePS)

The classical definition of phase synchrony for bivariate signals
can be extended to multivariate signals using the concept of coin-
tegration [46].

3.2.1. Cointegration concept

A one-dimensional stochastic process is said to be integrated of
order d (I(d)) if the reverse characteristic polynomial of its fitted
multivariate autoregressive (MVAR) model has d roots on the unit
circle in the z-complex plane [11]. The I(d) process is unstable,
but it can be converted into a stable one (I(0)) by d times differ-
entiation [11]. Two or more integrated signals can be in a long-run
relation with each other if there is a linear combination of these
signals that results in a stationary process [11]. In such case, the
underlying signals are called cointegrated signals with cointegration
rank r. The parameter r represents the number of cointegrating re-
lationships among the signals. Multivariate Johansen test can be
used to determine the cointegration rank and cointegrating coef-
ficients across multivariate integrated processes [11,47]. For more
details about the Johansen test, refer to Appendix B.

3.2.2. Phase synchrony assessment based on the cointegration concept

Two signals x1[n] and x3[n] are said to be in a generalized phase
synchronous relationship if their phases satisfy the following condi-
tion [11,12]:

3cq, €2t cr1[n] + c22[n] =e[n], (14)

where e[n] is a normally distributed stationary stochastic process
with finite second order moment and c¢; and ¢y are real-valued
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numbers. The relation presented in (14) reflects a cointegrating
relationship between two phase signals ¢1[n] and ¢;[n]. Given
ox[n]l = [@1(n], ..., ¢k[n]] as the multivariate phase signal associ-
ated with x[n] = [x1[n], ..., xk[n]]T a multivariate real-valued sig-
nal with K variables, such relationship can be generalized to a
multivariate cointegrating relationship among K phase signals as
follows:

Jcy, ..., ek crprn] +ca@a[n] + - - - 4 cxpi[n] = e[n]. (15)

The Hilbert transform is used to obtain the phase of each sig-
nal component x;[n] separately. If the multivariate instantaneous
phase signal @x[n] is integrated of order r, there are r stationary
linear relationships within ¢x[n] and the signal x[n] is said to be
in generalized phase synchrony of rank r [11,12]. A higher rank im-
plies a larger number of phase signals are involved in relationships
and therefore, higher synchrony within channels. Based on (15),
cointegrating coefficients c1,...,cx and the cointegration rank r
(0 <r < K) are estimated using the multivariate Johansen test [47].

4. Proposed IF-based generalized phase synchrony quantification

The phase angle @,[n] in (2) usually exceeds the range —m
to 7, which results in unpredicted £27 jumps between some con-
secutive phase values [48]. This problem is due to the stochastic
nature of the sampled signal where the angular distance between
two successive samples may be multiples of 25r. Although one may
use the unwrapping methods to deal with the problem, we pro-
pose the use of the IF laws of the signals instead of their IPs to skip
the issue. We take advantage of the direct relationship between the
IP and the IF to extract the cointegrating relations within phase
signals by simply differentiating (15) with respect to time. A mea-
sure is then defined to quantify the level of interaction.

4.1. Interpretation of the IF-based GePS

Suppose x[n] and y[n] are two periodic signals, phase-locked
of order Py : P, where both Py and P, are integers. Let the two
signals start from a similar point on the time axis. If the phase-
locking ratio is rational, it implies that the two signals will cross
each other periodically at the same initial common value and this
period is related to the least common multiple (LCM) between Py
and Py. Therefore, the rational phase-locking order is associated
with an intuitive physical meaning for periodic signals. In contrast,
the two periodic signals never reach the same point with passing
time in the case of irrational Py/Py.

Explanation of phase synchrony for non-periodic signals is not
such straightforward. It becomes even more difficult for nonsta-
tionary signals which by definition cannot be periodic. In this case,
the concept of frequency flows [10] in the T-F domain may help to
clarify the issue. The notion of phase synchrony in (12) is strictly
equivalent to the concept of frequency synchrony through the fol-
lowing formulation [10]:

Ay y[n] = Pxpx[n] — Pygy[n] ~ const (16)
which leads to
L Giff (A gy nl) = 2 diff (Agylnl) — 22 diff (AgyIn))
21 ’ 21 21
= Py fx[n] — nyy[n] ~0
= falnl= I;—ify[n]. (17)
This means that the two signals have similar IF shapes.

The condition becomes equality when Py = Py. From this perspec-
tive, the concepts of phase synchrony and IF are connected [2,10].

