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Abstract

Aluminium doped zinc oxide (AZO) nanomaterials (Al,Zn, ,O) with x fraction varying as 0.02 and 0.04 were synthesized
using the auto-combustion method using glycine as a fuel. The synthesized catalysts were characterized with X-ray diffrac-
tion (XRD), UV-Visible Spectroscopy (UV—-Vis), Raman spectroscopy, Photoluminescence (PL) spectroscopy, and High
Resolution Transmission Electron Microscopy (HR-TEM). XRD results showed that synthesized materials possessed good
crystallinity, while UV-VIS was employed to find the band gaps of synthesized materials. Raman was used to determine
the vibrational modes in the synthesized nanoparticles, while TEM analysis was performed to study the morphology of the
samples. Industrial effluents such as indigo carmine and azo carmine G were used to test the photodegradation ability of
synthesised catalysts. Parameters such as the effect of catalyst loading, dye concentration and pH were studied. The reduc-
tion in crystallite size, band gap and increased lattice strain for the 4% AZO was the primary reason for the degradation in
visible irradiation, degrading 97 and 99% equimolar concentrations of indigo carmine and azo carmine G in 140 min. The Al
doped ZnO was found to be effective in faster degradation of dyes as compared to pure ZnO in presence of natural sunlight.

Keywords Photocatalysis - Zinc oxide - Aluminium doped zinc oxide - Indigo carmine - Azocarmine G - Photodegradation

Introduction

Industrialization has resulted in a significant increase in the
presence of potentially carcinogenic intermediates in dyes,
pesticides, phenols, solvents, and other organic pollutants in
natural resources (Jiang et al. 2005). The presence of organic
dyes in industrial wastewaters from the textile, paper,
and apparel industries, in particular, results in significant
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environmental contamination (Rafiq et al. 2021). Dyes like
Indigo Carmine, Azo Carmine G, Methylene Blue, Rhoda-
mine B, Eriochrome Black-T (EBT), Rose Bengal, and Thy-
mol blue are used in the textile industry every year (Wahba
et al. 2020; El-Samak et al. 2022; Sharma et al. 2015; Huang
et al. 2017; Najjar et al. 2021; Kazeminezhad and Sadol-
lahkhani 2016; Balouch et al. 2022), and most of it ends up
in wastewater (Kumar 2017). These dye-polluted effluents
are harmful to living organisms since they contain highly
toxic, non-biodegradable pigments (Saidani et al. 2017;
Umar et al. 2022). Even at very low concentrations (1 ppm),
dyes are clearly visible in water and cause water pollution
(Daneshvar et al. 2004). According to the World Bank, dye-
ing industries and textile finishing contribute approximately
17-20% of water pollution. Kant reported that, of the identi-
fied major wastewater contaminants, textile dyeing released
72 chemicals, where more than 30 of these were found to be
hazardous in nature (Kant 2012). Hence removal of dye from
wastewater is given preference in recent times.

To address this issue, several approaches have been taken,
including adsorption, coagulation, membrane separation,
and photocatalytic degradation, etc. (Thamaraiselvan and
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Noel 2015; Kasperchik et al. 2012; Shah et al. 2020). The
photocatalytic transformation of organic pollutants into non-
toxic molecules is one of the most widely researched topics.
In 1972, Fujishima and Honda explored the phenomenon of
photocatalytic water splitting using UV light on TiO, elec-
trodes (Fujishima and Honda 1972). This discovery ushered
in a new era of heterogeneous photocatalysis. TiO, has been
the most worked upon photocatalyst from its early develop-
ment in the 1970s due to its comparatively availability, low
cost, and high efficiency (Hernandez-Alonso et al. 2009).
Despite being the good photocatalyst, several factors such
as lower cost, higher surface reactivity, similar band gap,
and better degradation rate at the beginning have made ZnO
a viable alternative to TiO, (Ganesh et al. 2018; Chandio
et al. 2022). The faster recombination rate of the photo-gen-
erated electron—hole pair, on the other hand, reduces ZnQO's
photocatalytic activity and makes it unsuitable for practical
applications.

Various synthesis methods such as hydrothermal, co-
precipitation, sonochemical, sol-gel, polyol, combustion,
electrochemical etc. have been employed in the past for the
synthesis of ZnO nanoparticles (Gerbreders et al. 2020;
Adam et al. 2018; Davis et al. 2019; Almehizia et al. 2022;
Mika et al. 2019; Bhatti et al. 2022). The glycine nitrate
synthesis is the technique in which oxidizer such as a metal
nitrate and a fuel i.e. glycine, undergo self-sustained reac-
tion. Glycine provides the energy required for combustion
while also acting as a complexing agent (Jadhav et al. 2011).
The advantage of glycine assisted synthesis is that the spon-
taneous evolution of a gaseous products during combustion
dissipates heat from the process and limits increasing tem-
perature, reducing the possibility of local sintering among
particles while facilitating fine powder formation (Lim et al.
2019; Cheng et al. 2020).

