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Objective: To develop and validate an artificial intelligence (AI)-based

algorithm for capturing automated measurements of Penile curvature (PC)

based on 2-dimensional images.

Materials and methods: Nine 3D-printed penile models with di�ering

curvature angles (ranging from 18 to 88◦) were used to compile a

900-image dataset featuring multiple camera positions, inclination angles,

and background/lighting conditions. The proposed framework of PC angle

estimation consisted of three stages: automatic penile area localization, shaft

segmentation, and curvature angle estimation. The penile model images were

captured using a smartphone camera and used to train and test a Yolov5

model that automatically cropped the penile area from each image. Next, an

Unet-based segmentationmodel was trained, validated, and tested to segment

the penile shaft, before a custom Hough-Transform-based angle estimation

technique was used to evaluate degree of PC.

Results: The proposed framework displayed robust performance in cropping

the penile area [mean average precision (mAP) 99.4%] and segmenting the shaft

[Dice Similarity Coe�cient (DSC) 98.4%]. Curvature angle estimation technique

generally demonstrated excellent performance, with a mean absolute error

(MAE) of just 8.5 when compared with ground truth curvature angles.

Conclusions: Considering current intra- and inter-surgeon variability of

PC assessments, the framework reported here could significantly improve

precision of PC measurements by surgeons and hypospadiology researchers.
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Introduction

Penile curvature (PC) denotes an abnormal bending of the penile shaft

that can occur in either congenital or acquired pathologies of the male

external genitalia. The most common underlying congenital pathology is

hypospadias which occurs in ∼1:250 male live births, with roughly one quarter

to one third of cases also displaying substantial PC (Baskin et al., 1996;

Stojanovic et al., 2011; Abbas and McCarthy, 2016). Hypospadias-associated
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PC is caused by arrest in embryological development of

the ventral axis of the penile shaft, with features including

penile skin deficiency, aberrantly short urethral plate, and

ventro-dorsal corporeal disproportion (Keays and Dave,

2017). Degree of PC can significantly influence hypospadias

severity (Merriman et al., 2013; Abbas et al., 2020b), and

consequently impacts on surgical decision making and

ultimate choice of repair procedure (Pippi Salle et al.,

2016; Snodgrass and Bush, 2017). If not appropriately

managed, PC persists into adulthood and is associated with

significant patient dissatisfaction and sexual difficulties

(Schlomer et al., 2014; Abbas et al., 2020a; Andersson et al.,

2020).

Although PC has significant prognostic value (Merriman

et al., 2013), and clinical impact (Spinoit et al., 2020),

appraisal of this condition is nor performed consistently

between surgeons, and no reproducible tools are available

for the rapid assessment of PC extent (Villanueva, 2019).

Historically, PC is measured during artificial erection using a

saline injection method introduced by Gittes andMcLaughlin in

1974 (Gittes and McLaughlin, 1974). However, recent progress

in artificial intelligence (AI) and deep learning approaches have

enabled automatic segmentation, classification, registration,

and analysis of medical images (Litjens et al., 2017). AI has

already been applied to multiple different subspecialties in

urology, offering high-precision results that could lead to

diagnostic and therapeutic benefits (including in endourology,

reproductive medicine, stones, hydronephrosis, malignancies,

and pediatric urology) (Eun et al., 2021; Hameed et al.,

2021). AI displays superior accuracy to traditional statistical

methods and could potentially revolutionize clinical decision-

making by urologists, especially once these approaches are

incorporated into the relevant guidelines (Shah et al., 2020; Catto

et al.).

Current evaluation methods for PC include unaided

visual inspection, goniometer, and mobile application-based

manual angle measurements. However, all of these techniques

inherently suffer from high subjectivity and low inter-and

intra-observer agreement (Kelâmi, 1983; Villanueva, 2019;

Mosa et al., 2022). Penile curvature measurement takes

place during the surgery under artificial erection simulation

where normal saline is being injected into the corporeal

bodies of the penis. Therefore, this is a time sensitive task

where getting the correct measurement of PC needs to be

done in real-time to reduce the operative time and limit

leakage of the normal saline fluid from the surgical field.

In the current report, we introduce a novel technology for

automatic quantification of PC degree (AccuCurve). Unlike

previous studies of PC angle extent measurement, we utilized

a segmentation neural network to facilitate rapid angle

calculation, potentially leading to a significant time saving for

the urologic surgeons.

