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Abstract: An aluminum oxide-impregnated carbon nanotube (CNT-Al2O3) membrane was developed
via a novel approach and used in the removal of toxic metal cadmium ions, Cd(II). The membrane
did not require any binder to hold the carbon nanotubes (CNTs) together. Instead, the Al2O3

particles impregnated on the surface of the CNTs were sintered together during heating at
1400 ◦C. Impregnated CNTs were characterized using XRD, while the CNT-Al2O3 membrane was
characterized using scanning electron microscopy (SEM). Water flux, contact angle, and porosity
measurements were performed on the membrane prior to the Cd(II) ion removal experiment,
which was conducted in a specially devised continuous filtration system. The results demonstrated
the extreme hydrophilic behavior of the developed membrane, which yielded a high water flux
through the membrane. The filtration system removed 84% of the Cd(II) ions at pH 7 using CNT
membrane with 10% Al2O3 loading. A maximum adsorption capacity of 54 mg/g was predicted by
the Langmuir isotherm model for the CNT membrane with 10% Al2O3 loading. This high adsorption
capacity indicated that adsorption was the main mechanism involved in the removal of Cd(II) ions.

Keywords: membrane; carbon nanotubes; aluminum oxide; cadmium; toxic metal

1. Introduction

Cadmium is a well-known highly toxic metal found in drinking water, and is associated with
major negative health impacts. The World Health Organization guidelines suggest an allowable limit
of cadmium ions, Cd(II), in water of 0.003 mg/L [1]. Cadmium primarily accumulates in the kidneys,
and has a relatively long biological half-life of 10 to 35 years in humans [2]. A potential source of
cadmium contamination in drinking water is industrial wastewater, such as that produced by the
manufacturing processes for smelting, pesticides, fertilizers, dyes, pigments, refining, and textile
operations. Cadmium contamination of drinking water might also be caused by the presence of Cd(II)
ions as an impurity in the zinc of galvanized pipes and certain metal fittings [3,4].

Various toxic metal decontamination techniques (such as adsorption, precipitation, reduction,
ion exchange, precipitation, solvent extraction, electrolytic recovery, and chemical oxidation) have
been applied for the removal of toxic metals from water [3,5]. However, the majority of these methods
have limited applications due to economical or technical constraints. Water treatment by adsorption
offers the most practical and economical treatment alternative. Numerous adsorbents have been used
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in the removal of metal ions from water, including activated carbon, fly ash, biomaterials, zeolite,
recycled alum sludge, algal biomass, peanut hulls, resins, kaolinite, manganese oxides, and carbon
nanotubes [6]. However, the majority of the adsorption techniques are batch-level processes and are
unable to process large amounts of contaminated water. Carbon nanotube-based novel membranes are
a promising candidate for toxic metal removal.

CNTs have attracted considerable attention in recent years as a novel adsorbent for the adsorption
of numerous pollutants from water, including toxic metal ions [3,6] and organic chemicals [7–10].
CNTs have also emerged as an ideal candidate for the synthesis of unique membranes with excellent
properties for applications in water treatment [11–13]. The friction-less and smooth graphitic walls
of CNTs are considered ideal channels for enhanced molecule transport [13–15]. CNTs can be used
either as fillers to improve the mechanical, electrical, and thermal properties of various polymeric
membranes or as a direct filter [16–19].

Different types of CNT-based membranes have been reported in the published literature.
The most common categories include mixed-matrix membranes [16–19], vertically aligned CNT
membranes [20,21], bucky paper membranes [22–24], and template-assisted open-ended CNT
membranes [25,26].

In this work, a novel approach for the synthesis of CNT membranes is presented using a powder
metallurgy technique. To avoid heating at extremely high temperatures (approximately 3000 ◦C) to
bond the CNTs together, aluminum oxide (Al2O3) particles are impregnated onto the surface of CNTs
and used to bond the 3D CNT network together during a sintering process performed at only 1400 ◦C
to produce the CNT membrane. Moreover, surface impregnation of CNTs has been reported to yield
an enhanced surface area and better adsorption capacity for the removal of different contaminants
from water [27]. CNTs were impregnated via a wet chemistry technique with different loadings of
aluminum oxide. Impregnated CNTs were characterized using XRD, and the developed membranes
were analyzed to measure the contact angle, porosity, and water flux. The potential of the membrane
for cadmium removal was investigated using a continuous flow system. The effect of pH, aluminum
oxide loading onto the CNTs, initial cadmium concentration of the solution, and time, on the removal
efficiency of Cd(II) ions, was investigated.