Frequency

Time

Fig. 2. An example of generalized phase synchrony within a three-channel signal
(curves show IF ridges in the T-F domain. Shadowed area illustrates the phase-
locking time period).

If two signals have similar IF laws during a time interval, they are
phase-locked of order 1:1 over that time period [10]. Consequently,
a linear relationship between two IFs with rational gain (Px/Py)
implies phase locking of order Py:Py. Such a definition cannot
explain GePS in the case where the linear relationships between
phase signals can be irrational. Therefore, the following interpre-
tation is proposed for generalized phase synchronization based on
the concept of cointegration [12]:

For a multi-channel nonstationary signal, if there is a linear re-
lationship between the IF laws of a subgroup of channels during
a reasonably long time period, they are said to be generally phase
synchronized over that time period.

In this case, there is no reason for the coefficients to be inte-
ger as the notion of phase-locked may not in general apply. Fig. 2
illustrates an example of GePS within the IFs of three channels.
As the figure shows, there is a linear relationship (see the shad-
owed area) for all three IF laws during the shadowed time interval.
Such linear combination defines a generalized phase locking be-
tween channels. Note that the new explanation reduces to the
classical definition of phase synchrony for rational phase-locking
orders.

4.2. Implementation of the proposed approach

The proposed procedure of GePS assessment for a nonstationary
K-dimensional signal x[n] is fully described by the following steps:

1. Each channel x;[n] (i=1,...,K) is decomposed into Q IMFs
g,(f) [n] (g=1,..., Q) using the EMD. The parameter Q can be
estimated by the EMD stoppage criteria [40] as Q = min; Q;
(i=1,...,K) where Q; is the number of IMFs in the ith chan-
nel. It is then kept the same for all channels.

2. The analytic associate of each IMF for the ith channel is ob-
tained using the Hilbert transform, zl@ [n] = g,((?) [n]

@ H(g In]) |
(@

+ JH(gx, g)((?)[n]

The phases ¢,’[n] are then corrected using an unwrapping
method [48] to suppress phase angle jumps between con-
secutive elements and produce smoother phase traces. The
IF fz(iq) [n] are then extracted by taking the derivative of the

[n]) and its IP is extracted, @3

)[n] = angle{

unwrapped phase signals (pg’)[n]. The IF fz(l.q) [n] may also be
estimated using other IF estimates that bypass the problem of
phase ambiguity (see Section 2).
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3. IFs of all channels at each decomposition level fi¥ =[f

AU fz(,‘?)] are divided into non-overlapping time segments with
adequate length. The minimum window length is determined
based on the requirement of the MVAR parameter estimation
where the length should be significantly larger than K2p (p is
the MVAR model order in the Johansen test) [49].

4. The Johansen method (maximum eigenvalues test) [11,47] is
applied on each multivariate segment at the 99% confidence
level and the linear relationships between IFs are extracted as
follows:

£+ e f2m + -+ ik APy = e [n),

C21fz(1q)[n] + szfég)[ﬂ] +- 4 C21<fz(,3)[n] = e§‘”[n], (18)

Cr(qnfz(?)[n] + Cr<q)2fz(g)[n] +---+ Cr(q)Kfz(Z)[n] = ef,t(]q)) [n],

where fz(iq) [n] represents the ith segmented IF (i=1,...,K)

of the gth IMF (g =1,...,0Q), r@® (0 <r@ < K) is the num-
ber of cointegrating relationships within the multivariate seg-
ment, c;; (k=1,...,r@) is the kth cointegrating coefficient of
fz(f’) [n] and e,(f) [n] is the stationary residual of the kth cointe-
grating relationship at the qth IMF.

5. The phase synchrony measure for each segment is defined as
the normalized number of the cointegrating relationships r@
over the IMF components:

Q
1
et =— E r@. (19)
Q.K pe

This measure always takes values between O and 1 where 0
means no cointegrating relationship within phase signals and 1
implies complete phase cointegration within the multivariate seg-
ment.

4.3. Statistical analysis

The proposed method performance is evaluated using the re-
ceiver operating characteristic (ROC) curve to determine sensi-
tivity and specificity. Suppose the multivariate signal x[n] is di-
vided into N segments with Ngy,cn < N segments present gener-
alized phase synchrony. True positive rate (TPR), true negative rate
(TNR), false positive rate (FPR) and false negative rate (FNR) of the
method are defined as:

TPR — No of segments correctly marked as synchronized
Nsynch '
_ No of segments correctly marked as synchronized
N— Nsynch

No of segments correctly marked as synchronized

TNR

)

FPR =

)

Nsynch
No of segments correctly marked as synchronized
N - Nsynch ’

The sensitivity and specificity of the method are then defined as
follows:

FNR =

e TPR
Sensitivity = ————,
TPR 4 FNR

Specificity = TNR
P Y= INR+ FPR’

The ROC curve of the method is then obtained by plotting the sen-
sitivity versus (1-specificity). The ROC also allows the calculation
of the optimum threshold, where the maximum sensitivity meets
the minimum FPR.

