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A B S T R A C T   

Chitosan (CS) is a linear polysaccharide biopolymer, one of the most abundant biowastes in the environment. 
This makes chitosan a potential material for a wide range of applications. To improve CS's properties, chitosan 
has to be chemically modified. Hydrothermal carbonization (HTC) is a sustainable process for converting chi-
tosan to solid carbonized material. This article presents a review on the applications of hydrothermally treated 
chitosan in different fields such as water treatment, heavy metals adsorption, carbon dioxide capturing, solar 
cells, energy storage, biosensing, supercapacitors, and catalysis. Moreover, this review covers the impact of HTC 
process parameters on the properties of the produced carbon material. The diversity of applications indicates the 
great possibilities and multifunctionality of hydrothermally carbonized chitosan and its derivatives. The utili-
zation of HTC-CS is expected to further expand as a result of the movement toward sustainable, environmentally- 
friendly resources. Thus, this review also recommends a few suggestions to improve the properties of HTC 
chitosan and its comprehensive applications.   

1. Introduction 

The negative impacts of the industrial revolution and modern in-
dustries on the environment have encouraged the scientific community 
to search for more sustainable and environmentally benign resources 
and chemicals. Biomass have attracted much attention in the last two 
decades as a green and sustainable resource for different applications 
[1–4]. Among those environmentally friendly resources is chitosan. 
Chitosan is a linear polysaccharide biopolymer with main structural 
units of 2-amino-2-deoxy-D-glucopyranose which are bonded by 1,4- 
glycosidic connections. [5]. Fig. 1 shows the chemical structure of chi-
tosan [6]. 

Chitosan is sourced from chitin, which is the second most abundant 
form of polymerized carbon in nature after cellulose [7]. It is estimated 
that each year live organisms produce 10 billion tons of chitin [8]. The 
main sources to obtain chitin are the crab or shrimp shells and fungal 
mycelia, those by products are processed to produce the white powder of 
chitin [9]. Chitosan is prepared by deacetylation and depolymerization 
of chitin by 40–50% aqueous alkali solution at 100–160 ◦C for 1–3 h. 

Chitosan is biocompatible, biodegradable and non-toxic polymer 
making environmentally friendly and safe for biomedical applications 
[10–12], biocatalysts [13], food packaging and treatment [14,15], 

bioprinting [16], and other applications [17,18]. One of the main ad-
vantages of the chitosan is its high nitrogen content (6.89%) [9]; to 
clarify, the reactivity of the amino group present in the chitosan allows 
for different chemical reactions and modifications hence, expanding the 
possibilities and applications for the chitosan [5]. In addition to the 
above-mentioned advantages, chitosan advantages include its hydro-
philicity, crystallinity, ionic conductivity and high viscosity [5]. 

Since chitosan can be easily processed into different forms such as 
sponges, gels, beads, scaffolds, micro and nanoparticles [19]. Due to its 
advantages, chitosan and chitosan derived materials have found their 
way into many applications; they are used in water treatment, bio-
sensors, pharmaceuticals, biomedicine, paper production, antiseptic 
dyes, biochemistry, preservatives materials, cosmetic, food additives, 
agricultural fields [20,21], and flame retardants [22]. Many synthesis 
techniques have been widely used to produce carbon materials from 
chitosan. They may be used alone or in combination with each other, 
they include hydrothermal carbonization (HTC), solvothermal treat-
ment, microwave-assisted treatment, and pyrolysis [23]. 

Hydrothermal carbonization process (HTC) is one of many tech-
niques used to process chitosan and convert it to solid carbonized ma-
terial. HTC process is conducted at relatively mild conditions (low 
temperatures, neutral or acidic solutions) which make it a sustainable 
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process and attractive for processing chitosan [3], and biomass [4,24]. 
HTC process can either be accomplished by conventional heating or by 
microwave assisted heating [25,26]. 

Chitosan-derived hydrothermally carbonized materials have been 
recently in the focus of the research. This due to its advantages; prepared 
from renewable sources, their surface characteristics are easy to modify, 
and they are cheap to produce. Furthermore, they are biocompatible, 
sustainable, and have no toxic residuals, thus opening the way to utilize 
them in different and multiple applications [1]. However, chitosan is 
highly susceptible to the solution pH value, hence it can either form gel 
or dissolve based on the pH values [27], thus it is really important to 
take that into account during the preparation of carbon materials from 
chitosan. 

Adolfsson et al. reviewed the hydrothermally carbonized materials 
that originated from cellulose. The review covered the new applications 
of these materials and their properties [1]. Sharma et al. reviewed a 
wider range of bio sourced carbonized materials and the parameters 
which influence the carbonization process [28]. Annu and Raja 
reviewed the application and properties of chitosan hydrogels usage for 
electrochemical sensors in various fields [21]. Hammi et al. have 
recently reviewed the preparation methods of different nitrogen- 
containing carbon materials sourced from chitosan, and the applica-
tions offered by these materials in the field of catalysis [23]. In the field 
of water treatment, Ahmed et al. have discussed the latest progress of 
utilizing chitosan-derived carbonaceous materials for the adsorption of 
water pollutants. The review also covered the performance of those 
adsorbents and the possibilities of regenerating and reusing them [29]. 
A more specific review is covering the usage of chitosan-based nano-
composite for removal of the toxic Cr (VI) from solution and wastewater. 
The review focuses on the adsorption capacity, kinetics and adsorption 
isotherm of Cr (VI) adsorption [30]. Varma has discussed the sustainable 
utilization of carbonaceous materials in the chemical and environmental 
applications, the carbonaceous materials in consideration are bio- 
derived and renewable, they include cellulose, chitin, and chitosan [31]. 

The objective of this review is to cover the chitosan-derived hydro-
thermally carbonized materials and their applications. Furthermore, it 
covers the recent progress in the applications and utilization of the 
carbonized materials in the fields of environmental applications, energy 
applications, supercapacitors, biosensing, and catalysis. 

2. Chitosan structure and properties 

Unless in special conditions, chitosan is never 100% deacetylated 
[8]. The usual chitosan deacetylation level is between 70% and 95% [9]. 
The properties of chitosan depend on its molecular weight, purity, and 
the sequence of the amino and the acetamido groups content. The 
properties of chitosan are affected by its molecular weight and its degree 
of deacetylation. The average molecular weight of chitin is 1.03 × 106 to 
2.5 × 106 g/mol, however after the N-deacetylation reaction, hence 
producing chitosan decreases to 1 × 105 to 5 × 105 g/mol [32]. 