Methods

The proposed framework consists of three stages: automatic

penile area localization, shaft segmentation, and curvature angle

estimation. In the first stage, the penile area is detected, localized,

and extracted from the rest of the image by means of cropping

to a predicted bounding box. In the shaft segmentation stage,

a deep U-Net based (encoder-decoder) convolutional neural

network (CNN) architecture is used to produce binary masks

that highlight the penile shaft against the image background.

Lastly, the binary mask is post-processed, and curvature angle

is determined via a custom Hough-Transform-based angle

estimation algorithm. The overall schematic diagram of the

proposed pipeline is illustrated in Figure 1.

Dataset description

To develop and validate the proposed framework of PC

angle estimation, we used nine realistic 3D-printed penile

models with differing uniplanar hinging curvature angles

(ranging from 18◦ to 88◦). These models were designed by a

3D model developer and then the associated stereolithography

(STL) files were resized to the standard sizes for the pediatric

population (1.5 cm wide and 5–6 cm long). Before printing the

models, the STL files were smoothed, and sharp edges were

shaped into radial curvature that resembled a more typical

instance of penile curvature and hypospadias cases in general.

Furthermore, these penile phantoms resemble circumcised penis

which makes this model easier to be clinically translatable when

utilized in circumcised patients as well (Villanueva, 2019). An

iPhone 11 Pro Max mobile camera with triple-lens (12 MP

resolution) was used to capture images of the penile models.

The camera was placed 20–25 cm distant from each model and

moved through the horizontal axis (−5◦, 5◦) and vertical axis

(0◦, 20◦). For each camera position,∼100 images of each model

were acquired, resulting in a total dataset of around 900 images.

Figure 2 depicts the experimental set-up for collecting images

from each model. Horizontal and vertical rotation of the camera

with respect to the source was used to evaluate how these

variables impacted on PC angle estimation.

Penile localization

Penile area detection and localization provide a robust basis

for estimation of curvature angles. Application of bounding

boxes and subsequent cropping of the original images facilitates

removal of irrelevant parts to leave only the portions needed for

segmentation. This process was performed using the YOLOv5

real-time object detection algorithm (Jocher et al., 2022), which

is a new member of the YOLO (You Only Look Once) series
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FIGURE 1

Schematic diagram of the proposed penile curvature angle estimation pipeline.

which in recent years has been widely applied to the automated

assessment of medical images (Redmon et al., 2016; Redmon

and Farhadi, 2017, 2018; Bochkovskiy et al., 2020). In YOLOv5,

the input image is partitioned into a grid of sub-regions

with separate bounding boxes alongside confidence scores and

probability labels. The architecture of this network consists of

three main parts: backbone, neck, and prediction head. The

backbone employs CNN blocks that are known for their strong

feature extraction capabilities. Then extracted feature maps are

reprocessed to ensure maximum utility in the neck stage. This

is typically achieved using multiple upstream and downstream

paths along with additional skip connections to ensure high-

resolution feature reusability. Next, the head prediction is

designed to detect locations and labels of the bounding boxes

using the extracted feature maps. Finally, a non-maximum

suppressionmethod is used to eliminate overlapping predictions

within the same target image (Redmon and Farhadi, 2018).

Transfer learning was also used to ensure reliable and efficient

training (by initializing weights in the convolutional layers of the

backbone with ImageNet pre-trained weights).

Penile shaft segmentation

Segmentation of the penile shaft was performed using

a deep U-Net (encoder-decoder) model. Different state-of-

the-art architectures were considered while developing the

FIGURE 2

Experimental set-up for model image acquisition.

proposed model, such as U-Net (Ronneberger et al., 2015),

U-Net++ (Zhou et al., 2018), and FPN (Lin et al., 2017).

Each of these models was investigated with different backbone

networks, including ResNet18/50/121/152 (He et al., 2015),

DenseNet121/161 (Huang et al., 2016), and inceptionv4

(Szegedy et al., 2016).

