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a b s t r a c t

The systematic literature review (SLR) process is separated into several steps to increase rigor and
reproducibility. The selection of primary studies (i.e., citation screening) is an important step in the
SLR process. The citation screening process aims to identify the relevant primary studies fairly and with
high rigor using selection criteria. Through the study selection criteria, reviewers determine whether
an article should be included or excluded from the SLR. However, the screening process is highly
time-consuming and error-prone as the researchers must read each title and possibly hundreds to
thousands of abstracts and full-text documents. This study aims to automate the citation screening
process using Deep Learning algorithms. With this, it is aimed to reduce the time and costs of the
citation screening process and increase the precision and recall of the relevant primary studies. A Multi-
Channel Convolutional Neural Network (CNN) is proposed, which can automatically classify a given
set of citations. As the architecture uses the title and abstract as features, our end-to-end pipeline is
domain-independent. We have performed six experiments to assess the performance of Multi-Channel
CNNs across 20 publicly available systematic literature review datasets. It was shown that for 18 out of
20 review datasets, the proposed method achieved significant workload savings of at least 10%, while
in several cases, our model yielded a statistically significantly better performance over two benchmark
review datasets. We conclude that Multi-Channel CNNs are effective for the citation screening process
in SLRs. Multi-Channel CNNs perform best on large datasets of over 2500 samples with few abstracts
missing.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

A systematic literature review is a means of identifying, eval-
ating, and synthesizing all available research relevant to a par-
icular research question, or topic area, or phenomenon of inter-
st [1]. It is well-known and often used in the medical domain,
ut it has also spread to other domains such as software engi-
eering in recent years. The systematic literature review process
s separated into several steps to increase rigor and reproducibil-
ty. The selection of primary studies (i.e., citation screening) is
n important step of this process. The primary study selection
rocess attempts to identify the relevant primary studies fairly
nd with high rigor using study selection criteria. Through the
tudy selection criteria, reviewers determine whether an article is
ither included or excluded from the systematic literature review.
However, there are downsides to this process. First, an expe-

ienced reviewer is estimated to screen up to two articles per
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minute [2], and as a reviewer must read each title and possibly
hundreds to thousands of abstracts and full-text documents, the
screening process is highly time-consuming. With a median of
eight months after the last search, a systematic review is often
outdated before publication as they take so much time to pro-
duce [3]. Second, as reviewers must read so many articles, the
review process is highly repetitive, which is sensitive to errors.
This results in that reviewers find it challenging to include the
most relevant articles (i.e., high recall) while excluding the most
irrelevant articles (i.e., high precision).

As reviewers must determine an article’s inclusion, the cita-
tion screening process can be viewed as a binary classification
problem [4–7]. As a result, machine learning methods can reduce
time costs and increase precision and recall. Although current
automatic text classification methods have achieved substantial
workload savings [5,8], they still use mainly shallow machine
learning algorithms. Deep learning techniques have favorable
characteristics, such as avoiding hand-crafted features, smooth
application on new domains, and the use of end-to-end models
that resolve classical shallow learning challenges. Furthermore, to
our knowledge, text classification using deep learning has not yet

been applied in the systematic literature review domain.
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List of abbreviations

ACE Inhibitors Angiotensin-converting
enzyme (ACE) inhibitors

ADHD Attention Deficit/Hyperactivity Disor-
der

API Application programming interface
BERT Bidirectional Encoder Representations

from Transformers
BPA Bisphenol A
CNN Convolutional Neural Network
FN False Negative
FTE Full-Time Equivalent
GloVe Global Vectors for Word Representation
GPT-3 Generative Pre-trained Transformer 3
GPU Graphics processing unit
HIV human immunodeficiency viruses
IDF Inverse Document Frequency
IMDB Internet Movie Database
IQR Inter-Quartile Range
LSTM Long Short-Term Memory
MANN Memory-augmented Neural Network
MeSH Medical Subject Headings
NB Naïve Bayes
NLP Natural Language Processing
NSAID Non-Steroidal Anti-Inflammatory Drug
PFOA Perfluorooctanoic acid
PFOS Perfluorooctanesulfonic acid
RNN Recurrent Neural Network
SLR Systematic Literature Review
SVM Support Vector Machine
SWIFT Sciome Workbench for Interactive

computer-Facilitated Text-mining
TF Term Frequency
TFIDF Term Frequency–Inverse Document

Frequency
TN True Negative
TP True Positive
WSS Work Saved over Sampling
WSS@95% Work Saved over Sampling at a Recall

of 95%

We propose a Multi-Channel Convolutional Neural Network
CNN) approach to support the automated classification of pri-
ary studies. The approach requires a set of manually labeled
itations to learn to generalize between included and excluded
amples. Consecutively, the trained model automatically iden-
ifies unlabeled citations, reducing the high human workload
nvolved with the citation screening task. This Multi-Channel
NN approach can significantly reduce human workload in the
ystematic literature review process, as reviewers only need to
abel a subset of the literature. Furthermore, our approach can
e used in other literature review methodologies, for instance,
ochrane Reviews, Rapid Reviews, Mapping Studies, and other
LP-related tasks such as sentiment analysis.
A recent SLR study on the automation of SLR studies by van

inter, Tekinerdogan and Catal [9] shows that most existing
emi-automatic citation screening methods adopt document rep-
esentation techniques, such as bag-of-words and TF-IDF, that
ely on words’ frequency. Therefore, the feature representation
2

of documents naturally ignores the readily available informa-
tion on the context of those words. Furthermore, [9] show that
most studies use domain-dependent document metadata, such as
Medical Subject Headings (MeSH).

This paper presents a domain-independent Multi-Channel CNN
approach that leverages the meaning of keywords and sentences
from the title and abstract of training samples to generate in-
formative document features. The proposed method uses parallel
CNN architectures with varying kernel sizes followed by a feed-
forward neural network to learn essential words and phrases for
the citation screening process. More specifically, our proposed
neural network uses the respected and widely used Glove Embed-
dings to gain insight from each word’s context. The embedding
matrices gained from each document can be integrated with any
classification algorithm used for automatic citation screening.
Following previous approaches [10,11], we use a Multi-Channel
CNN using varying kernel sizes to classify a citation’s relevance
to the review.

In van Dinter, Catal and Tekinerdogan [12], we showed that
the Multi-Channel CNN is applicable in a Decision Support Sys-
tem. As a succession, this study assesses our neural network-
based document classification method’s performance by inves-
tigating six architectures using a different number of channels
and varying kernel sizes. For evaluation, we conducted a series
of experiments to investigate our approach’s performance when
applied to the citation screening task of 20 publicly available sys-
tematic review benchmark datasets from the medical domain [5,
13]. Experimental results validate that our proposed method can
reduce the number of items that need to be manually screened
without decreasing the review’s sensitivity, i.e., at least 95% of
relevant studies are identified by the semi-automatic screening
method. Moreover, our Multi-Channel CNN approach shows sub-
stantial performance improvements compared to two out of 20
benchmark datasets.