5. Results and discussion

In this section we evaluate the performance of the proposed
method on both simulated and real newborn EEG signals using 5
different IF estimation methods, namely phase derivative of the an-
alytic associate, three TFD-based IF estimators and RBBDD.

5.1. Simulated signals

In order to evaluate the performance of the proposed approach
with different IF estimators for the nonstationary multivariate case,
two 4-channel nonstationary signals with a length of 1000 sec-
onds and unit amplitude at the sampling frequency of 100 Hz
were simulated. For the asynchronous signal, the phase ¢;[n] of
each channel i was defined as an integrated process of order two.
The phase ¢;[n] was therefore obtained as the output of a linear
shift-invariant system whose impulse response has two poles on
the z-plane unit circle:

Hiz) = (20)

1
(1—z"12
driven by a white noise process w[n]. The discrete form of the
process in the time domain is therefore given by:

@iln] = 2¢i[n — 1] — @i[n — 2] + wn],
1<i<4,n=1,...,L, (21)

where L = 100000 samples and ¢;[1] = ¢;[2] = 0. It implies that
the IF laws are integrated processes of order one (one pole on the
z-plane unit circle - random walk). In other words, there is no
cointegrating relationship within the IFs or equivalently, no gen-
eralized phase synchrony within the channels. The asynchronous
signal x®¥"" was then defined as:

XYmh ) = reql{es®M}, (22)

where @[n] =[¢1[n], ..., pa[n]]. A perfectly synchronous 4-channel
signal with the same form of (22) was also simulated with random
walk phase signals:

pilnl=g@iln—11+wn], 1<i<4,n=1,...,1L, (23)

where ¢;[1] = 0. It yields IFs with stationary trends with four
cointegrating relationships. Both signals were divided into 4-sec
segments and 100 segments were drawn out of the pool for each
condition (synchrony/asynchrony). The dynamics of all phase sig-
nals was slowed artificially by a moving average process with the
span of one second to magnify slow drift of the mean phase.
Since the simulated signals are composed of multiple random fre-
quency components, generalized phase synchrony can be observed
within different intrinsic mode functions. Therefore, as described
in Appendix A, an EMD sifting process was initially applied to de-
compose each channel of the segments into 5 IMFs. The proposed
GePS measure was then extracted from the segments at each IMF,
i.e. 5 measures for each segment. The final measure for the seg-
ment was obtained by taking the average over 5 values. The MVAR
model order for the Johansen test was set to 10 during the process.

Four IF estimation methods (RBBDD, SPEC, MBD and CWD),
along with the classical procedure of obtaining IF laws as the un-
wrapped phase derivative, were applied on the decomposed syn-
chronous and asynchronous simulated signals. Fig. 3 illustrates the
ROC curves of the synchrony/asynchrony detection method associ-
ated with the IF estimators.

In order to gain more insight into the performance of the IF
estimators, the areas under the curve (AUCs) were computed for
the ROC curves on the simulated signals. Table 2 summarizes the
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Fig. 3. ROC curves of the IF estimation methods used in this paper to extract gener-
alized phase synchrony within the simulated signals.

Table 2

Area under curve for the ROC plots of Fig. 3.
IF estimator AUC (%)
Phase derivative 79
RBBDD 85
CWD 88
MBD 82
SPEC 92

T3

02
o1 Oz

Fig. 4. Arrangement of the electrodes. Large circles illustrate the utilized electrodes.

AUC of the ROC plots in Fig. 3. As the results suggest, the CWD-
and SPEC-based IF estimators showed the highest discrimination
rate for estimating the GePS measure from the simulated signals.

The next section presents the GePS assessments with neonatal
EEG signals in the presence and absence of seizure.

