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Abstract 

Moussa,Abdraman,M., Masters: January,2018, Master of Science in Environmental 

Engineering. 

Title: Density Functional Theory Study of Dry Reforming of Methane 

Supervisors of thesis: Dr. Mohammed H. Saleh, and Prof. Majeda Khraisheh. 

In the recent years, the global warming effects are being catastrophic and they start 

hitting new areas. These effects have a direct relation with the amount of greenhouse 

gases emitted into the atmosphere. CO2 and other greenhouse could be utilized as 

energy sources by capturing and utilizing them. Dry reforming of methane is one of 

them and it has economic feasibility that can be commercialized. 

In this study, density functional theory calculations were performed to study the 

promising dry reforming process on Ni111 surface by using SIESTA simulation 

package. SIESTA is considered to be fast reliable way to perform DFT calculations. 

Moreover, counterpoise correction was used in order to improve the accuracy. The 

calculations were performed for different potential active sites and orientations. 

The dissociation of CH4 and CO2 and their possible pathways were investigated in 

order to understand the kinetic of the process. The first CH4 dissociation was found to 

be the hard step to begin with. Horizontal CO2 is more favorable for its adsorption on 

Ni111. In this study, the adsorption energies were calculated using SIESTA and the 

results were tuned up using van der Waal counterpoise correction. Four different sites 
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and orientations were selected to study the adsorption and know the most active site 

among them. To produce syngas from DRM, there are a lot of transitional molecules 

that need to be studied to determine the rate-determining step and these molecules 

affect the pathway of the reaction. This study shows that carbon can be adsorbed on 

the surface and that limits the active sites and deactivating the catalyst.  

This study has found that Ni-based catalysts can be considered as the optimum metals 

to be used in DRM among the transition metals. Noble metals were not considered 

due to their lack of economic feasibility even though they give more favorable results. 
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Chapter1 Introduction 

Carbon dioxide CO2 is one of the main greenhouse gases (GHG) and it is produced 

mainly as a side product of hydrocarbons combustion. The amount of CO2 in 

atmosphere has a direct correlation with the global warming phenomena[1].  It also, 

increased rapidly in the last few decades globally due to the growing in the industrial 

applications. In figure.1, it can be seen clearly the increasing level of CO2 was rapidly 

till it reached the highest level ever. This has a direct relationship with the 

combustion of fossil fuel in industrial activities and transport.  

Figure 1: CO2 Concentration Over Years[2] 
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Even though, CO2 is the major GHG, but they are many other gases that play the 

same role. Figure.2 shows total global GHG that was emitted between the periods of 

1751-2010. It also, proves that this increasing level is due to human activities.  

 

 

 

Figure 2: Global GHG Emission per Year (1751-2010) in Metric Tons of Carbon[3]  

 

 

 

Earth increasing temperature has catastrophic effects on environment and that could 

be caused by phenomena such as desertification, melting of ice caps, storms, forest 

fires and many more. Therefore, the demand of more power production due to the 
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technological development for the improvement of life style is increasing worldwide 

which in turn enhances the usage of fossil fuels and subsequently rising CO2 emission 

and concentration in the environment [4-6]. The renewal energy sources such as solar 

power, wind power, nuclear power and bio fuel power are still in the research and 

initial stages and consequently the world will have to depend mostly on fossil fuels 

for next few decades. It has been estimated that on average a single power plant using 

fossil fuels as power production source emits at least 3.5 million tons of CO2 per year, 

whereas the number of such power generation industries increases globally[7]. 

Cement industries and transportation, which are the second and third major sources of 

CO2 emission and environment pollution are also multiplying every year and 

accordingly enhancing the concentration of CO2 in atmosphere[8]. Research has 

shown that the content of CO2 in atmosphere may exceed 500 ppm by 2020 if not 

handle properly [9, 10]. This alarming increase in CO2 emission has severely 

threatened life on the earth and issues like global warming, severe weather conditions 

spread of very dangerous disease such as respiratory illnesses and asthma are all due 

to the excessive and uncontrollable emission of CO2  [11-16].  

Focusing on Qatar, the highest CO2 emission producer per capita, the industrial 

processing of natural gas is the main source for the greenhouse gases and very small 

portion is due to the municipal waste burial. Therefore, it is essential to utilize GHG 

specially CO2 by capturing and reforming. 
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1.1 Carbon Capture and Storage (CCS) 

The emission of CO2 can be reduced by introducing capturing and reforming CO2 

units to the process. These units not only can reduce the amount of released CO2 but 

it has a financial feasibility as well. There are many technologies that are introduced 

recently to capture, store and reform the CO2 and due to CO2 industrial applications, 

the need of capturing it has increased.  There are many technologies that are used to 

capture CO2, storage and further using in industrial applications.  

CCS is a technique that is used to capture up to 90% of carbon dioxide emissions. 

This technology mainly used to capture CO2 from the combustion of fossil fuels and 

power generation. The main objective is to prevent the emissions from reaching the 

atmosphere[8]. The CCS technology consists of three main sections; capturing the 

CO2, transport it and storing it in safe conditions. In order to capture the carbon 

dioxide from the combustion gases, it has to be separated first.  This can be obtained 

in a three ways which are; pre-combustion[17], post combustion and oxy-fuel 

combustion[18]: 
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1.1.1 Pre-combustion: involves converting the fuel into a mixture 

of hydrogen and carbon dioxide by different processes, reforming for 

example and the process is represented in figure.3. 

 

 

Figure 3: A Pre-combustion Capture System[19]. 

 

 

 

 

Air is fed to an air separation unit to separate oxygen from the air. This pure oxygen 

will react with fuel in a gasifier to produce a syngas. Steam is added to a shift reactor 

to transform CO to CO2 and H2. The CO2 is captured from the steam. Then, CO2 will 
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be compressed and dehydrated in order to transport and store. Hydrogen is combusted 

to produce electricity and reduce the fuel used in the process.  

1.1.2 Post-combustion: after combusting the fuel, CO2 can 

be captured from the flue gas by using a suitable solvent. The 

absorbed CO2 can be liberated from the solvent and then 

transported to be stored safely and figure.4 illustrates it.  

 

 

 

 

 

Figure 4: Post Combustion Scheme[20]. 

 

 



7 
 

 

Fuel is injected in a boiler and combusted with air. This produce steam to run the 

turbines and flue gas mainly CO2, nitrogen and water. The flue gas will pass through 

a chemical was that separates CO2. The captured CO2 will be compressed and 

dehydrated and ready to transport and storage.  

1.1.3 Oxy-fuel combustion: by using pure oxygen with recycled 

flue-gas to combust the fuel as it illustrated in figure.5. The flue-gases 

from this combustion are mainly CO2 and H2O. It makes the separation 

much easier.  

 

 

 

 

 

Figure 5: Oxy-fuel System to Capture CO2[21]. 
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Oxy-fuel combustion burns fuel in pure oxygen instead of air. Air separation unit is 

used to separate oxygen from air. This pure oxygen will be injected in a boiler with 

fuel in order for combustion to take place. Steam is generated from the boiler and 

used to run turbines to generate electricity. Some of the flue gas is recycled to cool 

down and maintain the boiler temperature. The flue gas is mainly carbon dioxide and 

water. The carbon dioxide is dehydrated and compressed ready to transport and 

storage.  

Other than above-mentioned three well-known methods there is also another 

alternative that captures CO2 via biological methods. CO2 is captured by using algae 

and utilizing the solar radiation as energy source. The carbon dioxide capturing 

efficiency may reach 90% in some reported results [22, 23].
  

The captured CO2 is 

used to produce biomass and biofuel. It’s one of the sustainable ways to reduce 

greenhouse gases. 
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In recent years, there was an increasing in capital invested in development of 

microalgae to obtain and enhance biofuels. Microalgae have a higher yield and 

availability comparing with terrestrial crops. The microalgae capture CO2 as 

bicarbonate in ponds, reduce the atmospheric CO2 emissions. It also reduces the area 

required to grow the plants. Microalgae produce up to tenfold more biomass than the 

terrestrial systems due to their high photosynthetic efficiency and figure.6 shows the 

process. 

 

 

 

 

Figure 6: A Bioreactor System to Capture CO2[24]. 
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Algae based systems can recycle carbon dioxide emissions from industries and it is 

considered as the most promising solution for emitted CO2. Algae can capture CO2 in 

ponds as bicarbonate to enhance the algal growth. It can be harvested daily despite 

the seasons. Oil can be extracted from algae to produce fuel. This fuel has high 

energy content. Algae can be recycled up to 30% and the rest is fermented for 

methane to be used in power generation.  

1.2 Dry Reforming 

In order to reduce CO2 levels, capturing, separating and storing safely are required to 

be done in economic feasible way. The cost (capital or operational) of these processes 

must be at the minimum. CO2 emissions are the main challenge for any 

manufacturing facility that uses hydrocarbons. Using only captured carbon in CO2 

market is not the answer for this problem as there will be around 99.2% unaccounted 

for. This shows the difference between the produced and utilized amount of CO2. The 

only industry that could effectively requires such sheer volume of output is fuel 

production. Fuel production from CO2 has two main problems. First is the economic 

feasibility as it cost a lot of money and time. Second is related to the technology and 

the overall goal as recycling all CO2 from fuel combustion into more fuels, meaning 

using carbon as energy carrier [25]. More questions will be brought about whether 

there is a better energy platform than carbon. 

However, this maybe the best way to convert CO2 into less harmful compound to 

environment and tackle the global warming effects due to the increasing levels of 
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CO2. Converting CO2 safely could be obtained by either redox chemistry (e.g. 

photosynthesis) or redox free chemistry (e.g. oceanic sedimentation). In 

photosynthesis, CO2 is reduced into alcohol and aldehydes by photons that are used 

to activate water. In oceanic sedimentation, CaCO3 is formed. Both pathways are 

important and they lead to understanding that in order to tackle CO2, many 

alternatives should be taken into consideration. Redox chemistry for a CO2 is more 

favored as the formation of CaCO3 is slow and not sufficient enough for large-scale 

operations [2]. The reductive conversions are more costly due to the need of finding 

electrons to reduce CO2. 