The standard U-Net architecture consists of a contracting

encoder path and an expanding decoder path, where up-

sampling blocks are used instead of pooling operators. In the

contracting pathway, the special content of feature maps is

gradually diminished while the representational capacity of the

context is captured, thus allowing accurate localization through
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FIGURE 3

Lines selection method for estimation of curvature angle.

the expanding path and corresponding skipped connections

between the encoder and decoder parts. U-net++ introduces

modified decoder blocks alongside a redesigned skipped

connection scheme, ensuring intensive feature fusion compared

to the classical U-net architecture. Feature Pyramid Network

(FPN) instead uses a pyramidal hierarchy of feature maps by

producing a prediction mask at each spatial resolution. Then,

all predicted feature maps are concatenated after imposing a

unified spatial resolution through up-sampling. Finally, a 3 ×

3 convolutional kernel with a SoftMax activation function is

applied to produce the final prediction mask. Binary cross-

entropy (BCE) loss function was used in training all the

segmentation networks and was defined as:

BCE = −
1

K

∑

k

[yk log
(

p
(

xk
))

+
(

1− yk
)

log
(

1− p
(

xk
))

](1)

Here, yk is the value of the kth pixel in the binary ground truth

segmentation mask, and p(xk) denotes the SoftMax activation of

kth pixel in the predicted segmentation mask.

Penile curvature angle estimation

The predicted binary segmentation masks are post-

processed by hole filling to compensate for any irregularities in

the predicted binary masks. This was achieved by performing

a flood-fill operation on the segmented shaft area. The next

step applies a multi-stage non-linear median filter with a kernel

size of 2 × 2 followed by a 3 × 3 Gaussian smoothing

kernel with a variance of 0.25. This post-filtering stage

preserved the sharp edges of the image while acting as a

smoothing technique for the shaft area. Next, a minimum

eigenvalue algorithm was used to detect the four corners of

the shaft region. These corners were then used to determine

the orientation of the shaft and the curvature angle. In

the next step, a Hough-Transform-based line detector was

used to fit lines to the inner bottom and the outer upper

edges of the shaft. These areas were selected since they

consistently aligned with the two main sections of the penile

shaft to allow determination of total inclination angle. The

detected lines are then filtered and an optimal line from

each region is selected as illustrated in Figure 3. Finally, the

angle between the two selected lines is estimated using the

following equation:

θ =
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Where m1,m2 are the slopes of the first and the second

line, respectively.

Experimental setup

The captured images were first center-cropped to restrict

the aspect ratio of each image to 1:1. In all experiments,

a 5-fold cross-validation scheme was followed, with 20% of

the training data used in validating the models and during

model selection and hyperparameter tuning. Standard image

augmentation techniques were used to increase the number of

training examples per fold to 3,500 images. These techniques

include translation, rotation, and flipping. It is important

to note that the automatically cropped images from the

penile area localization step were also used to develop and

evaluate the segmentation model. The predicted masks were

eventually used to evaluate the curvature angle estimation

algorithm. Therefore, the framework is evaluated in two steps:

(i) the penile area localization and shaft segmentation and

(ii) curvature angle estimation. This strategy was designed

to ensure a reliable and unbiased estimation of overall

pipeline performance.

Frontiers in Artificial Intelligence 04 frontiersin.org

https://doi.org/10.3389/frai.2022.954497
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Abbas et al. 10.3389/frai.2022.954497

For penile area localization, a stochastic gradient descent

(SGD) optimizer was used to train the Yolov5s model for 250

epochs with an initial learning rate of 10−2 and a momentum

of 0.937. Additionally, a batch size of 16, and a weight decay

of 5 × 10−4 were applied. Adam optimizer was used for

development of the shaft segmentation models, with an initial

learning rate of 10−4 and momentum update of 0.9 and 0.99 for

β1 and β2, respectively. The model was trained for 100 epochs

with a mini-batch size of 16 images. An early stopping criterion

was employed to avoid overfitting, such that if validation

loss does not improve for 15 successive epochs the training

will be terminated. An adaptive learning rate scheduler was

implemented to reduce the learning rate by a factor of 0.2

after 5 patient epochs where no improvement in validation loss

was observed. All experiments conducted in this study were

implemented using PyTorch library with Python 3.7 on Intel
R©

CoreTM i9-9900K CPU 3.60G Hz and 32.0 GB RAM, with an 8

GB NVIDIA GeForce RTX 2080 SUPER GPU.

Evaluation metrics

Object detection evaluation metric

Mean average precision (mAP) was applied to evaluate

performance of the penile area localization network. AP is

defined as area under the precision-recall curve, whereas mAP

is the mean value of AP over the classes:

mAP =
1

n

n
∑

i=1

APi for n classes (3)

Where the only class in this study is penile area.

mAP provides a solid basis for evaluating object detection

models by comparing the ground-truth bounding box to the

detected box.