5.2. Newborn EEG analysis

5.2.1. Datasets, preprocessing and segmentation

Eight monopolar channels (F3, F4, C3, C4, P3, P4, O1 and O3)
out of 14 channels recorded using the 10-20 standard [50] were
selected from the EEG datasets of five newborns. Fig. 4 illustrates
the arrangement of the electrodes. These electrodes were chosen

according to the symmetrical combination of electrodes from left
and right hemispheres in order to enable inter-hemispheric phase
synchrony assessment. The data was recorded using a Medelec
Profile system (Medelec, Oxford Instruments, Old Woking, UK) at
256 Hz sampling rate and marked for seizure by a pediatric neu-
rologist from the Royal Children’s Hospital, Brisbane, Australia. All
signals were bandpass filtered within 0.5-30 Hz using an FIR filter
of order 100. The filtered signals were inspected visually to re-
move highly artifactual segments. Artifact free intervals were then
segmented into 4-sec windows. In this study, 100 non-overlapping
ictal segments and 100 non-overlapping interictal segments were
extracted randomly from 27 min of artifact-free seizure signals and
39 min of artifact-free non-seizure signals obtained from 5 sub-
jects. The window length (1024 samples) was chosen to be larger
than K2p where p is the MVAR model order for the Johansen test
(here, p <6) and K is the number of channels (here, K = 8).

5.2.2. Significant increment of the GePS measure during the seizure
periods

The procedure described in Section 3 was applied on each 8-
channel (4 left and 4 right) newborn EEG segment in order to
analyze the generalized phase synchronization within both seizure
and non-seizure groups. Fig. 5 illustrates the Modified-B distribu-
tions (B =0.01, Ligg = N/4) and time traces of 5 IMFs extracted
from 2 adjacent left-right electrodes (F3 and F4) for a random
seizure segment. The IFs of each multi-channel segment at each
decomposition level (each IMF) are analyzed by the Johansen test.
The cointegration ranks of the IMFs are then utilized for calculating
the GePS measure of the underlying segment using (19). A verti-
cal frequency shift can be observed between each two successive
rows in Fig. 5. This observation reflects the nature of the EMD sift-
ing process as a dyadic filter bank [45]. As the figure suggests, the
IMFs can be roughly linked to the EEG frequency bands: IMF5 cov-
ers the § band (up to 5 Hz), IMF4 covers the § and 6 bands (up to
10 Hz), IMF3 mostly covers the 6 and o« bands (5-15 Hz), IMF2
mostly covers the o and B bands (10-20 Hz) and IMF1 mostly
covers the 8 and y bands (above 20 Hz).

In order to evaluate the performance of the IF estimators for
quantifying newborn EEG generalized phase synchrony, five meth-
ods were employed. Fig. 6 exhibits the ROC curves of the IF es-
timators on the seizure/non-seizure EEG segments. As the figure
implies, the sensitivity is significantly higher than the false alarm
(1-specificity) for all estimators. It indicates increased GePS mea-
sures within the seizure segments compared to the non-seizure
segments.

Table 3 contains the AUC values associated with the ROC curves
in Fig. 6. From the table, it becomes clear that most estimators are
significantly different from the chance level (50%). However, the
AUC values remain lower than what was obtained for the sim-
ulated signals (see Table 2). Unlike the simulated data analysis,
performance of the TFD-based IF estimators on the EEG data is
lower than the phase derivative and RBBDD.

A two-sample t-test was conducted on the newborn EEG results
to evaluate the null hypothesis that two groups of GePS values
estimated by the unwrapped phase derivative estimator are inde-
pendent random samples with equal means against the alternative
that the means are not equal. The resultant p-value at the 1%
significance level was 1.18 x 10~8 implying that the mean GePS
values of the seizure group are significantly higher than the non-
seizure group (GePSgei; = 0.46 = 0.14, GePSponsei; = 0.36 £ 0.08).

5.3. Discussion
The results presented in the previous section show differences

between the performances of IF estimators used in the simu-
lated signals and newborn EEG. We have demonstrated that the
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Fig. 5. Modified-B distributions (8 = 0.01, Li,g = N/4) and time traces of the IMFs at five decomposition levels extracted from two adjacent left-right electrodes (F3 and F4).

