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• Machine learning method was used to
automatically detect marine litter.

• Models were trainedwith over 10,400 im-
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 In 2018, the Ministry of Municipality and Environment, Qatar removed 90 t of marine litter (ML) from the Ras Rakan
Island (RRI), a remote uninhabited island in the Arabian Gulf (hereinafter referred to as Gulf). To identify the sources
ofML and understand the post-cleaningML accumulation rate, aML surveywas conducted around RRI in 2019. A total
of 1341ML itemswere found around RRI with an average abundance of 3.4 items/m2. In addition, a machine learning
approachwas applied to extract the quantity and types ofML from 10,400 images from the sampling sites (beaches) to
make the ML clean-up process andmonitoring effort more efficient. The image coordinates of ML objects were used to
train an object detection algorithm ‘You Only Look Once (YOLO-v5)’ to automatically detect ML from video data. An
image enhancement techniquewas performed to improve the quality of unclear images. The best performing YOLO-v5
model had 90% of mean Average Precision (mAP) while maintaining near real-time processing speeds at 2 ms/image.
The abundance of ML around RRI was higher than that found on the coast of mainland Qatar. 61.5% of the sampling
locations are considered as ‘extremely dirty’ based on Clean Coast Index.Windward beaches had higherML concentra-
tions (derived fromneighbouring countries) than the leeward beaches. Like RRI,most of the uninhabited islands in the
Arabian Gulf are home to many seabirds and sea turtles, and could act as major sinks for ML deposition. Therefore,
implementation of this machine learning technique to all islands allows estimating and mitigating the load of ML
for achieving a sustaining and a cleaner ocean.
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1. Introduction

Accumulation of marine litter (ML), especially plastic debris in different
environmental compartments (beaches, islands, surface and sub-surface
water and food web) situated between north and south poles has been
increased in the past few decades (Monteiro et al., 2018). Though ML con-
sists of plastic, glass/ceramic, metal, wood, paper, textile and rubber (EC
JRC, 2013), plastics are the most dominant (60–80%) litter in the marine
environment (Barboza et al., 2019). These anthropogenic ML causes the
most relevant risks on human health as well as environmental and ecolog-
ical health consequences (Filho et al., 2019). The negative impacts of ML
in the marine environment include entanglement (Gregory, 2009; Thiel
et al., 2018), ingestion (Savoca et al., 2021), bioaccumulation of persistent
organic and inorganic pollutants (Teuten et al., 2009; Ranjani et al., 2022),
and transfer of non-native species through hitchhiking (Al-Khayat et al.,
2021). In addition to negative consequences on marine biodiversity, ML
also negatively affects the economy of many coastal countries (McIlgorm
et al., 2011; Beaumont et al., 2019). Nearly 80% of anthropogenic ML
enters the sea from land-originated sources, whereas 20% is derived from
sea-based sources (EC JRC, 2013). Borrelle et al. (2020) estimated that
~19 to 23MT of plastic wasteswere generated in 2016 globally, andfinally
entered in the aquatic ecosystems.

Once ML enters in the ocean, it can travel to long distances (even to re-
mote islands) by ocean currents and winds (Maximenko et al., 2012;
Iwasaki et al., 2017). According to Burt et al. (2020), globally, small islands
receive unprecedented amount of anthropogenic ML. In the Arabian Gulf,
due to environmental, geological and climatic diversity some of the islands
are inhabited (e.g., Qeshm Island),whereasmost of the islands are uninhab-
ited. Since the countries bordering ROPME (Regional Organization for the
Protection of the Marine Environment) Sea Area are undergoing rapid
economic and population growth, land-based ML is also growing fast in
the past few decades (Al-Salem et al., 2020; Lyons et al., 2020; Uddin
et al., 2020; Veerasingam et al., 2020a). Moreover, the Gulf being the lead-
ing oil producer in the world, the discharge of ML through shipping, fishing
and industrial activities are also increasing (Kor and Mehdinia, 2020).
Though the distribution of ML has been reported for the mainland of Gulf
(Sarafraz et al., 2016; Veerasingam et al., 2020a), the ML accumulation
trend on the isolated islands is relatively very scarce.