Segmentation evaluation metrics

The shaft segmentation networks’ performance was mainly

examined using three evaluation metrics: Dice Similarity

Coefficient (DSC), Intersection over Union (IoU), and model

accuracy. These performance metrics are defined as follows:

DSC =
2TP

2TP + FP + FN
(4)

TP, FP, TN, FN are the counts of true positive, false positive, true

negative, and false negative pixels, respectively.

IoU =
TP

TP + FP + FN
(5)

Accuracy =
TP + TN

TP + FP + TN + FN
(6)

It should be noted that both IoU and DSC provide a

quantitative evaluation of the overlap between predicted and the

ground truth segmentation masks, with the primary distinction

being that DSC favors true shaft prediction pixels by a factor of

2 compared to IoU.

Curvature angle estimation evaluation metrics

Mean absolute error (MAE) was selected as the main

assessment scheme for curvature angle estimation. MAE is

given by:

MAE =
1

n

n
∑

i=1

|ỹi − yi| (7)

Here n is the total number of examples, ỹi is the estimated

curvature angle, and yi is the ground truth curvature angle.

The performance of deep CNNs and the angle estimation

algorithm is assessed using different evaluation metrics with a

95% confidence interval (CI) (Mitchell, 1997). Furthermore, the

CI (r) for the evaluation metrics is computed as follows:

ψ95% CI = 1.96

√

ψ (1− ψ)

N
(8)

Here ψ is the used metric, and N is the size of the test sample.

Results

Performance of the proposed AI framework was

evaluated quantitatively and qualitatively, including

comprehensive assessment for the penile area localization

model, shaft segmentation networks, and the curvature angle

estimation algorithm.

Penile area localization

The penile area localization model achieved robust real-

time performance in cropping the penile area, with mAP

99.4%. Figure 4 shows a sample qualitative evaluation of

model performance.

Shaft segmentation

Performance of the shaft segmentation models over the test

set is illustrated in Table 1. Each model was investigated with

seven different backbone architectures varying from shallow

to deep. DenseNet encoders achieved superior performance

compared with other encoder architectures. This could be due to

the extensive connectivity provided by the dense layers and the

collective knowledge offered by the preceding layers. This type of

encoder block employed together with the FPN model achieved

the strongest performance (98.41% DSC and 96.87% IoU). This

Frontiers in Artificial Intelligence 05 frontiersin.org

https://doi.org/10.3389/frai.2022.954497
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Abbas et al. 10.3389/frai.2022.954497

FIGURE 4

Sample qualitative evaluation of the cropped penile area.

TABLE 1 Performance metrics (%) for penile shaft segmentation,

comparing computed over test (unseen) set using three network

models and seven encoder architectures.

Model Encoder Accuracy IoU DSC

U-Net ResNet18 98.63± 1.91 93.13± 8.62 95.90± 5.74

ResNet50 99.29± 0.35 96.00± 1.78 97.93± 0.97

ResNet152 98.94± 0.75 94.39± 3.75 97.00± 2.11

DenseNet121 99.40± 0.18 96.52± 0.96 98.22± 0.51

DenseNet161 99.17± 0.48 95.42± 2.61 97.59± 1.44

DenseNet201 99.11± 0.64 95.34± 2.70 97.54± 1.51

InceptionV4 99.01± 1.07 95.13± 4.10 97.39± 2.37

U-Net++ ResNet18 98.99± 1.12 95.14± 4.19 97.38± 2.47

ResNet50 98.96± 0.88 94.50± 4.13 97.04± 2.38

ResNet152 99.06± 0.54 94.89± 2.98 97.29± 1.65

DenseNet121 99.26± 0.40 95.79± 2.09 97.81± 1.14

DenseNet161 99.29± 0.37 96.06± 1.74 97.95± 0.95

DenseNet201 99.15± 0.50 95.24± 2.64 97.47± 1.49

InceptionV4 99.21± 0.59 95.79± 2.57 97.80± 1.43

FPN ResNet18 99.38± 0.14 96.47± 0.67 98.20± 0.35

ResNet50 99.21± 0.50 95.74± 2.20 97.78± 1.22

ResNet152 98.92± 1.13 94.42± 4.98 96.95± 2.98

DenseNet121 99.46± 0.08 96.87± 0.37 98.41± 0.20

DenseNet161 99.43± 0.09 96.73± 0.56 98.33± 0.29

DenseNet201 99.45± 0.11 96.81± 0.52 98.37± 0.27

InceptionV4 99.30± 0.41 96.10± 1.94 97.96± 1.10

Numbers indicate metric value± standard deviation.

superior performance may be due to the tendency of FPN

models to predict smoother segmentation masks with improved

localization performance relative to conventional U-Net and

U-Net++ architecture. This tendency could be inherited from

the hierarchy architecture of FPN, where low-resolution but

semantically strong features are combined with high-resolution

feature maps on each of the decoder spatial levels to generate

the final prediction mask. In contrast, U-Net and U-Net++

generation of the final prediction mask is solely dependent on

the final decoder block of the networks. A qualitative evaluation

of the top-three performing networks is presented in Figure 5.