EMD sifting process can be used in estimating the GePS mea-
sure to break down multi-component signals into monocompo-
nent signals, containing relevant information for evaluation of the
cointegrating relationships within the multivariate datasets. EMD
provides a clearer physical interpretation for synchronization be-
tween broadband signals, as it does for the EEG datasets. This is
of high importance, as the role of the selected frequency band
is always crucial for EEG analysis applications. The IMFs extracted
from newborn EEG can be roughly linked to the well-defined EEG
frequency bands. The results indicate that the GePS assessment
proposed in this paper can be considered as a global evaluation

of phase synchrony over all channels and all frequencies in a typ-
ical multi-channel newborn EEG signal. From this point of view,
the choice of keeping a constant number of IMFs (here, five) dur-
ing the whole EEG analysis is compatible with the nature of EEG
signals. For the GePS measures derived from synchronization be-
tween simulated signals, maximum discrimination rates of 92% and
88% were obtained for the SPEC- and CWD-based IF estimators, re-
spectively. The highest rates for newborn EEG signals were 75%
and 71% associated with the phase derivative and RBBDD IF es-
timators, respectively. Unlike the simulations, the performance of
TFD-based IF estimators on the newborn EEG data was lower than
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Fig. 5. (continued)

Table 3

Area under curve for the ROC plots of Fig. 6.
IF estimator AUC (%)
Phase derivative 75
RBBDD 71
CWD 65
MBD 67
SPEC 62

the phase derivative estimator and the RBBDD method. This ob-
servation may imply that the TFD-based IF estimators are more
vulnerable to the unknown factors (which will remain in the real
EEG signals after pre-processing) compared to the phase derivative
and RBBDD. Higher performance of the phase derivative estima-
tor for newborn EEG analysis also suggests that the IMFs extracted
from the EEG channels satisfy the requirements of the asymptotic
signals [2].

The statistical results also suggest that there is a constant inter-
hemispheric connectivity within the newborn brain during the in-
terictal periods as all of the GePSponsei; Values are greater than
zero. This is consistent with fMRI-based studies suggesting sta-
ble low-frequency, spontaneous fluctuations within the newborn
brain during resting-state conditions, termed resting-state net-
works [51,52]. This study also suggests that the inter-hemispheric
connectivity increases during seizure periods in terms of the GePS.
This is in agreement with previous neonatal EEG studies where
EEG channels are more synchronized within the seizure periods
than the non-seizure intervals [53].
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Fig. 6. ROC curves of the IF estimation methods used in this paper to extract GePS
within the seizure/non-seizure EEG segments.

The effect of EEG montage is another important factor which
needs to be investigated in all EEG phase synchrony assessments.
While we have used a monopolar montage for this study, other
montages such as bipolar, average reference and Laplacian mon-
tages may give different results. In addition, it is worth explor-
ing the effect of the number of electrodes in each group on the
GePS measure. One, however, needs to be careful about selecting
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the number of electrodes in EEG connectivity studies including
phase synchrony assessment, as highly dense arrangement of the
electrodes may increase the interfering effect of volume conduc-
tion between neighboring electrodes and affect the connectivity
analysis results. Therefore, the effect of volume conduction needs
to be explored in future work to assess its impact on the new mea-
sure of synchrony.

The ratio of synchronous time periods in the whole newborn
EEG signal can be used as an index of newborn brain asynchrony.
Such a single number as a representative of asynchronous bursts
within a long newborn EEG recording may be used as a qual-
itative measure of EEG inter-hemispheric asynchrony. This could
provide an accurate quantitative measure of asynchrony in the
neonatal EEG, and thereby significantly improves the current way
of providing only a qualitative description of synchrony/asynchrony
from the newborn EEG. Such an objective tool is required to
supplement the highly subjective, visual assessment of EEG (see
also [54]).

6. Conclusion

This study establishes the relevance of the GePS measure for
quantifying the global phase synchronization within multivariate
nonstationary signals such as newborn EEG. A novel framework for
GePS assessment within nonstationary multi-channel signals has
been described based on IP/IF estimation in the time-frequency
(T-F) domain. The approach has also been evaluated using dif-
ferent T-F methods to optimize its application to newborn EEG
seizure detection. The significance of the proposed scheme is
demonstrated by the finding that during seizure activity, greater
synchrony is observed within multi-channel EEG signal. A sta-
tistical analysis of the results obtained suggests that the GePS
increases significantly during the ictal periods. This is in agree-
ment with previous neonatal EEG studies where EEG channels
were more synchronized during ictal periods than interictal pe-
riods [55]. The promising simulation results suggest the SPEC- and
CWD-based IF estimators as the most efficient IF estimators for
GePS assessment. The TFD-based estimators, however, have lower
performance on the newborn EEG datasets compared with the
phase derivative estimator and the RBBDD method. The measure
may also be utilized as a multivariate EEG feature for newborn
EEG seizure detection. However, its discriminatory ability needs to
be further analyzed and compared with the other existing new-
born seizure detection methods. Also, the concept of generalized
phase synchrony within the newborn brain calls for a more ro-
bust statistical study with larger populations. Unlike classical phase
synchrony measures, the proposed measure deals with the gener-
alized phase synchrony in cases where the phase-locking ratio is
not rational. This allows a more flexible view of synchronous cycles
within the nonstationary multi-channel signals. The statistical dis-
tribution of the GePS measure associated with the interictal (non-
seizure) EEG signals of two hemispheres lies always above the
zero level suggesting that there may be stable low-frequency and
spontaneous fluctuations within the newborn brain. The proposed
framework may help quantifying the inter-hemispheric functional
connectivity within multi-channel newborn EEG signals. Future
work will concentrate on improving the temporal resolution of
the proposed approach, utilizing multi-component IF estimation
techniques [41,42], and recruiting more subjects to support the
statistical analysis and quantifying other newborn EEG abnormali-
ties such as EEG asymmetry/asynchrony in preterm babies using
the proposed approach. The findings of increased synchrony in
seizure EEG and variable synchrony in non-seizure periods warrant
exploration of the approach in a range of newborn neurological
disorders where biomarkers and prognostic indicators are essential
to improving management for these babies.
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Appendix A. Empirical mode decomposition (EMD)

