
QATAR UNIVERSITY

COLLEGE OF ENGINEERING

USING CONTEXT SPECIFIC GENERATIVE ADVERSARIAL NETWORKS FOR AUDIO

DATA COMPLETION: MUSICAL INSTRUMENTS CASE STUDY

BY

MARINA FAWZI FARAH MAAYAH

A Thesis Submitted to

the College of Engineering

in Partial Fulfillment of the Requirements for the Degree of

Masters of Science in Computing

June 2023

© 2023. Marina Fawzi Farah Maayah. All Rights Reserved.



COMMITTEE PAGE

The members of the Committee approve the Thesis of

Marina Fawzi Farah Maayah defended on 28/05/2023.

Dr. Abdulaziz Al-Ali
Thesis Supervisor

Dr. Abdelhak Belhi
Thesis Co-Supervisor

Dr. Yin Yang
Committee Member

Dr. Junaid Qadir
Committee Member

Dr. Khaled Shaban
Committee Member

Approved:

Khalid Kamal Naji, Dean, College of Engineering

ii



ABSTRACT

Maayah, Marina, F., Masters : June : 2023, Masters of Science in Computing

Title: Using Context Specific Generative Adversarial Networks for Audio Data Com-

pletion: Musical Instruments Case Study

Supervisor of Thesis: Dr. Abdulaziz Al-Ali.

Audio quality plays an essential role in several applications ranging from music to voice

conversations. Sound information is subject to quality loss caused by reasons such as

intermittent network connections, or storage corruption. Recent approaches resorted

to using GANs for audio reconstruction due to their successful deployment in visual

applications. However, more often than not audio datasets include sounds from dif-

ferent contexts which increase the complexity of the patterns to be learned, leading

to sub-optimal quality reconstruction. We propose a novel audio completion pipeline

which clusters audio based on similarity and trains a dedicated specialized GAN for each

context separately. The proposed technique is compared with the traditional method of

training one general GAN in completing 200ms missing segments of 1 second audio

samples. Experimental results on a public benchmark dataset show that using special-

ized GANs led to a clear improvement in the completion quality while reducing training

convergence times.

iii



DEDICATION

To my mother soul, for her endless Love.

iv



ACKNOWLEDGMENTS

First and foremost, praises and thanks to Allah the Almighty, for his unending grace and

mercy throughout the writing of this thesis.

My most profound appreciation goes to Doctor Abdulaziz Al-Ali and Doctor

Abdelhak Belhi, my advisors and mentors, for their time, effort, and understanding

in helping me succeed in my studies. Their vast wisdom and wealth of experience

have inspired me throughout my studies. To conclude, I’d like to thank my father, my

brothers and sisters for their faith in me, my husband, and my children It would have

been impossible to finish my studies without their unwavering support over the past few

years.

v



TABLE OF CONTENTS

DEDICATION ........................................................................................................... iv

ACKNOWLEDGMENTS.......................................................................................... v

LIST OF TABLES ..................................................................................................... viii

LIST OF FIGURES ................................................................................................... x

Chapter 1: Introduction.............................................................................................. 1

1.1. Problem Statement ......................................................................................... 2

1.2. Research Questions ........................................................................................ 3

1.3. Contribution .................................................................................................... 4

1.4. Document Overview ....................................................................................... 5

Chapter 2: Background.............................................................................................. 6

2.1. Sound .............................................................................................................. 6

2.2. Audio representation and analysis .................................................................. 7

2.2.1. Sound waveform ....................................................................................... 7

2.2.2. Mel spectrogram ...................................................................................... 8

2.3. Deep Neural Networks.................................................................................... 10

2.4. Encoder-Decoder ............................................................................................ 11

2.5. Generative Adversarial Networks ................................................................... 12

2.6. Convolutional Neural Network ....................................................................... 14

2.6.1. CNN layers ............................................................................................... 15

2.6.2. Loss function ............................................................................................ 16

2.7. Clustering........................................................................................................ 18

2.7.1. K-means clustering................................................................................... 18

2.7.2. Agglomerative clustering.......................................................................... 19

vi



Chapter 3: Literature review...................................................................................... 21

3.1. Visual data ...................................................................................................... 21