Significant research has been conducted in order to
improve the photocatalytic activity of ZnO by lowering the
rate of photo-generated carrier recombination. Several tech-
niques, such as modification of particle size (Retamoso et al.
2019), introduction of surface defects (Bai et al. 2013), dop-
ing with rare-earth lanthanides (Marin et al. 2019; Pascariu
et al. 2019; Selvaraj et al. 2022), transition metals (Hossien-
zadeh et al. 2019; Liu et al. 2018), or composites with dif-
ferent semiconductors (Zouhier et al. 2020; Prabhuraj et al.
2021) etc. were used to improve the photodegradation effi-
ciency of ZnO. Doping is a simple and effective method for
increasing ZnO’s photocatalytic activity because it involves
a change in optical, electrical, and magnetic properties. Dop-
ing of semiconductor results in (i) band gap modification, (ii)
enhanced photocatalytic efficiency that involves formation of
charge traps for photo-generated carriers that suppresses the
charge carrier recombination, and (iii) formation of intrinsic
defects such as Zn interstitials and oxygen vacancies (Moiz
et al. 2021; Pramanik et al. 2022). Various metals, including
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Mn (Ma et al. 2016), Bi (Chandraboss et al. 2013), Co (Lu
etal. 2011), Cu (Jiang et al. 2019), Cr (Chang et al. 2014a),
Ce (Chang et al. 2014b), Ag (Hsu and Chang 2014), Al (Kuo
et al. 2006), Ni (Zhao et al. 2011), etc. have been used to
improve the photocatalytic activity of ZnO. Al is regarded
as a suitable choice for dopant materials among the available
alternatives (Luo et al. 2017). Due to its ease of availability
and non-toxicity, Al doping has been carried out dominantly
by researchers and is found to be effective in tuning the band
gap ZnO (Prasad et al. 2018). Therefore, Al doped ZnO
(AZO) is investigated for photocatalytic application in the
present study. Among the various types, indigo carmine is a
dye which is primarily used in textile industry to dye denims.
It also finds applications in food, leather and pharmaceuti-
cal industries as colorant (Tabti et al. 2022). It is considered
to have a very strong resistance to external conditions and
retains the colour over longer periods of time. Because of its
frequent use and toxic effects on aquatic ecosystems, indigo
carmine is regarded as a contaminant that must be treated
before wastewater is discharged (El-Kammabh et al. 2022).
Azo dyes are a major class of synthetic organic compounds
that are widely used in textile, printing, pharmaceutical, and
research laboratories. It can enter the human body through
the skin and cause vomiting, lung tissue destruction, and
rapid heart rate (Ai et al. 2011). Hence, azo carmine G was
also chosen as a model pollutant in this study.

The current study seeks to synthesise ZnO nanomaterials
using a low-cost glycine nitrate auto-combustion technique
and to investigate the effect of Al doping on the optical,
photocatalytic and structural properties of ZnO. The synthe-
sized nanoparticles were characterized using XRD, UV—Vis,
PL, Raman, HR-TEM and their photodegradation ability was
tested with textile industrial dyes indigo carmine and azo
carmine under sunlight irradiation. Both dyes are widely
used in the textile industry, and they were chosen because
they are understudied, allowing for a better understanding
of degradation with Al doped ZnO and its impact on pho-
tocatalytic degradation efficiency. Parameters such as effect
of catalyst amount, dye concentration, and pH have been
studied. In addition, a possible degradation mechanism is
proposed as well.

Materials and methods

All the chemicals used in the present work were of analytical
grade (AR), and solutions were prepared in distilled water
only. Chemicals used in this work are Zinc Nitrate Hexahy-
drate (Zn(NO;),0.6H,0), Aluminium Nitrate Nonahydrate
(AI(NO;);.9H,0), and glycine(C,Hs;NO,). indigo carmine
(IC) and azocarmine G (AcG) dyes were used as model pol-
lutants for the photodegradation study.
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Synthesis of photocatalyst

The nanostructured ZnO and Aluminium doped ZnO (here-
after denoted as AZO, where AZO-2 and AZO-4 denotes
ZnO with 2 and 4% Al doping, respectively) nanoparti-
cles were prepared according to previous reports (Prasad
et al. 2019). The synthesis was carried out by dissolving
Zinc Nitrate Hexahydrate (Zn(NO;),.6H,0), Alumin-
ium Nitrate Nonahydrate (Al(NO;);.9H,0), and Glycine
(NH,CH,COOH) in definite proportions in separate 100 mL
of de-ionized water. The metal-to-salt ratio was maintained
at 1:2. The mixture was stirred for 10 min on a magnetic
stirrer. The mixture was then transferred to a 5 L borosil jar
that was kept on a hot plate set at 100 °C. As the time pro-
gressed, the excess water evaporated, and the mixture turned
into form a xerogel that auto combusted after 2 h of heating.
The auto combustion resulted in a fluffy mass that was later
ground and calcined at 600 °C for 6 h. The schematic illus-
tration for the synthesis procedure is given in Fig. 1.

Characterizations

X-Ray diffraction was performed on the sample to under-
stand the structure of the synthesized sample. All the diffrac-
tion patterns were prepared as step scans with a step size of
0.1 A° using a monochromatized X-ray beam with Cu-Ka
(A.=1.54178 A°) by X'PERT-Pro MPD, PANalytical Co.,
Almelo, Netherlands. Raman spectroscopy (Thermo Fisher
Scientific DXR Raman Microscope) was used to identify the
vibrational modes present in the catalyst. Data from UV-Vis
DRS spectrophotometer (Shimadzu UV 3600) in the range
200 to 900 nm was used to calculate bandgap. Photolumi-
nescence (PL) emission studies were performed to study the
emission properties of the catalyst (FluoroMax-4, Horiba).
Transmission Electron Microscopy (TEM) images were
obtained using TECNAI G2 TF20 and Scanning Electron
Micrographs (SEM) were obtained using Nove Nano SEM
to understand the sample’s morphology.

