
Received June 26, 2019, accepted July 17, 2019, date of publication July 22, 2019, date of current version August 8, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2930295

Online Parallelized Service Function Chain
Orchestration in Data Center Networks
GANG SUN 1, ZHENRONG CHEN1, HONGFANG YU 1,
XIAOJIANG DU 2, (Senior Member, IEEE),
AND MOHSEN GUIZANI 3, (Fellow, IEEE)
1Key Laboratory of Optical Fiber Sensing and Communications (Ministry of Education), University of Electronic Science and Technology of China,
Chengdu 611731, China
2Department of Computer and Information Sciences, Temple University, Philadelphia, PA 19122, USA
3Department of Computer Science and Engineering, Qatar University, Doha, Qatar

Corresponding authors: Gang Sun (gangsun@uestc.edu.cn) and Hongfang Yu (yuhf@uestc.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 61571098, and in part by the
111 Project under Grant B14039.

ABSTRACT In recent years, much attention has been focused on deploying service function chains (SFCs),
each of which is composed of a set of virtual network functions (VNFs) in a specified order. This is a
promising approach for enabling cloud service providers to deploy user service requests more flexibly while
saving costs. However, less effort has been directed toward meeting heterogeneous needs, such as high
throughput or low latency of user service requests with heterogeneous bandwidth demands, especially in
data center networks (DCNs). In this paper, we propose an efficient orchestration algorithm for online SFC
requests. It first splits a large flow into a number of subflows and replicates the same number of sub-SFCs.
Each subflow is redirected to one of these ‘‘parallelized’’ sub-SFCs, which is termed a sub-user request. Then,
each sub-user request is deployed based on a worst-fit strategy, and VNFs in the same SFC are instantiated on
the same server to the greatest possible extent. Our algorithm is expected to enable network load balancing,
reducing the delay experienced by small flowswhile improving the acceptance ratio for user requests. Finally,
the simulation results show that the proposed algorithm outperforms other comparable algorithms.

INDEX TERMS Service function chain, splitting, data center network, orchestration, load balancing.

I. INTRODUCTION
With the development of 5G, the increasing number of
users using smart devices are expected to grow dramat-
ically in the next few years. This in turn will require
to access to the network and diverse user requirements
that will need to be met by the cloud-based infrastruc-
tures [1]. However, because traditional network functions
(e.g., firewalls, network address translation, and proxies) are
tightly coupled with the physical infrastructure, it is dif-
ficult and costly for network service providers to deploy
new services. Furthermore, specially trained workers are
required to deploy and maintain these hardware-based net-
work functions [2]–[4]. The past few years have witnessed
increasing efforts in both academia and industry related to
network function virtualization (NFV), a promising paradigm
in which network functions are decoupled from dedicated

The associate editor coordinating the review of this manuscript and
approving it for publication was Kashif Saleem.

hardware-based appliances. By running virtual network
functions (VNFs) in virtual machines (VMs) or contain-
ers that are instantiated on commodity (e.g., x86-based)
servers across a network, NFV promises to enable the
network to deploy VNFs in a more flexible and cost-efficient
manner. In this way, capital and operational expenditures
(CAPEX/OPEX) can be reduced to meet network service
providers’ needs [5]–[9]. In particular, the emergence of
software-defined networking (SDN), which allows the sep-
aration of the control plane from the forwarding plane,
enables a network to flexibly route traffic when changes
occur via SDN controllers that are able to collect global net-
work information [10]–[14]. Furthermore, user traffic should
travel through a sequence of VNFs in a particular order,
i.e., a service function chain (SFC) [15].

In a data center network (DCN), traffic flows from user
service requests vary from small, short-lived flows, called
mouse flows, to large, long-lasting flows, called elephant
flows [16]–[19]. Latency-sensitive mouse flows generated

VOLUME 7, 2019 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 100147

https://orcid.org/0000-0002-2448-8915
https://orcid.org/0000-0002-5219-1780
https://orcid.org/0000-0003-4235-9671
https://orcid.org/0000-0002-8972-8094

G. Sun et al.: Online Parallelized SFC Orchestration in DCNs

by searches, web browsing, etc., account for most of the
total number of flows, while throughput-sensitive elephant
flows generated by video streaming, VMmigration and so on
carry the majority of bytes of the overall traffic [16]. When
these two types of flows are guided onto the same paths,
the mouse flows suffer from long queueing delays and poor
flow completion times (FCTs) because they are often queued
behind elephant flows in switch egress ports [20], [21]. As a
result, meeting the different demands of these heterogeneous
flows is a nonnegligible challenge when solving the problem
of SFC deployment in a DCN.

A. MOTIVATION
To the best of our knowledge, no previous study has consid-
ered the issue mentioned above; instead, the traffic rates of
user requests are assumed to be fixed [22] or to vary in small
ranges [14], or mouse flows are simply ignored [23], [24].
In addition, few related studies have focused on the dif-
ferences in the performance of the proposed algorithms for
mouse flows and elephant flows. For example, in paper [25],
the ORBIT algorithm is proposed, in which paths are selected
based on equal cost multipath (ECMP) routing, and in
paper [26], a hash-based multipath routing and BHT algo-
rithm is introduced that selects VNF instances based on the
hash values of the flows. These algorithms may be subop-
timal, and their load balancing performance may degrade,
when hash collisions occur among elephant flows. In other
words, when two elephant flows have the same hash value,
they may share the same link or instance, which will cause
the shared link or instance to be heavily loaded, even though
the others’ loads are light. Although the HATS-Flowcell
algorithm, presented in paper [27], was designed to solve
this problem of hash collision, this algorithm incurs problems
involving packet reordering.

B. RESEARCH CONTRIBUTIONS
In this paper, we deploy the SFCs of dynamically arriv-
ing user requests by considering ‘‘parallelized’’ VNF chain-
ing [28]. Large flows are split into multiple subflows, and
the original SFCs are replicated into a number of sub-SFCs
equal to the number of subflows; then, the subflows are
passed through the replicated sub-SFCs, such that an original
user request may be split into multiple sub-user requests,
as shown in Fig. 1. In this way, the problem of hash collision
of elephant flows can be alleviated, and a better experience
can be provided for mouse flows. However, it is still a chal-
lenge to deploy sub-user requests in a DCN while achieving
network load balancing and reducing the deployment cost
while also satisfying the network resource constraints, which
mainly include link bandwidth and node computing resource
constraints.

After generating the sub-user requests, we deploy each
sub-user request using a proposed heuristic algorithm called
ONP_SFO, which is mainly based on a worst-fit strategy
for selecting links, to realize network load balancing while
deploying all VNFs of the same sub-SFC on the same server

FIGURE 1. Example of splitting an SFC.

to the greatest possible extent to minimize the link mapping
cost. Furthermore, in our algorithm, a basic operation called
the downOperation is designed to search for the optimal VNF
deployment from upper layers of the network topology to
the server layer. When the available computing resources
of the current server cannot satisfy the computing resource
demand of the VNF to be deployed, another basic opera-
tion, the upOperation, is called to find an appropriate switch
to allow the downOperation to find another server that not
only meets the resource requirements but also is as close
as possible to the current server (i.e., the number of hops
between them is minimal). The former requirement can be
guaranteed by defining a variable that is maintained by each
physical node and records the nodes. Finally, a user request is
accepted only if all sub-user requests of that user request can
be successfully deployed. Otherwise, the request is blocked.
The main contributions of this paper are as follows:
• We study the problem of SFC orchestration in a DCN,
considering the splitting of large flows, to meet the dif-
ferent needs of heterogeneous flows in the network. Fur-
thermore, we model this problem using an integer linear
programming ILP) model based on queueing theory.

• We propose an online heuristic algorithm called
ONP_SFO, which is able to improve load balancing
while saving mapping cost and deployment time by
adopting a worst-fit strategy.

• By means of two proposed basic operation algorithms,
we effectively deploy SFC requests in the DCN and
minimize the number of hops between VNF instances
of the same sub-user request.

• We evaluate our algorithms by varying the network load,
the flow splitting specifications and the proportion of
elephant flow requests; then, we analyze the simulation
results and identify the advantages and disadvantages of
our algorithms.

C. STRUCTURE OF THIS PAPER
The remainder of this paper is organized as follows. Section II
summarizes and reviews the related work. Section III
describes the problem of parallelized SFC orchestration in

100148 VOLUME 7, 2019

G. Sun et al.: Online Parallelized SFC Orchestration in DCNs

a DCN. Section IV describes the details of our splitting
method and our designed online heuristic algorithm for
deploying sub-user requests. Section V presents the perfor-
mance evaluation of our solution. Finally, Section VI con-
cludes this work.