In contrast, dry reforming of methane (DRM) is a process that can reduce CH4 and 

CO2 into syngas and it takes into account the economic feasibility. The main feature 

of DRM is represented as following [26, 27]: 

𝐶𝐻4 + 𝐶𝑂2 ↔ 2𝐶𝑂 + 2𝐻2   ∆𝐻298 = 247 
𝑘𝐽

𝑚𝑜𝑙
     (Eq.1)  

This process utilizes two of the greenhouse gases to produce syngas that is used as a 

feedstock to many industrial applications such as methanol synthesis. In Qatar, there 

is a mega methanol plant which is using steam reforming on CH4 in order to produce 

syngas. This process is highly endothermic and faces a lot of operational and 

environmental challenges. The produced methanol in Qatar is used to produce methyl 

tert-butyl ether. In methanol synthesis, reducing the operating cost can be done by 

decreasing temperature and increasing the pressure.  
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Although, DRM is still under continuous researching, it shows a lot progress on 

overcoming the main challenges to commercialize this process. However, tackling 

these problems is not easy due to many factors such as; cost of applying these 

technologies and overcoming operational challenges which is mainly carbon 

formation and deposition on the catalyst[28]. DRM and steam reforming of CH4 are 

both highly endothermic conversion to produce syngas and they both require a 

catalyst to reduce the energy input [29-31]. The Shell Pearl GTL plant in Qatar is the 

largest GTL plant that uses partial oxidation (POX) technology in order to produce 

syngas which is need for their Fisher-Trophs synthesis (FTS) plant. The plant is 

located in north of Qatar where most of the natural gas production takes place and it 

is known that Qatar is one of the largest natural gas producers globally. Oryx GTL 

plant is another plant that produces syngas in Qatar and it uses auto-thermal 

reforming technology (ATR) which is a combination of the endothermic steam 

reforming (SMR) and the exothermic partial oxidation. 

The previously mentioned technologies show that it is a design option as they can 

produce high-quality and high H2/CO ratio syngas that is higher than the required for 

FTS (H2/CO>2). SMR produces syngas with a ratio H2/CO ratio 3:1 which is lower 

than many industrial applications that can produce up to 5:1 based on CH4 

conversion, however, SMR is energy intensive [32]. POX is exothermic commercial 

technology that produces syngas with H2/CO ratio around 2 and it does not need a 

catalyst. However, POX requires air separation unit which is more cost and may 

reach up 65% of the utilities costs of the overall GTL plant cost. Moreover, POX is 
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highly exothermic and that is associated with many concerns related to the safety of 

the process due to the hotspots and runaway reactions [33]. 

On the other hands, DRM produces a syngas with H2/CO around 1:1 which is CO-

rich [32]. Commercializing DRM has faced a lot of obstacles such as the need of 

concentrated CO2 to be supplied and the high energy input which about 50% higher 

than SMR is.  Catalyst deactivation due to carbon deposition and low H2 syngas 

content are more obstacles to be faced [32-34]. Therefore, DRM commercialization 

has been limited to small sized plant such as CALCOR [35] and SPRAG [36] despite 

its potentials for producing synthetic fuel while mitigating CO2. Nevertheless, DRM 

is a promising technology that reform CH4 by utilizing a large amount of CO2 and H2 

is not limiting syngas further processing [29, 31]. 

In this technology, different metals and different surfaces have been studied and 

tested in order to come-up with optimum catalyst. In this thesis, screening of different 

Ni surfaces and alloys is used to choose a metal that maybe yield the best possible 

reforming results. There are few criteria that are considered while approaching this 

selection such as availability, cost of production and resistivity of carbon formation 

and deposition on the surface of the catalyst.    

Based on these criteria, transition and noble metals are more likely to be used and to 

choose the right metal among them [37-43]. Transition metals have high densities, 

high melting points, easy to shape and variable oxidation states. Also, they form 

stable complexes that can be used as base to enhance targeted properties. High 
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melting points of transition metals which are an essential for the stability of any 

catalyst that operates in high temperature medium. Noble metals were excluded 

because they are expensive and limited availability even though they are more stable 

and high conversion rate[44]. Therefore, transition metals can be considered as the 

more optimum choice[45]. The disadvantage of using transition metals is the coke 

formation and fast deactivation [42, 46, 47]. Other factors are used in screening 

metals to choose among them such as rate of reaction, activation energy and 

adsorption energy. To evaluate these factors, in the following section there will be 

comparing tables that justify selecting of the metal. 

1.3 Kinetics 

 In the last few decades, there were many approaches to study CO2 dissociation and 

interaction with the transition metals[42]. These approaches concluded that the CO2 

dissociation on transition metals is possible and it varies from a metal to another. The 

CO2 dissociation is represented as the following [48-50]: 

𝐶𝑂2(𝑔) = 𝐶𝑂∗ + 𝑂∗    (Eq.2) 

𝐶𝑂∗ = 𝐶𝑂 +∗    (Eq.3) 
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In figure.7, it shows the dissociation of CH4 and CO2 of DRM.  

 

 

 

 

 

Figure 7: Dominant Reactions Pathway of DRM[47]. 
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The dissociation of methane is another major mechanism that has to be studied in 

order to get a better understanding of dry reforming. The methane dissociation 

undergoes the following main reactions [27, 34, 47, 51-57]: 

𝐶𝐻4(𝑔) + 2∗ → 𝐶𝐻3
∗ + 𝐻∗                             (Eq.4) 

𝐶𝐻3
∗ +∗→ 𝐶𝐻2

∗ + 𝐻∗                                       (Eq.5) 

𝐶𝐻2
∗ +∗→ 𝐶𝐻∗ + 𝐻∗                                       (eq.6) 

𝐶𝐻∗ +∗→ 𝐶∗ + 𝐻∗                                           (Eq.7) 

𝐶∗ + 𝑂∗ → 𝐶𝑂∗ +∗                                          (Eq.8) 

𝐶𝐻∗ + 𝑂∗ → 𝐶𝐻𝑂∗ +∗                                    (Eq.9) 

𝐶𝐻𝑂∗ +∗ → 𝐶𝑂∗ + 𝐻∗                          (Eq.10) 

𝐶𝐻2
∗ + 𝑂∗ → 𝐶𝐻2𝑂∗ +∗                         (Eq.11) 
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1.4 Carbon Deposition  

Carbon deposition is one of the main challenges that are facing the dry reforming 

process. Carbon generated from the reaction within the process will reduce the 

number of the active sites on the catalysts.  

Considering Ni-based catalysts, there are two types of carbon deposited are observed 

[37, 38, 41, 57, 58]: 

 Carbon from the feed (CO2 and CH4) dissociation. This type is stable 

and blocks the active sites. 

 Carbon alloyed with Ni such as Nickel carbide. 

Moreover, Ni flat surfaces are found to have  higher activation energy and higher 

resistance to coke formation [47]. After performing kinetic analysis, it is reasonable 

to say that coke formation is controlled by two properties: 

 The extent of CH oxidation pathway in overall CH4 dissociation. 

 The barrier energy of CO dissociation in overall CO2 dissociation.  

There are two side reactions that generate carbon and lead to catalyst deactivation 

[42, 45, 59-61].  

2𝐶𝑂 → 𝐶𝑂2 + 𝐶                                                 ∆𝐻298𝐾 =  −171 𝑘𝐽

𝑚𝑜𝑙
    (Eq.21) 

𝐶𝐻4 → 2𝐻2 + 𝐶                                                  ∆𝐻298𝐾 = 75 𝑘𝐽

𝑚𝑜𝑙
    (Eq.22) 
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In order to enhance the catalyst for dry reforming, it is recommended to have better 

coke formation resistance by adding elements such as Al, Fe, Ce and Mg since the 

coke formation is a major challenge for this process and it increase the operational 

cost which makes it add obstacle for commercializing [38, 40-42, 44, 47, 61-63]. 

Among Ni and Ni-based catalysts, Ni111 has the lowest coke deposition on its 

surface which means that the coke formation and deposition on the surface is slow 

[47]. The resistance of coke formation on Ni111 could be for two properties: First, the 

CH oxidation is preferred on Ni111 which leads to slower coke formation from 

methane. Second, the CO dissociation activation energy is 3 eV which is considered 

to be high [26, 47]. 

 1.5 Rate of Reactions 

The overall reactions rates on Ni and Ni-based catalysts were calculated in order to 

determine the most active surface among them for dry reforming process and 

represented in table.1 [47, 54]. Based on these calculations, Ni111 with overall rate of 

23.49 s
-1

 is the most active surface among them.  The overall reaction rates were 3.86

s
-1

, 0.48 s
-1

 and 0.44 s
-1

 for the surfaces Ni3C (001), Ni (211) and Ni3C (111),

respectively. The overall reactions were calculated at 1000 K and 0.1 bar [47]. 
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Table 1: Rate of Reaction on Different Metal Surfaces  [47, 54] 

 

 

 

 

The simulations were on micro-scale and they have been used to quantify and 

determine the activity of DRM and the overall reaction rates. Following in table 2 are 

the formulas that have been used to calculate the overall reaction rates. Each step’s 

reaction rate is equivalent to the forward reaction minus reversed reaction.  

 

Catalyst Ni111 Ni211 Ni3C(001) Ni3C(111) 

r overall 

r C 

r CH 

ϴ 

ϴ CO 

ϴ H 

ϴ O 

ϴ C 

ϴ CH 

ϴ CH2 

ϴ CH3 

ϴ CHO 

23.49 

0.22 

0.48 

0.23 

0.25 

0.01 

6.87E-03 

1.00E-03 

1.37E-04 

9.80E-01 

2.51E-03 

1.25E-07 

1.58E-07 

3.86 

0.25 

3.61 

0.02 

0.13 

0.01 

0.01 

0.32 

0.52 

4.41E-04 

6.84E-06 

1.97E-09 

0.44 

0.31 

0.13 

0.01 

0.07 

2.86E-03 

5.35E-03 

0.85 

0.06 

5.61E-06 

8.58E-07 

2.36E-08 

23.26 

0.62 

0.31 

0.05 

3.16E-03 

4.40E-04 

0.01 

3.10E-05 

3.46E-06 

7.82E-09 2.07E-09 
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Table 2:  Overall Rate Reaction of Dry Reforming Process [47, 64, 65] 

 

 

By studying different transition metals it can be said that the values are closed from 

the literature. It can be observed that hydrogen’s activation energy is a bit higher than 

the activation energy of CO formation. The reason could be the occurrence of 

reversed water-gas reaction that consumes hydrogen and generates CO. Table.4 

illustrates activation energies in same direction and it can be observed that the values 

vary between 2-4 kcal/mol [29, 44, 46, 50, 55, 66-69]. The effect of temperature 

should be taken into consideration in order to obtain more accurate values.  
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Table 3: Rates of Reaction for Rh and Pt Based Catalysts 