Our contributions to reduce human workload and increase
WSS (Work Saved over Sampling) for primary study selection
processes are as follows:

• We have developed a binary text classification using Multi-
Channel Convolutional Neural Networks to support the cita-
tion screening process in systematic literature reviews.

• We have evaluated our architecture across 20 systematic
review datasets from the medical domain to evaluate the
proposed method’s effectiveness.

• Our citation screening method yields significant workload
savings of at least 10% in 18 out of 20 review datasets.

• Our project is publicly available and open source at https:
//github.com/rvdinter/multichannel-cnn-citation-screening.

The following sections are organized as follows: Section 2
presents the related work and background. Section 3 discusses
the methodology. Section 4 shows the results. Section 5 presents
the discussion. Section 6 explains the conclusion and future work.

2. Background and related work

2.1. Background

2.1.1. Systematic literature reviews
A systematic literature review (also known as a systematic

review) is a means of identifying, evaluating, and synthesizing
all available research relevant to a particular research question,
or topic area, or phenomenon of interest [1]. An SLR’s goal is
a reliable and rigorous method to gain clear, reasonable, and
unbiased information on a research topic [14].

https://github.com/rvdinter/multichannel-cnn-citation-screening
https://github.com/rvdinter/multichannel-cnn-citation-screening
https://github.com/rvdinter/multichannel-cnn-citation-screening
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James Lind is seen as the first doctor to conduct SLR as we
know it now. In his article Treatise of the Scurvy (1753), he con-
ducted systematic clinical trials of potential cures for scurvy-trials
in which oranges and lemons came out as decisive winners [15].
From that point, SLR became an extensively used practice to
support evidence-based medicine. The success of SLR in evidence-
based medicine triggered various other research areas to adopt
similar SLR approaches [14]. In 2007, Kitchenham attempted to
construct guidelines for performing SLR that satisfied the needs
of software engineering researchers [1]. Since this moment, soft-
ware engineering researchers widely use the SLR method to con-
duct unbiased research—this thesis aimed to identify and evaluate
the evidence regarding natural thermal process flavors. Therefore,
an SLR is a suitable research method for this thesis.

Table 1 lists the steps in the systematic review process, as
proposed by [1]. Synonyms that were used in the literature were
noted for consistency.

Citation screening, the sixth step in the systematic literature
review, is known as the most time-consuming step in the pro-
cess [16–18]. During this step, reviewers aim to exclude irrelevant
citations from the review while keeping relevant citations. Cita-
tion screening is often achieved by first reading all titles, reading
the abstracts, and finally, the full document. To have the least
bias, reviewers use selection criteria to which the documents
must match. These criteria have been set up while Developing
the Review Protocol (SLR3). As the study selection is a binary
classification procedure (i.e., annotating whether an article is
included or excluded), we can leverage machine learning and NLP
techniques to reduce its time consumption.

2.1.2. Machine learning
Machine learning is based on the challenge of finding pat-

terns in data through statistics. In our use case, these statistical
algorithms aim to discriminate between irrelevant and relevant
citations for the SLR study. Shallow machine learning algorithms,
such as logistic regression, support vector machines, and deci-
sion trees for text classification are often based on the popular
two-step method. As Minaee, Kalchbrenner, Cambria, Nikzad,
Chenaghlu and Gao [19] describes, this two-step method relies
on (1) the development of hand-crafted features from textual
documents (i.e., Natural Language Processing (NLP) preprocess-
ing and representation techniques) and (2) the classification of
these features. However, the two-step method has four significant
drawbacks, as shown in the left column of Table 2.

However, opposed to shallow machine learning, deep learning
relies on many layers creating a complex and flexible network.
Through this flexibility, deep learning algorithms can extract
feature representations without needing a domain expert. In the
right column of Table 2, more promises of deep learning are
provided that can cope with the drawbacks of shallow learning.

We want to add that deep learning models require high
amounts of data, which is a bottleneck for some current system-
atic literature studies. However, each year, more and more studies
are being published. In this big data context, hand-crafted feature
engineering lacks scalability, requiring deep learning algorithms
to learn the features directly.

A recent study by Minaee, Kalchbrenner, Cambria, Nikzad,
Chenaghlu and Gao [19] reviewed over 150 deep learning frame-
works proposed for various text classification problems, provid-
ing a rationale for using model architecture. We have adopted
their generalized description of deep learning models into cate-
gories based on their main architectural contributions to Table 3.

CNNs and RNNs are the mainstream architectures to achieve
remarkable results, even though they accomplish these results
through very different approaches. The following listing provides
a comprehensive overview of these two key architectures:
3

1. Convolutional Neural Network (CNN): Four types of layers
are applied in CNN models, namely convolutional layers,
pooling layers, dropout layers, and fully-connected layers.
Convolutional layers use filters, which can be seen as the
neurons of the layer, calculating an output value (i.e., fea-
ture map) based on the weighted inputs [23]. Pooling layers
are used to down-sample patches of the feature map, mak-
ing the model robust against local translations [20]. In a
typical CNN model, convolutional layers are followed by a
pooling layer, which is repeated (e.g., up to 152 times for
the ResNet architecture [24]), and finally, a fully connected
layer is applied.

2. Recurrent Neural Network (RNN): RNN algorithms use se-
quential information in the network [25]. RNNs aim to
overcome the main challenge for CNNs: knowledge about
the past. In examples like predicting the upcoming word in
the sentence, past words are needed, and subsequently, it
is required to remember past words. The RNN illuminated
this problem with the assistance of a Hidden Layer. The
principle and most significant component of RNN is the
Hidden state, which recollects some sequence data in in-
ternal memory. Long-Short Term Memory (LSTM) models
are the most popular RNN algorithms [10,25].

The main catch here is that: (1) Texts can be seen as se-
quences, and RNN architectures have been widely used for se-
quence classification, (2) RNNs can obtain contextual information,
but the order of words also results in bias, (3) CNNs can obtain
essential text features from spatial input, such as keywords and
sentences, as they excel at learning the spatial structure in input
data, but it is challenging to grasp contextual information [26].

In the text classification field, researchers often mention the
use of a Bidirectional layer for RNN architectures. Bidirectional
approaches are used to process the input text, storing the pre-
vious and future tokens’ semantics. Furthermore, when using a
CNN, researchers frequently opt for a Multi-Channel approach.
The model loads the source document using different kernel sizes,
producing a Multi-Channel CNN that reads the text with various
n-gram sizes [10].

For a few years, studies are combining the strengths of CNNs
and RNNs, by cascading the two architectures into a hybrid
model [27–29], called C-LSTM (CNN-LSTM) [29]. This hybrid ar-
chitecture concept uses CNN layers to retrieve a sequence of
higher-level phrase representations and is fed into an LSTM to
acquire contextual information from the local phrase representa-
tion. [27] managed to produce a model with the highest reported
accuracy on the IMDB review sentiment dataset with this cas-
caded architecture. [11] have proposed several other variations of
a hybrid model architecture using CNN and LSTM. They proposed
an LSTM cascaded with a CNN, which aims to extract the critical
local features from the LSTM layer’s output. At last, they proposed
a model architecture that concatenated the outputs from an LSTM
and CNN. This model architecture aims to provide both contextual
and local features from the text.