The ratio of 2-acetamido-2-deoxy-D-glucopyranose to 2-amino-2- 
deoxy-D-glucopyranose structural units is known as degree of N-acety-
lation. This ratio has a noticeable impact on the chitosan solubility and 
solution properties [9]. Among the main properties of chitosan is it's 

high Nitrogen content [33], nitrogen in chitosan is found as C− N group 
and − NH2 side group [34], those Nitrogen groups improves the activity 
of the chitosan and expands its applications into different fields. 

3. Hydrothermal carbonization (HTC) process 

Hydrothermal carbonization process also known as wet torrefaction 
was first discovered in 1913 [35]. HTC is a thermo-chemical conversion 
process in which biomass material is converted to solid carbonized 
material, thus mimicking the coalification process in nature [4]. Few 
decades later HTC process was mainly used for the degradation of 
organic materials, production of basic chemicals, and production of 
liquid and gaseous fuels [36], however in the recent years, this tech-
nology gained the interests of the researchers as method to produce solid 
hydrochar, and more recently, as technique to synthesize nano- and 
micro-size carbon particles [35,37,38]. Compared to the other biomass 
utilization techniques such as pyrolysis, HTC has the advantage of being 
able to utilize high-moisture content biomass as a feedstock, plus it is 
safer since it produces less harmful gases such as CO and CO2. In addi-
tion to that, solids produced by HTC have many surface oxygen groups, 
hence they are less prone to auto-ignition [35]. The carbonized mate-
rials produced by the HTC process have a higher energy content than the 
feedstock used in the to produce them while at same time and lower O/C 
and H/C ratios than the feedstock [35]. 

Chitosan-derived hydrothermally carbonized materials can be pro-
duced as carbon dots. Carbon dots have attracted much attention in the 
last few decades [39]. Carbon dots are nanoparticles with the size of less 
than 10 nm, and because of their unique and exceptional properties such 
as nontoxicity and biocompatibility, they became attractive for appli-
cation several fields such as biosensing, delivery of drugs and genes, 
catalysis, and solar cells [39–42]. One of the popular methods to prepare 
carbon dots is the bottom-up methods, HTC is one of them [43], in case 
of the same precursor, the limiting factors in determining the size of the 
carbon dots are temperature, reaction time, and the pH of HTC solution. 
Miao et al. have concluded that higher preparation temperatures results 
in larger size carbon dots [44], higher temperatures lead to higher 
carbonization degrees, therefore larger particle size. Similarly, longer 
reaction time produces carbon dots with higher carbonization levels and 
larger particle sizes [43]. Lower pH values improves the carbonization 
degree, which in results produces larger particle sizes [45,46]. 

Chitosan-derived hydrothermally carbonized materials also come as 
clay nanocomposites [47], codoped porous carbon materials [48], [49], 
aerogels [50] and more. HTC process is conducted in autogenous pres-
sure and relatively mild conditions. It requires neutral or acidic aqueous 
solutions, and temperatures typically between 180 and 260 ◦C [1]. 
Furthermore, HTC requires long residence times 5 mins to 12 h and 
heating rate of 5–10 ◦C/min [35], Section 4.2 discusses the impact of 
these parameters on the properties and morphology of the products and 
the products distribution [37]. The products of HTC are classified ac-
cording to their physical phase: solid, aqueous solution, and small vol-
ume of gas (mainly CO2) [3], with the solid residue being the main 
product [51]. The type of the feedstock and process conditions impact 
the distribution and properties of the products [52]. 

Fig. 1. Chemical structure of chitosan [6].  
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3.1. Process chemistry 

During the HTC process many reactions take place consequently and 
may occur simultaneously [38]. The mechanisms and kinetics involved 
in the process are not fully understood yet [2]. HTC process involves 
hydrolysis, dehydration, decarboxylation, aromatization, and recon-
densation reactions. Since the hydrolysis reaction has the lowest acti-
vation energy among the mentioned reactions, the HTC is considered 
governed by the hydrolysis reaction [2]. In the hydrolysis reaction ester 
and ether bonds between the biomass building blocks are broken down 
into different fragments and intermediates [53], Reaction (1) shows an 
example of the dehydration reaction of glucose [54]. Since dehydration 
and decarboxylation degrade carboxyl and carbonyl groups and release 
CO2 and CO they result in decreasing H/C and O/C ratios [2]. Following 
that, intermediates from the previous reactions react again to produce 
larger molecules. Finally, aromatization reactions will combine the 
larger molecules together forming a stable aromatic polymer structure 
[38]. 

C6H12O6→C6H4O2 + 4H2O (1) 

The two most common reactors used for the HTC process are pres-
surized Parr reactor and autoclave reactors. Autoclave reactors are 
usually stainless steel or Teflon-lined [55]. Batch type reactors are the 
most widely used in the literature [2]. Fig. 2 shows a typical setup of 
HTC autoclave reactor [56]. The heat is transferred from the heat source 
of the reactor through the reactor walls reaching the reactor content i.e. 

biomass chitosan [57]. 
Despite the advantages of conventional heating, it has many draw-

backs which includes heat losses, side reactions, long residence time, 
and the difficulty in controlling the process [58]. Microwave heating has 
emerged as a solution for those shortcomings, in this method heat is 
generated by electromagnetic irradiation in a specific range of frequency 
[59], which is equivalent to wavelengths between 1 × 10− 2 to 1 m [57]. 
Microwave heating offers many advantages over conventional heating; 
lower reaction times, higher reaction yield, more energy efficient 
(cheaper), and provides homogeneous heating. Fig. 3 illustrates the 
difference between conventional and microwave heating [60]. While 
the conventional heating methods requires several hours to reach the 
desired products, microwave heating can complete the same job in a few 
minutes [61]. Fig. 4 shows the typical setup for microwave-assisted HTC 
reactor [62]. 

Jia et al. [63] through studying the FTIR spectra of the precursor 
chitosan and HTC-treated one, found that the molecular hydrogen 
bonding (in –OH and–NH2) got weaker after the HTC reaction of chi-
tosan, thus indicating that the main active sites to form hydrogen bonds 
were nitrogen from the amino groups, oxygen from chitosan acetyla-
mino groups, and the glycosidic bonds of chitosan. In addition to that, 
concluded that the electrostatic force does exist between the protonated 
amino groups in chitosan and some negatively charged atoms or groups. 
Therefore, impacting the pore structure and morphology of the resulted 
materials. 