Fig. 1 Shematic illustration of
synthesis of AZO nanoparticles
using glycine nitrate auto-com-
bustion method

Zn(NO;),
+
AI(NO;); ]

+

Glycine S

100°C

Results and discussions
XRD

Figure 2 shows the powder XRD pattern of the ZnO and
AZO nanostructures synthesized by auto combustion tech-
nique that were calcined at 600 °C for 6 h. The narrow peak
at (100) suggests a good degree of crystallinity of the syn-
thesized nanoparticles. The reflections observed resembled
a hexagonal wurtzite-like structure of ZnO that belonged to
a space group of P63mc in the Hermann—Mauguin notation
with a space group number 186 (JCPDS # 36-1451).

It can be seen from Fig. 2 that an increase in dopant
concentration shifts the diffraction angle to higher values,
implying that the crystal structure is under stress due to
the substitution of Zn**ions for Al**ions in the crystalline
structure (Mohammadzadeh et al. 2015). It can be concluded
from the peak intensity that the crystallinity of the AZO-4
sample is more than the AZO-2. The strain introduced in the
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Fig.2 Room temperature XRD of ZnO and AZO synthesized by auto
combustion technique
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structure tends to increase with increasing dopant concentra-
tions, owing to the difference in the radii of AI** and Zn?*.
Since the radius of AI** is 0.53 A° and that of Zn** is 0.74
A°, the doping leads to strain formation in the crystal lattice
(Kuo et al. 2006; Karunakaran et al. 2011).

The average crystallite size of the synthesized material
was calculated using the standard Debye Scherrer formula-
D =0.92/p cos 0, where D is the crystallite size, j is full-
width half maxima and A is the wavelength of X-rays used.
The lattice parameters (‘a’ and ‘c’), c/a ratio, the volume
of the unit cell (V), bond length (L), dislocation density (S)
and strain-induced (&) in the matrix for all the materials have
been calculated directly from the PowderCell software as
shown in the table below. AZO-4 had the smallest crystallite
size and the highest strain value. The increase in Al doping
was directly proportional to the lattice strain induced in the
structure. It has been reported that increasing lattice strain
is beneficial for photocatalytic activity (Naldoni et al. 2019).
Dislocation density is calculated as S = 1/D* where D is the
crystallite size, and Volume is calculated using Eq. (1):

V3,

V= @ ()
Also, the bond length is calculated using Eq. (2):
L=y%+(L-u)e @
where u is the positional parameter given by Eq. (3):
a>
u=_ +0.25 3)

The strain-induced due to crystal imperfection and distor-
tion is calculated using Eq. (4):

e = B

" 4tan )

Table 1 shows the values of all obtained parameters cal-
culated using PowderCell software.

UV-Vis
UV-Vis was used to investigate synthesized ZnO’s

and AZO’s optical properties. It exhibited broad and
strong absorption near 364 nm, corresponding to ZnO’s

characteristic ground excitonic state. However, the incorpo-
ration of Aluminium results in a slight blue shift in absorp-
tion for the AZO samples. Band gap of the synthesized cat-
alysts was calculated using Tau’c plot method. The Tau’c
method is defined by Eq. (5):

ahv = (hv — Eg)" 5)

where «a is the absorption coefficient, / is planks constant, v
is the photon frequency, E, is the optical bandgap, and n="2,
2, 3/2 and 3 for direct allowed, indirect allowed, direct for-
bidden and indirect forbidden transitions respectively. The
intercept to the energy axis gives the optical band gap when
extrapolating the straight-line part of the curve, as shown
in Fig. 3.

For AZO-4 with increased dopant amount, growth or
aggregation of nanoparticles takes place and peak shift was
observed. For AZO samples, the optical band gap decreased
from 3.02 to 2.96 eV, which is in well accordance with pre-
vious literatures (Islam et al. 2019; Bacaksiz et al. 2010;
Speaks 2020). Since Zn has higher electronegativity than
Al the band gap may have narrowed after Al doping. After
incorporation of AI’*, this difference in electronegativity
creates defect sites in the AZO (Rajendran et al. 2016).
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Fig.3 Absorption spectrum of ZnO and AZO synthesised by auto
combustion (Inset: Tau’c pot for band gap calculation)

Table 1 Structural parameters Catalyst a(A) c(A) a V(A% D@mm) L(A) s e

of the synthesized nanoparticles
ZnO 32456  5.1985  1.601707  47.42405 18.54 1.975071  0.00308  0.036934
AZO-2 32477 52026 1.601934  47.52289  20.54 1.976437  0.00237  0.174124
AZO-4 32406  5.1902  1.601617  47.20256  10.35 1.971993  0.00932  0.3521 07
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Table 2 Band gap variation in

the catalysts Al @t %) Ee V)
0 3.02
2 2.96
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Fig.4 Room temperature emission spectrum of ZnO and AZO cata-
lysts

These defect sites form extended defect levels, causing the
conduction band to shift downward and the valance band
to shift upward, resulting in a narrowing of the band gap
(Vijayalakshmi and Sivaraj 2015). However, the band gap
again increased to 2.99 eV for AZO-4, which can be attrib-
uted to smaller crystallite size obtained for AZO-4. There
are similar reports suggesting relation between crystallite
size and band gap (Adesoye et al. 2022; Mouzaia et al.
2020). It may also be possible because dopant segregated in
the grain boundary region, inducing impurity levels in the
ZnO band structure as reported previously (Venkatachalam
et al. 2008; Safeen et al. 2022). In literature, the sample with
a larger bandgap has been reported to exhibit a narrow band
tail (Dhanaraj et al. 2020; Elsayed et al. 2020). The varia-
tions in the band gap for different Al doping are summarized
in Table 2.