3.2. Sound data....................................................................................................... 23

Chapter 4: Proposed Method ..................................................................................... 26

4.1. Audio data representation ............................................................................... 27

4.2. Clustering audio .............................................................................................. 28

4.3. Training strategy ............................................................................................ 28

4.4. Cluster lookup and audio completion ............................................................ 29

Chapter 5: Experimental setup .................................................................................. 31

5.1. Datasets and pre-processing............................................................................ 32

5.2. Evaluation measures ...................................................................................... 33

Chapter 6: Results and discussions............................................................................ 34

6.1. Audio representations and clustering (RQ1 and RQ2) ................................... 34

6.2. Performance comparison of specialized GANs and general GAN (RQ3) ...... 37

6.3. Cluster lookup and validation on a different dataset (RQ4) ........................... 47

6.4. Computation cost (RQ5) ................................................................................ 49

Chapter 7: Conclusions and Future Work.................................................................. 54

References .................................................................................................................. 56

Appendix A: Audio Completion Quality Evaluation................................................. 65

vii



LIST OF TABLES

Table 3.1. Summary for the latest studies that used GANs to regenerate visual

data. .......................................................................................................................... 23

Table 3.2. Summary for the latest studies that used GANs to regenerate audio data. 25

Table 6.1. Silhouette score for the different combinations between clustering

model and feature extraction model. ........................................................................ 35

Table 6.2. The average MSE for 10 samples generated by the specialized GAN

(VGGish clusters) and by the general GAN. ............................................................. 40

Table 6.3. The average MSE for 10 samples generated by the specialized GAN

(Yamnet clusters) and by the general GAN. .............................................................. 40

Table 6.4. The average PSNR and the MSE of the three models. ............................ 41

Table 6.5. The average PSNR and MSE of the General-GAN, and Specialized-

GAN (with and without cluster lookup). .................................................................. 47

Table 6.6. The average PSNR and the MSE for Maestro dataset. ............................ 49

Table 6.7. Computation cost comparison between the general and specialized

GANs. ....................................................................................................................... 53

viii



LIST OF FIGURES

Figure 2.1. Audio waveform samples of different instruments. ............................... 8

Figure 2.2. Spectrograms samples of different instruments. .................................... 9

Figure 2.3. Mel spectrograms samples of different instruments. ............................. 10

Figure 2.4. Deep Neural Network (DNN) architecture [9]. ..................................... 11

Figure 2.5. A standard autoencoder’s internal structure. ......................................... 12

Figure 2.6. General GAN architecture. .................................................................... 13

Figure 2.7. Example for encoder-decoder network with a multi-scale GAN used

in [17]. ...................................................................................................................... 14

Figure 4.1. The system pipeline. In the first step, the sound is separated into small

sound segments and converted into spectrograms that are fed to a CNN model

for feature extraction. After that, the sounds are clustered using agglomerative

clustering. During training, the center part of each sound sample is removed and a

specalized-GAN is trained to reconstruct the missing part. The last step is where

we do the cluster lookup and audio completion as shown in Fig. 4.3........................ 26

Figure 4.2. Context-Encoder Generative Adversarial Network architecture. ........... 29

Figure 4.3. Cluster lookup and completion process. ................................................ 30

Figure 6.1. 2-dimensional TSNE visualization of clusters generated by an agglom-

erative clustering method with VGGish features (A), and based on the musical

instrument’s class (B). ............................................................................................... 36

Figure 6.2. 2-dimensional TSNE visualization of clusters generated by an ag-

glomerative clustering method with Yamnet features (A), and based on the musical

instrument’s class (B). ............................................................................................... 36

ix



Figure 6.3. The distribution of instruments over clusters when using VGGish

features. ...................................................................................................................... 37

Figure 6.4. The distribution of instruments over clusters when using Yamnet

features. ..................................................................................................................... 38

Figure 6.5. The average PSNR for 10 samples generated by the specialized GAN

(VGGish clusters) and by the general GAN. ............................................................. 39

Figure 6.6. The average PSNR for 10 samples generated by the specialized GAN

(Yamnet clusters) and by the general GAN. .............................................................. 40