Fig. 2. Typical setup of autoclave reactor used for HTC process [56].  

Fig. 3. Difference between microwave and conventional heating [60].  

Fig. 4. Typical setup of microwave-assisted reactor used for HTC process [62].  
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3.2. Parameters affecting the hydrothermal carbonization of chitosan 

3.2.1. Effect of temperature 
Temperature is the critical factor impacting the HTC process, and by 

increasing the temperature more energy is available to disintegrate the 
intermolecular bonds in the biomass (chitosan) [2]. Elevating the tem-
perature will release more volatile materials, thus increasing the gaseous 
and liquids products over the solid products [28]. Shen et al. have varied 
the temperature of the HTC process of chitosan (140–220 ◦C) and 
noticed a decrease in the reaction yield from 78.8% to 35.2% [64]. In a 
different study, Castro et al. [65] studied the impact of post HTC thermal 
treatment on the products structural transformations of chitosan (200 to 
800 ◦C). A higher post treatment temperature would increase the 
graphitization degree of the carbonaceous materials. However, it would 
deform the structure of the graphite. Furthermore, raising the temper-
ature up to 600 ◦C increases the specific surface area of the graphitic- 
type structure before a total failure of this structure once the tempera-
ture exceeds 700 ◦C. Fig. 5 shows the scanning electron microscope 

(SEM) images of the thermally treated carbons at 600 and 800 ◦C [65]. 

3.2.2. Effect of residence time 
Time is another crucial factor affecting the HTC process, longer re-

action time will result in more severe reactions [3] Therefore, higher 
conversion rates [66]. Solid content decreases with increasing residence 
time although the impact of time is smaller than temperature [3]. This 
was proved by Simsir et al., who found that increasing the residence 
time from 6 to 30 h resulted in a slight decrease in the recovered solid 
mass yields for chitosan. The reason for that is that gasification reactions 
dominateat long reaction time, thus resulting in less carbon, while there 
was not noticeable change in the O/C ratios of products when residence 
time exceeds 12 h, after 18 h of reactions it was noticed that chitosan 
produced dense and uniform spheres with a diameter of 42 nm [67]. 
Chagas et al. found that increasing the HTC reaction time would increase 
carbon weight content of chitosan, while decreasing the O/C ratios in 
the resulting material [68]. Laginhas et al. [69] have found that at the 
same temperature, increasing the reaction time from 8 to 12 to 24 h 

Fig. 5. SEM images for hydrochar and heat-treated carbons at different temperatures [65].  
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would produce a mixture of shape regions; sphere-like and structure 
close to original chitosan structure as shown in Fig. 6, HTC process tends 
to produce sphere-like structure, thus more time allows higher levels of 
degradation of the original structure to spherical shapes [70,71]. In 
addition, it was found that the HTC process results in increasing the 
nitrogen content within the structure of the hydrothermal carbons, 
furthermore, oxygen content decreases with time. 

4. Applications of chitosan-derived hydrothermally carbonized 
materials 

4.1. Environmental applications 

Because of the advantages carbonaceous materials sourced from 
chitosan offer, they have found their way into many environmental 
applications, which include wastewater treatment [72], heavy metals 
adsorption [73], and CO2 capturing [74]. 

4.1.1. Wastewater treatment 
Dye is a byproduct of many industries, small amounts of it in the 

wastewater is undesirable [75]. The current chemical and biological 
methods used to remove them are effective, however they produce a lot 
of byproducts [76]. To overcome this issue, natural physical adsorbents 

are used; they are cheap, abundant, and environmentally safe [77–79]. 
For example, Zhou et al. have synthesized a nanomaterial using chitosan 
as precursors using the HTC method [47], the new adsorbent is atta-
pulgite clay@ carbonized chitosan (ATP@CCS). This new nano-
composite was used to remove methylene blue (MB) from wastewater. 
Based on the Langmuir adsorption isotherm, the ATP@CCS has a 
maximum adsorption capacity of 215.73 mg/g at 318.15 K. In addition, 
the prepared adsorbent has an outstanding reusability. 

Another novel nanomaterial sourced from chitosan (Fe3O4@-
SiO2@CCS porous magnetic microspheres) was prepared and used for 
dye removal [72]. This magnetic carbonaceous adsorbent was prepared 
by using HTC, microfluidic, ionic crosslinking methods. The produced 
adsorbent was tested for methylene blue (MB) methyl orange (MO), and 
Rhodamine B (RhB) removal. The maximum adsorption capacity for 
RhB was 191.57 mg/g at 25 ◦C. Fe3O4@SiO2@CCS microspheres ad-
vantages are their excellent reusability, and ease of separating them 
from the solution using magnetic field. Operating at room temperature 
with neutral solution pH = 7, A slightly lower adsorption capacity for 
methylene blue (MB) (153.37 mg/g) was achieved using carbon-coated 
polyacrylonitrile nanofibers (oPAN@C) [80], however, adsorption effi-
ciency remained high even after 5 cycles. 

Feng et al. have studied the removal of diclofenac sodium (DCF) from 
wastewater at room temperature. To accomplish that, nanographene 

Fig. 6. SEM images for samples treated at 200 ◦C for 8 h ((a) and (b)), 12 h ((c) and (d)) and 24 h ((e) and (f)) [69].  
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oxide (nGO)-type carbon dots were used as an enhancer in chitosan 
hydrogel adsorbents [61]. nGO were prepared by the HTC assisted mi-
crowave process. Macroporous CS/nGO hybrid hydrogels have achieved 
100% removal of DCF in 5 h. It is believed that the improved adsorption 
performance in the previous studies is attributed to electrostatic in-
teractions and hydrogen bonding. This was confirmed by another study 

[81], where commercial chitosan was used to synthesize chitosan-based 
hydrochar (CCH) adsorbent using HTC process,. The maximum 
adsorption capacity of methyl orange (MO) using CCH was 271.32 mg/g 
at solution pH 4 and temperature of 310 K. Zhu et al. used Chito-
san—graphene oxide composite aerogel as adsorbent for methyl orange 
(MO) at room temperature [82]. The aerogel can adsorb as high as 
97.2% of MO from the solution (48.6 mg/g). However, this is achieved 
in acidic conditions (pH = 1). At a higher pH values the adsorption ef-
ficiency decreases significantly. Fig. 7 illustrates the process of adsorp-
tion of methyl orange by the composite aerogel [82]. 