II. RELATED WORK
A. VIRTUAL NETWORK EMBEDDING
Virtual network embedding (VNE) has been extensively
studied and shows many similarities to SFC mapping. For
example, virtual network (VN) and SFC requests are both
composed of virtual nodes and virtual links, and mapping
these requests means allocating their virtual nodes or links
to elements of the physical network topology. Since the prob-
lem of VNE is known to be an NP-hard problem [29]–[31],
a heuristic algorithm is necessary to adapt to a large-scale
network topology. As described in [32]–[35], the workflow
of a typical VNE algorithm is to first apply a node-ranking
approach that considers only node capacity and adjacent link
bandwidth, then map the virtual nodes onto physical nodes by
applying a greedy algorithm, and finally apply a Dijkstra or
multicommodity flow algorithm to map the virtual links onto
the substrate network [36]. Inspired by Google’s PageRank
algorithm, Cao et al. [36] proposed a novel node-ranking
approach considering two other network topology attributes,
namely, node location and propagation delay, to solve the
VNE problem. However, when the shared substrate net-
work is provided by multiple infrastructure providers (InPs),
the problem becomes one of VNE across multiple domains,
which is more difficult because of the lack of global network
topology information. To overcome this problem, in [37],
Dietrich et al. studied how to utilize limited information
disclosure to partition VN requests into several segments
based on a traffic matrix and then map each segment onto
the substrate network. The authors of [38] proposed a mixed
integer linear programming (MILP) model that models the
problem of VNE across multiple domains with the objective
of minimizing the mapping cost while respecting resource
and security constraints. Sun et al. [39] developed two effi-
cient heuristic algorithms to address the issue of hybrid VNs
based on multiple InPs. However, the above articles focused
only on VNE instead of SFC mapping, which is a greater
challenge because the traffic needs to pass through the VNFs
in a certain desired order.

B. SFC MAPPING IN DCNS
Over the past few years, many studies have addressed the
NFV resource allocation problem in a single DCN, with
optimization goals ranging from energy savings to end-to-
end delay reduction to the improvement of system reliability
or availability. In [40], the authors proposed a binary integer
programming (BIP) model and a heuristic algorithm for solv-
ing the problem of optimal VNF placement in packet/optical
data centers. The VNFs of the same SFC were placed in
the same pod to the greatest possible extent to minimize the

number of expensive O/E/O conversions. Similarly, in order
to reduce the number of used PMs, the research in [41]
modeled the VNF placement problem in cloud datacenters as
an ILP model taking into account the time-varying workloads
and the basic resource consumptions. Paper [28] focused on
effectively increasing the end-to-end service reliability and
reducing the backup of VNFs by considering flow and VNF
parallelism in a DCN. In paper [23], the NFV-RT algorithm
was proposed to maximize the number of accepted requests
given end-to-end delay constraints in a DCN. To improve
the availability of the SFCs in a given DCN, paper [42]
proposed an approximation algorithm for estimating the num-
ber of backups while reducing resource usage considering
the heterogeneous failure and repair of physical devices.
Reference [24] proposed an SFC deployment algorithm that
considers the tradeoff between the path length of the cor-
responding SFC and the reuse of VMs in different DCN
topologies. However, this algorithm assumes that at most one
VNF can be instantiated on a VM, which can be shared by
multiple demands. The authors in [43] designed an efficient
online algorithm to deploy SFCs across different data centers
and aimed at achieving multi objectives including the mini-
mization of the operating cost and end-to-end delay.

Due to the importance of network load balancing, espe-
cially in DCNs, a few studies have focused on achieving
load balancing when SFCs are deployed to avoid network
congestion and network performance degradation. Paper [44]
presented theNF-LGT algorithmwith the objective of achiev-
ing network and server load balancing when chaining VNFs
in a DCN throughout which the VNFs are randomly located.
As the first phase of the algorithm, the nearest first (NF)
phase uses a greedy strategy to select the next VNF instances
as those with the smallest delay from the current loca-
tion. In the second phase, called the local-global transfor-
mation (LGT) phase, the algorithm tried to find a better
solution than that found in the NF phase by replacing the
VNF instances selected in the NF phase with other available
instances and exchanging the order of the VNFs of the SFCs
if allowed.

C. SFC MAPPING BY UTILIZING MULTIPLE PATHS
In addition, the methods presented in [25], [28], [45]–[47]
consider the selection of multiple paths to carry the total traf-
fic flow of one SFC and the instantiation of multiple instances
of VNFs in the same SFC to distribute the traffic load, which
is obviously beneficial for load balancing. Considering the
availability of several heterogeneous throughput instances
for each VNF provided by service providers, [45] discussed
the distribution of multiple instances of VNFs in an SFC
to overcome the limitations imposed by the chain’s traffic
demand and better distribute the traffic flow demand to solve
the problem of SFC deployment with the goal of improving
resource utilization. In [46], Carpio et al. first proposed the
concept of ‘‘replication’’ when solving the VNF deployment
problem in a mobile core network to achieve network load
balancing. In this approach, it is assumed that some VNFs are

VOLUME 7, 2019 100149

G. Sun et al.: Online Parallelized SFC Orchestration in DCNs

replicable, while the rest are nonreplicable, and that a node
can hold only one function.

Moreover, the authors of [25] developed the ORBIT algo-
rithm by considering ECMP routing to solve the online net-
work load balancing problem for NFV. However, the ECMP
approachmay cause the hash collision of elephant flowswhen
the hash values of different elephant flows are not consid-
ered. To solve the problem of service chaining in a DCN,
in the method presented in [27], VNF instances are selected
and paths are constructed at soft edge switches by hashing
packet headers instead of triggering the centralized controller.
In this way, the number of flow entries in the system is
reduced while achieving network and VNF load balancing.
Specifically, the HATS-Flowcell algorithm proposed in [27]
breaks elephant flows into equally sized bursts of packets
called flowcells to avoid the hash collision of elephant flows.
The work presented in [28] considers the splitting of flows
and the replication of VNFs; in this sense, it exhibits some
similarities with our article. However, the goal of that work
is to increase the end-to-end service reliability rather than to
achieve network load balancing.

III. PROBLEM STATEMENT AND FORMULATION
A. PROBLEM STATEMENT
In this paper, we study the problem of online ‘‘parallelized’’
VNF chaining in a data center by splitting each original user
request into a set of sub-user requests and deploying each
sub-user request on the substrate network, where ‘‘online’’
means that the detailed information of user requests’ cannot
be known in advance until they arrive dynamically. First,
the question of how to allocate the sizes of the subflows or
determine the number of subflows for each flow to be split
poses a challenge. After splitting, multiple physical paths
from the source node to the destination of an original user
request need to be selected to hold its sub-SFCs, guaranteeing
that the VNFs required by each sub-SFC are deployed on the
servers of the corresponding path. In addition, the physical
links’ bandwidth resources and servers’ computing resources
constraints must be satisfied. Finally, this study aims at realiz-
ing network load balancing, reduce the queueing delay expe-
rienced by mouse flow requests, and improve the acceptance
ratio for elephant flow requests.

B. MODEL DEFINITION
1) SUBSTRATE NETWORK
We consider a fat-tree topology as shown in Fig. 2, which
is commonly used in data centers. This topology can be
represented by an undirected graph G= (N ,E), where N =
{ni, 1 ≤ i ≤ |N |} denotes the physical node set and E =
{ei, 1 ≤ i ≤ |E|} is the physical link set. The switches
and servers in the network are represented by Nsw ∈ N and
Nh ∈ N , respectively. Note that a fat-tree topology can be
viewed as a multilayer architecture that is composed of three
layers of switches and a layer of servers. We use layer (ni) to
denote the layer in which a physical node ni is located. When
layer (ni) = 1, ni ∈ Nh. For ni ∈ Nsw, when layer (ni)= 2, 3,

FIGURE 2. A 4-pod fat-tree topology.

or 4, ni corresponds to an edge switch, aggregation switch, or
core switch, respectively. In addition, Adj(ni) is the set of all
nodes adjacent to ni in the network topology.
We denote the network resource capacity by RC= (CN ,

CE). Here, CN describes the resource attributes of physical
nodes, specifying the computing resource capacity, c(hi),
and the unit node computing resource cost per unit of time,
uCost(hi), for each physical node hi ∈ Nh. Similarly,
the attributes of physical links are described by CE , including
the bandwidth resource capacity, denoted by c(ei), and the
unit link bandwidth resource cost per unit of time, denoted
by uCost(ei), for each physical link ei ∈ E .

2) SFC REQUESTS
Let R= {ri, 1 ≤ i ≤ |R|} be the set of arrived user SFC
requests. We formulate an SFC request ri ∈ R as a four-tuple
ri =< si, ti, SC i, bi >, layer (si)= layer (ti)= 4, where si
and ti are the source and destination switches, respectively,
of the SFC request, both of which are located in the core
switch layer, and bi denotes the bandwidth demand of ri.
Since user requests arrive dynamically, each user request has
two additional time-related attributes, service request arrival
time denoted by T arri and expiration time T expi . We consider
the traffic flow of ri to be an elephant flow when bi > Kelep,
where Kelep is a constant; otherwise, the traffic flow is a
mouse flow. R = Relep ∪ Rmouse, where Relep and Rmouse are
the set of elephant flow requests and the set of mouse flow
requests, respectively. Let SC i represent the original SFC of
ri that is to be deployed. The flow of a user request is split
into one or multiple subflows based on the size of bi. The set
of subflows is represented by bSUBi = {bi,j, 1 ≤ j ≤ |SUBi|},
where |SUBi| is the number of subflows. At the same time,
the original SFC SC i is replicated a number of times equal
to the number of subflows; let the set of those replicated
SFCs be denoted by Repi= {SC i,j, 1 ≤ j ≤ |SUBi|}, where
SC i,j =< Fi,j,Li,j > is defined as the jth replicated SFC of ri.
Fi,j = {f ki,j, 1 ≤ k ≤ |Fi,j|} denotes the set of required VNFs
in the desired order. Li,j = {lki,j, 1 ≤ k ≤ |Li,j|} denotes the
virtual link set for SC i,j. f ki,j is the k

th VNF of SC i,j, and lki,j is
the kth virtual link.