Figure 6.7. User study results of a comparison between the quality of two gener-

ated sounds one by general GAN and one by specialized GAN with reference to

ground truth. ............................................................................................................. 42

Figure 6.8. Reconstruction sample results, two samples from each cluster. ............ 46

Figure 6.9. Reconstruction sample results after applying cluster lookup. (A) is

the original audio, (B) masked audio, (C) audio generated by general GAN (D)

audio generated by specialized GAN after cluster lookup. ...................................... 48

Figure 6.10. Reconstruction sample results for Maestro audio signals after the

completion. (A) is the original audio, (B) masked audio, (C) audio generated by

general GAN (D) audio generated by specialized GAN after cluster lookup. .......... 50

Figure 6.11. The generated spectrogram from the General GAN every 50 epochs

up to 300 epochs. ...................................................................................................... 51

Figure 6.12. The generated spectrogram from the Specialised GAN every 50

epochs up to 300 epochs. .......................................................................................... 52

x



LIST OF ABBREVIATIONS

Adam Adaptative Moment Estimation

CEGAN Context Encoder Generative Adversarial Network

CNNs Convolutional Neural Networks

cGAN Conditional Generative Adversarial Network

DNN Deep Neural Network

DCGANs Deep Convolutional Generative Adversarial Networks

FFT Fast fourier transform

GANs Generative Adversarial Networks

MAE Mean Absolute Error

MSE Mean Squared Error

ODG Objective Difference Grading

OMP Orthogonal Matching Pursuit

ReLU Rectified Linear Unit

TTS Text-to-Speech

TF Time Frequency

WGAN Wasserstein Generative Adversarial Networks



CHAPTER 1: INTRODUCTION

Acoustic information is susceptible to defects for a myriad of reasons, includ-

ing but not limited to loss of data during transmission, data corruption while being

stored, or introduction of noise during recording. While several research groups sought

preventative measures for each of these causes, little effort was dedicated towards the

reconstruction of the missing and corrupted sounds after-the-fact. Audio reconstruction

has the advantage of targeting several of these causes in one solution; to restore damaged

or corrupted audio signals regardless of the cause.

Audio reconstruction works by reconstructing a damaged signal, so it is as close

to the original signal as possible. This process is done by leveraging the surrounding

context around the damaged part to rebuild the signal. If successful, such a solution

has a wide range of applications such as reconstructing music or noisy voice conversa-

tions, restoring damaged audio from old recordings, and potentially creating new music

variations such as introducing virtual instruments and sound effects. Audio reconstruc-

tion may also be used to improve speech recognition accuracy when considered as a

pre-processing step.

Many different approaches have been studied to accomplish data reconstruction

in general. Earlier methods resorted to traditional approaches such as applying the

Orthogonal Matching Pursuit algorithm using either a discrete cosine or Gabor dictio-

nary [1] or by using statistical measures from prior records along with data inpainting

and smoothing techniques [2]. Machine learning techniques have recently garnered

research interest for several tasks such as classification, regression and more recently

reconstruction of data. In particular, GANs have become popular for data generation

purposes. GANs are a type of deep learning models that can learn the distribution of a

1



given dataset in order to produce new similar samples. They have been demonstrated

to be particularly effective when it comes to the production of visual material [3]. In

order for GANs to produce good-quality samples, the presented data patterns need to be

consistent. GANs do not work properly when presented with visual or audio data from

a variety of contexts [4]. For instance, sounds that represent music are different from

those in human conversations. Moreover, produced sounds can greatly differ from one

musical instrument to another. Similarly, images can have different visual contexts [5].

Despite being an important factor for successful generation, current audio reconstruction

efforts do not target this problem leading to generated outputs that are of sub-optimal

quality.

Most studies focused on audio reconstruction using GANs or traditional models

without considering the complexity of the data and how it might affect audio generation

quality. To this end, we propose a new audio reconstruction pipeline that clusters audio

segments based on similarity prior to GAN training, and then proceeds with training a

group of specialized GANs; one for each context respectively. We found that using a

divide-and-conquer strategy to homogenize data led to better reconstruction quality and

faster convergence times.