2.2. Related work

Prior work on automating the primary study selection process
shows that full-text document features are often avoided, as full-
text articles are significantly different from titles and abstracts.
Furthermore, full-text articles need much textual cleaning, and
sometimes conversion from PDF to text, and access to full-text
articles is a problem [30–32]. These challenges are easily avoided
by using, for instance, the title and abstract, which Dieste and
Padua [33] confirm. Besides, titles and abstracts are more often
available for extraction through APIs, a method which Langlois,
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teps in the systematic review process as proposed by Kitchenham and Charters [1].
ID Category Step Synonyms

SLR1 Need for a review Commissioning a review
SLR2 Specifying the research question(s)
SLR3 Developing a review protocol
SLR4 Evaluating the review protocol

SLR5 Conducting the review Identification of research Literature Search, Search String Development
SLR6 Selection of primary studies Citation Screening
SLR7 Study quality assessment Selection Review
SLR8 Data extraction and monitoring
SLR9 Data synthesis

SLR10 Reporting the review Specifying dissemination mechanisms
SLR11 Formatting the main report
SLR12 Evaluating the report
Table 2
Shallow learning for text classification drawbacks and its corresponding deep learning promise.
No. Shallow learning drawbacks Deep learning promises

1 Hand-crafted features require to be heavily fine-tuned to achieve good
performance, which is a tedious and time-consuming task and must be
performed by an expert [19]

Deep learning methods can learn feature representations from natural
language that are required by the model [10]

2 Models are heavily fine-tuned on a few domains; it is challenging to
generalize new domains [19]

Deep learning models and learned features can be reused for new domains
and sometimes for whole new tasks through transfer learning [20]

3 Features are pre-defined; these models cannot take full advantage of vast
training data volumes [19]

By also learning feature representation, deep learning models can discover
hidden data patterns and be applied to other domains [19]

4 In a pipeline of hand-crafted models, each piece requires specialized
expertise [10, 20]

An end-to-end model adds speed and simplicity of development, as it is a
more general approach
Table 3
Models categorized based on architectural contributions, as adopted from Minaee, Kalchbrenner, Cambria, Nikzad, Chenaghlu and Gao [19].
Abbreviation Model architectures Description Pros Cons

RNN Recurrent neural
network

View text as a sequence of words
and are intended to capture word
dependencies and text structures

High overall accuracy
potential [21]

Takes high training and execution
time compared to CNN and Memory
Augmented Neural Network
(MANN) [21]

CNN Convolutional neural
network

Trained to recognize patterns in text,
such as key phrases, for classification

Fast computation as it can
execute in parallel

Max-pooling may result in losing
important information. CNNs are also
not able to find relationships
between local features [21]

CapsNet Capsule neural
network

Address the information loss problem
suffered by the pooling operations of
CNNs, and recently have been
applied to text classification

Can be trained with
much less information than
other neural network-based
architectures [21]

Are not able to generalize well on
complex datasets, such as
CIFAR-10 [22]

Attention mechanism Useful to identify correlated words in
a text and has become a useful tool
in developing deep learning models

Better results than RNN, as
it decides which part of the
text to focus on [21]

Takes high training and execution
time compared to CNN and
MANN [21]

Hybrid models Combine attention, i.e., RNNs, CNNs
to capture local and global features
of sentences and documents

Combines the pros of RNNs
and CNNs

Takes high training and execution
time compared to CNN and
MANN [21]
Nie, Thomas, Hong and Pluye [34] and Rúbio and Gulo [35]
discussed the need for.

The main NLP preprocessing steps for selecting primary stud-
es are the removal of stop words and stemming. Also, Bag of
ords (BoW) and Term Frequency–Inverse Document Frequency

TFIDF) techniques are the main NLP representation. [36–39] used
ord embeddings, which are numerical feature representations
hat allow words or sentences with similar meanings to have
n equal representation [10]. Similar representations resolve the
eed for extensive sentence cleaning, such as lemmatization and
temming. Furthermore, Brownlee [10] describes that: ‘‘The use
f word embeddings over other text representations is one of the
ey methods that has led to a breakthrough performance with
eep neural networks on problems like machine translation’’. [10]
Supervised machine learning is the primary technique for

he automation of primary study selection. The main evaluation
etrics used are precision, recall, and F-measure, but the pri-
ary metric in this field is Work Saved over Sampling (WSS). As
4

shown in Eq. (1), WSS was founded by Cohen, Hersh, Peterson
and Yen [5]. As they describe, ‘‘We define the work saved as
the percentage of papers that meet the original search criteria
that the reviewers do not have to read (because they have been
screened out by the classifier)’’. [5].

WSS =
TN + FN

N
(1)

TP is the number of true positives, TN is the number of true
negatives, FN is the number of false negatives, N is the total
number of abstracts in the set. Cohen, Hersh, Peterson and Yen [5]
stated that one should interpolate the WSS metric at a 95% recall,
as work saved must be greater than work saved by plain random
sampling [5]. Eq. (2) shows the formula when incorporating recall
R in the formula.

WSS@R =
TN + FN

− (1 − R) =
TN + FN

−

(
1 −

TP
)

(2)

N N TP + FN
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he major challenge that studies encounter during the automa-
ion of the citation screening process is class imbalance [4,17,
7–45]. This challenge exists since the citation screening process
ften must deal with a skewed distribution of a high number of
egatives and a small number of positives. Such a skewed dis-
ribution causes classification problems, as most classifiers tend
o maximize overall accuracy. [31,46] highlight the need to select
he best features for their models. In addition, Cohen, Ambert and
cDonagh [47] suggested using a ranking model instead of an
ctive Learning model as reviewers like to hold control over the
esults.