Thus, after splitting, each subflow bi,j is allocated to a
corresponding replicated SFC SC i,j. Let rSUBi = {ri,j, 1 ≤
j ≤ |SUBi|} denote the sub-user request set, where ri,j =<
si, ti, SC i,j, bi,j >. For each virtual link lki,j, Res(l

k
i,j) is the

required amount of link bandwidth resources, and we con-
sider a situation in which the traffic for reqi does not change

100150 VOLUME 7, 2019

G. Sun et al.: Online Parallelized SFC Orchestration in DCNs

after processing by VNFs: Res
(
lki,j
)
= bi,j. For each VNF,

it is assumed that the computing resources allocated to its
instance are proportional to the traffic capacity to be pro-
cessed [48]: Res

(
f ki,j
)
= bi,j · r

k,h
i,j , where r

k,h
i,j denotes the

computing resource demand for VNF instance f ki,j to process
one unit of traffic rate on server h ∈ Nh. We assume that no
VNF instance can be shared by any two sub-SFCs.

3) QUEUEING DELAY MODEL
We assume that the number of user requests arriving is subject
to a Poisson distribution, with λ representing the mean arrival
rate of user requests. After a user traffic is processed at a
physical node n ∈ N , its packets will wait to be transmitted
onto a link, incurring a queueing delay; wemodel the physical
nodes in the DCN asM/M/1 queues. Let the size of all packets
be denoted by L bits for simplicity. For a sequence of packets,
when a subflow of this size passes through physical link
e ∈ E , the average queueing delay can be defined as follows.

De =
L

c (e)− ar (e)
−

L
c (e)

(1)

where ar(e) represents the current arrival traffic rate
(in bits/second) at e and c (e) represents the maximum trans-
mission rate (in bits/second) or bandwidth of link e.
We denote the set of all paths in the network by P =
{pk , 1 ≤ k ≤ |P|}, pk =< N k ,Ek >, where N k and Ek

are the physical node and link sets, respectively. Let Spk =
{smpk , 1 ≤ m ≤ |Spk |} denote the set of server nodes on path p

k .

Considering that after the traffic of reqi has been split into
subflows bSUBi , those subflows need to be steered through the
required VNF instances, we define a variable Xpi,j ∈ (0, 1),

p ∈ P, to indicate whether the subflow bji ∈ b
SUB
i is using the

path p that starts from si, passes through the physical nodes
that are running the VNF instances of SC i,j, and finally ends
at ti. This can be expressed as follows:

Xpi,j =

{
1, if sub flow bi,j is using path p,

0, otherwise.
(2)

We also define a variable vep, which is set to 1 if path p ∈ P
passes through the physical link e ∈ E ; otherwise, vep = 0.
According to Eq. (1), the queueing delay Di,j of subflow bi,j
passing through a physical path p can be calculated as

Di,j =
∑
p∈P

∑
e∈E

Xpi,j · v
e
p · ďDe (3)

Consequently, for a request ri, its queueing delay Di is
formulated as

Di = max
bi,j∈bSUBi

Di,j (4)

C. ONLINE PARALLELIZED SFC ORCHESTRATION
In this paper, we aim to minimize the total queueing delay
Dtotal of all accepted SFC requests.

Objective:

minDtotal = min
∑
ri∈R

Di (5)

1) RESOURCE CONSTRAINTS
We define a binary variable N k,h

i,j , which determines whether

VNF f ki,j is placed on server h∈Nh(N
k,h
i,j = 1) or not

(N k,h
i,j = 0). To account for the limited amounts of server

computing resources and physical link bandwidth resources,
we impose the following constraints:∑

ri∈R

∑
bi,j∈bSUBi

∑
f ki,j∈Fi,j

N k,h
i,j ·Res

(
f ki,j
)
≤ c (h) , ∀h ∈ Nh (6)

∑
ri∈R

∑
bi,j∈bSUBi

∑
p∈P

Xpi,j · v
e
p · ďbi,j ≤ c (e) , ∀e ∈ E (7)

2) SFC DEPLOYMENT CONSTRAINTS
First, we should ensure that every subflow bi,j of each user
request is steered onto one path p and that every VNF of
the corresponding replicated SFC SC i,j is placed on only one
server.∑

p∈P

Xpi,j = 1, ∀ri ∈ R, ∀bi,j ∈ bSUBi (8)

∑
h∈Nh

N k,h
i,j ≤ 1, ∀ri ∈ R, ∀bi,j ∈ bSUBi ,∀f ki,j ∈ Fi,j (9)

Then, the following Eq. (10) ensures that the servers that host
the instances of f ki,j ∈ Fi,j are on the path p, where Xpi,j = 1.

Xpi,j ≤
∑
h∈Sp

N k,h
i,j , ∀ri ∈ R, ∀bi,j ∈ b

SUB
i , ∀f ki,j ∈ Fi,j (10)

Finally, Eq. (11) ensures that every VNF f ki,j is deployed in
the desired order. Before VNF f ki,j is assigned to server hmp ,
it is necessary to ensure that the previous VNF f k−1i,j has been
deployed on a server that precedes server hmp on the path p,
where Xpi,j = 1.(

m∑
n=1

N
k−1,hnp
i,j

)
− N

k,hmp
i,j ≥ Xpi,j − 1,

∀ri ∈ R, ∀bi,j ∈ bSUBi , ∀f ki,j ∈ Fi,j, ∀h
m
p ∈ Sp (11)

IV. ALGORITHM DESIGN
According to Refs. [1] and [49], the SFC orchestration prob-
lem has been proven to be an NP-hard problem, thus, we can-
not obtain the optimal solution of the ILP model mentioned
in Sections III within a polynomial time. In this section,
a heuristic algorithm for online parallelized SFC orchestra-
tion in a single DCN is proposed to solve not only the problem
of how to map the VNFs and virtual links to corresponding
servers and physical links but also the problem of how to split
flows into subflows to realize network load balancing. Our
proposed online parallelized SFC orchestration (ONP_SFO)
algorithm is introduced as follows.

VOLUME 7, 2019 100151

G. Sun et al.: Online Parallelized SFC Orchestration in DCNs

A. ONP_SFO ALGORITHM
As stated above, it is assumed that the arrivals of the user SFC
requests follow a Poisson distribution. All user SFC requests
are stored in a queue ArrivalSFC in order of their arrival
time T arr . Once user requests’ expiration time T exp arrive,
they are pushed into another queue named FinishedSFC.
In addition, we use SFCblo to denote the set of SFC requests
that are blocked due to network resource limitations.

We defineMapslt= {DS i, 1 ≤ i ≤ |R| as the set ofmapping
solutions for all user requests R, whereDS i = {DS i,j, 1 ≤ j ≤
|SUBi|} is the set of mapping solutions for the subflows bSUBi
of ri. DS i,j = (DS fi,j,DS

l
i,j, pi,j) is the mapping solution for

subflow bi,j ∈ bSUBi , where DS fi,j = {DS
(
f ki,j
)
, 1 ≤ k ≤

|Fi,j|} represents the set of VNF deployment solutions and

DS li,j = {DS
(
lki,j
)
, 1 ≤ k ≤ |Li,j|} represents the set of

virtual link deployment solutions for replicated SFC SC i,j.

DS
(
f ki,j
)
is the server that hosts VNF f ki,j, and DS

(
lki,j
)
is

the physical path to which virtual link lki,j is mapped. Let

pi,j =
∑

k DS
(
lki,j
)
denote the path on which subflow bi,j

travels.
For each user request ri =< si, ti, SC i, bi >, ONP_SFO

calls Procedure 1 to split it into a set rSUBi of sub-user
requests based on the size of bi. For each ri,j ∈ rSUBi ,
ri,j =< si, ti, SC i,j, bi,j >, Procedure 2 is called to deploy
it on the network and obtain its mapping solution DS i,j. If the
deployment of any ri,j ∈ rSUBi fails in Procedure 2, user
request ri will be rejected, and thus, its mapping solution will
be DS i = ∅; otherwise, the mapping solution set Mapslt will
be updated.