2. Materials and Methods

2.1. Materials

CNTs with a purity >95% were acquired from Chengdu Organic Chemicals Co. Ltd., China
(Chengdu, China) with an outside diameter of 10–20 nm and a length of 1–10 µm. Aluminum
isopropoxide [C9H21O3Al] (purity ≥ 98%, Sigma Aldrich, Saint Louis, MO, USA) was used as a
precursor for aluminum oxide.

2.2. Impregnated Aluminum Oxide-Carbon Nanotubes

The surfaces of the CNTs were impregnated with Al2O3 nanoparticles via the wet impregnation
method [28,29]. The loading content of Al2O3 ranged from 1 to 20% (by weight, wt %). In this
method, to prepare 10% Al2O3 loading, 7.5 g of aluminum isopropoxide [C9H21O3Al] was dissolved in
500 mL of ethanol (98% purity). Nine grams of CNTs were dispersed in a separate 500 mL of ethanol.
These mixtures were separately ultrasonicated for 1 h and subsequently mixed together. The mixture
was further ultrasonicated for 1 h at ambient temperature, to ensure a homogeneous dispersion of the
CNTs. To remove the ethanol solvent, the mixture was stored in an oven overnight at the required
temperature. The residue was calcinated in a tube furnace under argon at 350 ◦C for 4 h. This process
results in the attachment of Al2O3 particles onto the surface of CNTs. A similar procedure was used to
prepare CNTs with various Al2O3 loading percentages (between 1% and 20%).
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2.3. Membrane Preparation

The Al2O3-impregnated CNTs, prepared as described in Section 2.1, were uniaxially pressed at
200 MPa compaction pressure using a circular metallic die in a hydraulic bench-type press (4387 N.E.L,
Carver, Inc., Wabash, IN, USA). This process resulted in a compact disc (27 mm in diameter and 3 mm
thick) containing 1%, 10%, and 20% Al2O3. The compacted discs were sintered at 1400 ◦C for 5 h
under argon (300–400 mL/min) in a tube furnace (GSL-1700X, MTI Corporation, Richmond, CA, USA).
A schematic representation of the synthesis route is shown in Figure 1.
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Figure 1. Flowchart for the synthesis of aluminum oxide-impregnated carbon nanotube
(CNTs–Al2O3) membrane.

2.4. Characterization Analysis of Raw and Impregnated CNTs and Membranes

2.4.1. SEM Analysis

SEM studies of the membranes were performed using field emission scanning electron microscopy
(TESCAN MIRA 3 FEG-SEM, TESCAN, Brno-Kohoutovic, Czech Republic).

2.4.2. X-ray Diffraction (XRD)

The XRD patterns for raw and impregnated CNTs were measured at a rate of 1.0◦/min in the range
of 10◦–80◦ (2α) using an X-ray diffractometer equipped with a Cu Kα radiation source (40 kV, 20 mA).

2.4.3. Porosity Measurement

The dry-wet method [16] was used to determine the porosity of the membranes using Equation (1):

Porosity =
W2 − W1

ρ·V × 100% (1)

where W1 (g) and W2 (g) are the weights of the dry and wet membranes, respectively; V (cm3) is
the volume of the membrane; and ρ (g/cm3) is the density of distilled water at ambient temperature.
The membrane was immersed in distilled water for 24 h, and its wet weight was measured.
The membrane was subsequently dried in an oven at 90 ◦C for 24 h, and the dry weight of the
membrane was measured. The experiment was performed in triplicate, and the data are presented as
the mean value of all experiments.

2.4.4. Contact Angle Measurement

A contact angle analyzer (model DM-301, KYOWA, Niiza, Japan) was used to measure the contact
angle of the membrane surface and hence the hydrophobicity/hydrophilicity of the membrane.