Catalyst 

Rate of reaction (s
-1

) 

rCH4 rCO2 rCO rH2 

Rh(0.6%)/La2O3 

Rh(1.0%)/Al2O3 

12.74 

- 

- 

- 

19.00 

18.40 

22.50 

24.00 

23.00 

16.00 

13.04 

- 

- 

- 

21.73 

15.00 

20.20 

20.00 

19.00 

15.00 

14.18 

16.00 

20.00 

12.00 

20.77 

15.00 

18.50 

21.60 

20.50 

16.00 

18.94 

18.00 

23.00 

16.00 

23.40 

16.80 

19.30 

34.00 

32.00 

19.00 

Rh (1.0%)/MgO 

Rh (1.0%)/TiO2 

Rh(3.8%)/SiO2 

Pt(0.83%)/ZrO2 

Pt(0.86%)/Al2O3 

Pt(0.31%)/ZrO2 

Pt(0.82%)/TiO2 

Pt(0.75%)/Cr2O3 

 

 

 

The previous results were obtained using ab initio computational approach using 

VASP coding and they are in compliance with the experimental data. The model was 

used to understand the favored pathways of the dry reforming reactions and to 

determine the rate determining step. The main two pathways in this reaction network 

are: CH4 dehydrogenation and CO2 dissociation. The detailed reaction network is not 

accessible experimentally and therefore simulation models are used to predict these 

pathways [67]. 
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1.6 Adsorption Energy 

Adsorption energy is the main parameter that this study is focusing on and it will be 

discussed in details later on. The physisorption of CO2 on transition metals’ surfaces 

is calculated to be around 0.3 eV regardless the type of the catalysts and its actives 

where the physisorption takes place as table.4 represents the adsorption energy [22, 

70]. CO2 cannot be chemisorbed on metallic planes that are low-indexed especially 

for copper comparing to the other metals. Chemisorption of CO2* could not be 

measured for Ag (111), Cu (111) and Au (111) and they have been studied to come 

up with a general trend for transition metals [38, 48, 71-74].  The overall CO2 

dissociation reaction rate is governed by the following reaction among many other 

pathways [26, 38, 49, 75, 76]:        𝐶𝑂2  → 𝐶𝑂 + 𝑂      (Eq.23) 
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Table 4: Adsorption Energies for CO2 on Different Catalysts  

Catalyst 

Eads CO2 Eads CO2* 

(eV) (eV) 

Fe(110) -0.24 -0.93 

Ir(111) -0.34 -0.35 

Ru(0001) -0.32 -0.65 

Pd(111) -0.33 -0.18 

Rh(111) -0.33 -0.36 

Ni(111) -0.27 -0.21 

Pt(111) -0.22 -0.03 

Co(0001) -0.26 -0.31 

Cu(111) -0.24 0.23 

Ag(111) -0.26 0.28 

Au(111) -0.3 0.42 
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Figure 8: Optimized Geometries of Adsorbed CO* at Ir(111), Fe(110), Ru(0001) and Co(0001) 

Surfaces[38, 48, 71-74] 

There is a relationship between the chemisorption of CO2 and the metal’s surface of 

the transition metal. CO2 chemisorption on the metal’s surface is due to the charge 

transferring from the surface with the bending structure (Figure 8) which is known as 

density of state and vibrational frequency [77-79]. The stability of the metal surface 

(111) can be arranged as: (Ni, Ir, Cu, Pd, Pt, Rh, Ag and Au) [44, 46, 50, 55, 67, 68]. 

CH4 dissociation contains four dehydrogenation reactions steps, while CO2 

dissociation contains one step. The chemisorption has been calculated using the 

following [47]: 

∆𝐸𝑎𝑑𝑠 = 𝐸𝑎𝑑𝑠𝑜𝑟𝑏𝑎𝑡𝑒−𝑠𝑢𝑟𝑓𝑎𝑐𝑒 − 𝐸𝑎𝑑𝑠𝑜𝑟𝑏𝑎𝑡𝑒 − 𝐸𝑠𝑢𝑟𝑓𝑎𝑐𝑒  (Eq.24) 
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The negative value means a stronger binding energy between the adsorbate and the 

surface. The adsorption energies were calculated on the most favored active sites and 

were summarized in table.5 [10, 13, 20, 28]: 

 

 

Table 5: Adsorption Energies of Reactants and Intermediate Molecules 

Catalyst Ni111 Ni100 Ni211 Ni3C(001) Ni3C(111) Pd Pt 

Species Eads (eV) 

CH3* -1.91 -1.87 -2.17 -2.27 -2.28 -1.95 -2.1 

CH2* -4.01 -4.32 -4.06 -4.41 -4.28 -4.92 -4 

CH* -6.35 -7.06 -6.67 -6.69 -6.76 -6.65 -6.7 

C* -6.85 -8.22 -7.95 -7.3 -7.69 -6.95 -6.88 

O* -5.72 -5.98 -5.9 -6.22 -6.11 -4.8 -4.35 

CO* -1.94 -1.95 -1.97 -2.18 -2.15 -2.3 -1.55 

CHO* -2.27 -2.85 -2.58 -2.61 -2.69 NA NA 

H* -2.8 -2.75 -2.84 -3.1 -2.98 -2.88 -2.71 

 

 

 

Several features can be identified from the chemisorption energies that are listed 

above. Firstly, for all the adsorbed species, the binding energies on Ni111 are the 

weakest among them all. Secondly, Ni3C(001) shows the strongest binding with 

every adsorbate., except for CHO, CH and C species due to the active site influence, 

which tend to bond powerfully with high valence adsorbates [27, 47].  
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 1.7 Activation Energy 

It is the minimum energy required for reactant species to have in order to transform 

them into products. This energy differs from a metal to another and the following 

table compares between Ni111, Lanthanum Zirconate Pyrochlores LRhZ (011) and 

LRhZ (111) that are used in dry reforming of methane DRM [40, 54, 55, 64, 67, 80-

82] 

 

 

Table 6: Activation Energy for DRR on Ni111, LRhZ(011) and LRhZ(111) 

Reaction 

Ni111 LRhZ(011) LRhZ(111) 

Ea,f (eV) Ea.r (eV) Ea,f (eV) Ea.r (eV) Ea,f (eV) Ea.r (eV) 

       

CH4(g) + * → CH4
*
 0.00 0.02 0.00 0.13 0.00 0.07 

CH4
*
 → CH3* + H* 0.91 0.90 0.38 1.75 0.89 1.46 

CH3* → CH2* + H* 0.70 0.63 1.41 2.80 0.81 1.07 

CH2* → CH* +H* 0.35 0.69 2.70 3.86 2.53 3.28 

CH* → C* +H* 1.33 0.81 3.74 3.18 3.37 2.71 

CO2(g) +* →CO2* 0.00 0.02 0.00 2.93 0.00 1.46 

CO2* → CO* + O* 0.67 1.65 3.63 1.31 2.53 1.26 

CO2*+H* → COOH* 1.13 0.85 0.22 3.59 1.47 0.74 

COOH* → CO* + OH* 0.57 1.65 0.22 3.59 0.10 1.65 

CH3* + OH* → CH3OH* 2.20 1.61 3.15 0.01 2.52 0.01 

CH3OH* → CH2OH* +H* 0.88 0.69 0.66 1.79 0.81 1.11 
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CH2* + OH* → CH2OH* 1.32 0.60 3.42 0.01 2.47 0.01 

CH2OH* → CHOH* +H* 0.53 0.90 1.83 1.67 2.12 0.93 

CH* + OH* → CHOH* 1.48 0.80 6.43 1.70 4.42 0.01 

CHOH* →COH* +H* 0.15 0.86 2.96 5.52 NA NA 

C* + OH* → COH* 1.46 2.01 3.34 1.73 NA NA 

COH* → CO* +H* 0.98 1.97 1.66 3.58 NA NA 

CH3*+O* → CH3O* 1.59 1.31 2.57 0.11 2.50 1.05 

CH3O* → CH2O* +H* 0.93 0.64 2.29 2.88 2.28 1.92 

CH2*+O* → CH2O* 1.45 0.95 3.49 0.23 2.88 0.80 

CH2O*→ CHO*+H* 0.36 0.74 1.74 3.58 1.37 2.34 

CH* +O* → CHO* 1.53 1.08 6.90 4.31 4.01 2.16 

CHO* → CO* +H* 0.20 1.48 3.08 3.15 2.40 2.26 

C* +O* → CO* 1.59 2.94 5.49 3.54 3.31 1.97 

CH3OH* → CH3O* +H* 0.89 1.38 1.44 4.39 0.33 1.82 

CH2OH* → CH2O* +H* 0.63 1.04 0.12 2.53 0.91 1.73 

CHOH* → CHO* +H* 0.71 1.14 1.30 5.70 0.01 3.00 

O* +H* → OH* 1.35 1.16 5.60 3.34 1.74 1.30 

OH* +H* → H2O* 1.33 0.92 3.04 0.01 2.08 0.01 

H2O*→ H2O(g) 0.29 0.00 0.93 0.00 0.79 0.00 

H* +H* → H2* 0.92 0.06 2.65 0.05 1.16 0.05 

H2*→  H2(g) 0.22 0.00 0.19 0.00 0.38 0.00 

CO* →  CO(g) 1.92 0.00 2.53 0.00 1.63 0.00 

CH3OH* → CH3OH(g) 0.30 0.00 0.78 0.00 0.78 0.00 
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By comparing the activation energies for the above metals, it can be said that Ni111 is 

the optimum among the three compared catalysts [38, 39, 43, 45, 54, 76, 82-84]. The 

energy input is the main obstacle when it comes to commercialize dry reforming 

techniques.  Coke resistance is the high on Ni111 surface comparing to other 

catalysts. Table 7 represents the activation energy of DRM for different Ni-based 

catalysts [37, 40, 42, 46, 57, 59, 61, 82, 85-88]. 

Table 7: Activation Energy of DRM on Different Ni-Based Catalysts 

Catalyst 

Temperature 

(K) 

Ea CH4 Ea CO2 Ea H2 Ea CO 

(kJ/mol) 

Ni/Al2O3 773-973 50.90 56.10 80.50 

Ni/Al2O3 673-773 70.60 69.00 98.10 74.00 

Ni/SiO2 673-773 62.30 69.80 93.90 68.90 

Ni/TiO2 673-923 NA 59.80 NA NA 

Ni/C 673-823 121.40 92.10 134.00 100.50 

Ni/MgO 673-823 92.10 87.90 146.50 87.90 

Ni/LaO2 923-1023 55.30 NA NA NA 

LaSrNiO4 633-713 41.80 12.40 NA NA 

Ni/ZrO2 723.00 58.62 41.87 NA 50.24 

0.3Pt-10Ni NA 26.90 23.60 24.90 35.80 

0.2Pt-15Ni NA 26.60 16.90 21.00 35.20 
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In table 7 it can be observed the temperature on different catalysts and the different 

alloy on Ni. Adding different metal to Ni it improves the activation energies and 

lower the amount of energy required for the process [38, 40, 82, 89]. Adding noble 

metal will reduce the activation energy that is required as it can be observed in the 

previous table. Noble metals are not feasible when it comes to commercialize DRM. 