In Procedure 1, we set a parameter ksub to represent the
maximum size of the subflows. For ri∈R, we try to split the
flow of ri into subflows of size ksub. When the bandwidth
demand of a user request is no greater than ksub, there is
only one subflow, whose bandwidth demand is equal to bi.
Consequently, the number of subflows after splitting can be
calculated using the following equation:

|SUBi| =

1, bi ≤ ksub⌈
bi
ksub

⌉
, bi>ksub

(12)

When bi ≤ ksub, the size of the single subflow is equal
to bi, and there is no need to replicate SC i. When bi >
ksub, the sizes of all subflows can be computed based on the
following equation:

bi,j =

{
ksub, j = 1, 2, . . . , |SUBi| − 1

bi − (|SUBi| − 1) · ksub, j = |SUBi|
(13)

At the same time, the original SFC SC i is replicated |SUBi|
times. Finally, the user request ri is split into a set of sub-user
requests, denoted by rSUBi .

B. DEPLOYMENT OF SUB-USER REQUESTS
Procedure 2 deploys the sub-user requests ri,j, which are
generated by splitting the original user request flow bi and

Algorithm 1 Online Parallelized SFC Orchestration
(ONP_SFO)
Input: (1) The DCN fat-tree topology G= (N ,E) and the

resource capacity constraints RC = (CN ,CE);
(2) The user SFC request queue ArrivedSFC.

Output: The mapping solution set Mapslt and the
blocked SFC request set SFCblo.

1: Initialization: Mapslt = ∅, SFCblo = ∅;
2: while ArrivedSFC 6= ∅, do
3: Release the resources occupied by expired SFC

requests according to FinishedSFC;
4: Call Procedure 1 to split the flow of the first user

request r1 =< s1, t1, SC1, b1 > in ArrivedSFC
into subflows bSUB1 and replicate the original SFC SC1
into replicated SFCs Rep1, which reduces to the
sub-user request set rSUB1 ;

5: for r1,j ∈ rSUB1 ,wherer1,j =< s1, t1, SC1,j, b1,j > do
6: Call Procedure 2 to generate mapping solution

DS i,j;
7: if DS i,j 6= ∅, do
8: DS i = DS i ∪ DS i,j;
9: else
10: DS i = ∅;
11: end if
12: end for
13: if DS i 6= ∅, do
14: Mapslt = Mapslt ∪ DS i;
15: else
16: SFCblo = SFCblo ∪ {r1};
17: end if
18: ArrivalSFC=ArrivalSFC \ {r1};
19: end while
20: return Mapslt and SFCblo.

Algorithm 2 Downoperation Algorithm: Deployment of f ki,j

Input: tmpLocation and f ki,j.
Output: A server node ns, a physical path pdown.
1: Initialization: ns = ∅ , pdown = ∅;
2: for ntmpLocation /∈ Nh, do
3: Find the node nm ∈ Candidate(ntmpLocation),

ensuring that the link lworstfit consisting of ntmpLocation
and nm meets the bandwidth requirement and
has the most remaining bandwidth;

4: if nm exists, do
5: tmpLocation = m, pdown = pdown + lworstfit ;
6: else
7: return ns = ∅, pdown = ∅;
8:s = tmpLoaction;
9: return ns, pdown.

replicating the original SFC SC i, in the fat-tree DCN. The
main idea is to select the links with the most remaining
bandwidth resources based on a worst-fit strategy and attempt

100152 VOLUME 7, 2019

G. Sun et al.: Online Parallelized SFC Orchestration in DCNs

Algorithm 3 Upoperation Algorithm: Find an Appropriate
Switch

Input: tmpLocation and f ki,j.
Output: A switch node nsw, a physical path pup.
1: Initialization: nsw = ∅, pup = ∅;
2: for layer(ntmpLocation) 6= 4, do
3: Find the node nm ∈ Candidate(ntmpLocation),

ensuring that the link lworstfit consisting of ntmpLocation
and nm meets the bandwidth requirement and has the
most remaining bandwidth;

4: if nm exists, do
5: tmpLocation = m, pup = pup + lworstfit ;
6: sw = tmpLoaction;
7: returnnsw, pup;
8: else
9: Find the node nm′ ∈ Adjup

(
ntmpLocation

)
, ensuring

that the link lworstfit ′ consisting of ntmpLocation and
nm meets the bandwidth requirement and has the
most remaining bandwidth;

10: if nm exists, do
11: tmpLocation = m

′

, pup = pup + lworstfit ′ ;
12: else
13: break;
14: return nsw = ∅, pup = ∅.

Procedure 1 Split an Original User Request
Input: User request r1 =< s1, t1, SC1, b1 >, ksub.
Output: Sub-user request set rSUB1 .
1: Initialization: the number of subflows sub_num = 0,
rSUB1 = ∅;

2: Compute sub_num according to Eq. (12);
3: while sub_num > 1, do
4: rSUB1 = rSUB1 ∪ {< s1, t1, SC1, ksub >};
5: sub_num –;
6: rSUB1 = rSUB1 ∪{< s1, t1, SC1, bi−(|SUBi| − 1)·ksub >};
7: return rSUB1 .

to deploy all VNFs of the replicated SFC SC i,j on the same
server to reduce the network communication cost while real-
izing network load balancing.

For each physical node nm ∈ N in the network, a vari-
able MaxCapm is maintained. For each server node nm ∈
Nh, MaxCapm is equal to its remaining node computing
resources, denoted by AvailCapm. For each switch nm ∈ Nsw,
we denote all physical nodes that are adjacent to it and in
lower layers of the network topology by Adjlow (nm) = {nj},
where nj ∈ Adj (nm) and layer

(
nj
)
< layer (nm). Then, when

nm ∈ Nsw, MaxCapm is equal to the maximum MaxCapj
among the nj ∈ Adjlow(nm). As a result, for any nm ∈ N ,
MaxCapm can be computed using the following equation:

MaxCapm =

{
AvailCapm, nm ∈ Nh

max
{
MaxCapj, nj ∈ Adjlow (nm)

}
, nm ∈ Nsw

(14)

Procedure 2 Deploy a Sub-User Request
Input: (1) The DCN fat-tree topology G= (N ,E) and the

resource capacity constraints RC = (CN ,CE);
(2) Sub-user request ri,j =< si, ti, SC i,j, bi,j >.

Output: The mapping solution DS i,j = (DS fi,j,DS
l
i,j, pi,j)

for ri,j.
1: Initialization: DS i,j = ∅, tmpServer = 0 and
tmpLocation = b (b is the number of si);

2: At the source node si, call the downOperation algorithm
to find a server ns to host the first VNF f 1i,j and the path
pdown (from si to ns);

3: if ns and pdown exist, do
4: Update DS

(
f ki,j
)
= ns, DS

(
l1i,j
)
= pdown,MaxCapm,

tmpServer = tmpLocation = s;
5: else
6: return DS i,j = ∅;
7: for each VNF f ki,j, 2 ≤ k ≤ |Fi,j|, do
8: if server ntempServer has sufficient resources to host f ki,j,

do
9: Update DS

(
f ki,j
)
= ns, DS

(
lki,j
)
= ∅, MaxCapm;

10: else
11: At the server ns, call the upOperation algorithm to

find an appropriate switch nsw on the path pup
(from ns to nsw);

12: if nsw and pup exist, do
13: tmpLocation = sw;
14: else
15: return DS i,j = ∅;
16: At the switch nsw, call the downOperation algorithm

to find another server nas to host the VNF f ki,j and the
path pdown (from nsw to nas);

17: if ns and pdown exist, do
18: Update DS

(
f ki,j
)
= nas,DS

(
lki,j
)
= pup+ pdown,

MaxCapm, tmpServer = tmpLocation = as;
19: else
20 return DS i,j = ∅;
21: return DS i,j.

Similarly, Adjhigh (nm) = {nj}, where nj ∈ Adj (nm) and
layer

(
nj
)
> layer(nm).

In Procedure 2, when deploying a user request ri,j,
the downOperation algorithm is first called at the source
node of the request to find a server ns on which to deploy
the first VNF, starting from the core layer of the network
topology and proceeding towards the server layer. For each
subsequent VNF, an attempt is made to deploy it on the same
server that is hosting the previous VNF. If that server cannot
accommodate the current VNF due to resource constraints,
the upOperation algorithm is called to find an appropriate
switch, starting from the server layer and proceeding to higher
layers, and the downOperation algorithm is then called again
to find another server on which to instantiate the current VNF.
Finally, the deployment solution DS i,j for ri,j is returned.

VOLUME 7, 2019 100153

G. Sun et al.: Online Parallelized SFC Orchestration in DCNs

FIGURE 3. An example of the ONP_SFO algorithm.

C. TWO BASIC OPERATIONS FOR SFC DEPLOYMENT
As described inProcedure 2, the downOperation algorithm is
called when deploying the first VNF or when finding another
server because the current server does not have sufficient
resources to support the VNF to be deployed. As one of
the basic operations of our algorithm, the downOperation
algorithm selects the physical links with the most remaining
bandwidth resources layer by layer, from higher layers of the
network topology to the server layer. In addition, to avoid
finding a server whose node resources cannot satisfy the
demand based on the worst-fit strategy, the physical nodes on
the selected links where VNF f ki,j is being deployed must sat-

isfyMaxCap ≥ Res
(
f ki,j
)
. At the same time, the whole oper-

ation is subject to the link bandwidth resource constraints.
The set of nodes that satisfy MaxCap ≥ Res

(
f ki,j
)
among

Adjlow
(
ntmpLocation

)
is denoted by Candidate(ntmpLocation),

where Adjlow
(
ntmpLocation

)
is the set of lower layer nodes that

are adjacent to ntmpLocation.
As the other basic operation, when the server that is host-

ing the previous VNF does not have sufficient resources
to instantiate the next VNF, the upOperation algorithm
selects the links with the most available bandwidth resources
layer by layer, from the service layer to the higher lay-
ers, until an appropriate switch is found that satisfies
MaxCap ≥ Res

(
f ki,j
)
and is on a selected link. Similarly,

constraints on bandwidth resources are satisfied during this
operation.