2.4.5. Zeta Potential Measurement

The zeta potential for a suspension of 0.5 g/L CNTs-Al2O3 in distilled water was determined
using a Malvern ZEN2600 Zetasizer Nano Z (Malvern, Worcestershire, UK) at pH 2.0–10 (adjusted with
0.1 M NaOH or HNO3).
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2.5. Continuous Filtration System

The main components of the continuous filtration system used in this study (presented in Figure 2)
were a membrane cell with an effective surface area of 5.7 cm2, a 10 L feed tank, and the required
pressure pump and flow meter. The membrane was placed in a circular housing with a mesh
underneath it as a support structure to maintain the stability of the membrane during the flow
experiments. The pure water flux analysis was performed before the Cd(II) remediation studies were
performed. The pure water flux was measured using Equation (2) [16,28,29]:

J = V/(A·t) (2)

where J (L·m−2·h−1) is the water flux, t (h) is the time required for permeate water to pass through the
membrane, and V (L) is the volume of permeate water.
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For cadmium removal, the experimental runs began with the circulation of a 1 ppm solution of
Cd(II) from the feed tank through the system. An initial volume of approximately 10 L was added to
the feed tank, and the pH was adjusted using 1 M NaOH or 1 M HNO3, as required. The pressure
and flow rate were adjusted to the desired values. Permeate (purified water) passing through the
membrane was collected from the sample collection point (shown in Figure 2) at different time intervals
using sample bottles with volumes of approximately 20 mL. The effects of the initial concentration,
time, pH, and membrane Al2O3 loading on cadmium removal were studied.

Table 1 shows the experimental conditions for Cd(II) removal using different CNT-Al2O3

membranes. First, a CNT membrane with 10% Al2O3 loading was used to determine the optimum
pH for the maximum removal of Cd(II). The transmembrane pressure difference and concentration of
Cd(II) were held constant during these experiments. The optimum pH (pH = 7) was held constant
during the remainder of the experiments, and the effects of Al2O3 loading and the initial Cd(II)
concentration in the solution (water) on the removal efficiency of Cd(II) ions were determined.

Table 1. Experimental matrix of parameters used in the removal of cadmium with the
developed membranes.

Experimental
Set

Al2O3 Loading (wt %) in
the Membrane

Transmembrane Pressure
Difference (psi)

pH of the
Solution

Initial Concentration of
Cd(II) (ppm)

1 CNT-10% Al2O 15 3, 5, 7, 8, 10 1
2 CNT-1% Al2O3 15 7 0.5, 1, 5, 10
3 CNT-10% Al2O3 15 7 0.5, 1, 5, 10
4 CNT-20% Al2O3 15 7 0.5, 1, 5, 10
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2.6. Analytical Methods

Inductively coupled plasma mass spectrometry (X-Series 2 Q-ICP-MS, Thermo Fisher Scientific,
Waltham, MA, USA) was used to measure the concentration of Cd(II) before and after the experiments.

3. Results and Discussion

3.1. SEM and EDS Analysis

Figure 3 shows the SEM images of the prepared membranes with various Al2O3 contents.
The particles are well dispersed at low Al2O3 loadings, whereas the particles tend to agglomerate at
higher Al2O3 loadings (i.e., 20% or above).
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3.2. X-ray Diffraction (XRD)

Figure 4 displays the XRD patterns of the raw and impregnated CNTs powders. In the XRD
pattern of the raw CNTs, the characteristic peaks at 2θ = 27◦ and 44◦ correspond to the CNTs. However,
the XRD pattern of the impregnated CNTs presents new peaks at 2θ = 17◦, 33◦, and 40◦ in addition to
the two apparent peaks associated with the CNTs. These peaks correspond to the Al2O3 nanoparticles
and indicate the successful impregnation of Al2O3 particles onto the surface of the CNTs. The XRD
spectrum shows a minor shift of CNTs peaks for the CNT-Al2O3, possibly due to the residual stresses
imposed by the Al2O3 particles embedded onto the CNTs [30,31].
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3.3. Measurement of the Zeta Potential and Point of Zero Electric Charge (pHPZC)

The zeta potentials of CNT-10% Al2O3 in distilled water were determined in a pH range of 2.0–10.
As displayed in Figure 5, the surface charge of the membrane surface is positive at pH < 6.5 and
negative at pH > 6.5. The zero electric charge (pHPZC) value of the membrane was noted at 6.5. The
membrane is expected to have a relatively higher removal of Cd(II) ions at pH 7, as discussed in
Section 3.6, because of the electrostatic interactions between the negatively charged membrane surface
and cationic Cd(II) ions.
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3.4. Membrane Characterization