4.1.2. Heavy metals adsorption 
Heavy metals such as Cr, Cd, Ni, Pb etc. have a harmful impact on 

aquatic organisms, and human's health. This is a result of their high 
toxicity, carcinogenicity, and bioaccumulation. Thus, it is important to 
remove them from the environmental systems [83]. Similar to dye 
removal from water, chitosan functional groups (amino and hydroxyl 
groups) make it an excellent selective adsorbent for removal of heavy 
metals [84]. Carbonaceous materials are more stable in acidic solutions 
than chitosan. Therefore, the HTC process is important in synthesizing 
adsorbents for heavy metals from water [85]. To illustrate, Wang et al. 
[73] synthesized a dual-core Fe2O3@carbon microspheres for the 
removal of Cu ions from water. It was found that the adsorption 

Fig. 7. Illustration of the adsorption process of methyl orange by the composite 
aerogel [82]. 

Table 1 
Summary of studies in environmental applications of chitosan-sourced carbon materials.  

Carbon material type Preparation 
conditions 

Application Particle size (nm) Polar 
groups 

SBET (m2/g) Results Ref. 

Amino-functionalized 
attapulgite clay 
nanoparticle adsorbent 

HTC: 180 ◦C for 24 h Methylene Blue (MB) 
removal from 
wastewater 

Rod like 
nanostructure: 
Diameter: 40–80 
length of 
200–1000 

O, N 80.65 Maximum adsorption 
capacity of 215.73 mg/g 
at 318.15 K 

[47] 

Fe3O4@SiO2@CCS porous 
magnetic microspheres 

HTC: 200 ◦C for 5–24 
h 

Methylene blue (MB) 
methyl orange (MO), 
and Rhodamine B (RhB) 
removal from water 

500–600 μm O, N, 
Si, Fe 

107.57 Maximum adsorption 
capacity for RhB was 
191.57 mg/g at 25 ◦C 

[72] 

Nanographene oxide carbon 
dots 

HTC: 200 ◦C for 2 h 
(microwave) HTC 
carbonized: 90 ◦C for 
1 h 

Removal of diclofenac 
sodium (DCF) from 
wastewater 

60–70 O, N – 100% removal of DCF in 
5 h 

[61] 

Hydrochar adsorbent HTC: 180 ◦C for 12 h Methyl orange removal 
from aqueous solutions 

– O, N 12.65 Methyl orange (MO) 
271.32 mg/g at pH 4 and 
310 K 

[81] 

Carboxylic-functional carbon- 
coated polyacrylonitrile 
nanofibers (oPAN@C) 

HTC: 180 ◦C for 8 h. Methylene Blue (MB) 
removal from water 

500 O, N – Maximum adsorption 
capacity for methylene 
blue (MB) (153.37 mg/g) 

[80] 

Chitosan—Graphene oxide 
composite aerogel 

HTC: 120 ◦C for 12 h Adsorption of methyl 
orange (MO) 

– O, N 297.43 Maximum adsorption 
capacity high of 48.6 mg/ 
g at PH =1 

[82] 

HTC-chitosan carbonaceous 
material 

HTC: 140–220 ◦C for 
10 h 

Removal of Cr(VI) from 
water 

60–70 μm O, N – Maximum adsorption 
capacity for Cr(VI) 
388.60 mg/g at 20 ◦C and 
pH = 2 

[64] 

Dual-core Fe2O3@ carbon 
structure 

HTC: 180 ◦C for 48 h Removal of Cu ions from 
water 

~500 O, N, 
Fe 

59.60 Maximum adsorption 
capacity of 104 mg/g for 
Cr(VI) at 25 ◦C 

[73] 

Montmorillonite surface 
activated with chitosan 

HTC: 180 ◦C and 
250 ◦C for 24 h 

Adsorption of polar 
aflatoxin B1 (AFB1) and 
zearalenone (ZER) 

200–300 O, N 39.43–180 ◦C 
sample 
66.15–250 ◦C 
sample 

The maximum adsorption 
capacities for AFB1 and 
ZER were 2.05 mg/g and 
10.0 mg/g, respectively 

[88] 

HTC-chitosan carbonaceous 
adsorbent 

HTC: 200 ◦C 6–48 h CO2 adsorption – O, N 1.70–2.60 
depending on time 

Highest CO2 uptake rate 
of 0.45 mmol/g 

[68] 

Phosphorylated 
hydrothermally cross- 
linked chitosan (HCC-PO4) 

HTC: 200 ◦C for 12 h Uranium removal from 
wastewater 

30–40 μm O, N, P, 
U 

28.15 Maximum U(VI) 
adsorption capacity 
384.6 mg/g at 298.15 K 

[87] 

Chitosan@bismuth tungstate 
coated by silver 

HTC: 180 ◦C for 24 h Removal of Cu(II) from 
water 

– O, N, 
Fe 

– Maximum adsorption 
capacity was 68.68 mg/g 
at 25 ◦C and pH of 6 

[86] 

Acid-mediated chitosan-based 
porous carbons 

HTC: 200 ◦C for 5 h CO2 adsorption – O, N 263–4168 CO2 uptake of 8.36 
mmol/g for KOH samples 
and 7.38 mmol/g for 
NaOH samples 

[74]  
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selectivity shifts from Cr(VI) at low pH values (pH = 2–3) to Cu(II) at 
higher pH readings (pH = 3–5), with the adsorption capacity of 104 mg/ 
g for Cr(VI) at 25 ◦C. Another magnetic composite called chitosan@ 
bismuth tungstate coated by silver (MCTS-Ag/Bi2WO6) was studied for 
the same purpose [86]. It resulted in a lower adsorption capacity of Cu 
(II) compared to Fe2O3@carbon microspheres, its maximum adsorption 
capacity was 68.68 mg/g at room temperature and pH of 6. Moreover, 
the adsorption process fits the pseudo-second-order kinetic model. In a 
different study [64], it was found that the maximum adsorption capacity 
of the HTC-chitosan for Cr(VI) reached 388.60 mg/g at 20 ◦C and pH =
2. Uranium is another heavy metal successfully removed from waste-
water using chitosan based adsorbent [87]. The adsorbent is HTC chi-
tosan crosslinked with phosphate (HCC-PO4). The theoretical maximum 
U(VI) adsorption capacity of HCC-PO4 was 384.6 mg/g at 298.15 K. The 
adsorbents in previous studies [64,73,86,87] maintained a stable 
adsorption capacity, as they could be regenerated and reused 5 times. 