The set of nodes that satisfy MaxCap ≥ Res
(
f ki,j
)
among

Adjup
(
ntmpLocation

)
is denoted by Candidate(ntmpLocation),

where Adjup
(
ntmpLocation

)
is the set of nodes that are adjacent

to ntmpLocation and in a higher layer.

D. EXAMPLE OF THE ONP_SFO ALGORITHM
As shown in Fig. 3 (a), consider an original user request r
with 5 units of bandwidth demand that is composed of the
source core switch s, the destination core switch t and three
VNFs with individual computing resource demands of 0.1,
0.2 and 0.3, and suppose that the computing resource capacity
of each server is 1. As shown in Fig. 3 (b), when ksub= 3, r is
split into two parallelized sub-user requests: r1, with 3 units
of bandwidth demand, and r2, with 2 units. As assumed in
section III, the node resource demand of each VNF is pro-
portional to the traffic capacity to be processed. For example,
for VNF1, the computing resource demand of r1 is 0.06, and
that of r2 is 0.04.
Next, r1 and r2 are deployed as depicted by the blue

dotted lines and red dotted lines, respectively, in Fig. 3 (c).
The number below each server node indicates the available
node resources of that server. When r1 is deployed, first, the
downOperation algorithm is called to deploy VNF1 on h1
based on the worst-fit strategy. Then, VNF2 is also deployed
on h1 because the remaining node resources of h1 are suf-
ficient: 0.3− 0.06 = 0.24 > 0.12. However, when VNF3 is
deployed, it is necessary to find another server to host it.

100154 VOLUME 7, 2019

G. Sun et al.: Online Parallelized SFC Orchestration in DCNs

By calling the upOperation algorithm, an appropriate switch
sw9 is found, theMaxCap value of which satifiesMaxCap =
max (0.12, 0.25) > 0.18. Then, the downOperation algo-
rithm is called again, and VNF3 is deployed on h2. Similarly,
for sub-user request r2, VNF1 is deployed on h9, VNF2 is
deployed on h10, and VNF3 is deployed on h12, as shown by
the red dotted lines.

E. ALGORITHM COMPLEXITY ANALYSIS
This section presents a brief complexity analysis of the
ONP_SFO algorithm. Suppose that the number of user
requests is R, the number of VNFs for each SFC is N, and
the physical network topology is a k-ary fat-tree topology.
Because the time complexity of finding the link with the
most remaining bandwidth is O(klogk), the time complex-
ities of the downOperation algorithm and the upOperation
algorithm are both O(klogk). Consequently, the complexity
of deploying a sub-user request of length N is O(Nklogk).
Finally, under the assumption that the proportion of elephant
flow requests among the total user requests and the number
of sub-user requests corresponding to each elephant flow
request are constant values, the time complexity ofONP_SFO
is O(|R|Nklogk).

V. SIMULATION RESULTS AND ANALYSIS
A. EXPERIMENTAL ENVIRONMENT
1) PHYSICAL NETWORK
We conduct the simulation experiments in a datacenter which
is attached to the US-wide NSF network topology as shown
in Figure. 4. In the datacenter, a 4-ary fat-tree topology [50]
like Figure. 2 is used, which contains 36 nodes (including
16 servers and 20 switches) and 48 links. The bandwidth
capacity of every link is set to 1000 units, and the comput-
ing capacity of each server is set to 3600 units. Each unit
of bandwidth resources or computing resources costs 1 US
dollar/second.

FIGURE 4. The US-wide NSF network.

2) USER SFC REQUESTS
The source and destination nodes of each request are ran-
domly selected from among the core switches in the fat-tree

network topology. The bandwidth demand is set between
2 kbps and 1 Mbps for mouse flow requests and between
1 Mbps and 50 Mbps for elephant flow requests, in accor-
dance with the reports in [18], [19], [51] on the characteristics
of flows in DCNs. In addition, the durations of the mouse
flows vary from 0 to 1 seconds, while elephant flows last from
10 to 25 seconds. The number of requests arriving is subject to
a Poisson distribution with a mean value λ (requests/second)
that can be adjusted to adjust the load on the network. In gen-
eral, the length of an SFC is uniformly randomly chosen from
the range of [1], [5]. In this paper, the computing resource
demand for any VNF instance at any server node to process
one unit of traffic rate is rk,hi,j = 1.

3) PARAMETERS
By adjusting the parameter ksub, which specifies the max-
imum size of the subflows, we can observe the effects of
the number and size of the subflows on the performance of
our ONP_SFO algorithm. We report the results for multiple
versions of the algorithm, with ksub set to 50, 40, 30, 20, 10,
and 5 Mbps. In particular, when ksub = 50 Mbps, no flows
are split; this version of the algorithm is referred to as the
ON_SFO algorithm, whereas the others are called ONP_SFO
algorithms. We generate 20000 user SFC requests in every
experiment, among which elephant flows are generated with
a probability denoted by pelephant ; unless stated otherwise,
pelephant = 0.2. In addition, the size of each packet, L, is set
to 1500 bytes [16].

4) EVALUATION METHOD
The performance of our designed algorithms is compared
with that of the algorithm proposed in [44], called NF-LGT,
in which the VNF instances are randomly allocated to servers
and whose goal is to achieve load balance for the whole
network. The run time of each algorithm is obtained based on
a machine with a 3.7 GHz Intel Core CPU and 8 GB of RAM.

B. PERFORMANCE METRICS
1) ACCEPTANCE RATIO
Due to network resource constraints, with a heavier network
load, more user SFC requests may be blocked. The accep-
tance ratio for all requests,AcptRt total , can be computed using
the following equation:

AcptRt total =
|ArrivedReqtotal | − |BlockedReqtotal |∣∣ArrivedReqtotal ∣∣ (15)

where |ArrivedReqtotal | represents the total number of arrived
requests and |BlockedReqtotal | represents the total number of
blocked requests. Similarly, the acceptance ratio for elephant
flow requests, AcptRtelep, is calculated using the following
formula:

AcptRtelep =
|ArrivedReqelep| − |BlockedReqelep|∣∣ArrivedReqelep∣∣ (16)

VOLUME 7, 2019 100155

G. Sun et al.: Online Parallelized SFC Orchestration in DCNs

where |ArrivedReqelep| represents the number of arrived ele-
phant flow requests and |BlockedReqelep| represents the num-
ber of blocked elephant flow requests.

2) AVERAGE MAPPING COST
In this paper, the mapping cost of a request includes the
VNF mapping cost incurred due to computing resource con-
sumption and the virtual link mapping cost incurred due
to bandwidth resource consumption. The average mapping
cost, Costaveragetotal , represents the cost per unit of traffic rate,
including the average VNFmapping cost,Costaveragenode , and the
average virtual link mapping cost, Costaveragelink .

Costaveragetotal = Costaveragenode + Costaveragelink

=
1∑
i bi
·

∑
ri∈R

Cost inode+
1∑
i bi
·

∑
ri∈R

Cost ilink

(17)

where Cost inode and Cost
i
link are the VNF mapping cost and

virtual link mapping cost, respectively of request ri.

Cost inode =
∑

bi,j∈bSUBi

∑
f ki,j∈Fi,j

Res
(
f ki,j
)
· uCost

(
DS

(
f ki,j
))
· Ti

(18)

Cost ilink =
∑

bi,j∈bSUBi

∑
p∈P

Xpi,j·
∑
l∈p

bi,j · uCost (l) · Ti (19)

where DS
(
f ki,j
)
is the server that hosts VNF f ki,j, Ti = T expi −

T arri , denotes the duration time of ri.

3) QUEUEING DELAY
This is an important performance metric in our paper, espe-
cially for mouse flow requests, which are sensitive to an
‘‘end-to-end’’ delay that also includes the propagation delay,
transmission delay and processing delay, although these
delays are fixed or negligible in our experimental environ-
ment. The average queueing delay for mouse flow requests,
Daveragemouse , is defined as

Daveragemouse =
1∣∣ArrivedReqmouse∣∣ ·

∑
ri∈Rmouse

Di (20)

where |ArrivedReqmouse| represents the number of arrived
mouse flow requests. The queueing delay Di experienced by
request ri is calculated in accordance with Eq. (4).

