

Ni-P-ZrC Nanocomposite Coating with Enhanced Corrosion Resistance and Mechanical Properties

Osama Fayyaz^{1,2}, R. A. Shakoor^{1*}, Anwarul Hasan², M. F. Montemor³, Wei Gao⁴, Shahid Rasool⁵, Kashif Khan⁶, M. R. I. Faruque⁷ ¹Center for Advanced Materials, Qatar University, Doha, 2713, Qatar

²Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha 2713, Qatar

³Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Portugal

⁴Department of Chemical and Materials Engineering, University of Auckland (UOA), Auckland, New Zealand ⁵Department of Mechanical and Construction Engineering, Northumbria University, Newcastle, UK ⁶School of Mechanical, Aerospace and Automotive Engineering, Coventry University, Coventry, UK ⁷Space Science Centre, Institute of Climate Change of the Universiti Kebangsaan Malaysia (UKM), Malaysia

Kebangsaan Malaysia National University of Malaysia

ABSTRACT METHODOLOGY & DEPOSITION MECHANISM • Corrosion is regarded as the slow poison for the **Process Flow Chart** metallic structures costing billions of dollars by

- behavior but
- coating.
- 0.75g/L of ZrC in the chemical bath.

ACKNOWLEDGEMENT: This research work was made possible by QU-IRCC-006 2020-21 from Qatar University. **CORRESPONDING AUTHOR: shakoor@qu.edu.qa**