Adsorption performance is impacted by the surface characteristics of 
the carbonaceous material [88]. Temperature during the HTC process 
will impact the produced particles sizes. Higher temperatures lead to 
smaller particles, and more nitrogen functional groups. This improves 
the porosity and decreases hydrophobicity of the particles. Wang et al. 
[88] synthesized montmorillonite functionalized with chitosan and 
tested it for the adsorption of polar aflatoxin B1 (AFB1) and zearalenone 
(ZER) at 37 ◦C. The maximum adsorption capacities for AFB1 and ZER 
were 2.05 mg/g and 10.0 mg/g, respectively. In addition, the samples 
prepared with higher HTC temperature showed higher adsorption 
capacities. 

4.1.3. CO2 capturing 
Using chitosan-sourced adsorbents for carbon dioxide (CO2) 

capturing has caught the attention of researchers [89]. Its chemical 
inertness and thermal stability make it suitable for CO2 adsorption [74]. 
The mechanism in which chitosan captures the CO2 molecule is by the 
formation of ammonium carbamates, which upon heating will dissociate 
releasing CO2 gas again [90]. Chitosan based CO2 adsorbents have 4 
times the adsorption capacity of raw chitosan [68]. At 25 ◦C and 1 bar, 
the CO2 uptake rates ranged from of 0.1–0.45 mmol/g for chitosan- 
sourced adsorbents, the adsorbent uptake rate depended on the HTC 
reaction time needed to prepare it, the longer the time the higher CO2 
uptake rate achieved during the adsorption experiment. The adsorption 
process followed Freundlich isotherm and the pseudo second-order ki-
netic model with CO2 pressure ranging from 0.1–1 Bar. [68]. Kamaran 
et al. activated the chitosan-sourced carbons with KOH and NaOH for 2 h 
at 800 ◦C under a flowing stream of nitrogen. They noticed that would 
increase the CO2 uptake to 8.36 mmol/g for KOH samples and 7.38 
mmol/g for NaOH sample, the experiment was conducted using Belsorp 
Max system at 1 bar and 273 K, 283 K, and 298 K [74]. Table 1 

summarizes of studies discussing the environmental applications of 
chitosan-sourced carbon materials. 

4.2. Energy applications 

4.2.1. Solar cells 
Abundant, cheap and non-toxic bio waste such as chitosan have 

caught the attention of researchers in the energy field; photovoltaics is 
one of these applications. Semiconductor carbon nanodots exhibit 
excitation-wavelength-dependent photoluminescence (PL) behavior, 
making them suitable for applications in the conversion of solar energy 
[91]. The luminescence properties in carbon dots depend on the 
composition and the size of the quantum dots [92]. Three different 
studies have utilized the carbon quantum dots (CQDs) used as sensitizers 
to build nanostructured solar cells [93]–[95]. Gomes et al. have tested 
chitosan as precursors to produce semiconductor CQDs. They proved 
that they are promising for solar energy conversion applications, with 
quantum yield of 17.1% [94]. Table 2 compares the performance of the 
different CQDs prepared in these studies. 

Briscoe et al. [93] and Marinovic et al. [95] have concluded in their 
studies that the performance of solar cells depends primarily on the 
functional groups of the CQDs, functional groups with high nitrogen 
content show the highest efficiencies. 

4.2.2. Batteries 
Another application for chitosan-sourced carbonaceous material is in 

energy storage; more specifically in lithium- selenium (Li–Se) batteries. 
Building the Se cathode from Se/porous carbon composites can improve 
the electrochemical conductivity of Se, and improve the utilization ef-
ficiency [96,97]. Zhao et al. have used hierarchical porous N, O co- 
doped carbon material sourced from chitosan to construct carbon/se-
lenium composite cathode as the cathode materials of lithium-ion bat-
teries. This composite delivers a discharge capacity of 446.9 mAh g1 at 
rate of 0.24C, while still showing good cycling stability and rate capa-
bility. The improved performance is attributed to high specific surface 
area, and porosity of the prepared hierarchical carbon [98]. 

4.2.3. Hydrogen storage 
The same reasons (high surface area and large microscopic volume) 

have made carbon materials desirable for hydrogen storage [99]. In a 
recent study [100], high porosity carbon material prepared by hydro-
thermal carbonization and chemical activation of chitosan. The HTC 
process was carried out at 220 ◦C for 12 h, the resulting highly porous 
carbons was activated with KOH at temperature between 600 and 
800 ◦C for 1 h. The prepared carbon material was tested for hydrogen 
storage. By varying the amount of KOH and activation temperature, the 
nitrogen contents, surface area, and pore volume of the carbon material 

Table 2 
Studies cover chitosan-sourced carbon materials used for solar cells, batteries, and hydrogen storage applications.  

Carbon material type Preparation 
condition 

Application Particle 
size (nm) 

Polar 
groups 

SBET (m2/ 
g) 

Results Ref. 

Carbon quantum dots HTC: 200 ◦C for 6 h ZnO nanorods-based 
nanostructured solar cells 

8.1 O, N – Light Harvesting Efficiency (LHE): 2% 
Power Conversion Efficiency (PCE): 
0.061% 

[93] 

Carbon nanodots HTC: 200 ◦C for 6 h TiO2-based nanostructured solar 
cells 

7.91 O, N – Light Harvesting Efficiency (LHE): 
16.3% 
Power Conversion Efficiency (PCE): 
0.167% 

[95] 

Carbon quantum dots HTC: 200 ◦C for 6 h Nanostructured solar cells 2–3 O, N – Quantum yield: 17.1% [94] 
Hierarchical porous N, 

O co-doped carbon 
HTC: 210 ◦C for 6 h 
HTC + KOH: 
600 ◦C for 2 h 

Construct carbon/selenium 
composite cathode for lithium-ion 
battery 

– O, N, Se 809. 30 Discharge capacity of 446.9 mAh g− 1 at 
rate of 0.24C 

[98] 

Nitrogen-doped 
porous carbons 

HTC: 220 ◦C for 12 
h 
HTC + KOH: 
600–800 ◦C for 1 h 

Hydrogen storage – O, N 1452–2919 Hydrogen storage capacity has changed; 
from 2.71 wt% at 77 K and 1 bar to 6.77 
wt% at 20 bar 

[100]  
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have changed. Therefore, the observed hydrogen storage capacity has 
changed; it changed from 2.71 wt% at 77 K and 1 bar to 6.77 wt% at 20 
bar, it improves with the higher porosity and higher surface area. 
Table 2 lists chitosan-sourced carbon materials used for solar cells, 
batteries, and hydrogen storage applications. 