The higher cost of the metal and it stability are the major challenges. Since dry 

reforming is an endothermic process, the optimum catalyst should require less energy 

input. Therefore, noble based catalysts are favored from energy saving point of view 

[90]. Based on the literature review above, Ni111 is a good choice to start the 

simulation and investigate its properties. It is widely available, low cost and highly 

resistive to carbon deposition. Also, it shows reasonable adsorption/activation 

energies.  

The main reasons to consider DRM are; producing syngas that can be used in 

different industries, reducing the amount of greenhouse gases by economic feasibly 

method. These requested data are important to have a clear understanding of DRM 

mechanism and pathway. Moreover, it indicates the amount of energy required as 

input and that reflect the economic feasibility of the whole process. The carbon 

deposition study dictates the additional utilities for better operating conditions.  

 



30 
 

1.8 Objectives 

As mentioned earlier, the greenhouse gases had increased dramatically in the last few 

decades. They are emitted mainly from industrial sources by combusting fossil fuels 

and that is leading to disturb and endanger the ecosystem and human life. It also 

increases the global warming phenomena. Therefore, researchers are studying 

different ways to mitigate and reduce the effects of GHG on the environment by 

studying different technologies that may capture or reform these gases. The main 

focus in this study is on CO2 reforming by DRM. 

The main objectives of this study are to understand DRM process and its kinetics. 

More objectives are to study different potential sites and molecular orientations on the 

catalyst in order to choose the optimum conditions. This can be approached by 

performing accuracy test using density functional theory. Moreover, this study aims 

to establish simulation routine for fast calculations for adsorption energies, bond 

lengths, atomic distance to surface and angles of molecules. In this study, different 

surfaces of metals will be evaluated and density functional theory (DFT) calculations 

will be performed on a chosen surface based on selected criteria in the literature 

review.  
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Chapter2 Literature Review 

2. Density Functional Theory 

Density Functional Theory (DFT) is a computational method for quantum mechanical 

calculations based on modelling approaches. It is used in chemistry, physics and 

different science to examine the ground state of many-body simulations. It is based on 

the electron density rather than wave-functions and that is in contrast to HF theory. 

Electron density is easier to be investigated experimentally using X-ray diffraction. 

The energy of the system can be described using electron density associated with 

corrected Hamiltonian operator. There are many theories that can be used in order to 

carry on this study. 

2.1 Functionals 

The functionals represent different approximations to exchange-correlation functional 

2.1.1 Local Density Approximation (LDA) 

LDA is considered to be the simplest and the base of the exchange-correlation 

functionals. It uses the electron density of a uniform electron gas. LDA was 

introduced by Kohn and Sham initially and it is given by 

𝐸𝑥𝑐
𝐿𝐷𝐴 =  ∫ 𝜌(𝑟)𝜖𝑥𝑐(𝜌)𝑑𝑟                    (Eq.12) 

Where 𝜌 is the electron density and 𝜖𝑥𝑐(𝜌) is the exchange-correlation energy per 

particle of uniform electron gas of density and its potential is governed by 
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𝑣𝑥𝑐
𝐿𝐷𝐴[𝜌(𝑟)] =  

𝛿𝐸𝑥𝑐
𝐿𝐷𝐴

𝛿𝜌(𝑟)
=  𝜖𝑥𝑐(𝜌) + 𝜌(𝑟)

𝜕𝜖𝑥𝑐(𝜌) 

𝜕𝜌
         (Eq.13) 

 Where 𝑣𝑥𝑐
𝐿𝐷𝐴is the exchange-correlation energy density.  

 Using LDA calculations practically, it is necessary to determine the exchange-

correlation for a uniform electron gas of a given density. 𝜖𝑥𝑐(𝜌) is split into exchange 

and correlation potentials as following: 

𝜖𝑥𝑐(𝜌) =  𝜖𝑥(𝜌) +  𝜖𝑐(𝜌)                                (Eq.14) 

The exchange potential is given by the Dirac functional: 

𝜖𝑥[𝜌(𝑟)] =  −
3

4
(

3

𝜋
)

1

3𝜌(𝑟)                                     (Eq.15) 

Accurate values for 𝜖𝑐(𝜌) have been determined from Quantum Monte Carlo (QMC) 

calculations. These have then been interpolated to provide an analytic form for 𝜖𝑐(𝜌) 

2.1.2 Generalized Gradient Approximation (GGA) 

LDA is a zeroth order approximation and it has low accuracy and to enhance it; 

generalized gradient approximation was developed. It has the gradient of electron 

density which shows the non-homogeneity of the real electron density. GGA is 

divided into exchange and correlation terms and they are solved separately as in the 

following equation: 

𝐸𝑋𝐶
𝐺𝐺𝐴 =  𝐸𝑋

𝐺𝐺𝐴 +  𝐸𝐶
𝐺𝐺𝐴                            (Eq.16) 
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GGA uses non-exhaustive several of efficient GGA functionals to perform 

computational calculations such as; 

P86: Perdew developed a correlation functional that includes an empirical parameter 

fitted for neon atom.  

PW91: this exchange correlation functional was developed by Perdew and then 

Perdew, Wang and Burke. 

PBE: an exchange-correlation functional developed by Perdew, Burke and Ernzerhof. 

There are many approaches to perform DFT calculations which deal with spin 

polarized system, multicomponent system, free energy at finite temperature and many 

other calculations [27, 50, 91, 92]. The use of these simulations codes will ease the 

calculations and provide more accuracy.  There are many density functional theories 

can be used but for dry reforming and transition metals, it is recommended to use the 

general gradient approximation (GGA) [26, 45, 47]. To enhance the accuracy of the 

simulation, Pardew-Burke-Ernzerhof (PBE) was used. PBE is a van der Waal 

correlation that takes into account the van der Waal interaction forces and its 

parameters were obtained from ab-initio calculations[55]. 

2.2 Quantum Mechanics 

Computational methods have been used to study and evaluate the metal’s surfaces 

and perform thermodynamic calculations[78]. In such methods, density functional 

theory (DFT) is used to perform these calculations and it is considered as one of the 
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most promising technologies that can compute the electronic structure of a metal [27, 

55]. DFT solves the Schrodinger equation with a high accuracy and lower cost; 

depending on the size of the system that is submitted. The smaller systems are more 

accurate and faster to give results. Solving the Schrodinger equation could predict the 

electronic system’s behavior. DFT simulations are limited to maximum up to 200 

atoms in any simulation; thus the studied system must be well chosen for short-range 

interaction calculations via DFT techniques.  

2.3 Many Body Problem 

 Many-body problem is a term that is used when there is a big number of 

interacting molecules on a micro scale to solve systems that are ruled by Schrodinger 

equation. This concept widely used in quantum mechanics to provide a better 

accuracy to time-independent non relativistic systems [93, 94].  The Hamiltonian 

approach is used effectively in colloidal limitation and many-body interaction to 

allow better improvement in colloidal systems theoretically[94, 95].  

2.4 Hartree-Fock Theory (HF) 

This theory is based on the molecular orbital theory (MO) which speculates that each 

electron movement can be described by single particle function. In HF, the 

Hamiltonian approach could be divided into two parts; a core Hamiltonian part 

(electron-nuclei) and the electron-electron part. The Hamiltonian equation is as 

following: 

𝐻 =  ∑ [ 𝐻𝑐(𝑖) +  ∑
1

𝑟𝑖𝑗
] 𝑗>𝑖𝑖  with  𝐻𝑐(𝑖) =  −

1

2
∇𝑖

2 −  ∑
𝑍𝐴

𝑟𝑖𝐴
𝐴     (Eq.17) 
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2.4.1 Hartree Electron Approximation  

The main objective is to approximate the wave function in order to solve Schrodinger 

equation as a product of single electron wave function [96, 97]. Hartree equations 

allow researcher to convert 3 Z dimensional Schrodinger equations into a 3 

dimensional equation for every electron to be solved by using iteration and variational 

principle [96, 98, 99]. Since it is non-local and it depends on the spin orbital and due 

to that it must be solved self-consistently. 

The total energy obtained from the solution of the HF approximation is always higher 

than the real energy. This is due the fact that electrons are considered to be moving in 

a mediocre electronic field. This implies that the correlated motions of each electron 

others are omitted. The difference can be represented as following: 

𝐸𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 =  𝐸𝑡𝑜𝑡𝑎𝑙 −  𝐸𝐻𝐹                             (Eq.18) 

This difference is around 1% of the total energy and it may effects the output of the 

simulated systems rapidly. 

2.5 The Bloch’s Theorem 

Schrodinger equation solution has a form of   ѱ𝑘 = 𝑢𝑘(𝑟)𝑒𝑘𝑡    (Eq.19) 

Where; 

 uk(r) = uk(r+T) is an amplitude function of the plane wave, exp(ikr) 

and T are translation of the crystal 

 Exp(ikr) multiplied by function uk(r) with the periodicity of the lattice 
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This type of wave functions is named Bloch theorem function and they are used in 

DFT calculations where they are very useful. This theorem allows focusing on one 

period of the lattice to solve wave functions [100, 101]. 
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Chapter3 Technical Approach 

Simulations are used to study different types of catalysts and evaluate their activity. 

DFT calculations can be solved using different coding languages and software such as 

SIESTA and VASP. They are efficient and provide accurate results. This study 

compares between SIESTA and VASP as following: 

3.1 SIESTA 

SIESTA is a combination between a method and its software program to be used in 

electronic structures calculations by solving DFT equations. The efficiency of this 

method depends highly on the basis sets that are used and implementation of linear-

scale algorithm. The accuracy of the software and its cost has a wide range depending 

on the required output[102]. Moreover, this method can perform ab initio molecular 

dynamics simulations of solids and molecules. DFT is used to predict the physical 

properties of atoms and electron density[103]. The first calculations of DFT are 

usually performed using SIESTA software based on norm conserving 

pseudopotentials and numerical atomic orbitals, with the local density approximation 

[16, 70].  