It has taken until early 2020 for a paper to use Deep Learn-
ng algorithms to automate the citation screening process [39].
n their paper, Kontonatsios, Spencer, Matthew and Korkontze-
os [39] describe that they have used a denoising autoencoder
ombined with a deep neural network for document feature ex-
raction. Consecutively, they used weights from input and output
ayers in the feed-forward network as input for an SVM to classify
elevant primary studies. In conclusion, to this day, there is still
o study that uses Deep Learning algorithms to select primary
tudies in the SLR process.
In terms of Deep Learning algorithms, Multi-Channel CNN

rchitectures have become more and more used for NLP tasks.
esearchers leverage the speed and low computational cost of
NN models while maintaining high scores. In 2014, Yoon [48]
resented a paper that compared several CNN and shallow learn-
ng algorithms, one of which was the Multi-Channel CNN. The
odels were compared against seven benchmark datasets, which
onsisted of binary and categorical text classification. The Multi-
hannel CNN was able to outperform on the Stanford Sentiment
reebank and Customer Reviews of Products datasets.
Additionally, Colón-Ruiz and Segura-Bedmar [11] performed a

tudy comparing deep learning architectures for sentiment analy-
is of drug reviews. This approach is rather similar to our study, as
t used benchmark datasets from the Medical domain. However,
he datasets are much larger, and thus the models are much less
ikely to overfit. [11] compared several CNN, LSTM, and hybrid
rchitectures. Furthermore, [11] mentioned that ‘‘CNN networks
re good at extracting local and location-independent features, but
hey are not able to extract information from long-range semantic
ependencies’’ [11]. [11] also showed that the simple CNN model
ould train as fast as 23 s, while the LSTM model took up to
383 s.
Finally, in his guidelines, Brownlee [10] explains how to imple-

ent a basic Multi-Channel CNN architecture for NLP problems.
s [10] explains: ‘‘The model can be expanded by using multiple par-
llel convolutional neural networks that read the source document
sing different kernel sizes. This, in effect, creates a Multi-Channel
onvolutional neural network for text that reads text with different
-gram sizes (groups of words)’’ [10].

. Research methodology

This section discusses the development of the automated
tudy selection framework. First, we discuss the Multi-Channel
NN design, such as the word embeddings we have used as a
ector representation that will be fed to the embedding layer of
he neural network, then we discuss the evaluation metric we
ave used, and last, we discuss the adopted architectures. Then,
e discuss the case study design and the datasets we have used
o evaluate our model.
5

3.1. Design of the multi-channel CNN

3.1.1. Feature length
As many citations (e.g., interviews or book chapters) that occur

in the systematic review process do not contain an abstract, we
concatenate the title and abstract to eliminate empty features.
We have plotted the feature column’s length in a probability
density function and cumulative distribution function, as shown
in Fig. 1. Here, we have combined all citations across the review
datasets discussed in Section 3.2.1 to obtain a reliable average. In
the probability density function, we see a spike at about 30 and
300. The first spike is when a citation contains only the title. The
second spike indicates that most articles with a title and abstract
have a total text length of approximately 300.

3.1.2. Word embeddings
Traditional natural language representation methods, such as

Bag of Words, depend on one-hot encodings. In this representa-
tion, each word is represented by a one-bit position in a vec-
tor of the vocabulary length, which could be thousands long.
Furthermore, this traditional method does not leverage context
information but just word frequency.

Therefore, we use Stanford University’s pre-trained Global
Vectors for Word Representation (GloVe) word embeddings [49].
GloVe word embeddings are gained from unsupervised training
on a large dataset, retrieved from websites such as Wikipedia or
Twitter. The GloVe word embeddings enable the Multi-Channel
CNN to look further than just word frequency; it enables the
algorithm to search for similar key words or sentences.

In word embeddings, words are represented by a vector of a
fixed number of dimensions (i.e., generally 50, 100, or 300), and
similar words have similar representations [10]. The Euclidean
distance between two individual word vectors provides a method
for measuring the similarity between words. The GloVe algorithm
is an extension to the Word2Vec method, as it aims to profit from
both Word2Vec’s local context-based learning as well as ma-
trix factorization techniques [10]. One more drawback is the file
size of Word2Vec pre-trained embeddings, which is significantly
larger than GloVe embeddings [49,50].

Additionally, as the GloVe word embeddings aim to provide
a similar representation for similar words, it allows for very
minimal text cleaning. We use its most common representa-
tion through the Wikipedia embedding dataset, containing 6B
tokens, a 400 K-sized vocabulary, and 100-dimensional vectors.
We used the GloVe embeddings to create an embedding matrix
that contains a word embedding for each word occurring in
the dataset [10]. Eq. (3) represents the format of an embedding
matrix.

E =

⎡⎢⎣e11 · · · e1d
...

. . .
...

ew1 · · · ewd

⎤⎥⎦ (3)

Here, E is the embedding matrix that contains w words. Each
word is represented by a vector e, which has a length of d,
which is now 300. Later, we can use this embedding matrix as
an Embedding layer to learn jointly with the neural network.
However, the pre-trained word embeddings are static, as the
embeddings are a good fit for our problem, while it reduces
computing cost [10].

3.1.3. Steps per epoch
To avoid the model from jumping around the search space,

one needs to take a large batch size, preferably as large as a GPU
can handle, but it does not get stuck in local minima. However,
a smaller batch size could help with adding noise when handling

with little data, thus generating a more robust model [51].
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Fig. 1. Probability density function and cumulative distribution function of all 20 datasets, with title and abstract combined into one text feature column.
At last, we calculate the steps per epoch, i.e., the number of
atches required to see each negative sample once, using Eq. (4),
hich is adapted from [52].

epoch =

⌈
N
Bsize

⌉
(4)

Here, Sepoch is the steps per epoch, N is the number of training
samples in the set, and Bsize is the batch size. As we are oversam-
pling our training set to a 50/50 distribution, we want to know
the steps per epoch when seeing all negative samples at least two
times, shown in Eq. (5).

Sepoch =

⌈
2 ∗

Nneg

Bsize

⌉
(5)

Here, Nneg is the number of negative training samples.

3.1.4. Evaluation settings
For each of the model evaluations, we show the WSS@95%

results. To be more specific, we show the mean WSS@95% after
10 × 2-fold cross-validation. 2-fold cross-validation splits the
dataset into two equally sized subsets, with an even distribution
of label classes. Like [5,7,13,53], we chose 2-fold cross-validation,
as choosing a higher number of folds would also result in a more
extensive training set in the real world. We performed this 2-fold
cross-validation over ten fixed seeds to achieve a final estimated
mean.

The related work section shows multiple other evaluation
metrics. However, as Ng [54] described, adding more than one
metric also makes it more complex to compare algorithms. As [54]
describes: ‘‘Having a single-number evaluation metric such as
accuracy allows you to sort all your models according to their
performance on this metric, and quickly decide what is working
best’’. [54]. Therefore, we keep WSS@95% as our single metric, as
it measures the work saved while still retaining as many citations
as possible.

3.1.5. Preprocessing
Once we have loaded the dataset, we concatenate the title and

abstract into one feature column; we clean the text by splitting
the text into tokens, removing its punctuation, converting to
lower case, removing non-alphabetic and stop words, removing
short tokens of just one character, and applying a minimal token
occurrence of 10 in the full dataset.
6

After cleaning the sets, we split the dataset into a stratified
train, test, and validation set for our 10 × 2 cross-validation.
These sets have been split into a 45/50/5 distribution, respec-
tively. We used the validation set to monitor the training process
during cross-validation. Further, we used the Tokenizer API to
create numeric word vectors from the feature column. We zip
the feature and target columns into a tf.data.Dataset object.
Using this object, we can oversample the training set using
tf.data.experimental.sample_from_datasets(), to an equal class
distribution to avoid class imbalance issues. Once the datasets are
complete, we pad and truncate the datasets to a maximum length
of 600, as 99.77% of all tokens remain included when truncating
the text feature to 600.