Traditional analysis of ML video data that requires watching videos in
real time is time consuming and remains as a significant obstacle in achiev-
ing regional scaleML assessments (Martin et al., 2021). Though, variousML
monitoringmethods have been developed and applied, they are not compa-
rable in many cases. Therefore, standardized automated ML detection
methods are required to solve this problem. For this reason, several field
ML videos and images and different image processing methods need to be
applied (Hidaka et al., 2022). The exponential growth in computational
speed and artificial intelligence techniques have attracted the environmen-
tal scientists and provided new opportunities in efficient pollutionmonitor-
ing. Machine learning is a data-driven approach that trains a regression or
classification model through a complex nonlinear mapping with adjustable
parameters based on a training dataset (Yu and Ma, 2021). Very recently,
this sort of rapid, cost-effective and easily reproducible machine learning
techniques has increased in assessing the ML (Kylili et al., 2019, 2021;
Garcia-Garin et al., 2021; Politikos et al., 2021; Lin et al., 2021; Marin
et al., 2021; Gomez et al., 2022). As Machine Learning approaches are
getting more sophisticated, neural networks are able to learn specific fea-
tures of pre-determined classification classes of a wide array of input data
(for example: audio, image, text and other data) (Wu et al., 2021). Subse-
quently, machine-learning models can perform data analysis of complex
video/image data several orders of magnitude faster than human, and if
trained to a sufficient level of accuracy, perform these tasksmore accurately
than human (Ditria et al., 2020).

In recent years, the YOLO (You Only Look Once) algorithm series have
provided fascinating outputs in different sub-areas of object detection. One
of the notable features of this method is the fast detection speed. We find
that this technique is not used in any of the studies related to ML in the
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Arabian Gulf. Therefore, in this study, we have applied YOLO algorithm
using conventional neural networks to prove its efficiency in the beach
litter object detection. Ras Rakan Island (RRI) is one of the uninhabited
islands in the Arabian Gulf, which also acts as a home for breeding of sea
birds (especially, Phalacrocorax nigrogularis) and sea turtles (especially,
Eretmochelys imbricata) (Kardousha et al., 2016; Muzaffar, 2020; Mark
et al., 2021) (Fig. S1). The Ministry of Municipality and Environment
(MME), State of Qatar has carried out a cleaning campaign in RRI during
April 2018, and 90 t ofML (Fig. S2) were removed (MME, 2018). Following
this in October 2019 (i.e., after one year of this major cleaning campaign),
we have conducted a ML survey with the following objectives: (i) to under-
stand the current ML distribution pattern around the RRI, (ii) to character-
ize the composition of ML and identify their sources, and (iii) to test the
efficiency of the machine learning technique, YOLO-v5 in detecting the
beach ML using high-resolution video images.

2. Materials and methods

2.1. Study area

The Gulf coastline is ~3700 km in length with several cities on the
Arabian side than the Iranian shore. Thus, substantial and gradually grow-
ing stress is exerted on the marine resources of the region with associated
large-scale degradation of coastal ecosystems (Al-Cibahy et al., 2012).
The Exclusive Economic Zone (EEZ) of Qatar consists of nearly 31 natural
islands, most of them located on the northern and eastern sides of the
peninsula. RRI is an uninhabited island located nearly 2 km north of the
mainland (Arekhi et al., 2020). It is ‘T' shaped island with a length of
3.5 km in the east-west orientation (Fig. 1). In most part of the island, the
width is 100 m, except at the western side, where the width is around
400 m (Veerasingam et al., 2021). This island is vegetated with shrubs,
plants, sabkha and bushes. It is made up of limestone carbonate rocks of
Dammam Formation of Middle Eocene age. The southern part of the Island
is clayey, where mangroves with Sabkha are present (Rajendran et al.,
2021). RRI is home for sea turtles and sea birds breeding. Socotra Cormo-
rant birds (Phalacrocoras nigrogularis) are regionally endemic, locally
abundant species, primarily restricted to the Gulf. This species is currently
categorized as vulnerable by the International Union for Conservation of
Nature (Muzaffar et al., 2017).