3.4.1. Porosity Measurement

The dry-wet method was used to determine the porosity of the membranes. Figure 6 displays
the porosity versus Al2O3 loading for loadings of 1 to 20%. Considering the standard deviation
reported for the measured porosity values, the variation in porosity with Al2O3 content is rather minor,
implying that the Al2O3 loading does not have a significant effect on the membrane porosity.
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3.4.2. Contact Angle Measurement

Contact angle measurement is an index of the hydrophobicity/hydrophilicity of the membrane
surface. As shown in Figure 7, the contact angle of the membrane decreased with increasing Al2O3

content. In other words, the hydrophilicity of the membrane increases with increasing Al2O3 loading.
The decrease in contact angle with increase in Al2O3 loading might be due to change in membrane
pore size due to agglomeration at higher Al2O3 loading. This agglomeration leads to enhanced water
flux (as shown in Figure 8), and hence, the contact angle value is decreased. This hydrophilic nature of
the membrane is primarily responsible for the enhanced flux through the membrane [28,29].
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3.5. Water Flux Measurements: Effect of Transmembrane Pressure Difference and Aluminum Oxide Loading

The effects of transmembrane pressure difference, aluminum oxide loading, and time, on the
water flux through the membranes, were studied, as shown in Figure 8. The transmembrane pressure
difference was varied from 1 to 40 psi. A nearly linear relationship exists between the pressure and
flux for all membranes with different Al2O3 loadings. The water permeate flux was measured by
holding the transmembrane pressure difference constant at 20 psi for 30 min. The permeate flux values
for different pressures were obtained using the same procedure. For each reading, the pressure was
maintained for 10 min before noting the readings.
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Figure 8 illustrates that the permeate water flux increased as the Al2O3 content increased from
1 to 20%. The increased permeate flux for membranes with high Al2O3 loading can be explained based
on two mechanisms. First, the hydrophilic surface of the membrane at high Al2O3 loading facilitates
the transport of water through the membrane (Figure 7). Second, the agglomeration of Al2O3 particles
(Figure 3c) at high loading (20%) results in the formation of relatively large pores in the membrane,
thus contributing to the higher permeate flux.

3.6. Cadmium Removal

The Cd(II) ion removal studies were performed in the flow loop system, as shown in Figure 2.
The cadmium solution was passed through the CNT-Al2O3 membrane. Cd(II) ions are retained in the
feed side while purified water permeates the membrane. The cadmium removal (R) can be determined
using the following equation:

R = 1 − Cp/C f (3)

where Cp and Cf are the concentrations of the solute in the permeate and feed, respectively.

3.6.1. Effect of Feed pH

Solution pH is an important parameter that determines the removal of toxic metal by carbon-based
materials. The Cd(II)removal experiments were performed for the membrane with 10% Al2O3 loading
in the pH range of 3–10 (experimental set 1). The results of the analysis are shown in Figure 9.
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Cadmium species are present in deionized (DI) water in the form of Cd2+, Cd(OH)+,
and Cd(OH)2(s) [32,33]. At pH < 8, the dominant cadmium species is Cd2+ in the form of complex
[Cd(H2O)6]2+ [34]. The pHPZC value for Al2O3-doped CNTs is pH 6.5, as shown in Figure 4. This value
demonstrates that Al2O3 is basic in DI water [27]. At pH < pHPZC, the membrane surface is positively
charged, and repulsion exists between the Cd(II) ions and surface, causing a low removal rate for
Cd(II) ions. In addition, competition between H+ and Cd2+ ions for the active sites decreases the Cd(II)
ions adsorption rate. At pH > pHPZC, the surface of the membrane becomes more negatively charged,
and thus, additional Cd(II) ions are attracted to the surface, due to electrostatic interactions.

A maximum removal of 84% was observed at pH 8. However, cadmium might have precipitated
as Cd(OH)2 at pH > 8, as reported elsewhere [35,36], and the removal might be due to both adsorption
and precipitation. Therefore, pH 7 was used in all experiments as an optimum value to avoid the
precipitation of cadmium ions. Moreover, at pH > 8, the concentration of Cd(II) ions is low, and the
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predominant ions are HCO−
3 . The repulsion between the negatively charged surface of the membrane

at pH > pHPZC, and the HCO−
3 ions, causes a decrease in the removal of cadmium ions. In addition

to electrostatic interactions, the van der Waals interactions occurring between the cadmium ions and
carbon atoms could also induce the adsorption of cadmium ions [27,37].