3.1.6. Avoidance of overfitting
Smaller weights in the neural network may result in a more

robust and less likely model to overfit on the training dataset,
which would increase performance when generalizing on the test
set [51]. To account for these smaller weights, we use weight
constraints. Compared to weight regularization, a weight con-
straint is a trigger that measures the size or magnitude of the
weights and adjusts them so that they are all below the pre-
defined threshold. Weight constraints limit weights to a threshold
and can be used instead of weight decay and in combination with
more aggressive network configurations, such as high learning
rates or when datasets are sparse [51]. We are using the unit
norm to force weights to have a magnitude of 1.0.

Furthermore, it is known that deep neural networks are likely
to overfit when training on sparse datasets. Therefore, we use
dropout. Using dropout, a single model can simulate having many
different network architectures (e.g., ensemble architectures) by
randomly dropping out nodes during training. Dropout is a very
computationally cheap and remarkably effective regularization
method to reduce overfitting and generalization errors in deep
neural networks of all kinds [51].

3.1.7. Deep learning architectures
We have considered six different Multi-Channel CNN architec-

tures to evaluate their effectiveness of document classification in
systematic literature reviews, as shown in Table 4. We use Multi-
Channel CNN architectures as they are faster and computationally
less expensive than LSTM architectures. To date, using large LSTM

architectures is not available to all researchers without access
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able 4
ix different model configurations using varying channels and kernels.
Name # of channels Kernel sizes

Model_1 2 2/3
Model_2 2 2/4
Model_3 3 2/3/5
Model_4 3 2/4/6
Model_5 4 2/3/5/7
Model_6 4 2/4/6/8

to GPU hardware with high memory. However, CNN models
allow for impressive results with fewer hardware requirements
and lower training times. As we mentioned in the Background
section, CNNs also focus on finding keywords and phrases in text
classification, which researchers often do in the SLR process while
skim-reading many articles.

Fig. 2 shows an abstraction of the Multi-Channel CNN archi-
ecture. All models use the text feature column as input and one
inary output. An Embedding layer follows the input to create
ord embeddings in an end-to-end fashion. We have used the
loVe embedding matrix as input for our embedding layer. The
mbedding layer does not need to train its parameters, as we
ave inserted a pre-trained embedding matrix, which signifi-
antly reduces the training time for the model. For each of the
NN channels, we use a single CNN layer followed by global
ax pooling. After the global pooling layer, we concatenate the
utputs and put them into a feed-forward network. The hidden
ense and convolutional layers use the ReLu activation function
o avoid the vanishing gradient problem. The last dense layer uses
Sigmoid activation function to account for binary classification.
We have kept a logbook of all hyperparameter settings and

ave put the best model parameters based on the Statins set in
able 5. Next to these model parameters, we have experimented
ith different channels and kernel sizes, which can be seen in
able 4. Kernel sizes and the number of channels are variations
rom Model_3 based on similar parameters adapted from [10,11].

From the baseline models gained from [10,11], we gathered
he main hyperparameters to tune, as mentioned by [10,51].
hen using fewer channels, we cut off the largest kernel sizes,

hus incorporating less phrase information and emphasizing key-
ords. Furthermore, we also defined hyperparameters that were
ot actively tuned. As mentioned by [51], we implemented a
nit norm bias and kernel constraint for the dense layers to re-
uce overfitting. For the optimizer, we used the renowned Adam
lgorithm together with the binary cross-entropy loss function.
The number of filters provides many features for the dense

ayers, while dropout prevents the model from overfitting the
raining data. Furthermore, reducing the batch size allows for
aster training and adds noise to create a robust model. The
urrent learning rate allows a smooth learning curve, while the
umber of epochs defines the number of iterations that data
asses through the model.
Additional research could focus on other parameters, such as

omentum, regularizers for the convolutional layers, and opti-
izers such as the Focal Loss Optimizer.

.2. Case study setup

.2.1. Datasets
We have collected 20 publicly available datasets from [13]

nd [5] to evaluate our model. These datasets have been regularly
sed to evaluate models in the medical domain. We have also
ollected the WSS@95 results from [5,7,13,39,53] as benchmarks
or evaluating our results. Table 6 shows the metadata for each
f the datasets. Each sample (i.e., citation) contains the title,
bstract, and label. The 15 datasets from [5] can be categorized
7

as drug reviews, while five datasets from [13] are categorized
as SWIFT reviews. The SWIFT reviews are substantially more
extensive than the drug review sets, as the researchers used broad
search strategies. To tune the hyper-parameters of our method,
we used one development review, namely the Statins dataset
that consists of 3463 samples. From the datasets, an average of
approximately 5.2% of abstracts is missing. However, this differs
significantly between datasets. For instance, the Neuropathic Pain
dataset has 0 abstracts missing, but the Statins dataset has 20.82%
of its abstracts missing.

3.2.2. Case study design
We designed the case study to simulate best the system’s

performance, shown in Fig. 3. First, we needed to gather the
review datasets by Howard, Phillips, Miller, Tandon, Mav, Shah,
Holmgren, Pelch, Walker and Rooney [13] and Cohen, Hersh,
Peterson and Yen [5]. Second, as the review datasets consisted
only of PubMed IDs, we used the PubMed API to collect the
citations’ title and abstract iteratively. Other metadata was also
included in the final dataset but not utilized. Third, we load
the GloVe word embedding file. We later use the GloVe em-
beddings in the training phase to create an embedding matrix
of the vocabulary utilized in the embedding layer. Fourth, we
preprocess the dataset. We use NLP techniques mentioned before
and concatenate the title and abstract into a single text feature
column. Fifth, we split the preprocessed dataset into a train, test,
and validation set. Even though the validation set is not of critical
use in evaluating these models, we remain using the split, as true
to the real-world usage. Sixth, we train the Multi-Channel CNN
model. Last, we evaluate the Multi-Channel CNNmodels using the
WSS@95% metric.

4. Results

This section discusses the model architectures’ results, the
number of epochs, and a further explanation of analyzing training
scores for oversampled datasets.

4.1. WSS@95% for oversampled train sets

WSS@95% is a metric specially developed for systematic litera-
ture review automation systems. During the development of this
metric, Cohen, Hersh, Peterson and Yen [5] focused on the imbal-
anced nature of SLR datasets. However, when oversampling the
training set, the cross-validation results for this set are skewed.
Due to the nature of WSS@95%, which formula can be found in
Eq. (1), WSS@95% can only be high when the number of negatives
is high as well. We will take two datasets as an example, one
balanced, one imbalanced.

Example 1 (Imbalanced Dataset).

N = 2000, Positive = 100, Negative = 1900

We want to interpolate when the recall is approximately 95%.
Assume that in the most optimal situation, we have predicted all
positives correctly.