 3.2 Vienna Ab Initio Simulation Package (VASP) 

VASP is a software and coding language that enable scientists to model atomic 

scale systems in order to many body problems. VASP gives approximate results 

for Schrödinger equation [78, 104]. The Schrodinger equation predicts the 

behavior of electronic systems as it is a wave equation of a wave function. 
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Schrodinger is known as the first person who wrote partial differential equation 

that predicts how the quantum systems change with time. The solution of 

Schrodinger is based on Eigen Values that is devised by Fourier [77, 100, 105].  

There are sets of conditions that are used in many simulations as a representation 

of a larger system using representative volume element.  These conditions could 

be temperature, pressure or electronic structures[106]. 

The selection of the coding language depends on many factors such as, the size of 

simulated systems (atoms involved); basis set accuracy and running time. To 

obtain good results from SIESTA, simulated system shouldn’t be more than 200 

atoms. Although, SIESTA can operate more atoms but that will be reflecting on 

the accuracy of output files. VASP is being developed frequently and it is used 

widely. Also, it has a better accuracy when it comes to large simulation systems. 

However, VASP isn’t the best choice for periodic boundary conditions due to 

pseudopotentials transport with the planewave basis and the source.  In this paper, 

periodic boundary conditions (illustrated in figure 9)has been used for a 

simulation system less than 200 atoms and therefore, SIESTA has been used [106, 

107]. 
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Figure 9: Schematic Representation of The Idea of Periodic Boundary Conditions[108]. 

Using the two simulation approaches, the binding, activation energies and 

enthalpy changes were calculated for the following reaction: 

𝐶𝑂∗ + 𝑂∗  ↔ 𝐶𝑂2
∗∗ (Eq.20) 
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Table 8: Comparison of Binding Energies (Eads) for CO, Activation Energies (Ea,f) and Enthalpy 

Changes 

Surface 

Eads (CO) (eV) Ea (eV) ΔH (eV) 

Experimental SIESTA VASP Experimental SIESTA VASP SIESTA VASP 

         

Ni111 -1.94 -2.09 -1.88 1.61 1.53 1.60 0.96 1.27 

Ni211 -1.97 -2.09 -1.98 1.84 1.57 1.69 0.75 1.00 

         

 

 

The differences between the two coding languages are less than 0.1 eV after 

calculating the activation energy and 0.2 eV in binding energy. These variations are 

due to the mathematical inaccuracy of the SIESTA solver [54, 109]. In principle, 

VASP coding and solving is more accurate than SIESTA.  

Pseudopotential theory is used to approximate or simplify the complex systems or it 

is called the effective potential. It is a way to replace the complicated effects of the 

core electrons and nucleus of an atom. In large systems, it is assumed that the inner 

electrons are not affected by the surrounding environment [91, 92, 110].  

Ab initio method means that a method with no empirical parameters to be used and it 

is from the first principles. When it comes to DFT, it is a method can be considered 

ab initio method by practice, especially when using exchange correlations with higher 

accuracies. Some of these exchange correlations are semi-empirical. LDA and PBE 
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are considered to be ab initio due to their constraints and can’t be fitted. Other 

exchange correlations functionals such as M06 have parameters that can be fitted. 

Therefore, it can’t be considered to ab initio method [55, 111]. 
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Chapter4 Methodology 

In this study, DFT calculations were executed using SIESTA software platform, 

which utilize Troullier-Martins norm-conserving scalar relativistic pseudopotentials. 

A double-ζ plus polarization (DZP) basis set was used and it gives fairly well 

converged results, slightly comparable to the ones used in practice in most plane-

wave calculations. This basis sets is a good balance between accuracy and especially 

computational cost.  Generalized gradient approximation (GGA) functional and its 

Perdew-Burke-Ernzerhof (PBE) form were used in standard DFT supercell approach. 

GGA functional with a 300 Ry mesh cutoff were used in this study. Spin –

polarization of electrons calculations were considered in order to account for the 

magnetic moment of the catalyst. These calculations considered all forces that effect 

on the atoms must have a tolerance lower than 0.05 eV/Å. This system has used 

Ni111, a 2×2 unit cell with five layers and the length to define the scale of the lattice 

vectors were defined as Lattice Constant 1.0 Ang. The z-direction neighboring cells 

are separated by a vacuum of ~16.0 Å. Materials Studio was used to prepare the 

initial structure for coordinates (*.xsd). An input file (Flexible Data Format (fdf)) was 

prepared for SIESTA simulation and pseudopotentials from Abinit's Fritz-Haber-

Institute (FHI) pseudo database data/file. The initial structure was consisting of Ni111 

bulk consists of 45 atoms (5 layers). For placing the molecules, it has been taken into 

consideration the following; horizontal CO2 molecules are placed 2 A away from the 

surface and the vertical CO2 Molecules are placed 3 A from the carbon to the surface. 
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All distances are measured between the carbon atoms (center of the mass). In 

SIESTA, 32 cores were used for each simulation. 

4.1 The Used Logic 

The logic of these simulations factorial design: 

• Start with investigating Ni111 surface and its interaction with CO2 at

various locations. 

• Orientation of CO2 molecules at the beginning of the simulations are

part of the simulation design. 

• Moreover, these simulations considered the active sorption sites and

the location of the CO2 at the beginning of the simulations considering the 

active sorption sites. 

• Start working on PBE-GGA functional and that is based on the

outcomes from the literature review.  

• Perform counterpoise corrected binding energies at the end to finalize

the calculations. 

• Same procedure has been used for CH4.

• Same procedure will be used for selected moleucles such as  for CH-,

CH2-, CH3-, CHOH-, C-, and CH2OH-. 
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Counterpoise correction simulations and calculations were performed to obtain 

corrected adsorption energies as following: 

1. ENT: Get final relaxed structure, remove CO2 and relax again 

2. EAD: Get final relaxed structure, remove Ni and relax again 

3. Eno-ghost,NT: Get optimized final structure, remove CO2, don’t 

relax the system, just do single point/step calculation (CG=0 in the 

code) 

4. Eno-ghost,AD: Same fdf file of step 2 but don’t relax the system, 

just do single point/step calculation (CG=0 in the code)  

5. Eghost,NT: Single point calculation of the whole system (like step 

3) but with CO2 is ghost molecule (negative terms) 

6. Eghost,AD: Single point calculation of the whole system (like step 

3) but with Ni is ghost molecule (negative terms) 

 Initial optimized structure: EA 

 ECC (counterpoise corrected)=(cp6 - cp4) + (cp5 - cp3) 

 EAD,CC (counterpoise corrected Adsorption Energy)=cp1 + cp2 – EA + 

ECC 
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 Once the SIESTA calculations were established and converged, it will

be compared the strength of these simulations in comparison with the plane 

wave basis sets, which are known to work more accurate especially for charge 

distributions. 

Figure 10: Simulation Organization Used 
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CO2 Sims 
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cp Corrections 

CH4 Sims 

Different Sites 

Final Opt. 
Structure 

cp Corrections 

Main Molecules 

Different Sites 

Final Opt. 
Structure 

Cp Corrections 
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Chapter5 Results and Discussion 

5.1 Geometry 

It worth to mention again that SIESTA uses Kohn-Sham self-consistent density 

functional method in LDA and GGA approximations, as well as non-local functional 

that includes van der Waals interactions. The output of SIESTA simulation provides a 

lot of data such as; geometry relaxation, energies (total and partial), atomic forces, 

electron density and many others [SIESTA Manual]. In this study, the structural 

information was given directly from fdf files in Cartesians coordinates.  In order to 

optimize the geometry many parameters were used to tune the structure. After 

introducing the bulk Ni atoms and specifying the lattice parameters, split basis type 

and DZP size were used for the pseudo-atom-orbitals (PAO). Moreover, dispersion 

correction using Grimme’s method (empirical correction) was introduced to take care 

of the contribution of van der Waal’s forces that are not well described by the 

functional and basis set that are used in this study. It is essential to have this 

correction when it comes to the adsorption energies of the system and it has 

reasonable correction cost. The self-consistent file (SCF) section shows how the 

program solves the quantum chemistry equations. In this study the tolerance in SCF 

was set to be 0.001 with max iterations of 300 which were enough for the system to 

converge (can be edited when it doesn’t converge).  For optimization of the molecular 

dynamics (MD) structure, there are many choices but in this study, conjugate 

gradients (CG) is used to optimize the coordinates as it is the default geometry 
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optimization method. The other choices are modified Broyden scheme, fast inertial 

relaxation engine and many others. The default value in SIESTA is CG for structure 

optimization. It is essential to know that while optimizing the structure, the cell has 

been fixed as it was defined earlier and only the atoms are subjected to move. Many 

CG steps are required to reach the minimum energy. The maximum movements of 

atoms are defined in the fdf file by MD.MaxCGDispl to be 0.8 Bohr.  

5.2 CO2 Interaction 

CO2 molecule is placed horizontally 2 Angstrom from the center of the mass and 3 

Angstrom vertically on top of the Ni111 structure that is used in this study. For each 

orientation, four different sites have been selected to study the adsorption energies 

and the active sites.  From the literature review [27, 47], the adsorption energy of CO2 

molecules on Ni111 is around -0.27 eV. The CO2 molecule has 180 degree angles 

between the carbon and oxygen. The change in these angles indicate somewhat of 

binding energies are affecting the molecule. The typical double bond length between 

the carbon and oxygen is 1.2 Angstrom and 1.43 Angstrom for the single bond. The 

following table summarizes the 8 selected sites and their adsorption energies: 
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Table 9: CO2 Adsorption Energy of Different Sites 

Ni111_1CO2 

 

Position 
Eads Angle 

(eV) 
o 

  
 

H1 0.194 130.74 

H2 0.193 131.59 

H3 -0.039 131.20 

H4 0.102 128.59 

   

V1 -0.234 179.31 

V2 -0.036 179.85 

V3 -0.219 179.51 

V4 -0.260 179.75 

Published 

Eads CO2 

 

Eads CO2* 

-0.27 -0.21 

 

 

 

In SIESTA, the sign of the adsorption is defined to be the opposite from the literature. 

Therefore, when it comes to compare the results, the positive in SIESTA is negative 

in literature.  

The definition in SIESTA [112] is:  𝐸𝑎𝑑𝑠 =  𝐸𝐶𝑂2 + 𝐸𝑠𝑢𝑟𝑓𝑎𝑐𝑒 −  𝐸𝐶𝑂2−𝑆𝑢𝑟𝑓𝑎𝑐𝑒    

 (Eq.25) 
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And in the literature is:       𝐸𝑎𝑑𝑠 =  − 𝐸𝐶𝑂2 −  𝐸𝑆𝑢𝑟𝑓𝑎𝑐𝑒 +  𝐸𝐶𝑂2−𝑆𝑢𝑟𝑓𝑎𝑐𝑒      

 (Eq.26) 

To understand the following figures, the atoms are defined by colors as in figure.11. 