PL

Emission spectroscopy is an effective method for detecting
surface defects in nanomaterials. Figure 4 shows the room
temperature photoluminescence (PL) spectra of ZnO and

AZO nanoparticles recorded using excitation wavelength of
360 nm and in the wavelength range of 375-600 nm.

The ZnO photoluminescence spectrum is well known for
its ultraviolet (400 nm) and visible emission (blue, green,
and yellow emissions in the 400—650 nm range) (Wang et al.
2014). Three emission peaks were observed for all three
catalysts around 390 nm, 464 nm, and 566 nm. The UV
emission peak around 390 nm generally originates from the
recombination of free excitons through excition-excition
collision process from the valence band to the conduction
band (Chai et al. 2014; Wang and Xu 2012). The increased
doping amount observed a redshift of UV emission peak.
As the amount of doping increased, the intensity of visible
emission decreased, indicating that the photoexcited electron
is trapped in one of the many impurity levels in the lattice
rather than recombining with the hole by emitting a photon.
The blue emission band around 460 nm can be ascribed to
the transition of an electron from the interstitial Zn; level
below the conduction band to the valence band or singly
ionized oxygen vacancies (Bylsma et al. 1986; Kayaci et al.
2014; Yadav et al. 2010). The broad green emission is gener-
ally attributed to various intrinsic defects, such as oxygen or
zinc vacancy, interstitial oxygen or interstitial zinc or oxygen
antisite (Dhayagude et al. 2017). The shoulder at 566 nm
is particularly attributed to the recombination of photogen-
erated holes with singly ionized oxygen vacancies (Gao et al.
2011; Ntwaeaborwa et al. 2017). Because of these excess
oxygen vacancies, ZnO has demonstrated excellent photo-
catalytic activity and gas sensitivity as reported by Yuan
et al. (Yuan et al. 2009); hence we believe this is the primary
reason for the enhanced photocatalytic ability of AZO-4. In
literature, it has already been observed that the reduction in
broad emission in the visible region results in a decreased
recombination rate of photogenerated electron—hole pairs,
hence increasing the photocatalytic activity of the material
(Dhayagude et al. 2017; Bhapkar et al. 2023; Ai et al. 2013;
Lee et al. 2015).

TEM

Detailed morphologic and structural characterizations of
ZnO and AZO photocatalysts were investigated by transmis-
sion electron micrographs (TEM). TEM micrographs were
obtained at 50 nm resolution.

The synthesized nanoparticles were observed to have
quasi-spherical shapes and some elliptical geometries. All
the images show aggregation of nanoparticles, which are
closely bound to each other. The average particle size was
around 25.50 for ZnO, 17.40 nm for AZO-2 and 24.18 nm
for AZO-4, as calculated from TEM images using ImageJ
software (Fig. 5). The distance between the two adja-
cent planes, estimated from the lattice fringes, is found
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Fig.5 TEM images of synthe- (a)
sized a ZnO, b AZO-2, ¢ AZO-
4, d HR-TEM image showing
[hkl] planes of ZnO in AZO-4

(b)

to be 0.113 nm corresponding to (023) plane spacing and
0.124 nm corresponding to (201) plane spacing of ZnO.

Raman spectroscopy

Raman spectroscopy is an important technique in which sam-
ple is interacted with light to probe the defects and impurities.
The measurements were performed at room temperature for
all the samples and patterns as shown in Fig. 6. A shift in the
Raman spectra could be related to the defects (surface impu-
rities or oxygen deficiency) or structural disorder (Shah et al.
2019). The Raman scattering result of synthesized un-doped
ZnO nanoparticles was compared with Al-doped ZnO. The
fundamental phonon resonance wave numbers reported for
ZnO optical modes are E, (low)=100 cm~!, B;; =273 cm™},
2B,=331 cm™%, A;(TO)=380 cm™, E, (high)=440 cm~! and
E,(LO)=580 cm™! (Tripathy and Kim 2018). The most intense
peak is located at approximately 440 cm™' and it is associated
with the high frequency branch of ZnO’s E, (high) mode. This is
the characteristic peak for ZnO in the wurtzite crystal structure.
This peak is noticed to be shifted to lower wavenumber values of
436 cm™~! and 433 cm™! with increase in Al doping is attributed
to a lattice distortion caused by the substitution of AI** with Zn**
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Fig.6 Raman spectra of ZnO and AZO catalysts
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in the ZnO lattice (Efafi et al. 2014). The Al doping in the ZnO
lattice causes the FWHM increase for the E, (high) mode. The
mode at 273 cm™! corresponds to the silent B;; mode which is
disorder activated raman scattering. This peak, which has been
shifted to a lower wavenumber value, can be attributed to intrinsic
host lattice defects in ZnO, where the defect has become acti-
vated vibrating complex due to Al incorporation (Bundesmann
et al. 2003). Peak at 331 cm~! and a small shoulder at 380 cm™!
arises due to 2E, and A, (TO) modes respectively. The defect
formation in ZnO and doped ZnO can be attributed to the peak
at 580 cm™! caused by E,(LO) mode. Zhang et al. compared the
relative intensities of E,(high) and E;(LO) modes and found that
a higher ratio of E;(LO)/E,(high) intensities results in the forma-
tion of more defects (Zhang et al. 2008).