Curvature angle estimation

Performance of the proposed curvature angle estimation

algorithm is presented in Table 2. MAE was considered as the

primary performance metric to assess the angle estimation

task. An overall error of 8.53◦ was achieved among different

curvature angulations, which illustrates a reliable and accurate

angle estimation performance. A maximum of 9.87◦ MAE was

recorded in the case of 86◦ curvature angulation, mainly due to

bias in themean ofmeasurements when compared to the ground

truth value. In contrast, a minimum error of 3.62◦ was observed

in the case of a penile model with 33◦ curvature angle. Figure 6A

illustrates overall performance of the angle estimation technique

using a box plot, whereas Figure 6B shows the effect of camera

tilt angle on estimation accuracy. The green, yellow and red

marks measurements taken with camera angulation <7◦, 15◦,

and 20◦, respectively. It is clear that error in angle estimation

tends to rise as the camera tilt angle was increased.

Discussion

AI provides new opportunities to develop high-fidelity

models that allow real-time and precise evaluation of medical

images. Machine learning approaches have not previously been

used to assess PC severity, therefore we sought to develop and

validate an end-to-end AI system that can rapidly emulate the

conventional assessments routinely employed by urologists. We

designed a fully-automated application that does not require

input from the surgeon and instead relies on a novel algorithm

that is capable of segmenting the penile shaft to calculate PC

angles with high levels of accuracy.

Frontiers in Artificial Intelligence 06 frontiersin.org

https://doi.org/10.3389/frai.2022.954497
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Abbas et al. 10.3389/frai.2022.954497

FIGURE 5

Sample qualitative evaluation of the top-three performing shaft segmentation networks.

The most widely used intraoperative method for

evaluating PC severity is unaided visual inspection (UVI)

and approximation of the degree of curvature. While quick

and practical to distinguish straight from severely curved

penis, intermediate degrees of PC are challenging to quantify

objectively. It was recently shown that there is a tendency among

hypospadiologists to overestimate or underestimate curvature

by an average of 10 degrees on eyeball assessment (Mosa et al.,

2022). It should also be noted that recurrent or persistent PC

after hypospadias repair is not always obvious, with curvature

not being reported by caregivers in 37% (22/60) of cases (and

records from the primary surgeons only rarely stating recurrent

curvature) (Snodgrass and Bush, 2019). Patients may also

overestimate their degree of PC by as much as 20 degrees (Bacal

et al., 2009), hence more effective assessment methods are

clearly required.
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TABLE 2 Curvature angle estimation algorithms performance results.

Measurement (mean ± std) MAE Ground truth

77.34± 4.64 4.22 75

33.18± 5.00 3.62 33

82.92± 3.91 5.39 88

39.34± 4.35 6.15 40

58.72± 4.70 3.92 58

53.32± 5.49 5.59 50

81.12± 6.61 9.87 86

65.78± 5.07 6.35 60

15.73± 6.09 5.32 18

- 8.53 -

An alternate method for intraoperative evaluation of PC

is by goniometer, which requires the device to be placed

alongside the erected penis and then fine-tuning its angulation

to match PC degree. There are several practical difficulties

with employing this method, since it requires maintenance of

artificial erection for a prolonged period via uninterrupted saline

infusion at the same time as compression of surrounding soft

tissues, manipulation of the device to match PC angulation, and

simultaneous neutralization of penile twist (if any). Accordingly,

precision of the goniometer measurements is closely correlated

with experience level of the surgeon (Villanueva, 2019).

Mobile applications with the ability to quantify angulated

items have been widely used to measure PC in hypospadias

patients. These approaches require standardization of numerous

variables to achieve satisfactory inter-and intra-observer

agreement, but recent reports suggest that smartphone-based

measurements were reproducible between observers and

correlated well with angle determination by goniometer and

protractor (Hsi et al., 2013). Although auto-photography is

considered an exciting approach to the 3D assessment of

PC, it is not yet clear whether this approach will be limited

by significant interobserver discrepancies (Kelâmi, 1983).