4.2.4. Supercapacitors 
Supercapacitors are eco-friendly, high-performance, energy-storage 

and delivery devices. Supercapacitors hold electrical charge either by 
electrochemical pseudocapacitance or through an electrostatic double- 
layer mechanism [101]. Supercapacitors' advantages such as the high 
power delivery, excellent cycle stability and fast charging/discharging 

Table 3 
Comparison between different supercapacitors synthesized from chitosan-sourced carbon materials.  

Carbon material type Preparation 
condition 

Pore size (cm3/g) Polar 
groups 

SBET (m2/g) Electrolyte 
type 

Current 
density (A/ 
g) 

Capacitance 
(F/g) 

Capacity 
retention 

Ref. 

Nitrogen/sulfur codoped 
carbon materials 

HTC: 200 ◦C for 12 h 
HTC further 
carbonization: 
750 ◦C for 3 h 

– O, N, S – 6 M KOH 10 135 97.2% [48] 

Hierarchical porous 
carbon 

HTC: 200 ◦C for 2 h 1.3 O, N 3532 6 M KOH 20 455 99% [103] 

Chitosan-derived 
carbonaceous 
materials 

HTC: 250 ◦C for 14 h 
HTC + KOH: 800 ◦C 
for 2 h 

1.36 O, N 2200 0.5 M K2SO4 0.5 231 – [104] 
6 M KOH 0.5 305 – 
0.5 M K2SO4 20 154 – 
6 M KOH 20 198 – 

Nitrogen and phosphorus 
dual-doped 
hierarchical porous 
carbon 

HTC: 200 ◦C for 12 h 
HTC+ H3PO4: 
600–800 ◦C for 2 h 

0.48–0.76 
depending on 
temperature 

O, N, P 639–1142 
depending on 
temperature 

6 M KOH 0.2 312.4 97% [107] 
6 M KOH 10 204.4 

Nitrogen and boron co- 
doped activated carbon 
(BKACS) 

HTC: 160 ◦C for 5 h 2.3658 O, N 1129.60 6 M KOH 0.2 316 – [49] 
6 M KOH – – 96.18% 

Nitrogen-rich 
hierarchically porous 
carbon (NHPC) 

HTC: 160 ◦C for 8 h 
HTC pyrolyzed: 
800 ◦C for 1 h 

0.486 O, N, 
Zn 

1067 6 M KOH 1 228.7 98.3% [110] 
10 – 84.9% 

N-doped porous carbons HTC: 250 ◦C for 4 h, 
7 h, 10 h and 14 h 
HTC pyrolyzed: 
750 ◦C for 1 h 

0.65–1.25 O, N 1223–2307 
depending on 
time 

1.0 M 
H2SO4 

0.5 210 91% [109] 

1.0 M 
Na2SO4 

10 191 

Nitrogen-doped porous 
graphene-based 
aerogels 

HTC: 180 ◦C for 12 h 
HTC annealed: 
900 ◦C for 2 h 

40 O, N 616 6 M KOH 5 × 10− 3 223.3 70% [50] 

Chitosan-based layered 
carbon materials 

210 ◦C for 10 h 2.34 O, N 301 1.0 M 
H2SO4 

0.2 355 – [111] 

6 M KOH 0.2 275  

Fig. 8. Structure of fabricated layered porous carbon structure [111].  
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time [102] have made them attractive to use in portable electronics, 
energy storage devices and smart grids [103]. Supercapacitors have low 
energy density compared to batteries [104] which encouraged the re-
searchers to prepare high-performance electrode materials to improve 
the energy storage capacity [105]. One of the electrode candidate ma-
terials is the porous carbons due to their excellent conductivity, favor-
able stability, abundance and low cost [106]. Many studies aimed at 
preparing electrical electrodes from chitosan using the HTC process, as 
summarized in Table 3. It is believed that the high specific surface area, 
high porosity, and the high nitrogen content of the chitosan-sourced 
carbonaceous materials improves reduction reactions on the electrode 
therefore, its performance [104,107]. 

In one study, the carbon material sourced from chitosan was pro-
duced through the HTC process, then activated using acetic acid, to 
prepare it. Two grams of chitosan was mixed with 55 mL of water, fol-
lowed by the addition of 15 mL of acetic acid, the obtained viscous so-
lution entered the Teflon lined autoclave, which was operated at 200 ◦C, 
and kept for 2 h. This HTC process produced porous carbon with a 
surface area of 3532 m2/g [108]. Zhu et al. have chosen KOH as an 
activator for the produced carbonized solids (at 800 ◦C), which resulted 
in a specific surface area of 2200 m2/g [104]. A close result (2307 m2/g) 
was achieved by Tong et al. [109] when they activated their produced 
carbon with KOH at 750 ◦C for 1 h, while activating it with KHCO3 had a 
slightly lower surface area for nanocarbons (2124 m2/g). Not activating 
the nanocarbon produced HTC-processed-chitosan will decrease the 
surface area significantly as seen in (1067 m2/g) [110], and (616 m2/g) 
[50]. The higher surface area of the carbonaceous material had a posi-
tive impact on the electrode capacitance as it could be noticed in 
Table 3. Wu et al. [111] fabricated a layered porous carbon structure in 
the presence of an ionic liquid, the chitosan was precursor and was 
hydrothermally carbonized for 10 h at 210 ◦C. The produced carbon 
structure served as nitrogen source and dispersant, it contained many 
oxygen and nitrogen groups. The maximum capacitance and stability 
were better in the acidic electrolyte compared to a basic electrolyte as 
seen in Table 3. Fig. 8 shows the structure of fabricated layered porous 
carbon structure [111]. 

Li et al. [48] have codoped the carbon material by nitrogen and 
sulfur which improved the specific capacitance by almost 100% 
compared to undoped chitosan. It was also noticed that sulfur is 
contributing more in improving the capacitance of the carbon. This is 
explained by the fact that sulfur can lower the internal resistance and 
improve the conductivity of the carbon materials effectively. 

Nitrogen and phosphorus dual-doped porous carbon exhibits excel-
lent electrochemical performance compared to nitrogen-only doped 
carbon [107]. Moreover, Lin et al. have found that activating carbon 
with boric acid to produce nitrogen‑boron dual-doped carbon would 
enhances capacitance and the stability of the synthesized electrode The 
activation process was done by adding carbon and boric acid in the ratio 
of 1:2, and followed by placing the mixture into a Teflon-lined 

autoclave. The autoclave operated continuously at 160 ◦C for 5 h [49]. 
To conclude, activating the carbon material or bi-doping produces a 
higher surface area electrode leading to better performance and stabil-
ity. Table 3 compares between different supercapacitors synthesized 
from chitosan-sourced carbon materials. 