2.2. ML sampling and identification of rafting species

The team from Environmental Science Center, Qatar University con-
ducted ML survey at 13 locations around RRI in October 2019 (Fig. 1). At
each location, a section/transect covering an area of 250 m2 (50 m length
and 5mwide) was sampled. Video recording of the beaches was performed
with a smartphone, having a resolution of 1920 × 1080 and at 24fps. ML
items, larger than 2.5 cm presented within the transects were considered
for this study. ML items were classified as plastic, glass, metal, fabric,
paper, processed wood and rubber (OSPAR, 2010). The hitchhiking organ-
isms associated with ML were identified under a dissecting microscope to
the lowest possible level using the available identification keys and litera-
ture (Jones, 1986; Oliver, 1992; Bosch et al., 1995; Richmond, 2002;
Shahdadi et al., 2014; Shabani et al., 2019; Al-Khayat et al., 2021).

2.3. Clean Coast Index

The Clean Coast Index (CCI) is a tool to assess the level of cleanliness of
the beach (Alkalay et al., 2007). To evaluate the state of, being free fromML
or not, each sampling location, CCI was calculated using the formula: CCI
= CML × K, where K is a constant (K = 20) and CML is the density of ML
items per m2. The beaches were classified as ‘clean’ to ‘extremely dirty’,
based on the scale provided and the amount of ML found on each beach.
The CCI values are categorized as very clean (0 to 2), clean (2 to 5), moder-
ately clean (5 to 10), dirty (10 to 20), and extremely dirty (>20). Thus, CCI
assessmentmethod gives a cumulative indicator, which explains the quality
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Fig. 1. (a) The bathymetrymap of the Arabian Gulf and EEZ of Qatar, (b) location of Ras Rakan Island, and (c) The study area andML sampling locations along the beaches of
Ras Rakan Island.
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of beaches in terms of potential and direct damage to the health of marine
organisms (Veerasingam et al., 2020b).

2.4. Hazardous Litter Index

The Hazardous Litter Index (HLI) is used to assess the possibility of
being affected by hazardous items (that can pierce or cut) such as metal
and glass and toxic waste in beach (Rangel-Buitrago et al., 2019a). The
HLI value of each location was calculated using the formula:

HLI ¼
∑HazardousML
log 10∑TotalML

Samplingarea
� K

HLI allows evaluating the environmental quality of beach in terms of
hazardous items in five classes that range from I to V (Table S1).

2.5. Machine learning

2.5.1. YOLO-v5 algorithm
YOLO is an algorithm that utilizes a single conventional network for ob-

ject detection. YOLO algorithm has undergone six generations (YOLO-v1 to
YOLO-v6) of changes and evolutions. The fifth generation of YOLO (YOLO-
v5) has great advantage in speed and accuracy compared to its four previ-
ous generations. YOLO-v5 exhibits optimal performance on Microsoft
COCO (common objects in context). YOLO-v5 consists of four parts such
as (i) Input, (ii) Backbone: Cross Stage Partial Network (CSPDarknet), (iii)
Neck (PANet), and (iv) Head (YOLO layer) (Xu et al., 2021). Based on the
depth of network and the width of feature map, YOLO-v5 is divided into
four models such as YOLO-v5s, YOLO-v5m, YOLO-v5l, and YOLO-v5x.
These four models represent the trade-offs between increasing accuracy,
decreasing classification speed and increased computational resources for
training. In this study, considering the speed and accuracy, YOLO-v5m
was selected as the model for ML detection and classification.
3