4) LINK UTILIZATION
One of our goals is to achieve network load balancing. Thus,
it is important to observe the load rate on the physical links.
The average link utilization, Uaverage

link , is calculated as

Uaverage
link =

1
|E|
·

∑
ei∈E

u (ei) (21)

where u(ei) represents the utilization of physical link ei and
is computed via Eq. (22):

u (ei) =
1

c (ei)
·

∑
ri∈R

∑
bi,j∈bSUBi

∑
p∈P

Xpi,j · v
e
p · bi,j (22)

C. SIMULATION RESULTS
1) THE INFLUENCE OF THE NETWORK LOAD
First, we evaluate the performance of our ON_SFO and
ONP_SFO algorithms against that of the NF-LGT algorithm
with respect to the network load. From Fig. 5 and Fig. 6,
we can see that the acceptance ratios for all requests and
elephant flow requests both decrease as the network load
increases due to the limited amount of physical resources
available. Compared to the NF-LGT algorithm, all of our
algorithms yield higher values of both acceptance ratios. This
occurs because in the NF-LGT algorithm, consecutive VNF
instances are randomly allocated to different servers in the
network topology, leading to more bandwidth consumption
when an SFC request is deployed, whereas in our algorithms,
an attempt is made to deploy all VNFs of any sub-user request
on the same server or on servers between which the hops are
minimal. This phenomenon is more obvious for the deploy-
ment of elephant flow requests, whose bandwidth demands
are large.

FIGURE 5. The acceptance ratio for all requests.

FIGURE 6. The acceptance ratio for elephant flow requests.

100156 VOLUME 7, 2019

G. Sun et al.: Online Parallelized SFC Orchestration in DCNs

FIGURE 7. Link utilization as a function of network load.

At the same time, Fig. 5 and Fig. 6 show that among
our algorithms, the acceptance ratios of the ONP_SFO algo-
rithms are higher than that of ON_SFO. In addition, it can be
observed that when the value of ksub is smaller, the acceptance
ratio is higher. These findings reveal that a smaller subflow
size is beneficial for improving the acceptance ratio for ele-
phant flow requests because more physical paths are selected
to carry the whole flow, thus reducing the occurrence of link
bottlenecks.

Now, we evaluate the link utilization performance of
our algorithms with various values of ksub and that of the
NF-LGT algorithm, including the average link utilization, the

FIGURE 8. Queueing delay for mouse flows vs. network load.

90th-percentile link utilization and the 95th-percentile link
utilization, where the 90th- or 95th-percentile link utilization
refers to the link utilization value that is greater than the
utilizations of 90% or 95%, respectively, of all links in the
network. As shown in Fig. 7 (a), as the mean user request
arrival rate λ increases from 50 to 300 requests/second,
the average link utilization increases and tends towards a
fixed value for almost all algorithms. For example, after
λ reaches 100 requests/second, the average link utilization
of NF-LGT slowly grows to approximately 73%, while the
average link utilization of our algorithms is still growing

VOLUME 7, 2019 100157

G. Sun et al.: Online Parallelized SFC Orchestration in DCNs

FIGURE 9. Average deployment time per request as a function of the
length of the SFCs when the mean arrival rate is 100 requests/second.

FIGURE 10. Average mapping cost as a function of the length of the SFCs.

rapidly. When λ reaches 200 requests/second, the average
link utilization of our algorithms tends to grow slowly to
approximately 94%. Thus, we can see that the link resource
utilization of our algorithms is nearly 30% higher than
that of the NF-LGT algorithm. Among our algorithms,
the link resource utilization performance of the algorithms
that consider parallelized SFC deployment is higher than
that of the version in which only the original SFCs are
deployed.

In addition, as seen in Fig. 7 (b) and Fig. 7 (c), the two ratios
90th−average

90th and 95th−average
95th are both greater than 0.25 for

the NF-LGT algorithm, illustrating that the link utilizations
considerably differ among different physical links; most of
the links have light loads, while a few have heavy loads,
indicating that this algorithm does not achieve effective net-
work load balancing. In contrast, these ratios are mostly
approximately 0.1 for ON_SFO. Moreover, compared with
that for ON_SFO, the ratio 95th−average

95th for ONP_SFO with
ksub = 5 is reduced by up to 50% (from 0.216 to 0.108) when
λ = 100 requests/second in Fig. 7 (c). These findings reveal
that our algorithms are able to achieve better network load
balancing than the NF-LGT algorithm is and that considering
the splitting of flows is helpful.

In Fig. 8, we focus on the performance in terms of the
queueing delay for mouse flows, which can greatly affect the

FIGURE 11. Mean arrival rate: 10 requests/second.

end-to-end delay and user experience, especially in a DCN,
under the assumption that other types of delays, such as the
propagation delay, transmission delay and processing delay,
are fixed or can be ignored. As Fig. 8 (a) shows, once λ
reaches 200 requests/second, the average queueing delays
experienced bymouse flow requests are shorter withNF-LGT
than with our algorithms. This occurs because NF-LGT
reduces the average link utilization, as shown in Fig. 7 (a),
at the expense of the acceptance ratio for elephant flow
requests, as shown in Fig. 6. Fig. 8 (b) and Fig. 8 (c) show the
95th- and 99th-percentile queueing delays, which are defined
similarly to the 90th- and 95th-percentile link utilizations and
represent the maximum queueing delays experienced by 95%
and 99%, respectively, of the mouse flow requests. As seen in
Fig. 8 (b), the 95th-percentile queueing delay of NF-LGT is
always greater than that of ON_SFO, while Fig. 8 (c) shows
that the 99th-percentile queueing delay of NF-LGT is smaller
when the network load is heavy (λ ≥ 250requests/second).
The former finding is consistent with the conclusion drawn
from Fig. 7 that in NF-LGT, the network load is not balanced.
The latter finding can be explained by the fact that, as shown
in Fig. 7 (b) and Fig. 7 (c), the 90th- and 95th-percentile upper
limits on the link utilization for the NF-LGT algorithm are
lower than those for our algorithms.

100158 VOLUME 7, 2019

G. Sun et al.: Online Parallelized SFC Orchestration in DCNs

FIGURE 12. Mean arrival rate: 30 requests/second.

On the other hand, among our algorithms, as seen in Fig. 8,
the queueing delay of ON_SFO is roughly equal to those of
the ONP_SFO algorithms when the network load is light,
while when the network load is heavy, the performance of
the former degrades due to the inherent characteristics of
the queueing delay. According to Eq. (1), when the traffic
intensity L ·ar(e)/C(e) is close to zero, the queueing delayDe
is also close to zero, while when the traffic intensity is close
to 1, the queueing delay considerably increases. Therefore,
when the network load is light, the gap between the queueing
delays of our algorithms is small, whereas when the network
load is heavy, the differences between the link utilization
characteristics of the different algorithms will greatly impact
the queueing delays experienced by mouse flow requests.

2) THE INFLUENCE OF THE LENGTH OF THE SFCS
Fig. 9 depicts the performance of the algorithms in terms of
the average deployment time per request when the length of
the SFCs varies from 1 to 5. For the NF-LGT algorithm,
a large amount of time is required on average to deploy
each SFC; this finding can be explained by the fact that this
algorithm needs to traverse all available paths to find the one
with the shortest delay when deploying each VNF of each
chain. This also explains why the average deployment time of

FIGURE 13. Mean arrival rate: 50 requests/second.

the NF-LGT algorithm increases significantly as the number
of VNFs per SFC increases.

In Fig. 10, we compare the average mapping costs of our
algorithms with that of the NF-LGT algorithm with respect
to the length of the SFCs when link bandwidth resources and
server computing resources are unlimited. At that situation,
all user requests are accepted in all algorithms and node map-
ping cost only changes with the numbers of SFCs according
to Formula (18), which is the reason why the average node
costs for all algorithms are equal when the SFC’s length is
fixed. In addition, this figure shows the average link mapping
costs of our algorithms are equal and reduced by up to 63%
compared to NF-LGT. This result can also be explained that
our algorithms try to deploy the VNFs of the same sub-SFC
into a server whereas in the compared algorithms the VNFs
are randomly deployed into the physical network.

3) THE INFLUENCE OF THE PROPORTION
OF ELEPHANT FLOW REQUESTS
Fig. 11, Fig. 12 and Fig. 13 show how the link utiliza-
tion, including the 90th- and 95th-percentile link utilizations,
of our algorithms and the NF-LGT algorithm varies with
the proportion of elephant flow requests when the mean
arrival rate is 10, 30 and 50 requests/second, respectively.
For NF-LGT, as the proportion of elephant flow requests

VOLUME 7, 2019 100159

G. Sun et al.: Online Parallelized SFC Orchestration in DCNs

increases from 0.1 to 0.5, the link utilization increases and
finally tends towards a certain value. This occurs because
when the proportion of elephant flow requests among all
requests is greater and the mean arrival rate is higher, the net-
work load is also heavier. Once the network load increases
past a certain threshold, an increasing number of requests are
rejected due to the limited resources available, causing the
growth rate of link utilization to decrease and finally approach
0. By contrast, for our algorithms, the link utilization is con-
tinuously increasing and is much lower than that of NF-LGT
because of better resource utilization.