1.1. Problem Statement

This thesis targets the reconstruction problem of damaged audio clips from

different audio contexts. We assume that a damaged audio clip, which has a small

portion (200 milliseconds) missing, is presented to the system. The goal is to reconstruct

the missing part such that it is as close to the original, which could be done by leveraging

the surrounding context around the missing part to generate the damaged signal.

2



One of the popular approaches to target image and audio reconstruction is the

use of GANs. However, despite showing promising results, training a GAN on a dataset

with a different context can be challenging and time-consuming, and the results may

not always be optimal. This thesis aims to mitigate the context variance problem by

proposing a divide-and-conquer solution which aims to reduce the complexity of the

pattern to be learned to produce higher quality results.

1.2. Research Questions

In this thesis, we tackle the problem of reconstructing audio of various contexts

by targeting the following research questions:

• RQ1: Which audio representations are most suitable for effective clustering?

• RQ2: Which clustering techniques are sufficient to generate good-quality audio

clusters?

• RQ3: How do the completion results of specialized GANs (one per cluster)

compare to a general GAN trained on the entire dataset?

• RQ4: How do specialized GANs perform when the cluster memberships of unseen

damaged sound clips are unknown? And can the trained models generalize well

even when tested on a different musical instrument dataset?

• RQ5: How does the training computation cost of specialized GANs compare to a

general GAN?

3



1.3. Contribution

This thesis contributes to the field of audio processing in three primary ways.

Firstly, a comprehensive framework is presented, aiming to reconstruct audio that has

been lost or damaged. This framework tackles the challenge of restoring audio quality

and surpasses the traditional methods of training GANs found in the existing literature.

By integrating a variety of techniques and approaches, this framework offers an efficient

solution for audio reconstruction, yielding superior results.

Secondly, this thesis analyzes the effect of using different data representations

and clustering techniques combinations for the purpose of identifying audio contexts.

Building upon this analysis, an innovative and effective method for audio data clustering

is proposed. This method considers the feature representation methods used to repre-

sent audio and examines how they can impact the quality of the resulting clusters. By

considering the influence of feature representation on cluster quality, this contribution

enhances the accuracy and effectiveness of audio data clustering. Additionally, guide-

lines are provided to assist in the selection of the most suitable clustering algorithm and

data representation for the audio reconstruction problem.

Third, the thesis evaluates the effectiveness of a specialized Generative Adver-

sarial Network (GAN) through specific qualitative and quantitative evaluation methods.

This evaluation provides valuable insights into the performance and potential applica-

tions of the proposed specialized GAN in audio generation and reconstruction tasks.

Together, these contributions advance the field of audio processing by suggesting

a comprehensive framework for audio reconstruction, introducing an effective method

for audio data clustering that considers the effect of feature representation, and eval-

uating the performance of a specialized GAN. The above contributions pave the path

4



towards developing more accurate and efficient audio reconstruction, clustering, and au-

dio generation techniques, benefiting various domains and applications involving audio

data.

1.4. Document Overview

This thesis will be divided into the following chapters:

• Chapter 2: provides an overview of the fundamental concepts along with the

background information that the proposed solution is based on.

• Chapter 3: contains a literature review of the current state of the art in data

reconstruction (visual and sound), with a focus on the strengths and weaknesses

of each approach.

• Chapter 4: illustrates thoroughly how our framework is used, as well as its

approaches, methods, algorithm, and implementation.

• Chapter 5: illustrates the physical setup we used in addition to our dataset and

explains more about the evaluation methods we utilized in this research.

• Chapter 6: presents all results achieved by the experiments are presented and

discussed.

• Chapter 7: draws the conclusion and future possible improvements.

5



CHAPTER 2: BACKGROUND

This chapter provides an overview of the fundamental concepts used in the

development of the proposed solution.

2.1. Sound

Sounds in life are different and can be differentiated because they vary in their

characteristics, such as Frequency, Amplitude, Timbre, Duration, Phase, and Direction-

ality; for example, a high-pitched, loud, short-duration sound with a sharp timbre. It

may be distinguishable from a low-pitched, soft, long-duration sound with a mellow

timbre. Since in this study, we applied our experiments over an instruments dataset, let

us focus more on the instruments’ sounds.