The YOLO-v5 algorithm partitions the input image into S×S gridswith
every grid cell being accountable for the recognition of an object if the cen-
ter of that body falls into that grid cell. Predefined anchor boxes are created
in each grid of the input image and generate bounding boxes. Five predic-
tions such as x, y, w, h, and confidence score are contained in each
bounding box. The coordinates x and y represent the center of the predicted
bounding box relative to the boundaries of the grid. The width and height
of the predicted bounding box relative to the entire image are w and h, re-
spectively (Redmon et al., 2016; Kylili et al., 2021). The intersection over
union (IoU) between the predicted and the ground truth bounding box is
considered as the confidence score. Bounding boxes, having confidence
scores higher than the threshold of 0.5, were considered for identification
of ML items in the image or video. Moreover, a set of C class probabilities
is predicted for each grid cell containing a ML item. Then, the confidence
score is multiplied by the class probability of each bounding box to produce
its class-specific confidence score. The box containing the highest class-
specific confidence score is selected for the final prediction.

2.5.2. Training the model
The flowchart of model training is given in Fig. 2. The dataset was cu-

rated by collecting videos of ML along the beaches of RRI. Images were
taken from 13 videos which recorded at 12 frames per second (fps).
These images of ML items were labeled and categorized as plastic, glass,
metal, paper, fabric, rubber and processed wood. The technical description
of the proposed dataset is given in Fig. S3. After labelling, data augmenta-
tion was used to extend the dataset size and enrich the data for the model
to be trained on. Data augmentation techniques including rotation, scaling,
shearing and translation were used in this model to increase the amount of
data available for model training. A training-testing data split was
performed, where 80% of the images were randomly chosen for model
training, and the remaining 20% were assigned to test the model. The cor-
responding ground truth mask of ML item was manually drawn using the
‘label_img’ annotation tool for training and testing set images. In order to
evaluate the model, the ground truth bounding boxes are important. By
comparing each of themwith the predicted boxes, it is possible to calculate
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Fig. 2. The framework of the ML detection network. The flow chart is showing the various steps involved in the ML detection model training based on YOLO-v5 algorithm.
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the loss of the training, average precision and the validation processes.
Drawing on the size of ML items in the training and the validating images,
the machine learning method is subsequently charged with the task of rec-
ognizing, localizing and segmenting the ML.

2.5.3. Evaluation matrices
The labeled ML items were dubbed as ground truth objects. The YOLO-

v5 algorithms detected ML items from each image during the training and
validation processes. The intersection over union (IoU) was calculated
using the following formula to compare the findings with the ground
truth ML items.

IoU ¼ ∣A∩B∣
∣A∪B∣

where, A and B are the bounding boxes of predicted and the ground truth
images, respectively. The predicted bounding box is a rectangular box
assigned by trained model during detection on each identified ML item.
The ML items with IoU values <0.5 were not considered in this study
since they indicate a low level of confidence. For each ML class, based on
the area under the precision and recall curve, accuracy of the YOLO-v5
method was retrieved. The aggregate average precision (AP) of the model
is derived from the average of all accuracy values. The following equations
were used to calculate the precision and recall for each ML class:

Precision ¼ TP
TPþ FP

Recall ¼ TP
TPþ FN

where, TP denotes true positives (i.e., the total number of ML items cor-
rectly labeled by the model belongs to the correct class). FP refers to the
false positives (i.e., the total number of ML items incorrectly labeled by
the tool to fall under the correct class).

Based on the precision (P) and recall (R) rates, the mean average preci-
sion (mAP) is determined. The curve with R as the horizontal axis and P as
the vertical axis is referred to as the PR curve. The AP value is calculated,
based on the area under PR curve, using the following formula:

AP ¼
Z 1

0
PdR
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The average of the average accuracy of all ML items is themAP value, as
shown below:

mAP ¼
PN

i¼1 APi

N

where, N denotes the total number of detected ML categories.