Objective evaluation of PC correction therefore remains a

priority for patient management in this field.

Different camera positions can lead to distortion when

converting a 3D object into a 2D image (Ohebshalom et al.,

2007), which can be further influenced by the rotational axis

and degree of PC. The current study shows that precision of

our algorithm was slightly reduced when camera angle deviated

from the zero position. The procedure currently followed by

the doctors to measure PC when using mobile applications is

based on defining three main points: (1) The mid-axis of the

distal (upper) limb of the penis, (2) Themid-axis of the proximal

(lower) limb of the penis, and the center of the PC where the

maximum point of curvature is “thought” to be localized. Our

model simulates this process but in an objective manner where

the model calculates the degree of the PC based on the estimated

degree between the distal and proximal limbs of the penis.

Rather than defining the mid-point of curvature as the center

of angulation, we instead used a novel algorithm to determine

this landmark since some segmentation results were not formed

of continuous regions. The method we applied should ensure

that defined center points are realistic and match as closely as

possible the points manually marked by doctors. The algorithm

then defines angulation between both the distal and proximal

aspects of PC. Assessment of the mid-axis between ventral and

dorsal borders was found to lack accuracy, since these were

often irregular in the 3D models and led to errors in angle

measurement (albeit similar in extent to those arising during

real-life intraoperative assessment due to excess dartos, soft

tissues, blood etc.).

This study represents an initial validation performed under

controlled conditions, hence it will now be important to

assess translatability of our approach to the operating room

setting. Nonetheless, this method achieves rapid automatic

measurement of PC and could potentially reduce under-

anesthesia time for operating teams. The pictures used in our

testing dataset were randomly selected from the available image

data to span a variety of angulations in addition to evaluate

the framework on completely unseen images from a penile

model reserved only for testing in each of the performed

folds. Since deep learning algorithms rely on high-volume,

the next step to increase robustness of this system will be to

collect and integrate real-life intraoperative PC images from

multiple different medical centers. Since smartphone technology

is already being employed by patients and care providers across

a range of medical applications, this approach may also present

opportunities to further develop patient–provider relationships

(Mantica et al., 2020). Employing consistent methods that

more accurately define hypospadias phenotype, PC extent, and

inform surgical technique should lead to improved outcomes for

affected patients. In addition, AI-based methods may yield new

data that can guide education, communication, and selection of

personalized approaches for hypospadias management.

There are twomain etiologies of penile curvature: congenital

life birth defects (i.e., hypospadias) and acquired (i.e., Peyronies

disease). This model was basically created to optimize the

measurement of PC in cases of hypospadias where typically the

PC is uniplanar because of ventral corporeal disproportion in

such patients. Therefore, this model typically represents realistic

deformities encountered in hypospadias cases. On the other

hand, some of the acquired PC cases have uniplanar PC where

this model can still function and our future optimization of this

model will consider multiplanar deformities.

There are however some limitations associated with this

study. The compiled dataset only consists of images captured

using the 3D printed penile model, which can be considered

as a biasing factor since these models cannot span all

penile curvature variabilities of the real world, in addition to

the absence of real-patient images to validate the proposed
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FIGURE 6

(A) Curvature angle estimation algorithms performance. (B) E�ect of camera tilt angle on performance of the curvature angle estimation

algorithm.

framework. Despite these limitations, the main motivation of

this study is to present a baseline experiment for an automated

penile curvature measurement framework performed under

controlled conditions.

Conclusion

We developed a novel AI-based method for rapid automatic

measurement of PC. Thismethod employs deep neural networks

to segment the penile shaft prior to assessment and offers

accuracy comparable to manual inspection by orthopedic

surgeons, but achieved in a far shorter time. Findings from this

study suggest that AccuCurve may provide an accurate, reliable,

and broadly accessible technique to quantify PC degree, which

could overcome numerous shortcomings of current evaluation

techniques. Although the framework herein describedmight not

be suitable for clinical use yet, it is our goal that this work will be

inspiring to improve and develop automated penile curvature

measurement frameworks while presenting a proof-of-concept
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study that constitute an initially validated experiment performed

under controlled conditions. Further improvements to the

utility and functionality of this application are likely to happen

in near future.
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