4.3. Applications in biosensing and bioelectronics 

One of the important processes in environmental monitoring, med-
icine, biotechnology and industrial process control is electrochemical 
processes. To overcome the downsides of the traditional electrodes, new 
materials were developed for electrodes [112]. Among them is carbon 
nanotubes (CNTs) and Quantum dots (CDQs). This is due to their 
excellent luminescent properties, high quantum emission efficiencies, 
high solubility and stability, and low toxicity [113]. For example, 
Moradi et al. used chitosan as a carbon source to synthesize photo- 
luminescent nano carbon dots [114]. By characterizing the produced 
nano carbon dots and determining their properties such as dynamic light 
scattering, and cyclic voltammetry, it was concluded that they are 
excellent candidates for bio-sensing, biological labeling, medical di-
agnostics, optoelectronic devices and bio-imaging applications. 

Wang et al. synthesized nitrogen-doped carbon nanodots (N-doped 
CNDs) from chitosan. They reported that the CNDs have excellent 
quantum yield (31.8%) [115]. This is due to the existence of multiple 
functional groups (C––O, O–H, COOH, and NH2) within (N-doped 
CNDs) [115]. Therefore, they were tested as sensor probes for mercury 
ions; their detection limit was found to be 80 nM. Furthermore, N-doped 
CNDs proved to be nontoxic and exhibited excellent biocompatibility 
when used for live cell imaging. 

In the field of electrochemical sensing, (nZrO2-NH2C) nano-
composite electrodes [116] and modified carbon quantum dots/multi-
wall carbon nanotubes/pencil graphite electrode [117] were used to 
detect ochratoxin A (OTA) and dextromethorphan (DXM), respectively. 
In both cases HTC was used to prepare the amino-functionalized nZrO2- 
NH2C nanocomposite, carbon quantum dots (CQDs), and multiwall 
carbon nanotubes (MWCNT). nZrO2-NH2C nanocomposite electrodes s 
was successful in determine OTA with detection range from 1 to 10 ng 
mL− 1 and accuracy of 0.86 μA ng− 1 mL cm2 at the optimum condition of 
neutral solution (pH 7) and 30 ◦C. While the nanotubes/pencil graphite 
electrode detected the concentration of DXM in the range of 2.0–600 μM, 
with the detection limit of 0.2 μM. 

Some trace elements in the human body are essential for maintaining 
the function and operation of the organs [118]. Therefore, their de-
ficiencies or overdose may result in various biological disorders and can 
cause serious harm to the human body. For example, excessive intake of 
iron ions will result in chronic or acute iron poisoning [119]. While high 
concentrations of iodine may cause hyperthyroidism [120]. Thus, it is 
important to develop a simple, cheap and reliable technique for 
detecting such types of elements in the human body. Carbon dots (CDs) 

Fig. 9. Detection of ferrous ions based on chelating ability [121].  
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fluorescence prepared from chitosan and acrylamide using microwave- 
hydrothermal carbonization for the detection of metal ions have been 
widely reported [121]. The process yield was high and rapid. The 
presence of amino and carboxylic groups has significantly improved the 
chelating ability of CDs. Thus, they can detect Fe2+ in a concentration 
range of 0–50 μM and a maximum detection limit of 160 nM. Fig. 9 il-
lustrates the detection process of ferrous ions based on chelating ability 
[121]. 

Iodine ions can be detected rapidly using colorimetric methods based 
on metal nanoparticles such as gold nanoparticles (AuNPs). Song et al. 
[122] have utilized this technique and prepared carbon quantum dots 
(CQDs) using chitosan as a precursor. The CQDs were composited with 
gold nanoparticles using the HTC method. The composite changes color 
from pink to colorless depending on the amount of I− ions absorbed. The 
detection limit was estimated to be 2.3 μM indicating high sensitivity 
and good selectivity toward I− . 

Since traditional antibiotics are becoming insufficient in defeating 
bacteria [123]. Nanoparticle (NP)-based antimicrobial strategies have 
caught the researcher's attention in recent years [124]. NPs special 
characteristics like high surface energy/surface-to-volume ratio, and 
abundance of chemical groups on the surface [125]. Jiang et al. [125] 
have prepared quaternized carbon nanospheres (QCNSs) via a one-step 
HTC treatment of chitosan and hexadecylbetaine (BS-16). The QCNSs 
could kill Gram-positive bacteria even at low dosages (of 2.0–5.0 
μgmL− 1), while being intoxic and biocompatible with normal cells and 
cheap to synthesize. Table 4 lists the biosensing, biodetection, and 
bioelectronics applications of carbonaceous material synthesized from 
chitosan. 

4.4. Catalysis 

Heterogeneous catalysis is one of the hot research topics, and thus 
new and developed types of catalysts are emerging on a constant basis. 
Their main advantage is the ease of separating them from the reaction 
mixture. Thus, they could be easily reused for the following reaction 
cycles [126]. Among the studied heterogeneous catalysts was the acti-
vated carbon as a versatile and green material, characterized by its large 
specific surface area, high porosity, and the easiness of modifying its 
surface [127]. Nanostructured carbon materials such as nanotubes are 
used in a wide field of applications because of their improved electrical 
and thermal conductivities, as well as low density and high strength 
[128]. Platinum (Pt)-based electrocatalysts excellent properties are let 
down by their inactivity due to poisoning [129]. To overcome this issue, 
new superior support materials are proposed in order to improve the 
catalyst activity. Among them is titanium dioxide (TiO2) with its high 

chemical stability under harsh conditions [130]. Therefore, Zhang et al. 
[131] prepared nitrogen doped chitosan-sourced‑carbon coated Mo 
modified one-dimensional TiO2 nanowires for methanol electro-
oxidation. The mass activity of the prepared catalyst is double the un-
modified supported catalyst with 15.9% higher stability. Another 
approach to overcome (Pt)-based electrocatalysts problems is to design 
alternative catalysts, such as carbon-based materials (Fe–N–C catalysts) 
which are particularly promising due to the electrocatalytic and low cost 
[132,133]. 