It can be clearly seen that horizontal orientations gave better results comparing with 

the literature [27, 47]. The adsorption of horizontal CO2 molecule was adsorbed on 

the surface of the Ni forming a bond between the carbon and the surface as illustrated 

in figure.12. On other horizontal sites, there was a bond between oxygen molecule 

and the surface was formed. This had a slight effect on the adsorption energy of CO2. 

Among the horizontal orientations, the first active site gave the optimum adsorption 

energy.  

 

 

 

 

Figure 11:  Atoms by Colors 

 

 

 



50 
 

 

Figure 12: Horizontal CO2 Adsorption on Ni1111 

 

 

 

 

The four vertical orientations of CO2 formed different type of adsorption bonding 

than the horizontal ones. The first two sites formed a bond between the closest 

oxygen to the surface and the surface. This type of bonding gave non reasonable 

adsorption energy comparing to literature [27, 47]. The other two sites did not adsorb 

the CO2 on the surface. To conclude; horizontal orientations of CO2 is more favorable 

active sites and give more reasonable adsorption energies. 



51 

5.3 CH4 Interaction 

CH4 has large C-H bonds, ionization energy and no dipole moment and due to all of 

these properties, the activation of the first C-H bond in CH4 is considered to be rate-

determining step [47]. It is expected that the CH4 will be dehydrogenated on the 

surface of Ni111 in order to reach to the required syngas. In this study, the simulated 

CH4 did not adsorbed on the surface as it can be seen in figure 13 and it is believed 

that the concentration of CH4 will play a role in dissociation process[27]. 

Unfortunately, in CH4 dissociation on Ni111 is considered to be high comparing with 

the other flat and stepped surfaces of pure Ni and its alloys such as nickel carbide. 

These other surfaces are found to be around 0.6 eV. 

Figure 13: CH4 Adsorption on Ni111 
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In this study, the calculated adsorption energies and angles of CH4 are represented in 

table 10 

 

 

Table 10: CH4 adsorption energies and angles on Ni111 

Ni111_1CH4 

Position Eads (eV) 
Angle 

1 -0.148 108.556 

2 76.682 110.889 

3 0.116 107.988 

4 0.185 111.089 

 

 

 

 

These values are lower than ones in the literature [27, 47] and the difference was 

around 79%. However, due to the properties of CH4 that are mentioned earlier, the 

number of layers of both systems plays a major role in this differences.  

The regular geometry of CH4 molecule has a 109
o
 angles between the carbon and 

hydrogen atoms and a 1.09 Angstrom bond length. From the previous table, it can be 

observed that there are forces that are affecting the CH4 molecules. These forces have 

changed the angles of CH4 slightly and could be another indication that this could be 

the rate-determining step. Among the four selected site, the fourth is most active site.  
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5.4 Overall Findings 

In table 11 there overall system findings (adsorption energies, active sites and angles) 

are represented and compared to values from literature. These different percentages 

vary from a molecule to another and they due to different factors will be mentioned 

while discussing each molecule concerned.  

 

 

 

 

Table 11: Overall Output Simulated System 

  Compound 

Eads Sim 

Eads 

Literature 

[27, 47] 

Error % Angle b/w Angle 

# sim Remark eV eV % N/A 
o 

H1 

 

CO2 0.194 -0.27 28.005 OCO 130.742 

3 No ads CH4 0.116 -0.88 NA HCH 108.556 

      

HCH 110.889 

      

HCH 107.988 

      

HCH 111.089 

1 

 

C 8.466 -6.780 24.864 NiCNi 92.625 

1 

 

CH 7.234 -6.430 12.496 NiCNi 86.953 

      

NiCH 128.159 

      

NiCH 127.646 

2 No ads CH2 4.771 -4.010 18.984 HCH 104.459 
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1 

 

CH3 2.791 -1.910 46.123 HCH 108.625 

      

HCH 108.462 

      

HCH 109.137 

2 No ads CH2OH 2.049 -1.540 NA HCO 102.672 

      

COH 111.361 

2 

 

CHOH 3.984 -3.880 2.687 COH 109.150 

      

NiCO 129.418 

2 

 

CO 2.248 -2.090 7.553 NiCO 130.980 

2 

 

CH3O 3.055 -2.630 16.144 HCH 112.982 

      

NiOC 100.484 

2 No ads CH3OH 0.329 -0.300 NA HCH 110.972 

      

COH 109.381 

1 

 

COOH 2.649 -2.260 17.199 OCO 117.096 

      

COH 104.002 

1 

 

H 3.589 -2.770 29.567 NiNiH 143.970 

2 

 

H2 1.099 -0.220 399.480 NiNiH 143.545 

      

HNiH 61.125 

1 No ads H2O 0.275 -0.290 NA HOH 102.319 

3 

 

OH 3.774 -3.420 10.355 NiOH 113.419 

1 

 

CH2O 1.090 -0.750 45.378 HCO 112.012 

      

HCH 112.984 

1 

 

O 7.059 -5.670 24.493 NiONi 85.523 
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These findings are needed to be compared with a reference of similar systems and 

geometry properties. The main two molecules to be taken into account are CH4 and 

CO2 and their angles are represented in table 12. 

Table 12: CH4 and CO2 Angles in the Simulated System 

# sim Compound 

Angle b/w 

Simulation 

angle 

Angle 

Literature 

Difference 

N/A o o % 

H1 CO2 OCO 130.742 180.000 27.366 

3 CH4 

HCH 108.556 109.500 0.862 

HCH 110.889 109.500 1.268 

HCH 107.988 109.500 1.381 

HCH 111.089 109.500 1.451 
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In table 13, the bond lengths for CH4 and CO2 are shown and compared to literature 

values [27, 47]. It’s essential to know the difference between the relaxed geometry of 

the molecules and within the simulated system. The stretched bonds may lead to 

dissociation or detaching an atom from its molecule. 

 

 

 

 

Table 13: Bond Lengths of CH4 and CO2 

Bond 

Literature Simulation Difference 

Length (pm) % 

H-H 74.00 Broken N/A 

C-H 109.00 111.00 1.83 

C-O 143.00 129.00 9.79 

O-H 96.00 98.00 2.08 

C=O 120.00 127.00 5.83 

 

 

 

 

After dehydrogenation of CH4 and obtaining the required barrier energy, hydrogen 

will be detached from it. That will lead to have a free hydrogen atom H and CH3. 

Then, the dehydrogenation will continue till carbon deposits on the surface causing a 

deactivation of the catalyst.  The deactivation of the catalyst has been mentioned 
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earlier and will be discussed when it comes to carbon adsorption. Meanwhile in this 

study, some of the main molecules that are related to CH4 and CO2 dissociations will 

be discussed in details separately and the rest will be referred to in the reaction 

network section.  

5.4.1 CH3 and CH2 

CH3 adsorption energy is calculated to be 2.79 eV which is easier to be adsorbed on 

Ni surface than CH4. It can be observed in figure 14 there is a bond formed between 

the carbon and the Ni surface. This adsorption is 46% higher than the literature [27, 

47] for a relatively similar system. The formed bond C-Ni requires more energy to 

break than C-H and that will lead to easier detached of hydrogens from this molecule. 

In figure 15, it can be observed there was no adsorption detected for CH2 molecule. 

There was deforming of the Ni surface and that may be caused by breaking the C-Ni 

bond.  
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Figure 14: CH3 Adsorption on Ni111 

 

 

 

 

 

 

Figure 15: CH2 Adsorption on Ni111 
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5.4.2 CH 

As it can be observed in figure 16 that CH has been adsorbed forming a C-Ni bond 

and the adsorption energy was found to be 7.23 eV. This energy is about 12.50% 

higher than the literature [27, 47] – different number of layers. With every hydrogen 

has been detached from the original, the energy of adsorption is increasing. In this 

study, only the forward reaction has been taken into consideration and to fully 

understand the whole picture both reactions should be studied as there are many 

breaking and forming bonds will be occurring at the same time. Later on, the total 

network of reactions will be discussed in this study. 

Figure 16: CH Adsorption on Ni111
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5.4.3 Carbon (C) 

Carbon can deposit on the surface due to many reactions paths. It could be due to CH4 

or CO2 dissociations. The dehydrogenating of CH and CO dissociation are two 

possible ways to form C. The adsorption energy of C on the surface was found to be 

around 8.47 eV and it is higher than the other steps of the CH4 dissociation and it can 

be observed in figure 17. This high energy indicates that Ni111 has a higher carbon 

resistivity than other surfaces have been mentioned earlier. This is undesired step and 

it deactivates the catalyst. This C can form CO molecule by being attached with free 

oxygen in the system as CO is one of the targeted molecules to be produced from this 

process. Depending on the concentration of the free oxygen, C can react to produce 

CO or deposit on the surface and inactive the catalyst. The formation of C from CO2 

dissociation was discussed earlier in this study.   
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Figure 17: Carbon Adsorption on Ni111 

 

 

 

 

5.4.4 CH2O and CH2OH 

This is a transitional molecule and it is not stable and there are many pathways to 

form this molecule. One of these ways is to CH2 reacts with free oxygen or by 

dehydrogenation of CH2OH. The adsorption energy is found to be 1.09 eV and it is 

higher by 45% than literature [27, 47] and it can be seen in figure 18. Since it is a 

transitional molecule, the two ways reactions should be considered and that 

concentration of the system has a major effect on the adsorption energy and the 

geometry of the molecule. CH2O can dissociate to CHO and free hydrogen or form 

CH2OH by reacting with free H [27].  CH2OH is formed by reacting CH2O with free 

H and it is adsorbed on the surface with 2.05 eV as adsorption energy and it is 

represented in figure 19. It has been noted that C-Ni bond is always generated when 
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there is an adsorption occurs. In CH2O adsorption there was Ni-O bond was formed 

beside C-Ni bond and this will eases the detaching atoms from the molecule. 

Figure 18: CH2O Adsorption on Ni111 
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Figure 19: CH2OH Adsorption on Ni1111 

5.4.5 CHOH 

The adsorption of CHOH is formed by dissociating into COH and detached a H as it 

can be seen in figure 20.  The adsorption energy was calculated to be 3.98 eV which 

is higher than literature [27, 47] by around 2.7%. Forming of CHOH molecule could 

be by dehydrogenation of CH2OH, reacting OH molecule with CH or different 

pathway. 
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Figure 20: CHOH Adsorption on Ni111 

 

 

 

 

5.4.6 CH3O 

In this molecule, it can be observed clearly in figure 21 that there was an adsorption 

and hydrogen atom was detached from the molecule and that will form CH2O 

molecule adsorbed on the surface. The adsorption energy was found to be 3.05 eV. 