We used the following procedure to derive the EMD pro-
cess [9,40,43] in this study:

1. Let S[n]=ri[n], ri[n]=s[n], i=1,2,3,....

2. Identify all the local maxima and minima of $[n].

3. Connect all the local maxima together and all the local minima
together by an interpolation method (e.g., spline) to obtain the
upper envelope eyax[n] and the lower envelope emin[n].

4, Update s[n] as S[n] = s[n] — 0.5(emin[n] + emax[n]) and go to
step 2.

5. Repeat steps 2-4 until a stoppage criterion is satisfied. s[n] will
then become an IMF.

6. Separate the IMF h[n] from the rest of the data by ri;q1[n] =
s[n] — S[n]. The residue riy1[n] is then treated as the updated
signal s[n] and fed into the sifting process again (steps 1-5).

The process is repeated until no more IMFs can be extracted,
in other words, the residue becomes a monotonic function. Other
predetermined criteria such as thresholding on the energy of the
residue can also be used [40].

Appendix B. Multivariate Johansen test

The Johansen test is a procedure for testing the cointegrat-
ing relationships of several integrated processes of order zero or
one [44]. Since the test evaluates more than one cointegrating re-
lationship within the time series, it is applicable for multivariate
signals such as multi-channel EEG. The starting point of the test in

this study is from an N-dimensional IF f,[n] € %N*! as a multi-
variate MVAR model of order p given by [11,55]:
p
fanl =+ ArfiIn—r]+e&ln), (24)
r=1

where A; € ®V*N is the MVAR coefficient matrix at delay r, [n] €

MN*1 is the input white noise of the model and p € RN*1 is a
constant term. The assumption here is that the variables of f,[n]
are integrated processes of either order one (I(1)) or order zero
(I(0) or a stationary process). The MVAR model described in (24)
can be re-written in terms of the differences between its succes-
sive delayed values as:

p—1
Afz[n]=—17fz[n—1]+ZﬂAfz[n—T]+8[n], (25)
r=1
where
D=1-A1—---—Ap, (26)
p
== )" Aj (27)
j=r+1

and A f;[n—i]= f;[n—i]— f;[n—i—1] [11,55]. Such transformed
version of the MVAR models is called vector error correlation model
(VECM). If r is the rank of the coefficient matrix I7(r < N), then
there exist two full-rank matrices o and 8 (a, 8 € ®W*N) such
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that BT f,[n] is stationary and IT = apBT. The rank r determines
the number of coefficient relationships between the dimensions of
fz[n]. Cointegrating vectors of the process are also obtained from
the columns of B. Based on the maximum likelihood estimation
of B for a given r, the Johansen method performs two different
likelihood ratio tests: the trace test and the maximum eigenvalue test.
The former one tests a hypothesis Hg against an alternative Hi,
where

Hy: there are r cointegrating relationships between variables,
Hq: there are k cointegrating relationships between variables.

For the latter one, the null and alternative hypotheses are de-
fined as:

Hg: there are r cointegrating relationships between variables,
Hq: there are r + 1 cointegrating relationships between variables.

In the special case of r = N (IT has full-rank), all variables of
the process are stationary and there is no conintegrating relation-
ship between them [55]. In this study, the MATLAB implementa-
tion of the multivariate Johansen test provided in the Econometrics
toolbox [56] was used.
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