In addition, we compare the performance of ON_SFO,
ONP_SFO with ksub = 5, and NF-LGT in terms of network
load balancing as measured by the two ratios 90th−average

90th and
95th−average

95th . As shown in the figures, under different arrival
rates, both ratios for ONP_SFO with ksub = 5 are always
lower than the ratios for ON_SFO, which, in turn, are lower
than those for NF_LGT, as the proportion of elephant flow
requests increases. These findings show that the performance
of our algorithms is not sensitive to different proportions of
elephant flow requests.

VI. CONCLUSION
In this paper, we consider the heterogeneous needs of ele-
phant flow requests and mouse flow requests in a DCN.
By splitting original user requests with large bandwidth
demands into sub-user requests, our approach is expected to
alleviate the hash collision of elephant flows and avoid mouse
flows queueing behind elephant flows, which can cause the
mouse flows to experience long queueing delays. Based on
parallelized SFC mapping in the DCN, we first propose a
model with the objective of minimizing the total queueing
delay for all user requests subject to the physical resource
constraints and the SFC requirements. Then, an online heuris-
tic algorithm called ON_SFO is proposed, which not only
determines the method of splitting the original user requests
into sub-user requests but also effectively deploys each sub-
user request by calling the downOperation and upOpera-
tion algorithms. These two basic operations select servers or
switches based on a worst-fit strategy to improve the load
balancing of the network. Moreover, the ON_SFO algorithm
tries to deploy all VNFs of the same SFC on servers within
the fewest number of hops to save bandwidth resources.
Finally, based on a large number of simulations conducted to
compare ON_SFO with ONP_SFO and NF-LGT, our results
show that ON_SFO realizes better network load balancing
compared with NF-LGT, for example, as shown in Fig. 7 (b)
and Fig. 7 (c), the ratios 90th−average

90th and 95th−average
95th of

ONP_SFO when ksub = 5 are both less than 0.25 than
compared algorithms. Furthermore, the acceptance ratio for
all user requests is improved, especially for elephant flow
requests at least by 72% when the network link utilization
tends to be stable. In addition, regardless of whether flow
splitting is considered, our algorithms significantly outper-
form NF-LGT in terms of the deployment time and link
mapping cost.

Our future work will focus on deploying SFC across
distributed datacenters and propose efficient algorithms
to make a tradeoff between datacenter resources and the
heterogeneous demand of service requests (latency-aware,
throughput-aware, especially safety-aware requests, etc.),
taking into account the flow splitting.

REFERENCES
[1] D. Zhao, J. Ren, R. Lin, S. Xu, and V. Chang, ‘‘On orchestrating

service function chains in 5G mobile network,’’ IEEE Access, vol. 7,
pp. 39402–39416, 2019.

[2] A. M. Medhat, T. Taleb, A. Elmangoush, G. A. Carella, S. Covaci, and
T. Magedanz, ‘‘Service function chaining in next generation networks:
State of the art and research challenges,’’ IEEE Commun. Mag., vol. 55,
no. 2, pp. 216–223, Feb. 2017.

[3] M. Mechtri, C. Ghribi, O. Soualah, and D. Zeghlache, ‘‘NFV orchestration
framework addressing SFC challenges,’’ IEEE Commun. Mag., vol. 55,
no. 6, pp. 16–23, Jun. 2017.

[4] G. Sun, Y. Li, D. Liao, and V. Chang, ‘‘Service function chain orchestration
across multiple domains: A full mesh aggregation approach,’’ IEEE Trans.
Netw. Service Manage., vol. 15, no. 3, pp. 1175–1191, Sep. 2018.

[5] G. Sun, Y. Li, H. Yu, A. V. Vasilakos, X. Du, and M. Guizani, ‘‘Energy-
efficient and traffic-aware service function chaining orchestration in
multi-domain networks,’’ Future Gener. Comput. Syst., vol. 91, pp. 347–
360, Feb. 2019.

[6] B. Yi, X.Wang, S. K. Das, K. Li, andM. Huang, ‘‘A comprehensive survey
of network function virtualization,’’Comput. Netw., vol. 133, pp. 212–262,
Mar. 2018.

[7] Y. Xiao, X. Du, J. Zhang, and S. Guizani, ‘‘Internet protocol television
(IPTV): The killer application for the next generation Internet,’’ IEEE
Commun. Mag., vol.45, no. 11, pp. 126–134, Nov. 2007.

[8] H. Hawilo, M. Jammal, and A. Shami, ‘‘Exploring microservices as the
architecture of choice for network function virtualization platforms,’’ IEEE
Netw., vol. 33, no. 3, pp. 202–210, Mar./Apr. 2019.

[9] G. Sun, Z. Xu, H. Yu, V. Chang, X. Du, and M. Guizani, ‘‘Toward
SLAs guaranteed scalable VDC provisioning in cloud data centers,’’ IEEE
Access, vol. 7, no. 3, pp. 80219–80232, 2019.

[10] J. Ordonez-Lucena, P. Ameigeiras, D. Lopez, J. J. Ramos-Munoz, J. Lorca,
and J. Folgueira, ‘‘Network slicing for 5G with SDN/NFV: Concepts,
architectures, and challenges,’’ IEEE Commun. Mag., vol. 55, no. 5,
pp. 80–87, May 2017.

[11] V. G. Nguyen, A. Brunstrom, K.-J. Grinnemo, and J. Taheri, ‘‘SDN/NFV-
based mobile packet core network architectures: A survey,’’ IEEE Com-
mun. Surveys Tuts., vol. 19, no. 3, pp. 1567–1602, 3rd Quart., 2017.

[12] Z. Xu, W. Liang, M. Huang, M. Jia, S. Guo, and A. Galis, ‘‘Efficient
NFV-enabledmulticasting in SDNs,’’ IEEE Trans. Commun., vol. 67, no. 3,
pp. 2052–2070, Nov. 2019.

[13] H. Cao, H. Zhu, and L. Yang, ‘‘Dynamic embedding and scheduling of
service function chains for future SDN/NFV-enabled networks,’’ IEEE
Access, vol. 7, pp. 39721–39730, 2019.

[14] P. Dong, X. Du, H. Zhang, and T. Xu, ‘‘A detection method for a novel
DDoS attack against SDN controllers by vast new low-traffic flows,’’ in
Proc. IEEE ICC, Kuala Lumpur, Malaysia, May 2016, pp. 1–6.

[15] G. Sun, Y. Li, Y. Li, D. Liao, and V. Chang, ‘‘Low-latency orchestration
for workflow-oriented service function chain in edge computing,’’ Future
Gener. Comput. Syst., vol. 85, pp. 116–128, Aug. 2018.

[16] K. He, E. Rozner, K. Agarwal, W. Felter, J. Carter, and A. Akella, ‘‘Presto:
Edge-based load balancing for fast datacenter networks,’’ACMSIGCOMM
Comput. Commun. Rev., vol. 45, no. 4, pp. 465–478, 2015.

[17] P. Wang, G. Trimponias, H. Xu, H. Liu, and Y. Geng, ‘‘Luopan:
Sampling-based load balancing in data center networks,’’ IEEE Trans.
Parallel Distrib. Syst., vol. 30, no. 1, pp. 133–145, Jan. 2019.

[18] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prabhakar,
S. Sengupta, and M. Sridharan, ‘‘Data center TCP (DCTCP),’’ ACM SIG-
COMM Comput. Commun. Rev., vol. 41, no. 4, pp. 63–74, Oct. 2011.

[19] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken,
‘‘The nature of data center traffic: Measurements & analysis,’’ in Proc.
ACM SIGCOMM Conf. Internet Meas., 2009, pp. 202–208.

[20] H. Xu and B. Li, ‘‘TinyFlow: Breaking elephants down into mice in data
center networks,’’ in Proc. IEEE Int. Workshop Local Metrop. Area Netw.
(LANMAN), May 2014, pp. 1–6.

100160 VOLUME 7, 2019

G. Sun et al.: Online Parallelized SFC Orchestration in DCNs

[21] S. Liu, H. Xu, L. Liu, W. Bai, K. Chen, and Z. Cai, ‘‘RepNet: Cutting
latency with flow replication in data center networks,’’ IEEE Trans. Ser-
vices Comput., to be published.

[22] C.-H. Hsieh, J.-W. Chang, C. Chen, and S.-H. Lu, ‘‘Network-aware service
function chaining placement in a data center,’’ in Proc. IEEE Asia–Pacific
Netw. Oper. Manage. Symp., Oct. 2016, pp. 1–6.

[23] Y. Li, L. T. X. Phan, and B. T. Loo, ‘‘Network functions virtualization with
soft real-time guarantees,’’ in Proc. IEEE INFOCOM, Apr. 2016, pp. 1–9.

[24] T. W. Kuo, B. H. Liou, K. C. Lin, and M. J. Tsai, ‘‘Deploying chains of
virtual network functions: On the relation between link and server usage,’’
IEEE/ACM Trans. Netw., vol. 26, no. 4, pp. 1562–1576, Aug. 2018.

[25] T.-M. Pham, T.-T.-L. Nguyen, S. Fdida, and H. T. T. Binh, ‘‘Online load
balancing for network functions virtualization,’’ in Proc. IEEE Int. Conf.
Commun. (ICC), May 2017, pp. 1–6.