The adsorption and dissociation of CH2O has been discussed earlier in this study.  
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Figure 21: CH3O Adsorption on Ni111

5.4.7 CH3OH 

CH3OH adsorption on the surface requires around 0.33 eV which is slightly higher 

than the literature [27, 47] which was calculated to be 0.30 eV. In this study, CH3OH 

was not adsorbed on the surface as in figure 22 and it may require different 

concentration and distance to occur. The dissociation of CH3OH would produce most 

of the transitional molecules of form of CHxOH and CHxO where (0<x<3). These 

transitional molecules where discussed earlier. 
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Figure 22: CH3OH Adsorption on Ni111 

 

 

 

 

5.4.8 COOH 

COOH was adsorbed on the surface forming a C-Ni bond as it appears in figure 23 

and the energy of this adsorption was calculated to be about 2.65 eV.  This 

intermediate molecule can be formed by reacting free hydrogen atom or H2 with CO2 

before dissociating into CO and OH or into CO and H2O, respectively [26, 27]. 
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Figure 23: COOH Adsorption on Ni111 

 

 

 

 

5.4.9 CO  

CO is a linear mole with triple bonding between the two atoms. The oxidation of CH4 

and CO2 dissociation will lead to form CO. In figure 24, the adsorption of CO can be 

seen and C-Ni bond was formed and the triple bond was reduced to double bond. The 

adsorption energy was calculated to 2.25 eV which is around 7.55% higher than the 

literature [27, 47].  The angle of the linear molecule was changed to 131
o
 due to the 

adsorption energy. CO can be formed from the transition molecules dehydrogenation 

such as COH and CHO. Reactivating of Ni surface can lead to form CO by oxidizing 

C from the surface.   
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Figure 24: CO Adsorption on Ni111 

 

 

 

 

5.5 Reactions Network 

This predicted reactions network in figure 25 shows the mechanism of DRM on Ni 

surface taking into consideration the forward and backward reactions. It shows the 

dissociation of CH4 and CO2, the transitional molecules and side reactions. In order to 

fully understand the kinetic of DRM, this network has to be studied and calculate the 

required energy to obtain it as well as the reaction rates of these reactions. The 

orientation of the placed molecules on the surface of Ni has a major effect on the 

adsorption energies and how the bonds are formed. Most of these bonds are covalent 

bonds which are formed during the chemisorption of CO2 on the surface. The initial 

distance of the molecules from the surface affects the physisorption energy and 

therefore, it this distance should be well chosen. There are many transitional 
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molecules that can be formed and the concentration of the radicalized atom or 

molecules could determine the last dissociation step. Some of these molecules have 

been discussed earlier in this study to better understanding of the reaction pathway of 

DRM. Findings in this study agree with literature in many of the molecules 

dissociation and the differences could be due to many reasons. These anticipated 

reasons are; the number of layers that were used to perform this study, distance from 

the surface and the concentration on the surface of the catalyst. In order to achieve 

reasonable mechanism of DRM, different active sites should be investigated. In this 

study, it was clear that for the same molecule being placed on different sites, gave 

different adsorption energies and some molecules were not adsorbed on some other 

sites. 
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Figure 25: Predicted Reaction Network of DRM on Ni[27]. 
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Chapter6 Conclusions 

This study shows the greenhouse gases effects and role in the global warming 

phenomena and endangering the ecosystem. The main focus was on CO2 and that due 

to its high emissions and its major role in global warming. Different technologies are 

used in order to capture and reform CO2 have been investigated in this study. 

Moreover, different metals and surfaces were investigated to choose the optimum 

surface to perform DFT calculations.  

DFT calculations were carried on using SIESTA simulation package using PBE-GGA 

functional. The simulated system consists of 45 Ni atoms (5 layers) and molecules 

were placed on top of the surface 2-3 Angstroms away. These simulations used 32 

cores for each and counterpoise correction was applied to improve the accuracy of 

these calculations. SIESTA has proven its accuracy for systems that have less than 

200 atoms and gives accurate data with a reasonable computational time.  

DFT calculations were performed on Ni111 after screening a lot of metals aiming to 

better understand and calculating of adsorption energy of DRM. CH4 and CO2 

dissociations are the main reactions and they were investigated on different sites 

using different orientations. The horizontal CO2 molecules with a distance of 2 

Angstrom from the surface has given better results and more favorable with a 

reasonable adsorption energy. The adsorption energy of CO2 on the surface was 

calculated to be 0.194 eV and the OCO angle was around 131
o
.  
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 However, for CH4 only physisorption has occurred and no chemisorption was 

detected for all the selected sites and that can be observed in the change of the 

geometry of the molecule. This indicates the first adsorption of CH4 on the surfaces is 

the rate-determining step for its dissociation pathway and as overall for the reaction. 

The dissociation processes will generate carbon atoms that are deposited on the 

surface of Ni and that cause deactivation of the catalyst and the atomic O may oxidize 

the C to regenerate the surface. However, the transitional molecules play a major role 

on the reaction pathway of CH4 and CO2 dissociations and they were studied in order 

to understand possible reactions and molecules behavior on the surface of Ni. 

In order to better understand the DRM process, it is required to study the forward and 

backward reactions network. This will give more information about the kinetics of 

this process and the possible step-determining reaction. Moreover, different 

concentrations of molecules are needed to study the concentration effect on the 

adsorption energies of the system. 

This study claims that Ni-based catalysts are the optimum (especially Ni111) to carry 

on with DRM based on the many factors such as availability, cost of processing and 

resistivity of carbon deposition. More studies are required to verify these claims and 

come up with the optimum geometry of the catalyst as the future work will suggest. 
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Future Work 

These following points should be considered to enhance this study: 

 Study atom in a molecule (AIM) analysis with a different software 

(underway) and determine bond critical points, electron density and 

Laplacian of electron density. 

 We shall study reduced density gradient (RDG) of the system and generate 

3-d iso--surface map for how the entire system interact with the gas 

molecule) and display both weak vdW forces as well as strong H-bond 

forces. 

 Considering Ni111 alloys 

 Studying different layers and surfaces of Ni 

 Detailed study of reaction mechanism and rate-determining steps 

 Carbon deposition mechanism study in details. 
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Appendices 

Appendix A: Excel calculations of the simulated system 

Table 14: Adsorption Energy calculations for CO2 

Ni111_1CO2 

 
Etot cp1 cp2 cp3 cp4 cp5 cp6 Ecc Eads Angle 

H1 -45151.788 -44094.591 -1054.649 -44078.323 -1052.186 -44079.686 -1053.176 
-

2.354 
0.194 130.740 

H2 -45151.813 -44094.593 -1054.647 -44078.308 -1052.251 -44079.708 -1053.232 
-

2.380 
0.193 131.590 

H3 -45151.377 -44094.589 -1054.650 -44078.372 -1052.271 -44079.656 -1053.164 
-

2.178 

-

0.039 
131.200 

H4 -45151.759 -44094.593 -1054.649 -44078.364 -1051.942 -44079.777 -1052.944 
-

2.415 
0.102 128.590 

           

V1 -45150.013 -44094.594 -1054.646 -44078.301 -1054.641 -44078.778 -1055.171 
-

1.007 

-

0.234 
179.310 

V2 -45149.993 -44094.592 -1054.647 -44078.372 -1054.640 -44078.612 -1055.189 
-

0.790 

-

0.036 
179.850 

V3 -45149.892 -44094.593 -1054.646 -44078.399 -1054.639 -44078.717 -1055.193 
-

0.872 

-

0.219 
179.510 

V4 -45149.886 -44094.592 -1054.646 -44078.442 -1054.638 -44078.789 -1055.198 
-

0.907 

-

0.260 
179.750 
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Table 15: Summary of adsorption energies of CO2 

Ni111_1CO2 

Position 
Eads Angle 

(eV) o 

   

H1 0.194 130.74 

H2 0.193 131.59 

H3 -0.039 131.20 

H4 0.102 128.59 

   
V1 -0.234 179.31 

V2 -0.036 179.85 

V3 -0.219 179.51 

V4 -0.260 179.75 

   

Published 

Eads CO2 

 

Eads CO2* 

-0.27 -0.21 
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Table 16: Adsorption energy for CH4 on different potential active sites 

Ni111_1CH4 

 

 
Etot cp1 cp2 cp3 cp4 cp5 cp6 Ecc Eads Angle 

1 -44322.317 -44094.595 -226.586 -44078.378 -226.474 -44079.529 -226.606 -1.284 -0.148 108.556 

2 -44322.317 -44094.595 -226.586 -44078.473 -226.498 -44002.839 -226.585 75.546 76.682 110.889 

3 -44322.259 -44094.592 -226.586 -44078.511 -226.520 -44079.376 -226.620 -0.965 0.116 107.988 

4 -44322.328 -44094.592 -226.586 -44078.511 -226.520 -44079.376 -226.620 -0.965 0.185 111.089 
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Table 17: Summary of adsorption and angles of CH4 

Ni111_1CH4 

 

Position Eads (eV) Angle 

1 -0.148 108.556 

2 76.682 110.889 

3 0.116 107.988 

4 0.185 111.089 
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Table 18: Adsorption energies for different molecules in the simulated system 