3. Results and discussion

3.1. Spatial distribution and composition of ML

During the ML survey in the RRI in October 2019, a total of 1341 items
were found. ML densities ranged between 1.1 and 5.5 items/m2 with an
average of 3.4 items/m2. The spatial distribution of ML exhibited higher
densities in the western and northern parts of the Island, whereas lower
densities were observed in the southern part of the Island, i.e., windward
beaches had higher ML concentrations than the leeward beaches (Fig. 3).
The average density of ML observed in the RRI was higher than those
found in the mainland of Qatar (1.98 items/m2; Veerasingam et al.,
2020b). Moreover, the average ML density of RRI was found to be higher
compared to other islands around the world (for example, Trindade Island,
Brazil (2.5 items/m2; Andrades et al., 2018), Isla Arena Island, Colombia
(2.87 items/m2; Rangel-Buitrago et al., 2019b), Mukkawar Island, Red
Sea (0.23 items/m2; Ibrahim et al., 2020), Lord Howe Island, Australia
(2.18 items/m2; Grant et al., 2021)). However, lower than those found in
some of the global islands such as Henderson Island, South Pacific (239.4
items/m2; Lavers and Bond, 2017) and Keeling Islands, Australia (3.6
items/m2; Lavers et al., 2019).

The composition of ML around the RRI showed that plastic items were
the most abundant (54.01%), followed by processed wood (11.24%),
metal (10.22%), glass (9.16%), rubber (6.32%), fabric (4.24%), and
paper (4.81%). At all sampling locations, though plastic items were the
abundant material, there were differences in the abundance of other
items. The average composition of ML around the RRI was lesser than the
global average (Galgani et al., 2013). In spite of major ML cleaning
activities carried out in 2018, and subsequently 90 t of wastes were col-
lected, still huge amount of ML has been accumulated around the Island
within one year (Fig. S4).

3.2. Sources of ML

The ML items found around the RRI were contributed by the following
sources: (i) land-based, (ii) sea-originated, and (iii) unknown sources. Over-
all, 71%ofML falls under ‘land-based’, followed by 19% sea-based and 10%
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unknown sources. The country of origin of ML (especially PET bottles) was
determined based on the manufactured place, language and barcode
(Veerasingam et al., 2020b). It is interesting to observe that most of the
ML items found on the windward side of RRI were transboundary nature
(i.e., derived from neighbouring countries - Bahrain, Saudi Arabia, Iraq
and UAE), whereas ML items found on the leeward side were from Qatar
(Fig. S5). Earlier studies indicated that the transports of ML items in the
Gulf are controlled by three factors: winds, currents, and Stokes drift
(Veerasingam et al., 2020a, 2020b; Al-Khayat et al., 2021). The winds
and Stokes drift are predominantly from the NW/NNW direction, while
the currents are in the SE direction. These forces carry the ML from the
northern Gulf to the west coast of Qatar, and part of it settles along the
beaches. Recently, Veerasingam et al. (2021) identified considerable
amount of microplastics on the beach sediments of the RRI. The overall in-
ference is that the net wind and hydrodynamic forcing enables a shoreward
transport of ML on the west of RRI, which ultimately causes the settlement
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of ML along the western beaches in definite proportion. ML survey informs
that RRI is receiving a huge quantity of trans-boundary items from the
neighbouring countries, and clearly indicates that RRI acts as a sink for
plastic debris derived from both land and sea-based sources (Veerasingam
et al., 2020b).
3.3. Assessment of beach quality