Photodegradation studies

The photocatalytic activities of the Al-doped ZnO (AZO) were
studied by measuring the degradation of indigo carmine (IC) and
azocarmine G (AcG) under sunlight irradiation. All of the experi-
ments were carried out between 9 a.m. and 1 p.m. in September,
when the average temperature was just above 30 degrees celsius
and the UV index for the month was reported to be 9. IC and AcG
were chosen as model dyes because they are non-biodegradable
organic pollutants. The stock solution was prepared by adding
50 mg of the dyes in 1000 mL of double distilled water. The dye
solutions with concentrations of 10, 20, and 30 mg/L were pre-
pared by diluting the stock solution with deionized water. ZnO
and AZO photocatalysts were added to 50 mL of these solutions.
Before exposing it to solar light, this aqueous solution was mag-
netically stirred for 20 min in the dark to eliminate the effect of
surface adsorption of dyes by the catalyst and to ensure a uniform
suspension of the catalyst in the solution. A certain amount of ali-
quot was extracted using a syringe at a fixed time interval of 20 min
and immediately centrifuged so that metal oxide particles settled
at the bottom. The residual concentration of dyes in the solution
was used to measure the photocatalytic activity of the synthesized
catalyst. The degradation efficiency of dyes was measured using
spectrophotometric analysis. The absorbance of IC and AcG was
measured by using UV—Visible spectrophotometer (Biochrom,
Libra). The maximum wavelength of absorbance A, for IC
and AcG is 610 and 540 nm. After irradiation with visible light,
the degradation rate was calculated by computing the change in
absorbance at the wavelength of maximum absorbance.

The degradation efficiency of the dye is calculated using

Eq. (6):
—A,

A
% Degradation = (6)

0
where A, represents the initial absorbance of dye before
irradiation and A, represents absorbance after irradiation
time ‘t.”

Effect of Al doping on ZnO: degradation, mechanism

This work studied the photocatalytic activity of ZnO, AZO-2
and AZO-4 on the photodegradation of industrial dyes, namely
indigo carmine (IC) and azo carmine G (AcG). With increas-
ing doping concentration, the optical band gap was found to
be decreased from 3.02 to 2.96 eV. Such a narrowing in the
band gap after adding Al may be attributed to Zn’s higher elec-
tronegativity than Al’s. This difference in electronegativity cre-
ates defects sites in the ZnO due to incorporating AI’* (Islam
et al. 2019). These defect sites form extended defect levels,
which results in band gap narrowing by shifting the valance
band upward and the conduction band downward. This band
gap narrowing causes more charge carriers to take part in the
photocatalytic reaction, improving photocatalytic efficiency.

The effect of Al doping on the degradation of IC and AcG
was studied using an invariable dosage of undoped ZnO,
along with AZO-2 and AZO-4. The catalyst load was kept
at 0.15 g/L, and dye concentrations were 10 ppm. The results
showed an increase in photodegradation ability with increased
doping. In the case of IC, the degradation rate achieved with
7Zn0 was ~46% after 140 min, whereas for AZO-4,~97% of
IC dye was degraded. AZO-2 was able to degrade ~ 65 of IC
at the same time. For AcG, ZnO degraded ~69%, whereas
AZO-2 and AZO-4 degraded ~ 75 and ~99% of AcG, respec-
tively. This enhancement in the peak reduction was attributed
to the reduced band gap of the doped catalyst and incorpora-
tion of Al providing the trap states, resulting in reduced e™ and
h* recombination rate. Figure 7a and b show the obtained
results for the variation in Al doping on the degradation of IC
and AcG respectively. Table 3 shows the % degradation of IC
and AcG obtained by considering change in area under the
curve for ZnO and AZO catalysts.

Effect of operating parameters on the degradation
of dyes

Catalyst loading

The effect of catalyst dose on the efficiency of dye degradation
was studied by varying the AZO-4 catalyst dosage from 0.10
to 0.20 g/L by keeping the concentration of dyes constant at
10 ppm. Results showed that the photodegradation of both the
dyes was considerably influenced by photocatalyst dose. The
photocatalytic activity significantly increased with increasing
catalyst loading, and the optimum dye degradation performance
was achieved with a 0.15 g/L catalyst loading. The catalyst
loading of 0.1 g/L resulted in ~ 88% degradation of both IC and
AcG dyes. The maximum degradation of ~97% was obtained
with 0.15 g/ AZO-4 dosage for IC, and the same amount of
catalyst resulted in~93% degradation of AcG dye.

Further increase in dosage amount negatively impacted
the degradation of both the dyes, where IC and AcG could be
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Fig.7 a The degradation of IC by a ZnO, b AZO-2, ¢ AZO-4, d degradation efficiency. b The degradation of AcG by a ZnO, b AZO-2, ¢ AZO-

4, d degradation efficiency

Table 3 Effect of Al doping: degradation calculated using area under
the curve

Catalyst % degradation using area % degradation using
under the curve for IC area under the curve
for AC
Zn0O 44.44 68.13
AZO-2 65.15 77.88
AZO-4 91.35 98.21

degraded to~84 and ~75%, respectively. Suppose an adequate
amount increases the catalyst load. In that case, more active sites
will enhance the generation of electron-hole pairs and, thus, the
formation of hydroxyl radicals and superoxide anions responsible
for increased photodegradation efficiency (Rajput et al. 2022).
On the other hand, increased catalyst loading harmed the photo-
catalytic efficiency and caused the degradation rate constant to
decrease. This can be explained by the fact that the catalyst par-
ticles undergo particle—particle interaction producing a screening
effect, which prevents photons from reaching the photocatalyst
surface, decreasing photodegradation efficiency (Nguyen et al.
2022; Kalita et al. 2022). Figure 8a, b show the obtained results
for the variation in catalyst loading on the degradation of IC and
AcG using AZO-4 as a photocatalyst. Table 4 shows the % deg-
radation of IC and AcG obtained by considering change in area
under the curve for varying AZO-4 loading.