R =
TP

TP + FN
=

100
100 + 5

≈ 0.95 (6)

Then, in the most optimal situation, we would also have no False
Positives. This means that we would have 1895 True Negatives.
This would result in a WSS@95% of:

WSS@95% =
TN + FN

N
− (1 − R) =

1895 + 5
2000

− 0.05 = 0.90 (7)
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E

Fig. 2. Abstraction of the Multi-Channel CNN architecture. The Conv1D and GlobalMaxPooling layers will be added in parallel, indicated by the number of channels.
Table 5
Model hyperparameter settings.
Epochs Batch

size
Dropout
input layer

Dropout hidden
layers

Filters Dense
units

Learning
rate

15 100 0.6 0.4 1024 128 1E−4
Table 6
Datasets adopted by Howard, Phillips, Miller, Tandon, Mav, Shah, Holmgren, Pelch, Walker and Rooney [13] and Cohen, Hersh, Peterson and Yen [5].
Author Dataset # Citations Eligible citations (%) Missing abstracts (%)

Howard, Phillips,
Miller, Tandon, Mav,
Shah, Holmgren,
Pelch, Walker and
Rooney [13]

Bisphenol-A (BPA) and obesity 7700 1.44 7.88
PFOA/PFOS and immunotoxicity 6328 1.50 5.97
Transgenerational inheritance of health effects 48638 1.57 4.38
Fluoride and neurotoxicity in animal models 4479 1.14 13.60
Neuropathic pain 29202 17.2 0.00

Cohen, Hersh,
Peterson and
Yen [5]

Angiotensin-converting enzyme (ACE) inhibitors 2544 1.64 12.15
Attention deficit hyperactivity disorder (ADHD) 851 2.35 5.64
Antihistamines 310 5.16 7.41
Atypical Antipsychotics 1120 13.04 7.95
Beta Blockers 2072 2.03 9.60
Calcium Channel Blockers 1218 8.21 9.03
Estrogens 368 21.74 5.16
NSAIDs 393 10.43 8.91
Opioids 1915 0.78 7.47
Oral Hypoglycemics 503 27.04 5.57
Proton Pump Inhibitors 1333 3.83 9.15
Skeletal Muscle Relaxants 1643 0.55 17.71
Statins 3463 2.45 20.82
Triptans 671 3.58 11.48
Urinary Incontinence 327 12.23 13.15
Fig. 3. The case study design.
xample 2 (Balanced Dataset).

N = 2000, Positive = 1000, Negative = 1000

We want to interpolate when the recall is approximately 95%.
Assume that in the most optimal situation, we have predicted all
positives correctly.

R =
TP

TP + FN
=

1000
1000 + 50

≈ 0.95 (8)

Then, in the most optimal situation, we would also have no False
Positives. This means that we would have 950 True Negatives.
This would result in a WSS@95% of:

WSS@95% =
TN + FN

− (1 − R) =
950 + 50

− 0.5 = 0.45 (9)

N 2000

8

We can see that only an imbalanced set can achieve a high
WSS@95% score in the ideal situation. This means that this metric
has a different scaling as a train set than a validation or test set.

4.2. Number of epochs

Fig. 4 shows the WSS@95% results for our development set.
The uninterrupted lines represent the mean of 5-fold cross-
validation, while the confidence bands show the 95% confidence
interval. We can see that the training set stops to improve at
0.5, and the validation set converges at that same number. The
test set’s results were only analyzed after training the model, as
it was our hold-out set. After 5-fold cross-validation, the green
horizontal line indicates the mean of the test results. If we would
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he model train for longer, chances of overfitting would increase,
s the validation set’s results tended to decrease after training
or more than 15 epochs. Therefore, we have set the number of
pochs for all datasets to 15.

.3. Effect of model architectures

In this sub-section, we provide insights into the performance
f our model architectures. Table 7 shows the WSS@95% results
f our six models. We can see that the average score for Model_2
s highest on the SWIFT review datasets by [13], while Model_5
chieved the highest average score on the drug review datasets
y [5]. Furthermore, Model_2 achieved statistically significant
igher scores for 3 out of 5 SWIFT review datasets. We can see
hat increasing the number of channels or kernel sizes – while
ixing the other – is not directly causing higher scores.

Fig. 5 shows the architecture of Model_2. The main difference
ith the other models is the number of channels (NB Model_2
ontains two channels) and the output of the Conv1D layer due
o the varying kernel shapes. Here, the input layer is fed a feature
ample consisting of a preprocessed title and abstract. This input
s followed by the Embedding layer, which also uses Stanford’s
ikipedia GloVe word embeddings. The embeddings are set to
e non-trainable, as they are pre-defined, and training them
ould consume lots of time with little improved performance.
he features are fed to the dropout layer, which drops out 60% of
he features. Dropout only applies to the model when training, so
he full potential can be used to generalize new data. Then, the
emaining data is fed to two parallel convolutional channels. As
extual data is one-dimensional, we also use the one-dimensional
onvolutional layers. We used 1024 filters, the ReLu activation
unction, and varying kernel sizes. After, the filters are fed to the
lobal max-pooling layer. We chose the global max-pooling layer
ver regular max-pooling, as Jacovi, Shalom and Goldberg [55]
escribe: ‘‘Global max-pooling induces a functionality of sepa-
ating important and not important activation signals using a
atent (presumably soft) threshold’’ [55]. Then, we concatenate
he outputs from the global max-pooling layer to retrieve a single
ector. We apply a 40% dropout to the concatenated vector and
pply it to the dense layer. This dense layer consists of 128
nits, uses the ReLu activation function, and uses bias and kernel
eight constraint following the unit norm to avoid overfitting.
hen, we apply the last dropout of 40%. Last, we have a dense
utput layer with one unit with the Sigmoid activation function
o use binary classification. This last dense layer also uses bias
nd kernel weight constraints.

.4. Comparison to benchmark studies

From Table 7, we can observe that Model_2 and Model_5
chieve the highest average scores for SWIFT and drug reviews,
espectively. In Table 8, we take the scores from these models and
ompare them to 5 benchmark studies, sorted from dated to most
ecent. We can see that our models outperform the benchmark
tudies on three datasets, Bisphenol-A, Fluoride, and Angiotensin-
onverting enzyme (ACE) inhibitors. We achieved a 3.6%, 1.3%,
nd 0.4% improvement over the BPA, Fluoride, and ACE Inhibitors
atasets, respectively. Furthermore, our model performed poorly
n the PFOA/PFOS dataset, as it seemed to overfit. Next to two
WIFT review datasets, the models also outperformed the ACE In-
ibitor review dataset. This dataset is the #2 largest drug review
ataset.
Furthermore, in Fig. 6, we have also plotted Model_2 results

n boxplots against the benchmark means. We can see that most
ften, the benchmarks’ results are inside the interquartile range
9

(IQR). We can also observe that the Opioids dataset has an ex-
tensive range of its ten cross-validation scores. Also, the five
large SWIFT review datasets have a small IQR and minimum–
maximum range rather. The drug review datasets are showing a
more considerable variation of IQRs and the min–max range.