3.6.2. Effect of Time

To study the effect of time on the removal of Cd(II) ions, the experiments were performed at
constant pH 7, and an initial concentration of 1 ppm. The samples were collected every 30 min and
analyzed. The results of the analysis are presented in Figure 10. The percentage removal of Cd(II)
increases with time until 2 h of operation, after which no significant increase in removal was observed.
Equilibrium was reached within nearly 2 h for all membranes. The maximum removal rate of 84% was
achieved with the CNT-10% Al2O3 membrane. Membranes with 1% and 20% Al2O3 loadings achieved
Cd(II) removal rates of 80% and 74%, respectively, under similar conditions.
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The relatively higher removal of Cd(II) ions by the CNT-10% Al2O3 membrane might be due to
the greater number of adsorption sites than the membrane with 1% Al2O3 loading. The relatively
lower removal of Cd(II) ions by the membrane with 20% Al2O3 loading could be attributed to
the agglomeration of Al2O3 particles at higher loading i.e., 20% Al2O3 (as discussed in Section 3.1
(Figure 3c)). This agglomeration might create large pores in the membrane that leads to poor separation
of Cd(II) ions.

3.6.3. Effect of the Initial Concentration

Figure 11 presents the effect of the initial concentration of the solution on the percentage removal
of Cd(II) ions. The initial concentration was varied from 0.5 to 10 ppm, and the other experimental
parameters were pH 6, a contact time of 2 h, and a transmembrane pressure difference of 15 psi.

The removal increased slightly from 78 to 84%, as the concentration increased from 0.5 to 1 ppm,
and remained nearly constant until approximately 5 ppm. At an initial concentration of 0.5 ppm,
the membrane still had available adsorption sites and did not reach saturation; thus, more Cd(II) ions
could be adsorbed. The percentage removal remained constant as the concentration was increased
from 1 to 5 ppm. However, as the concentration increased further beyond 5 ppm, the removal
decreased slightly, likely because all available adsorption sites were covered by the Cd(II) ions and the
membrane had reached its adsorption equilibrium limit. The membrane was effective in removing a
low concentration of Cd(II) ions.



Materials 2017, 10, 1144 10 of 14

Materials 2017, 10, 1144  9 of 14 

 

increases with time until 2 h of operation, after which no significant increase in removal was 
observed. Equilibrium was reached within nearly 2 h for all membranes. The maximum removal rate 
of 84% was achieved with the CNT-10% Al2O3 membrane. Membranes with 1% and 20% Al2O3 

loadings achieved Cd(II) removal rates of 80% and 74%, respectively, under similar conditions. 

 
Figure 10. Effect of time on the percentage removal of cadmium ions by the CNT-Al2O3 membranes 
(initial concentration = 1 ppm, pH = 7). 

The relatively higher removal of Cd(II) ions by the CNT-10% Al2O3 membrane might be due to 
the greater number of adsorption sites than the membrane with 1% Al2O3 loading. The relatively 
lower removal of Cd(II) ions by the membrane with 20% Al2O3 loading could be attributed to the 
agglomeration of Al2O3 particles at higher loading i.e., 20% Al2O3 (as discussed in Section 3.1  
(Figure 3c)). This agglomeration might create large pores in the membrane that leads to poor 
separation of Cd(II) ions. 

3.6.3. Effect of the Initial Concentration 

Figure 11 presents the effect of the initial concentration of the solution on the percentage removal 
of Cd(II) ions. The initial concentration was varied from 0.5 to 10 ppm, and the other experimental 
parameters were pH 6, a contact time of 2 h, and a transmembrane pressure difference of 15 psi. 

 
Figure 11. Effect of the initial concentration on the percentage removal of cadmium ions by the  
CNT-10% Al2O3 membrane (contact time = 2 h, pH = 7). 

  

Figure 11. Effect of the initial concentration on the percentage removal of cadmium ions by the
CNT-10% Al2O3 membrane (contact time = 2 h, pH = 7).