Dye concentration

To investigate the effect of initial dye concentration on the
degradation of IC and AcG, dye concentrations were varied
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from 10 to 30 ppm with constant AZO-4 loading of 0.15 g/L.
Figure 9 shows the effect of initial dye concentration on deg-
radation of IC and AcG. It was found that the % degradation
was inversely proportional to dye concentration. At an initial
concentration of 10 ppm with 0.15 g/L. AZO-4 loading, the
maximum degradation of 96.67% was obtained, while at an
initial concentration of 30 ppm, the degradation was mini-
mum at 24.27% for IC. Similar results were obtained in the
case of AcG, with maximum degradation at 10 ppm being
99%, which then decreases to 69% for 30 ppm. According
to the literature, at lower dye concentrations, the oxidizing
radicals are in excess, oxidizing a greater amount of dye
available in the solution and resulting in maximum dye
degradation (Neppolian et al. 2002; Fereidooni et al. 2022).
However, the availability of oxidizing species decreases as
dye concentrations exceed the optimal level, resulting in less
degradation (Bagal et al. 2022). In the case of AZO-4 parti-
cles, as the quantity of contaminant molecules near the cata-
lyst surface rises as dye concentrations rise, additional reac-
tive species (HO" and'O,-) are needed. Due to the limited
number of active sites, the amount of oxidizing agents in the
solution is insufficient to absorb HO  and O, molecules. As a
result, increasing the dye's initial concentration reduces the
possibility of dye molecules interacting with oxidizing spe-
cies. It is worth noting that intermediates formed during the
process may cause side reactions and absorb free radicals in
the solution (such as HO radicals). As the dye concentration
increased, the competition for free radicals between dye mol-
ecules and intermediates reduces process efficiency, which
leads to lower degradation efficiency. Table 5 shows the %
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Fig.8 a The effect of catalyst loading on the degradation of IC by AZO-4,a 0.1 g/L, b 0.15 g/L, ¢ 0.2 g/L, d degradation efficiency. b The effect
of catalyst loading on the degradation of AcG by AZO-4,a 0.1 g/L, b 0.15 g/L, ¢ 0.2 g/L, d degradation efficiency

Table 4 Effect of catalyst loading: degradation calculated using area ~ degradation of IC and AcG obtained by considering change

under the curve in area under the curve for varying initial dye concentrations.
Catalyst load- % degradation using area % degradation using
ing g/L. under the curve for IC area under the curve pH effect

for AcG
0.1 86.05 8916 pH is an important parameter in photocatalytic dye decol-
0.15 91.35 0801 orization since it affects dye reaction rates in a variety of
02 8011 77.62 ways. Because catalyst surface charge is affected by the

pH of a solution, pH can influence dye adsorption on the

(a) 0.40 - 0.8 (b)

—— 0 min 0.14 ——0 min 028 0 min
035 @ 0.7 ®) 20 mins (@) =20 mins (b) 20 mins
_ —_ —— 40mins —~0.12 4omins |~ 024 —— 40mins
= 030 = 06 ——— 60 mins : 60 mins = =60 mins
< ) =80 mins =< 0.10 80 mins < 80 mins
3 0.25 ——100mins| T 0.5 100 mins < ——100 mins | 5 0.20 =100 mins
o 120 mins | S 120 mins S 0.08 120 mins | S 120 mins
E 0.20 —— 140 mins E 0.4 = 140 mins E —— 140 mins E 0.16 = 140 mins
0.06
§ 0.15 § 03 § § 0.12
2 2 £ 0.04 2 .08
< 0.10 < 02 < <™
0.05 0.1 0.02 0.04
0.00 4 0.0 0.00 0.00
400 450 500 550 600 650 700 750 800 400 450 500 550 600 650 700 750 800 400 450 500 550 600 650 700 400 450 500 550 600 650 700
- Wavelength (nm) Wavelength (nm) Wavelength (nm) Wavelength (nm)
—0mi 100 —-— —
wl© _ZOmr:;ns @ ;g gs: 0.424(c) 0 min 100 ) 10 ppm
. 90 —.— 20 mins —8—20 ppm
~ 0.9 ==40mins =30 ppm e 40miin. 90 pp
E] 60 mins 80 036 ing =30 ppm
: 0.8 ; = F 60 mins 80
< —somins [ £ = 80 mins g
;’ 0.7 100 mins|| S < 0.30 100 i £ 70
5] ——120 mins | & 60 8 IZOm!m = 60
£ 06 —— 140 mins | % = 024 mnsl g
2 o0s gbso - ——omins| % o
& o0
g 04 2 § 0.18 % 40
d
Z 03 X 30 Zon X3
0.2 20 20
0.1 10 0.06 10
0'0400 450 500 550 600 650 700 750 800 00 20 40 60 80 100 120 140 0.00 0
50 500 55 S S Time (minutes) 400 450 500 550 600 650 700 0 20 40 60 80 100 120 140
ime (minutes . N
Wavelength (nm) Wavelength (nm) Time (minutes)

Fig. 9 a The effect of IC dye concentration on the degradation by AZO-4, a 10 ppm, b 20 ppm, ¢ 30 ppm, d degradation efficiency. b The effect
of AcG dye concentration on the degradation by AZO-4, a 10 ppm, b 20 ppm, ¢ 30 ppm, d degradation efficiency

Jaxe ¢LLoJl & .
e ) Springer



Applied Nanoscience

Table 5 Effect of dye concentration: degradation % calculated using
area under the curve

Dye concentra- % degradation using area % degradation using

tion (ppm) under the curve for IC area under the curve
for AcG

10 91.35 98.21

20 47.08 77.85

30 21.12 67.94

semiconductor’s surface and also the generation of hydroxyl
radicals (Anne et al. 2002; Paul et al. 2019). Two factors
stand out when studying the effect of pH on photocatalytic
dye degradation. One, industrial pollutants may not be neu-
tral. Second, the pH of the reaction mixture influences the
photocatalysts' surface-charge properties (Chakrabarti and
Dutta 2004). The effect of pH on the photocatalytic per-
formance is explained by electrostatic forces between the
catalyst and dye. Dye degradation is maximum around the
point of zero charges (pHpzc), estimated at~pH 7 using the
previously reported method. Means at this pH, the catalyst's
surface is neutral or has no charge (Yang et al. 2004; Zhu
et al. 2012).