5. Discussion

5.1. General discussion

This study represents the first deep learning end-to-end model
for citation screening to the best of our knowledge. The re-
sults that we obtained demonstrate that our Multi-Channel CNN-
based citation screening model substantially reduced the screen-
ing workload of 20 systematic reviews by approximately 41%.
Model_2 performs best overall on all datasets, particularly on
large datasets, while Model_5 scores best on the smaller datasets.
However, this is with just a small margin. Therefore, we chose
Model_2 as our final model.

The workload savings varied across the 20 reviews, from a low
WSS @95% score of ∼7% on the Oral Hypoglycemics review to
a higher WSS @95% score of ∼88% on the Fluoride review. The
odels performed poorly on the PFOS-PFOA review dataset, as it
eemed to overfit. We have checked the dataset input, but it has
o differences from the other datasets. Additionally, even though
e used the Statins dataset as our development set, we did not
anage to break the WSS@95% scores. We have kept a logbook
n all model parameters we have tried, but the dataset’s small
ize and many missing abstracts (20.82%) obstruct the neural
etwork’s performance.
Moreover, we observed a weak uphill correlation (R2

= 0.395)
between the WSS@95% performance and the size of the corre-
sponding review dataset, which was statistically significant (p =

.085). This indicates that our model can obtain more meaningful
orkload savings when the dataset size increases. Therefore,
ulti-Channel CNN architectures can be adopted for the citation
creening process with larger datasets. We can also conclude from
ooking at the IQR from the boxplots; the WSS@95% scores remain
emarkably consistent with large datasets.

According to Cohen, Hersh, Peterson and Yen [5], a significant
orkload saving should be at least 10% for the WSS@95% metric.
his stems from the fact that the citation screening process of
systematic review, when conducted manually, requires on av-
rage ∼8.7 FTE to be completed, based on a 38-hour workweek.
herefore, a WSS@95% score of 10%, i.e., 10% of correctly excluded
itations +5% of incorrectly excluded citations, results in a work-
oad reduction of ∼1.3 FTE. According to expert reviewers, this is
significant reduction of their citation screening labor. The ex-
eriments that we conducted showed that our proposed method
ields significant workload savings of at least 10% in 18 out of
0 review datasets. Thus, it could be potentially used in practical
pplication scenarios for accelerating the citation screening task
f systematic reviews.
Our method’s workload reduction (i.e., WSS@95% score)

chieved by our method is relative to the underlying review
ataset’s size. For example, our Multi-Channel CNN, Model_2, ob-
ained approximately the same WSS@95% performance of 0.78 on
oth the NSAIDs and the Neuropathic pain dataset. However, the
europathic pain dataset’s validation sample consists of 14601
itations, and it is substantially larger than the validation sample
f the NSAIDs dataset, which consists of 196 citations. In practice,
his means that a WSS@95% score of 0.78 is equivalent to a
orkload reduction of 12,118 citations, which are automatically
xcluded from the Neuropathic pain review. In comparison, a
SS@95% score of 0.78 translates to a workload reduction of only
47 automatically excluded citations for the NSAIDs dataset.
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Fig. 4. WSS@95% results over 15 epochs for the Statins set.
Fig. 5. Model_2 visualized. Other models are similar, except for the number of channels and Conv1D output shape due to kernel size differences.
Last, as similarly mentioned by Kontonatsios, Spencer,
atthew and Korkontzelos [39], our method’s limitation is that
e trained our neural network independently for each SLR
10
dataset. This means that we have trained 20 Multi-Channel CNNs
corresponding to each dataset. As [39] explains: ‘‘Different sys-
tematic reviews may share one or more eligibility criteria (e.g., if
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able 7
SS@95% results when variating the number of channels and kernel sizes. WSS @95% scores are averages across ten validation runs for each of the 20 review
atasets.
Datasets Model_1 Model_2 Model_3 Model_4 Model_5 Model_6

BPA 0.743** 0.792 0.756** 0.739** 0.735** 0.719
PFOA/PFOS 0.055 0.071 0.054 0.057 0.059 0.048
Transgenerational 0.622** 0.708 0.657** 0.624** 0.592** 0.706
Fluoride 0.880 0.883 0.890 0.871 0.870 0.847
Neuropain 0.607** 0.620 0.608** 0.608** 0.610** 0.608**

SWIFT review benchmark average 0.581 0.615 0.593 0.580 0.573 0.586

ACE Inhibitors 0.790 0.783 0.797 0.793 0.805 0.811
ADHD 0.687 0.698 0.677 0.666** 0.683 0.669*
Antihistamines 0.150 0.168 0.180 0.130 0.162 0.156
Atypical Antipsychotics 0.212 0.212 0.220 0.226 0.234 0.232
Beta Blockers 0.506 0.504 0.515 0.497 0.514 0.502
Calcium Channel Blockers 0.147 0.159 0.155 0.158 0.177 0.181
Estrogens 0.147 0.119 0.116 0.173 0.171 0.149
Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) 0.594 0.571 0.584 0.602 0.611 0.628
Opioids 0.297 0.295 0.306 0.297 0.290 0.286
Oral Hypoglycemics 0.052 0.065 0.068 0.072 0.085 0.068
Proton Pump Inhibitors 0.244 0.243 0.260 0.246 0.254 0.048
Skeletal Muscle Relaxants 0.222 0.229 0.187** 0.190 0.162** 0.156**
Statins 0.445 0.443 0.460 0.461 0.446 0.438
Triptans 0.257 0.266 0.266 0.264 0.259 0.268
Urinary Incontinence 0.257 0.272 0.271 0.295 0.306 0.325

Drug review benchmark average 0.334 0.335 0.337 0.338 0.344 0.328

Grand total 0.396 0.405 0.401 0.398 0.401 0.392

*Denotes statistically significant improvements over the other models at the p < 0.05 level.
*Shows Model_2 achieved a statistically significant better performance according to a two-tailed paired t-test over all other models at p < 0.01 level.
able 8
esults of 5 benchmark studies versus the two best-performing Multi-Channel CNN models.
Datasets Cohen et al. [5] Matwin et al. [7] Cohen et al. [53] Howard et al. [13] Kontonatsios et al. [39] Model_2 Model_5

BPA N/A N/A N/A 0.752 0.758 0.792 0.735
PFOA/PFOS N/A N/A N/A 0.805 0.848 0.071 0.059
Transgenerational N/A N/A N/A 0.714 0.707 0.708 0.592
Fluoride N/A N/A N/A 0.870 0.799 0.883 0.870
Neuropain N/A N/A N/A 0.691 0.608 0.620 0.610