The quality of beach was evaluated based on the accumulation of ML
and various beach quality assessment indices (Mugilarasan et al., 2021).
Based on the clean coast index (CCI), we categorized 61.54% of the studied
locations as ‘extremely dirty’, 23.08% sites as ‘dirty’ and 15.38% as ‘moder-
ately clean’ (Fig. 4). Most of the sampling locations on the windward
beaches fall under ‘extremely dirty’, while the leeward beaches are mostly
‘moderately clean to dirty’ category. Hazardous ML items can have public
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health implications, for example, sharp edged broken glass items andmetal
cans can cause injuries (Mugilarasan et al., 2021). Moreover, toxic items
such as sanitary waste andmedical waste (syringe needles) can cause direct
and indirect physiological damages (Rangel-Buitrago et al., 2019a). The
calculated average Hazardous Litter Index (HLI) values of windward
beaches on the RRI were higher (1.3) than those found on the leeward
beaches (0.96). Overall, the beaches were categorized based on HLI values
from Class II to III (Table S1), i.e., ‘little to no hazardous ML observed’ to ‘a
considerable amount of hazardousML observed’ (Fig. 4). Since RRI is an un-
inhabited island and used very little by boaters or public, it is prudent to as-
sume that most of the ML found along the beaches were derived from
sources that are located outside the island.

3.4. Rafting species composition

Though most of the ML items were clean and freshly looking items
(manufactured year between 2018 and 2019), 10% of itemswere degraded
and associatedwith encrusting organisms (Fig. S6). Themost common foul-
ing phyla found on the items were Anthropoda, Mollusca and Bryozoa.
Overall, Amphibalanus amphitrite is the abundant rafting species found
around the RRI. Recently, Al-Khayat et al. (2021) found that beaches
along the west coast of Qatar receive a huge quantity of bio-fouled floating
materials, which cause great damage to biodiversity. The present study also
confirms that the trans-boundary items could be a potential vector for the
introduction of non-indigenous species to the EEZ of Qatar.

3.5. Training, testing, validating and estimating the prevalence of ML

A total of 10,400 photos containing 41,878 annotations of ML items
were used (Fig. 5) in this study. Despite the intrinsic characteristics of the
dataset, the performance of YOLO-v5 was better aligned with other ML
monitoring studies (Martin et al., 2018; Fallati et al., 2019; Goncalves
et al., 2020). Instances of classes used for model training followed a compa-
rable composition of field observations (Fig. 5). Plastic (59.02%) was the
greatest proportion of ML annotations used in model training, followed
by processed wood (25.40%), fabric (5.92%), glass (3.54%), metal
(2.96%), rubber (1.65%) and paper (1.57%). The representative evaluation
indicators of the improved model are shown in Fig. 6. Training was termi-
nated at 150 epochs as it was clear that validation loss and accuracy curves
had stabilized (Fig. 6a and b). The neural network succeeded in predicting
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different categories ofML items, and obtained an overall mean average pre-
cision (mAP) of 0.91 (Fig. 6a). Moreover, the trained network mAP values
for plastic, glass, metal, paper, fabric, rubber and processed wood were
0.92, 0.96, 0.97, 0.96, 0.88, 0.84, and 0.83, respectively. The accuracy
levels of mAP values obtained in this study were higher than those found
in other studies that have employed object detection algorithms. For exam-
ple, the YOLO algorithm applied to identify the sea cucumbers and fish had
accuracy levels of only 76% and 54%, respectively (Xia et al., 2018; Xu and
Matzner, 2018). Ditria et al. (2020) obtained higher accuracy of mAP (>
92%) with YOLO algorithm when detecting a single species of fish from
video data. Large variations in accuracy among the object detection models
could be attributed to varying amounts of training data. For example, Xia
et al. (2018) have achieved 76% accuracy using a total of 150 annotations
to train their model, which is considerably lower than that was used in the
present study. Wang et al. (2019) have applied the data augmentation tech-
niques (similar to the technique used in the present study) and found better
accuracy in object detectionmodels, though they have used a small dataset.