3.6.4. Adsorption Isotherms

The nonlinear forms of the Langmuir and Freundlich adsorption isotherms for the adsorption
of cadmium ions on the CNT-Al2O3 membrane surface are presented in Figure 12. Representative
equations and the results of the analysis are summarized in Table 2.

Materials 2017, 10, 1144  10 of 14 

 

The removal increased slightly from 78 to 84%, as the concentration increased from 0.5 to 1 ppm, 
and remained nearly constant until approximately 5 ppm. At an initial concentration of 0.5 ppm, the 
membrane still had available adsorption sites and did not reach saturation; thus, more Cd(II) ions 
could be adsorbed. The percentage removal remained constant as the concentration was increased 
from 1 to 5 ppm. However, as the concentration increased further beyond 5 ppm, the removal 
decreased slightly, likely because all available adsorption sites were covered by the Cd(II) ions and 
the membrane had reached its adsorption equilibrium limit. The membrane was effective in 
removing a low concentration of Cd(II) ions. 

3.6.4. Adsorption Isotherms 

The nonlinear forms of the Langmuir and Freundlich adsorption isotherms for the adsorption 
of cadmium ions on the CNT-Al2O3 membrane surface are presented in Figure 12. Representative 
equations and the results of the analysis are summarized in Table 2. 

 
Figure 12. Langmuir and Freundlich adsorption isotherm model fits for the removal of cadmium ions 
by the CNT-10% Al2O3 membrane. 

Table 2. Langmuir and Freundlich isotherm model parameters for the adsorption of Cd(II) ions on 
the CNT-10% Al2O3 membrane 

Model Parameters CNT-10% Al2O3 Membrane 

Langmuir (
 

1
LCe

e

m K
e

LC

q
q

K



) 

KL (L/mg) 0.09 
qm (mg/g) 54.42 

R2 0.997 

Freundlich ( 1/ · n
e F eq K C ) 

KF (mg/g)·(L/mg)1/n 4.89 
N 1.35 
R2 0.99 

In the Langmuir model, qe (mg/g) represents the concentration of adsorbate on the surface of 
adsorbent, Ce (mg/L) indicates the concentration of adsorbate in solution when equilibrium was reached, 
qm (mg/g) is the maximum adsorption capacity, and KL is the Langmuir adsorption equilibrium 
constant (L/mg). In the Freundlich isotherm model, KF (mg/g)·(L/mg)1/n and n (dimensionless) are 
Freundlich constants. Mathematica version 10 (Wolfram 2015, Long Hanborough Oxfordshire, UK) 
was used to plot the isotherm data and determine the values of various parameters. 

Both models can describe the experimental data satisfactorily, but the correlation coefficient (R2) 
value for the Langmuir isotherm model is slightly higher than that for the Freundlich isotherm model. 
  

Figure 12. Langmuir and Freundlich adsorption isotherm model fits for the removal of cadmium ions
by the CNT-10% Al2O3 membrane.

Table 2. Langmuir and Freundlich isotherm model parameters for the adsorption of Cd(II) ions on the
CNT-10% Al2O3 membrane.

Model Parameters CNT-10% Al2O3 Membrane

Langmuir (qe =
qm KLCe
1+KLCe

)
KL (L/mg) 0.09
qm (mg/g) 54.42

R2 0.997

Freundlich (qe = KF·Ce1/n)
KF (mg/g)·(L/mg)1/n 4.89

N 1.35
R2 0.99
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In the Langmuir model, qe (mg/g) represents the concentration of adsorbate on the surface
of adsorbent, Ce (mg/L) indicates the concentration of adsorbate in solution when equilibrium
was reached, qm (mg/g) is the maximum adsorption capacity, and KL is the Langmuir adsorption
equilibrium constant (L/mg). In the Freundlich isotherm model, KF (mg/g)·(L/mg)1/n and n
(dimensionless) are Freundlich constants. Mathematica version 10 (Wolfram 2015, Long Hanborough
Oxfordshire, UK) was used to plot the isotherm data and determine the values of various parameters.

Both models can describe the experimental data satisfactorily, but the correlation coefficient (R2)
value for the Langmuir isotherm model is slightly higher than that for the Freundlich isotherm model.