At a pH lower than 7, the surface of the photocatalyst
is positively charged, resulting in cation repelling/anion
attracting. At a pH higher than 7, the surface attains a
negative charge due to the absorption of hydroxyl ions,
and the surface becomes anion-repelling/cation-attracting
(Rafiq et al. 2021). Since IC and AcG both are anionic
dyes, their negative ions will get adsorbed on a positive
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surface of the catalyst, achieved at pH below 7, result-
ing in improved degradation of both dyes under neutral to
acidic conditions. However, at pH 9, the anions of the dye
interact with the negative surface of the catalyst, which
results in coulombic repulsion between the dye and cata-
lyst, resulting in reduced degradation efficiency of IC and
AcG under basic conditions.

The degradation studies were carried out at three dif-
ferent pH values of 4, 6.5 and 9 and by keeping a constant
catalyst load at 0.15 g/L and dye concentration at 10 ppm.
Figure 10 shows the effect of pH on degradation of IC
and AcG. The results show that increasing the pH value
decreases the rate of degradation and photocatalyst effi-
ciency. In the case of IC, at acidic pH of 4, the degrada-
tion rate was found to be ~97% after 140 min. At the pH
of double distilled water (6.5), ~97% dye was degraded,
while pH 9 resulted in ~65% degradation in 140 min. The
degradation obtained after 60 min for pH 4, 6.5 and 9
were 50%, 48% and 39%, respectively. For AcG, at acidic
pH of 4, the degradation rate was ~98% after 140 min,
whereas ~99% and ~83% degradation was obtained
at pH 6.5 and 9 respectively. The degradation obtained
after 60 min for pH 4, 6.5 and 9 were 79%, 54% and 49%,
respectively. Hence, it can be concluded that the degrada-
tion rate of anionic dyes is faster in an acidic medium and
AZ0O-4 was efficient in the degradation of dyes in neutral
as well as acidic conditions. Table 6 shows the % degrada-
tion of IC and AcG obtained by considering change in area
under the curve for varying pH values.
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Fig. 10 a The effect of pH on the degradation of IC at pH values a 4, b 6.5, ¢ 9, d degradation efficiency. b The effect of pH on the degradation

of AcG at pH values a4, b 6.5, ¢ 9, d degradation efficiency
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Reaction kinetics

To estimate the photocatalytic reactivity of the samples
regarding degradation of IC and AcG, a pseudo-first-
order kinetic model was tested for optimized parameters
with 0.15 g/L catalyst loading and 10 ppm dye concentra-
tion for all 3 catalysts. From the R? values, the reactions
were found to be following first-order kinetics, which is
generally expressed by Eq. (7).

Ao
ln(z> = kt )

Where A, is the initial absorbance of dye, A, is absorb-
ance after time ‘t’, and the slope of the In(Ay/A,) vs. time
plot gives the value of ‘k’, which is the rate constant
(min_l) for the reaction. The higher value of ‘k’ corre-
sponds to better photocatalytic activity (Dong et al. 2017).
The results in Table 7 can be used to deduce two facts:
The first is ZnO’s low photocatalytic activity, which can
be attributed to faster electron—hole recombination; the
second is increased photocatalytic activity of Al doped
ZnO, that can be attributed to the transfer of photogen-
erated electrons from the ZnO’s CB to Al trap sites, which
limits electron—hole recombination (Mendoza-Mendoza
et al. 2018; Kadam et al. 2018). Figure 11 shows the first-
order kinetic curves for the degradation of IC and AcG
using ZnO and AZO catalysts.

Table 6 Effect of pH: degradation % calculated using area under the
curve

The photodegradation activity of photocatalysts regard-
ing rate constant (k) and linear regression coefficient (R?)
have been studied with both IC and AcG dyes. The values
of k and R?are summarized in Table 7.

Mixed dye effect

To check the effectiveness of the AZO-4 on the mixture of
dyes, degradation experiments were performed by taking
a mixture of both dyes with the optimized catalyst loading
of 0.15 g/L. Since, on an industrial level, the discarded
wastewater may contain a mixture of the dyes, we wanted
to explore this new idea of mixing the dyes and check-
ing its effect on degradation. Complete degradation was
obtained with the dye mixture, proving the effectiveness
of synthesized photocatalysts. Figure 12 shows the absorb-
ance spectra and degradation efficiency of dye mixture by
using AZO-4 catalyst.

It is worth noting that the absorbance value after mixing
the dyes changed concerning both dyes, while the wave-
length of maximum absorbance coincided with that of the
IC. It can be suggested that after mixing the dyes, they did
not chemically react with each other but formed a uniform
suspension.