SWIFT review benchmark average 0.766 0.744 0.615 0.573

ACE Inhibitors 0.566 0.523 0.733 0.801 0.787 0.783 0.805
ADHD 0.680 0.622 0.526 0.793 0.665 0.698 0.683
Antihistamines 0.000 0.149 0.236 0.137 0.310 0.168 0.162
Atypical Antipsychotics 0.141 0.206 0.170 0.251 0.329 0.212 0.234
Beta Blockers 0.284 0.367 0.465 0.428 0.587 0.504 0.514
Calcium Channel Blockers 0.122 0.234 0.430 0.448 0.424 0.159 0.177
Estrogens 0.183 0.375 0.414 0.471 0.397 0.119 0.171
NSAIDs 0.497 0.528 0.672 0.730 0.723 0.571 0.611
Opioids 0.133 0.554 0.364 0.826 0.533 0.295 0.290
Oral Hypoglycemics 0.090 0.085 0.136 0.117 0.095 0.065 0.085
Proton Pump Inhibitors 0.277 0.229 0.328 0.378 0.400 0.243 0.254
Skeletal Muscle Relaxants 0.000 0.265 0.374 0.556 0.286 0.229 0.162
Statins 0.247 0.315 0.491 0.436 0.566 0.443 0.446
Triptans 0.034 0.274 0.346 0.412 0.434 0.266 0.259
Urinary Incontinence 0.261 0.296 0.432 0.530 0.531 0.272 0.306

Drug review benchmark average 0.234 0.335 0.408 0.488 0.471 0.335 0.344
S
F
M
p
a
p
t

included studies are randomized control trials) and thus learned
document features could be applied to different reviews’’.

Our study’s main difference with the related work is that
e have explicitly adopted a deep neural network for the cita-
ion screening process, while the only other paper used neural
etworks for feature extraction [39]. We have seen that the
hallow machine learning architectures used domain-dependent
ine-tuning of hand-crafted features in the related work. [31,46]
ighlight the need to select the best features for their models.
he need for fine-tuning is overcome by using a practical and
nterchangeable NLP preprocessing pipeline combined with word
mbeddings. We found the key papers on the automation of the
itation screening process by [5,7,13,39,53], and evaluated our
esults on their benchmark scores. Therefore, we have developed
 r

11
a deep neural network that is significantly different from shallow
machine learning applications, with new and relevant insights.

5.2. Threats to validity

Construct Validity: Construct validity assesses whether the
LR represents the degree to which it measures what it asserts.
irst, we aimed to replicate the model by Kontonatsios, Spencer,
atthew and Korkontzelos [39], as recently published in a pa-
er with open-source code via GitHub. However, we could not
chieve the same scores using our dataset. After emailing the
rimary author, we were informed that he does not have access
o his datasets anymore, which means their study cannot be fully

eplicated.



R. van Dinter, C. Catal and B. Tekinerdogan Applied Soft Computing 112 (2021) 107765

r
i
y
t
h
o

p
b
o
a
c
i

6

a

Fig. 6. WSS@95% values of Model_2 and benchmark papers. Benchmark papers WSS@95% values are shown as markers, as they are means. Multi-Channel CNN
WSS@95% values are shown as boxplots. The dotted line in the boxes stands for the mean; the uninterrupted line represents the median.
Criterion Validity: To assess model WSS@95% results also dur-
ing cross-validation, we have developed a TensorFlow custom
metric class. As it was needed to measure WSS at a specific
recall rate, we used the SensitivityAtSpecificity base class. This
base class allows us to calculate a metric at another metric. We
have validated this metric using our hand-written calculations.
Furthermore, when validating our scores against the benchmark
papers, our models seem to score in line with the other papers.
However, we must note that only the work saved over citation
screening is measured here, while the time of dataset construc-
tion and training is not measured through the WSS@95% metric.
Nevertheless, as our Decision Support Paper describes, this model
takes 7 min to train on average, and dataset construction is a
matter of exporting citations to Excel and modifying the column
names [12].

Internal Validity: Internal validity shows the incomplete rela-
tionship between results, which may lead to structural errors. We
used cross-validation, set 10 seeds to consistently have the same
dataset splits, and used fixed model hyperparameters. As these
techniques were well-defined in other papers and their open-
source code, the model evaluation against benchmark papers was
described adequately.

External Validity: This primary study only used published stud-
ies as benchmarks that applied machine learning techniques to
automate the citation screening process. The scores were required
to be mentioned using the WSS@95% score, which is retrieved
by Nx2-fold cross-validation. Here N must be between 5 and 10
ounds. Furthermore, it is likely that a new machine/deep learn-
ng or natural language processing algorithm has not been applied
et in the automation of systematic literature reviews, like novel
ransformer algorithms, such as BERT and GPT-3. As these studies
ave not been published, they have not been discussed regardless
f their potential.
Conclusion Validity: The conclusion validity measures the re-

roducibility of this study. Our study used datasets provided
y [5,13]. Furthermore, we made our code open-source, available
n this GitHub page. Our automation process was also discussed
mong the authors to minimize individual errors. We derived all
onclusions based on the tables and figures to avoid subjective
nterpretation of the results among researchers.

. Conclusion

This paper has presented a Multi-Channel CNN classification
pproach to support systematic literature reviews’ automated
12
citation screening process. Reviewers manually label only a sub-
set of the citations, while our Multi-Channel CNN architecture
automatically classifies the remaining unlabeled citations. This
study has shown that deep learning can overcome challenges
in shallow machine learning to automate the citation screening
process.

We have performed six experiments to assess the performance
of Multi-Channel CNNs across 20 publicly available systematic
literature review datasets. It was shown that for 18 out of 20
review datasets, the proposed method achieved significant work-
load savings of at least 10%, while in several cases, our model
yielded a statistically significantly better performance over two
benchmark review datasets. We can conclude that Multi-Channel
CNNs perform best on large datasets of over 2500 samples with
few abstracts missing.

7. Future work

Future work could focus on the application of transform-
ers such as BERT to automate the citation screening process.
These transformers can provide contextualized word embed-
dings, which improve results in NLP tasks over traditional word
embeddings such as GloVe [11]. Furthermore, researchers could
improve our model by generating a robust model on another
application domain with lots of data (e.g., IMDb movie review
sentiment analysis) and use transfer learning for citation screen-
ing. Using transfer learning techniques enables researchers to
leverage models trained on huge datasets and fine-tune the
weights on a new dataset. As SLR datasets are often small, this
approach could improve performance considerably while also
reducing training times [56]. Future challenges remain the lack of
data and class imbalance. The lack of data is a challenge, as large
neural networks trained on small datasets can overfit the training
data [51]. This challenge can be solved using transfer learning
techniques or data augmentation, such as Facebook’s recently
published AugLy library [57]. Furthermore, the class imbalance is
a challenge as most models will be biased towards the majority
class [58]. Techniques such as oversampling, where samples from
the minority class are shown more often to balance the majority
class, or introducing loss algorithms focused on imbalanced class
distributions, such as Focal Loss [59], could resolve the class
imbalance challenge.

https://github.com/rvdinter/slr-study-selection
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