3.7. Mechanism of Cadmium Ion Removal by the CNT-10% Al2O3 Membrane

The possible mechanism underlying Cd(II) ion interactions with the CNT-Al2O3 membrane is
presented in Figure 13. As discussed in Section 3.6.1, the dominant cadmium species in deionized (DI)
water is Cd(II), or Cd2+, in the form of complex [Cd(H2O)6]2+ at pH 7, used as an optimum value in all
experiments. When pH < pHPZC, the membrane surface is positively charged, and the low removal of
Cd(II) ions can be attributed to electrostatic repulsions between the Cd(II) ions and the surface of the
CNT-Al2O3 membrane. Similarly, the higher removal of Cd(II) ions at pH > pHPZC might be due to
the strong electrostatic interactions between the negatively charged CNT-Al2O3 membrane surface
and the cationic Cd(II) ions [27].
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This observation suggests that electrostatic interaction is the main mechanism involved in the
sorption of Cd(II) ions onto the CNT-Al2O3 membrane surface. In addition to electrostatic interaction,
Cd(II) ions might also adsorb on the surface of CNT-Al2O3 membrane due to van der Waals interactions
(physical adsorption) occurring between Cd(II) ions and carbon atoms in the CNT-Al2O3 composite.
At the adsorption saturation of the membrane surface and internal structure, certain pores among the
CNTs might be covered by Cd(II) ions, thus blocking further ions from passing through and acting as
sieves (size exclusion).
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3.8. Comparative Analysis

The adsorption capacity and removal efficiency of Cd(II) ions from water for the membrane
developed in this study are compared to those of similar studies reported in the literature in Table 3.
The estimated maximum Cd(II) adsorption capacity of the CNT-10% Al2O3 membrane is 54.42 mg/g,
which is higher than those of related adsorbents (used in batch experiments), such as raw CNTs
(1.661 mg/g) [38], acid-modified CNTs (4.35 mg/g) [3], ethylenediamine-functionalized multi-walled
carbon nanotubes (MWCNTs) (25.70 mg/g) [33] and nano-alumina on single-walled carbon nanotube
(SWCNTs) (2.18 mg/g) [39]. This result suggests that the CNT-Al2O3 membrane is effective in removing
low concentrations of Cd(II) ions from water.

Table 3. Comparative analysis of the adsorption capacity and removal efficiency of Cd(II) ion removal.

Adsorbent Experimental Conditions Percentage
Removal

Adsorption
Capacity (mg/g) Reference

As-grown CNTs pH 5.5, initial concentration = 4 mg/L - 1.1 [2]

H2O2 oxidized CNTs pH 5.5, initial concentration = 4 mg/L - 2.6 [2]

HNO3 oxidized CNTs pH 5.5, initial concentration = 4 mg/L - 5.1 [2]

Acid-modified CNTs pH 7, initial concentration = 1 ppm 93 4.35 [3]

Raw CNTs pH 7, initial concentration = 1 ppm 27 1.661 [38]

Ethylenediamine-
functionalized MWCNTs pH 8, initial concentration = 5 mg/L - 25.70 [33]

SWCNTs pH 8 - 1.97 [39]

Nano-alumina/
SWCNTs pH 8 - 2.18 [39]

SWCNTs-COOH pH 5, initial concentration = 20 mg/L 69.97 55.89 [40]

CNT-10% Al2O3
membrane

pH 7, initial concentration = 1 mg/L,
contact time = 2 h 84 54.42 This study

4. Conclusions

A novel approach was developed to synthesize an aluminum oxide-impregnated CNT membrane.
No binder was used in the membrane synthesis; instead, aluminum oxide particles served as a binder
to hold the 3D CNT network together. The membrane surface demonstrated extreme hydrophilic
behavior and yielded a high water flux. The membrane was able to remove low concentrations of
Cd(II) ions from aqueous solution. The removal was affected by the aluminum oxide loading, initial
cadmium solution concentration, pH, and time. The maximum Cd(II) removal of 84% was obtained at
pH 7 and an initial concentration of 1 ppm using the CNT membrane with 10% Al2O3 loading and 2 h
of operation. Membranes with 1% and 20% Al2O3 loadings were able to remove 80% and 74% of Cd(II)
ions, respectively, under similar experimental conditions. These results suggest that the CNT-Al2O3

membrane can be effectively used in a continuous filtration system for the removal of Cd(II) ions.
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