Table 7 Summary of pseudo-first-order rate kinetics for the degrada-
tion of IC and AcG

Catalyst Indigo carmine Azocarmine G

- - - - Rate Linear regres- Rate Linear regres-
PH % degradation using area % degradation using constantk  sion coeffi- constantk  sion coefficient
under the curve for IC area under the curve (min™) cient (R?) (min™!) (R?)
for AcG
4 02,86 99,37 ZnO 0.00436 0.99078 0.00826 0.99413
65 01 '35 98.21 AZO2 0.00727 0.99413 0.01136 0.99069
’ ' ’ AZO 4 0.01836 0.98165 0.01833 0.95478
9 63.52 82.74
Fig. 11 The first-order reaction 3.0 -
kinetics of ZnO and AZO for 3.01 (a) ZnO ‘l (b) Z»0 ‘l
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Fig. 12 The effect of the
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Degradation mechanism

When the photons of energy more than or equal to the band
gap of the photocatalyst incident on it, the electrons (e™) in
the valence band get excited, and they move to the conduc-
tion band, leaving behind a hole (h*) in the valence band.

Zn0 + hv = ZnO(h*)yy + ZnO(e” ) cp

where hv is the energy required to transfer the electron
from the valence band to the conduction band. The valence
band undergoes an oxidation reaction where photo-induced
holes can get trapped by H,O molecules or surface hydroxyl
groups on the photocatalyst resulting in the production of
hydroxyl radicals (Sohrabnezhad and Seifi 2016). At the
same time, the reduction reaction occurs at the conduction
band, where electrons react with oxygen molecules in the
vicinity of the reaction atmosphere, producing superoxide
anions (Han et al. 2012). It can be written as:

H,0 < (H" + OH ) + h*, — H* + HO

(VB)

OH™ + I}, — HO

ecp T 0, - -0;

These superoxide radicals subsequently react with H,0
molecules to produce hydroperoxyl radical (HO,). Two
hydroperoxyl radicals combine to form hydrogen peroxide
H, 0, which then converts to hydroxyl radical, a strong oxi-
dizing agent responsible for the degradation of dye (Jong-
navakit et al. 2012). The reaction can be written as follows:

05 + H,0 - HO, -»"% H,0,

Pielase clla)l auan .
KACST 3.015lq rogle Ll @ Springer

Time (minutes)

Finally, dye molecules will get oxidized to yield carbon
dioxide and water as follows:

dye + HO + O, — degradation products (H,0 + CO,)

The mechanism for the photocatalytic degradation by
AZO photocatalyst under solar irradiation is shown in
Fig. 13.

The photo-excited electrons in the conduction band are
very unstable. They easily return to the valance band and
recombine with the hole. This reduces the photocatalytic
reaction’s quantum yield. Metal doping can improve pho-
tocatalytic efficiency by reducing the charge carrier recom-
bination rate. Dopant atoms act as charge traps by creating
localized electronic states for the photogenerated charge
carrier, enhancing the mean lifetime (Park et al. 2015). The
trapped charges transfer to the catalyst's surface and react
with the dye molecules increasing photocatalytic efficiency
by suppressing the electron—hole recombination.The find-
ings of this study are compared with previous works on the
degradation of indigo carmine and azocarmine G and brief
summary is given in the Table 8.

Conclusion

Zn0 and Al-doped ZnO nanoparticles with wurtzite hex-
agonal structure were successfully synthesized by Glycine-
Nitrate auto-combustion route and synthesized catalysts
showed extraordinary photocatalytic performance in the
degradation of indigo carmine and azocarmine G dyes
under sunlight. The crystallite size was between 10 and
20 nm, as calculated from XRD data. UV-VIS spectra
revealed that the bandgap of synthesized nanoparticles
varied between 2.96 and 3.02 eV. The enhanced photo-
degradation performance can be attributed to the reduc-
tion in crystallite size, band gap, as well as presence of
excess oxygen vacancies and Zn interstitial sites in the
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Fig. 13 Schematic design of
dye degradation using AZO as
photocatalyst
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Table 8 Comparison of experimental conditions for the degradation of indigo carmine and azocarmine G in several works

Catalyst Dye Dosage (g/LL)  Source Synthesis technique ~ Dye conc. Exposure % Degra- References

(ppm) time (min)  dation
Zn0-Al (4%) IC 0.15 Sunlight  Glycine nitrate 10 140 97 This work
CA-CNT/TiO, IC - uv Electrospinning 10 180 99 Salama et al. (2018)
CoFe,0,/Sn0O, IC 0.1 uv Sonochemical 20 120 55 Abouseada et al. (2022)
Ag/ZnO IC 1.0 Vis Coprecipitation 10 120 95 Kumar et al. (2022)
Zn0O/Zn IC - UV-C Hydrothermal 60 99 Yudasari et al. (2021)
WO,/CeO, IC 2.0 Vis Coprecipitation 3 120 30 Channei et al. (2021)
Zn0O-Al (4%) AcG  0.15 Sunlight  Glycine nitrate 10 140 99 This work
Polysterene/ZnO  AcG 0.5 Sunlight  Electrospinning 10 720 95 El-Samak et al. (2022)
PANI-BiYTi,0; AcG 2.0 Vis Solid state mixing 20 330 97 Luan et al. (2017)

nanoparticles as determined by PL spectroscopy. TEM
analysis showed that the synthesized ZnO nanoparticles
were quasi-spherical in shape, with particle size averaging
between 17 and 25 nm. Photodegradation studies revealed
that maximum degradation was observed when dye con-
centration was 10 ppm and catalyst loading was 0.15 g/L,
and degradation achieved was 97 and 99% for indigo car-
mine and azo carmine G, respectively. The pH of the dye
solution was found to be a very effective parameter, result-
ing in faster degradation in acidic pH for both the dyes.
Kinetic studies revealed that photodegradation reactions
followed pseudo-first-order kinetics.
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