We have found a significant positive correlation between the ML data
obtained using conventional method and machine learning method, espe-
cially for the plastic litter distribution (r2 = 0.9). Therefore, these results
showed that the machine learning algorithms can be effectively used to au-
tomate ML detection (especially, plastic litter detection) and classification
from video and imagery data with a relatively high degree of accuracy.
The time consuming and expensive manual classification of ML items
from video data can be eliminated using this approach, whichwould enable
analysis of large size video datasets. Errors in detection of ML could be at-
tributed to false detections of background image features and complexity
of dataset. However, previous research showed that an object detection
model trained to identify a single fish species has achieved better accuracy
(i.e., mAP >92%) than the human effort (Ditria et al., 2020).
3.6. Future management considerations for the integrated ML monitoring for the
islands

The Gulf has many islands, mostly small, distributed in the entire Gulf.
Within the EEZ of Qatar itself, there are nearly 31 islands, enrichedwith va-
riety of marine ecosystem. These islands are home for breeding of sea-
turtles and seabirds. The present study identified RRI as a sink to ML, and
more or less similar scenarios can be expected in other islands of Qatar as
well as in the Gulf. Moreover, ML on the beaches creates physical barriers,
Glass Metal Rubber Paper
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thereby bringing down the number of sea turtle laying attempts (Lavers and
Bond, 2017). This will lead to lowering the diversity of shoreline inverte-
brate communities and increasing the hazard of entanglement of coastal-
nesting seabirds (Grant et al., 2021). The rate of accumulation of ML
deposits around the RRI is high, especially on the windward side of the
beaches. During the survey, we found many dead seabirds, especially Soco-
tra cormorant (Phalacrocorax nigrogularis) along the windward beaches.
Phalacrocorax nigrogularis is one of the least studied, regional endemic
seabirds restricted to the Gulf and Oman coastal regions, and threatened
by the anthropogenic disturbances (Muzaffar et al., 2017). In the marine
environment, the seabirds are apex predators and well-known ecosystem
engineers, capable of changing their terrestrial habitats by introducing
marine-derived nutrients via deposition of guano and other allochthonous
inputs. Therefore, when plastic accumulation increases in such remote
uninhabited islands, even the pristine environments will become ‘plastic
islands’ in long-run (Grant et al., 2021). Therefore, this cost effective ma-
chine learning (YOLO-v5) monitoring approach along with conventional
methods can be implemented to other islands in the Gulf as well to estimate
theML load in the ROPME Sea region. This study could be an eye-opener to
long-term monitoring program of ML across the ROPME Sea area to con-
serve marine ecosystem.

4. Conclusions

Worldwide, the remote islands receive unprecedented amount of ML,
especially plastic waste. The implementation of machine learning YOLO-
v5 algorithm in ML monitoring is relatively new in the Gulf region. This
study provides a snapshot of spatial distribution, composition, sources
and the possible biological impacts of ML around the Ras Rakan Island.
Average ML abundance around the RRI is 3.4 items/m2. The spatial distri-
bution of ML exhibits higher densities in the windward beaches than the
leeward beaches. Overall, 71% of items were derived from land-based
sources, especially from neighbouring countries. Nearly 61% of sampling
locations are found to be extremely dirty with higher amount of hazardous
ML items. The prevailing winds, currents and Stokes drift in the Gulf play a
major role in the transportation and deposition of ML on the RRI, and it is
clear that RRI acts as a potential sink toML deposition. In this study, thema-
chine learning algorithm YOLO-v5 based model was applied for the detec-
tion, classification and quantification of ML in an uninhabited Island of
Qatar. YOLO-v5 model has classified ML items with the precision of 0.91
(91%) mAP. The machine learning model results showed a significant
positive relationship with the ML data obtained using a conventional
method. Among the ML items, this machine learning model showed higher
accuracy results for the plastic litter items than the otherML items.Machine
learning results demonstrate that YOLO-v5 could complement
7

conventional methods for the future ML monitoring programs. Therefore,
it is recommended that the long-term integrated ML monitoring programs
should be initiated in the Gulf using a combination of unmanned aerial
vehicles, conventional methods and machine learning techniques with the
involvement of government, private and public agencies for the effective
conservation of marine ecosystem.
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