[26] P.-C. Lin, Y.-D. Lin, C.-Y.Wu, Y.-C. Lai, andY.-C. Kao, ‘‘Balanced service
chaining in software-defined networks with network function virtualiza-
tion,’’ Computer, vol. 49, no. 11, pp. 68–76, Nov. 2016,

[27] M.-T. Thai, Y.-D. Lin, P.-C. Lin, and Y.-C. Lai, ‘‘Towards load-balanced
service chaining by hash-based traffic steering on softswitches,’’ J. Netw.
Comput. Appl., vol. 109, pp. 1–10, May 2018.

[28] A. Engelmann and A. Jukan, ‘‘A reliability study of parallelized VNF
chaining,’’ in Proc. IEEE Int. Conf. Commun. (ICC), May 2018, pp. 1–6.

[29] G. Sun, D. Liao, S. Bu, H. Yu, Z. Sun, and V. Chang, ‘‘The efficient
framework and algorithm for provisioning evolving VDC in federated data
centers,’’ Future Gener. Comput. Syst., vol. 73, pp. 79–89, Aug. 2017.

[30] T. Chen, J. Liu, Q. Tang, T. Huang, and R. Huo, ‘‘Virtual network embed-
ding algorithm for location-based identifier allocation,’’ IEEE Access,
vol. 7, pp. 31159–31169, 2019.

[31] G. Sun, H. Yu, L. Li, V. Anand, and H. Di, ‘‘The framework and algorithms
for the survivable mapping of virtual network onto a substrate network,’’
IETE Tech. Rev., vol. 28, no. 3, pp. 381–391, 2011.

[32] H. Di, L. Li, V. Anand, H. Yu, and G. Sun, ‘‘Cost efficient virtual infras-
tructure mapping using subgraph isomorphism,’’ in Proc. Asia Commun.
Photon. Conf. Exhib. (ACP), 2010, pp. 533–534.

[33] H. Di, H. Yu, V. Anand, L. Li, G. Sun, and B. Dong, ‘‘Efficient online vir-
tual network mapping using resource evaluation,’’ J. Netw. Syst. Manage.,
vol. 20, no. 3, pp. 468–488, 2012.

[34] S. Su, Z. Zhang, A. X. Liu, X. Cheng, Y. Wang, and X. Zhao, ‘‘Energy-
aware virtual network embedding,’’ IEEE/ACMTrans. Netw., vol. 22, no. 3,
pp. 1607–1620, Oct. 2014.

[35] G. Sun, V. Anand, H.-F. Yu, D. Liao, and L. Li, ‘‘Optimal provision-
ing for elastic service oriented virtual network request in cloud com-
puting,’’ in Proc. IEEE GLOBECOM, Anaheim, CA, USA, Dec. 2012,
pp. 2517–2522.

[36] H. Cao, Y. Zhu, G. Zheng, and L. Yang, ‘‘A novel optimal mapping
algorithm with less computational complexity for virtual network embed-
ding,’’ IEEE Trans. Netw. Service Manag., vol. 15, no. 1, pp. 356–371,
Mar. 2018.

[37] D. Dietrich, A. Rizk, and P. Papadimitriou, ‘‘Multi-provider virtual net-
work embedding with limited information disclosure,’’ IEEE Trans. Netw.
Service Manag., vol. 12, no. 2, pp. 188–201, Jun. 2015.

[38] M. Alaluna, L. Ferrolho, J. R. Figueira, N. Neves, and F. M. V. Ramos,
‘‘Secure virtual network embedding in a multi-cloud environment,’’ 2017,
arXiv:1703.01313v1. [Online]. Available: https://arxiv.org/abs/1703.
01313v1

[39] G. Sun, D. Liao, D. Zhao, Z. Sun, and V. Chang, ‘‘Towards provisioning
hybrid virtual networks in federated cloud data centers,’’ Future Gener.
Comput. Syst., vol. 87, pp. 457–469, Oct. 2018.

[40] M. Xia, M. Shirazipour, Y. Zhang, H. Green, and A. Takacs, ‘‘Net-
work function placement for NFV chaining in packet/optical datacenters,’’
J. Lightw. Technol., vol. 33, no. 8, pp. 1565–1570, Apr. 15, 2015.

[41] D. Li, P. Hong, K. Xue, and J. Pei, ‘‘Virtual network function placement
considering resource optimization and SFC requests in cloud datacenter,’’
IEEE Trans. Parallel Distrib. Syst., vol. 29, no. 7, pp. 1664–1677, Jul. 2018.

[42] J. Fan, M. Jiang, O. Rottenstreich, Y. Zhao, T. Guan, R. Ramesh, S. Das,
and C. Qiao, ‘‘A framework for provisioning availability of NFV in
data center networks,’’ IEEE J. Sel. Areas Commun., vol. 36, no. 3,
pp. 2246–2259, Oct. 2018.

[43] Y. Jia, C. Wu, Z. Li, F. Le, and A. Liu, ‘‘Online scaling of NFV ser-
vice chains across geo-distributed datacenters,’’ IEEE/ACM Trans. Netw.,
vol. 26, no. 2, pp. 699–710, Apr. 2018.

[44] M.-T. Thai, Y.-D. Lin, and Y.-C. Lai, ‘‘A joint network and server load
balancing algorithm for chaining virtualized network functions,’’ in Proc.
IEEE Int. Conf. Commun. (ICC), May 2016, pp. 1–6.

[45] M. Ghaznavi, N. Shahriar, S. Kamali, R. Ahmed, and R. Boutaba, ‘‘Dis-
tributed service function chaining,’’ IEEE J. Sel. Areas Commun., vol. 35,
no. 11, pp. 2479–2489, Nov. 2017.

[46] F. Carpio, S. Dhahri, and A. Jukan, ‘‘VNF placement with replication for
Loac balancing in NFV networks,’’ in Proc. IEEE Int. Conf. Commun.
(ICC), May 2017, pp. 1–6.

[47] Y. Sang, B. Ji, G. Gupta, X. Du, and L. Ye, ‘‘Provably efficient algorithms
for joint placement and allocation of virtual network functions,’’ in Proc.
IEEE INFOCOM, Atlanta, Ga, USA, May 2017, pp. 1–9.

[48] F. B. Jemaa, G. Pujolle, and M. Pariente, ‘‘Qos-aware VNF placement
optimization in edge-central carrier cloud architecture,’’ in Proc. IEEE
Global Commun. Conf. (GLOBECOM), Dec. 2016, pp. 1–7.

[49] G. Sun, G. Zhu, D. Liao, H. Yu, X. Du, andM. Guizani, ‘‘Cost-efficient ser-
vice function chain orchestration for low-latency applications in NFV net-
works,’’ IEEE Syst. J., to be published. doi: 10.1109/JSYST.2018.2879883.

[50] M. Al-Fares, A. Loukissas, and A. Vahdat, ‘‘A scalable, commodity data
center network architecture,’’ ACM SIGCOMM Comput. Commun. Rev.,
vol. 38, no. 4, pp. 63–74, 2008.

[51] T. Benson, A. Akella, and D. A. Maltz, ‘‘Network traffic characteristics of
data centers in the wild,’’ in Proc. ACM SIGCOMM Conf. Internet Meas.,
2010, pp. 267–280.

VOLUME 7, 2019 100161

http://dx.doi.org/10.1109/JSYST.2018.2879883

	INTRODUCTION
	MOTIVATION
	RESEARCH CONTRIBUTIONS
	STRUCTURE OF THIS PAPER

	RELATED WORK
	VIRTUAL NETWORK EMBEDDING
	SFC MAPPING IN DCNS
	SFC MAPPING BY UTILIZING MULTIPLE PATHS

	PROBLEM STATEMENT AND FORMULATION
	PROBLEM STATEMENT
	MODEL DEFINITION
	SUBSTRATE NETWORK
	SFC REQUESTS
	QUEUEING DELAY MODEL

	ONLINE PARALLELIZED SFC ORCHESTRATION
	RESOURCE CONSTRAINTS
	SFC DEPLOYMENT CONSTRAINTS

	ALGORITHM DESIGN
	ONP_SFO ALGORITHM
	DEPLOYMENT OF SUB-USER REQUESTS
	TWO BASIC OPERATIONS FOR SFC DEPLOYMENT
	EXAMPLE OF THE ONP_SFO ALGORITHM
	ALGORITHM COMPLEXITY ANALYSIS

	SIMULATION RESULTS AND ANALYSIS
	EXPERIMENTAL ENVIRONMENT
	PHYSICAL NETWORK
	USER SFC REQUESTS
	PARAMETERS
	EVALUATION METHOD

	PERFORMANCE METRICS
	ACCEPTANCE RATIO
	AVERAGE MAPPING COST
	QUEUEING DELAY
	LINK UTILIZATION

	SIMULATION RESULTS
	THE INFLUENCE OF THE NETWORK LOAD
	THE INFLUENCE OF THE LENGTH OF THE SFCS
	THE INFLUENCE OF THE PROPORTION OF ELEPHANT FLOW REQUESTS

	CONCLUSION
	REFERENCES