Ni111 

Etot cp1 cp2 cp3 cp4 cp5 cp6 Ecc Eads 

C_1 -44257.2 -44094.6 -152.131 -44078.3 -152.131 -44079.5 -152.978 -2.05483 8.4658 

C_2 -44257.2 -44094.6 -152.131 -44078.3 -152.131 -44079.5 -152.984 -1.96857 8.489996 

C_3 -44257.2 -44094.6 -152.131 -44078.4 -152.131 -44079.5 -152.978 -1.95638 8.574346 

C_4 -44257.2 -44094.6 -152.131 -44078.4 -152.131 -44079.5 -152.978 -1.94178 8.580647 

CH_1 -44274 -44094.6 -170.283 -44078.4 -170.249 -44079.6 -170.998 -1.92682 7.233513 

CH_2 -44274.1 -44094.6 -170.286 -44078.4 -170.25 -44079.6 -170.999 -1.94543 7.245278 

CH_3 -44274.1 -44094.6 -170.28 -44078.4 -170.25 -44079.5 -170.998 -1.8217 7.377294 

CH_4 -44274.1 -44094.6 -170.287 -44078.5 -170.249 -44079.7 -170.997 -1.8715 7.344064 

CH2_1 -44290.3 -44094.6 -188.601 -44078.3 -188.535 -44079.8 -189.158 -2.11102 4.980138 

CH2_2 -44290.2 -44094.6 -188.6 -44078.4 -188.178 -44080 -188.797 -2.22717 4.771275 

CH2_3 -44290.2 -44094.6 -188.601 -44078.5 -188.528 -44079.8 -189.15 -1.9436 5.098521 

CH2_4 -44290.3 -44094.6 -188.6 -44078.4 -188.528 -44079.8 -189.153 -1.9794 5.13005 

CH3_1 -44306.2 -44094.6 -207.438 -44078.4 -207.011 -44079.4 -207.356 -1.36291 2.790956 

CH3_2 -44306.8 -44094.6 -207.438 -44078.4 -206.857 -44079.9 -207.242 -1.8606 2.878941 

CH3_3 -44306.8 -44094.6 -207.438 -44078.5 -206.855 -44080 -207.241 -1.88366 2.838203 

CH3_4 -44306.2 -44094.6 -207.439 -44078.5 -207.002 -44079.5 -207.349 -1.3399 2.805728 

CH2OH_1 -44753 -44094.6 -653.87 -44078.4 -653.431 -44079.8 -654.038 -2.04865 2.471662 

CH2OH_2 -44752.2 -44094.6 -653.863 -44078.4 -653.133 -44079.6 -653.637 -1.70792 2.048809 

CH2OH_3 -44753.1 -44094.6 -653.859 -44078.4 -653.367 -44080.1 -653.966 -2.30205 2.358697 

CH2OH_4 -44753 -44094.6 -653.868 -44078.4 -653.426 -44079.9 -654.031 -2.0984 2.461645 
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CHOH_1 -44736.9 -44094.6 -636.652 -44078.4 -636.512 -44079.9 -637.211 -2.20625 3.40704 

CHOH_2 -44737.8 -44094.6 -636.64 -44078.4 -632.004 -44080.1 -632.92 -2.58426 3.984256 

CHOH_3 -44736.9 -44094.6 -636.652 -44078.5 -636.531 -44079.9 -637.237 -2.18358 3.439681 

          
CO_1 -44705.4 -44094.6 -606.601 -44078.5 -606.448 -44079.6 -607.208 -1.86826 2.314968 

CO_2 -44705.4 -44094.6 -606.601 -44078.5 -606.453 -44079.7 -607.216 -1.95926 2.247867 

CO_3 -44705.4 -44094.6 -606.602 -44078.4 -606.45 -44079.5 -607.211 -1.88963 2.306926 

          
CH3O_1 -44753.9 -44094.6 -653.461 -44078.4 -650.074 -44080.2 -651.006 -2.74734 3.07731 

CH3O_2 -44754 -44094.6 -653.461 -44078.4 -649.735 -44080.3 -650.77 -2.91339 3.054591 

CH3O_3 -44754 -44094.6 -653.466 -44078.4 -649.894 -44080.3 -650.864 -2.85787 3.098907 

          
CH3OH_1 -44769 -44094.6 -672.259 -44078.4 -672.1 -44080 -672.505 -2.07628 0.111594 

CH3OH_2 -44769 -44094.6 -672.267 -44078.4 -672.145 -44079.8 -672.554 -1.84396 0.329132 

CH3OH_3 -44769 -44094.6 -672.263 -44078.4 -672.156 -44079.7 -672.567 -1.72165 0.427031 

          
COOH_1 -45167.9 -44095 -1067.96 -44078.4 -1067.68 -44079.8 -1068.59 -2.32093 2.648695 

COOH_2 -45167.9 -44094.6 -1067.93 -44078.4 -1067.37 -44079.7 -1068.31 -2.29622 3.101233 

COOH_3 -45168.1 -44094.6 -1067.96 -44078.4 -1067.56 -44079.8 -1068.5 -2.37551 3.134518 

          
H_1 -44111.1 -44094.6 -12.2 -44078.4 -12.2 -44079 -12.3416 -0.71658 3.589007 

H_2 -44111.6 -44094.6 -12.1998 -44078.4 -12.1998 -44078.8 -12.3789 -0.59311 4.208089 

H_3 -44111.6 -44094.6 -12.2 -44078.4 -12.2 -44079 -12.3808 -0.75986 4.072101 

          
H2_1 -44128.6 -44094.6 -31.2892 -44078.4 -25.0959 -44079.4 -25.4541 -1.37156 1.316704 

H2_2 -44128.2 -44094.6 -31.2892 -44078.4 -26.8893 -44079.4 -27.1438 -1.2678 1.098857 

H2_3 -44128.3 -44094.6 -31.2892 -44078.4 -27.0277 -44079.4 -27.2795 -1.2652 1.115284 
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H2O_1 -44574.5 -44094.6 -478.296 -44078.3 -478.237 -44079.3 -478.619 -1.30958 0.27464 

H2O_2 -44574.5 -44094.6 -478.294 -44078.3 -478.234 --- --- 44556.58 44558.16 

H2O_3 -44574.5 -44094.6 -478.29 -44078.3 -478.239 --- --- 44556.58 44558.19 

          
OH_1 -44558.6 -44094.6 -458.585 -44078.4 -458.567 -44079 -459.424 -1.48347 3.93488 

OH_2 -44558.6 -44094.6 -458.585 -44078.4 -458.566 -44079.1 -459.424 -1.63291 3.775969 

OH_3 -44558.4 -44094.6 -458.586 -44078.4 -458.578 -44079.2 -459.319 -1.48261 3.774148 

          
CO_1 -44705.4 -44094.6 -606.601 -44078.5 -606.448 -44079.6 -607.208 -1.86826 2.314968 

CO_2 -44705.4 -44094.6 -606.601 -44078.5 -606.453 -44079.7 -607.216 -1.95926 2.247867 

CO_3 -44705.4 -44094.6 -606.602 -44078.4 -606.45 -44079.5 -607.211 -1.88963 2.295892 

          
CH2O_1 -44737.1 -44094.6 -639.164 -44078.4 -637.479 -44079.8 -638.316 -2.22215 1.090336 

CH2O_2 -44736.6 -44094.6 -636.64 -44078.4 -636.209 -44079.7 -636.901 -2.00801 3.343391 

CH2O_3 -44736.9 -44094.6 -636.652 -44078.5 -636.523 -44080 -637.235 -2.23604 3.370768 

          
O_1 -44542.3 -44094.6 -438.946 -44078.2 -438.947 -44079 -439.905 -1.7406 7.058767 

O_2 -44542.5 -44094.6 -438.947 -44078.4 -438.947 -44078.9 -439.906 -1.5322 7.409488 

O_3 -44542.3 -44094.6 -438.947 -44078.3 -438.946 -44079 -439.908 -1.63579 7.152748 
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Table 19: Bond Lengths comparing between literature and simulation 

Bond 
Literature Simulation Difference 

Length (pm) % 

H-H 74.00 Broken N/A 

C-H 109.00 111.00 1.83 

C-O 143.00 129.00 9.79 

Ni-Ni 245.00 0.00 100.00 

O-H 96.00 98.00 2.08 

C=O 120.00 127.00 5.83 

 

 

 

 

Table 20: Angles between atoms in molecules 

# sim Compound 

Angle 

b/w 

Simulation 

angle 

Angle 

Literature 
Difference 

N/A o o % 

H1 CO2 OCO 130.742 180.000 27.366 

3 CH4 

HCH 108.556 109.500 0.862 

HCH 110.889 109.500 1.268 

HCH 107.988 109.500 1.381 

HCH 111.089 109.500 1.451 
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Table 21: Overall findings from the simulated system 

  
Compound 

Ea 

Sim 

Ea 

Literature 
Error % 

Angle 

b/w 
Angle 

# 

sim 
Remark eV eV % N/A o 

H1 
 

CO2 0.194 -0.27 28.005 OCO 130.742 

4 No ads CH4 0.185 -0.880 78.951 HCH 108.556 

      
HCH 110.889 

      
HCH 107.988 

      
HCH 111.089 

1 
 

C 8.466 -6.780 24.864 NiCNi 92.625 

1 
 

CH 7.234 -6.430 12.496 NiCNi 86.953 

      
NiCH 128.159 

      
NiCH 127.646 

2 No ads CH2 4.771 -4.010 18.984 HCH 104.459 

1 
 

CH3 2.791 -1.910 46.123 HCH 108.625 

      
HCH 108.462 

      
HCH 109.137 

2 No ads CH2OH 2.049 -1.540 33.040 HCO 102.672 

      
COH 111.361 
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2 
 

CHOH 3.984 -3.880 2.687 COH 109.150 

      
NiCO 129.418 

2 
 

CO 2.248 -2.090 7.553 NiCO 130.980 

2 
 

CH3O 3.055 -2.630 16.144 HCH 112.982 

      
NiOC 100.484 

2 No ads CH3OH 0.329 -0.300 9.711 HCH 110.972 

      
COH 109.381 

1 
 

COOH 2.649 -2.260 17.199 OCO 117.096 

      
COH 104.002 

1 
 

H 3.589 -2.770 29.567 NiNiH 143.970 

2 
 

H2 1.099 -0.220 399.480 NiNiH 143.545 

      
HNiH 61.125 

1 No ads H2O 0.275 -0.290 5.297 HOH 102.319 

3 
 

OH 3.774 -3.420 10.355 NiOH 113.419 

1 
 

CH2O 1.090 -0.750 45.378 HCO 112.012 

      
HCH 112.984 

1 
 

O 7.059 -5.670 24.493 NiONi 85.523 
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Table 22: Comparing adsorption energies between SIESTA and VASP 

Adsorption Energy (eV) 

Molecule SIESTA VASP 

CO2 -0.197 -0.27 

CH4 -0.116 -0.020 

C -8.466 -6.780 

CH -7.234 -6.430 

CH2 -4.771 -4.010 

CH3 -2.791 -1.910 

CH2OH -2.049 -1.540 

CHOH -3.984 -3.880 

CO -2.248 -2.090 

CH3O -3.055 -2.630 

CH3OH -0.329 -0.300 

COOH -2.649 -2.260 

H -3.589 -2.770 

H2 -1.099 -0.220 

H2O -0.275 -0.290 

OH -3.774 -3.420 

CH2O -1.09 -0.750 

O -7.059 -5.670 
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Appendix B: Simulations files 

 

Figure 26: SIESTA input file 
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Figure 27: Example of pseudopotential file 
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Figure 28: SIESTA run file 
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Figure 29: Example of SIESTA output file 1 
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Figure 30: Example of SIESTA output file 2 