Qiao et al. prepared multiwall carbon nanotubes (MWCNTs) coated 
with a layer of HTC‑nitrogen-doped chitosan [134]. It was used as a 
catalyst for oxygen reduction reactions. This new catalyst has higher 
catalytic activity and better resistance for H2O2 poisoning. Pirsaheb 
et al. synthesized a chitosan-sourced nano carbon dots (NCDs). The 
NCDs were prepared using HTC reactions at 180 ◦C for 2 h. The NCDs 

Table 4 
Biosensing, biodetection, and bioelectronics applications of carbonaceous material synthesized from chitosan.  

Carbon material type Preparation 
condition 

Application Particle 
size (nm) 

Polar 
groups 

Results Ref. 

Carbon quantum dots HTC: 180 ◦C for 16 
h 

Detection of dextromethorphan 
(DXM) 

– O, N, The detection range: 2.0–600 
μM 
Detection limit: 0.2 μM 

[117] 

Nitrogen-doped carbon nanodots HTC: 220 ◦C for 12 Building sensor probes for 
mercury ions 

3.8 O, N Detection limit: 80 nM [115] 

Luminescent carbon nano dots HTC: 250 ◦C for 45 
min 

Bioimaging 150 O, N – [114] 

Zirconia nanoparticles embedded in amino 
functionalized amorphous carbon (nZrO2- 
NH2C) nanocomposite 

HTC: 180 ◦C for 18 
h 

Detection of ochratoxin A 
(OTA) 

– O, N, Zr The detection range: 1–10 ng 
mL− 1 

Accuracy: 0.86 μA ng− 1 mL 
cm2 

[116] 

Quaternized carbon nanospheres HTC: 180 ◦C for 20 
h 

Antimicrobial activity: killing 
Gram-positive bacteria 

110 O, N Kill Gram-positive bacteria 
with dosages: 2.0–5.0 μg 
mL− 1 

[125] 

Carbon quantum dots HTC: 180 ◦C for 12 
h 

Detection of iodine ions 20–30 O, N, Au Successfully detected I− ions 
The detection: 2.3 μM 

[122] 

Carbon nano dots HTC: 220 ◦C for 1 h 
(microwave) 

Detection of Fe2+ ions – O, N The detection range: 0–50 μM 
Detection limit: 160 nM 

[121]  

Fig. 10. Illustration of the prepared Cu/hydrochar catalyst for Ullmann CeN 
coupling reaction in water [138]. 
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could catalyze the H2O2 decomposition. H2O2 dissociates generating 
free hydroxyl radicals, which in turns oxidized phenol. 99% phenol was 
removed in just 20 mins at H2O2 concentration of 12 mmol and ambient 
temperature [135]. 

Solid heterogeneous catalysts could be easily separated from the 
reaction system which makes them reusable for the next cycle of re-
actions and “green” [136]. Two such catalysts were prepared through 
the HTC process; the first is the sulfonated carbonaceous intercalated 
montmorillonite composite sourced from a mixture of chitosan and 
furaldehyde [137]. It was used for esterification between trimethylol-
propane and oleic acid to produce bio-lubricant. The catalyst composite 
showed high activity with a yield of 91% in 3 h. The catalytic activity 
was high after the 5 cycles of reactions. The excellent performance was 
attributed to the specific high surface area (164.5 m2/g) of the com-
posite. The second heterogeneous catalyst was prepared by Ge et al. 
[138] in which the fabricated copper nanoparticles were uniformly 
dispersed on hydrochar It proved excellent catalytic activity and sta-
bility for Ullmann CeN coupling reaction due to its hydrophilicity thus 
accelerating the coupling reaction in water, Fig. 10 shows the prepared 
Cu/hydrochar catalyst [138]. Table 5 summarizes the studies discussing 
the performance of catalysts fabricated from chitosan-sourced carbon 
materials. 

5. Future prospects 

While chitosan-based materials proved effective for water treatment 
applications, it was noticed that most of the conducted tests were on one 
specific type of contaminants such as methyl orange dye. Thus, it is 
necessary to study the performance of these adsorbents on a wide range 
of water pollutants or using real wastewater. It is recommended that the 
adsorption capacity for heavy metals and CO2 adsorption and recycla-
bility of these adsorbents be compared to the commercial types. 

Functional groups with high nitrogen content resulted in better 
efficiency-solar-cells. It is recommended to optimize the nitrogen con-
tent to improve the solar cell performance. Specific surface area and 
porosity are the two major factors in carbon material ability to store 
hydrogen. It would be advisable to synthesize a carbonaceous material 
with as high as possible porosity and measure its impact on the energy 
storage. This could be accomplished by raising the reaction temperature 
during the HTC process. While many studies for supercapacitors were 
performed, most of them used basic electrolyte despite the fact that the 
acidic ones might show improved performance. One active field for 
chitosan-based materials is catalysis. However, the chemical nature of 
the chitosan-sourced catalysts and its active centers are not fully un-
derstood. Therefore, the reaction mechanism is yet to be determined. 
Knowing this would improve the performance of these catalysts by 

modifying their active center, and to develop reaction models. Chitosan 
as feedstock for carbon material is a promising precursor because of its 
multiple advantages. Consequently, it is recommended building over the 
previous studies, and putting more efforts into the development of 
chitosan-sourced carbon materials. 

6. Conclusions 

This article reviewed the applications of hydrothermally treated 
chitosan in the different fields. Furthermore, it discussed HTC process 
parameters on the properties of the fabricated carbon material and their 
applications. In the water treatment field, chitosan-sourced adsorbents 
proved to be successful in adsorbing dyes and heavy metals from 
wastewater and aqueous solution. In addition, they showed good sta-
bility and high recyclability. Chitosan-sourced carbons can capture CO2 
by the formation of ammonium carbamates, which showed high uptake 
rates for CO2. Many studies fabricated solar cells by using chitosan as a 
precursor. Those cells had a relatively high-power conversion efficiency, 
and high quantum yields. Moreover, chitosan-prepared cathodes 
discharge capacity of lithium-ion batteries. DXM, mercury ions, OTA, 
iodine ions, and iron ions, were all successfully detected by probes or 
sensors fabricated from chitosan. Hence proving the ability of chitosan 
utilizing in biosensing and bioimaging. Supercapacitors showed wide 
application for chitosan-sourced carbons. Where in general those 
supercapacitors had high capacitance, and current densities in different 
types of electrolytes. Catalysts based on chitosan have been used in 
many reactions, and showed high catalytic activity and improved sta-
bility, while being cheaper to prepare, and more environmentally 
friendly. 
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