The sound of an instrument’s timbre is what makes it sound different from

other instruments. Vibrations are the primary determinants of an instrument’s timbre.

The essential vibration of a string is the amplitude of its vibration that determines its

pitch. The harmonics or overtones are additional vibrations that intersect with the

basic vibration. Because fundamental and harmonic vibration patterns are added on

top of each other, each instrument has a very unique vibration pattern. People hear

different timbres, or sound patterns, from these vibration patterns, even though the

pitch is the same. Harmonic numbers and power vary wildly between instruments.

Even instruments in the same category (e.g two guitars played by different musicians)

can have different timbres due to these different harmonics. Some instruments, such

as a guitar or piano, produce relatively simple, harmonic sounds with well-defined

frequencies. These instruments may be easier to reconstruct accurately because their

sound characteristics can be modeled more efficiently using techniques like Fourier

6



analysis. Other instruments, such as the saxophone or trumpet, produce more complex,

non-harmonic sounds with multiple harmonics and overtones. These instruments may

be harder to recreate accurately because their sounds are harder to model with simple

math. Furthermore, how an instrument is played can impact the reconstruction of

audio signals. Different ways to play a stringed instrument, like plucking or bowing,

can make the sound have different qualities that must be taken into account during the

reconstruction process. Overall, the type of instrument and how it is played can have a

big effect on how well audio signals can be reconstructed.

2.2. Audio representation and analysis

So far, we have many approaches used to analyze sound on a linear scale and

nonlinear scale [6]. In this section we will explain the different approaches.

2.2.1. Sound waveform

An audio waveform is a time-domain representation of sound, where the ampli-

tude of the wave at each point in time represents the intensity of the sound at that time.

This representation is useful for visualizing the waveform and for some basic processing

tasks, such as filtering [7]. Fig. 2.1 shows some samples of audio waveform from the

data set we used in this thesis.

7



Figure 2.1. Audio waveform samples of different instruments.

2.2.2. Mel spectrogram

A spectrogram is a frequency-domain representation of sound that shows how

the frequency content of the signal changes over time. It is a two-dimensional plot that

displays the frequency spectrum of the signal at different time intervals. Spectrograms

are useful for analyzing the frequency content of a signal and for identifying features

such as harmonics, formants, and other spectral characteristics, Fig. 2.2 shows some

spectrogram samples.

8



Figure 2.2. Spectrograms samples of different instruments.

A Mel spectrogram is a variant of a spectrogram that uses the Mel scale, which

is a perceptually-based scale of frequency that more closely matches human auditory

perception. The Mel scale is logarithmic, which means that the difference between two

adjacent points on the scale is proportional to the ratio of their frequencies. Mel spec-

trograms are commonly used in speech and music analysis, as they capture important

features of the sound signal that are relevant to human perception. Spectrograms are

useful for general analysis of the frequency content of a signal, while Mel spectrograms

are particularly useful for speech and music analysis where human perception is relevant.

In addition Mel spectrograms are smoother than waveform samples and easier to train

with a squared error loss since they are phase invariant throughout each frame [8]. In the

GAN training experiments carried out through this thesis, the Mel spectrogram repre-

9



sentation was used where we transform an audio dataset from waveform representation

to Mel spectrogram representation. This representation was used as input to train our

GAN models. Fig. 2.3 shows some samples of Mel spectrogram for audio clips from

the data set we used in this thesis.

Figure 2.3. Mel spectrograms samples of different instruments.

2.3. Deep Neural Networks

Deep Neural Network (DNN) is a type of Artificial Neural Network (ANN)

that has multiple layers between the input and output layers. The deep layers enable

DNNs to learn and extract more complex features from the input data than traditional

shallow neural networks, which have only one or two hidden layers as shown in Fig. 2.4.

DNNs have revolutionized the field of deep learning and have contributed to significant
10



advances in various areas of technology and science.

Figure 2.4. Deep Neural Network (DNN) architecture [9].

2.4. Encoder-Decoder

A Deep Neural Network (DNN) encoder-decoder is a type of neural network

architecture that is commonly used for tasks such as language translation, image cap-

tioning, and speech recognition. It consists of two main parts: an encoder network and

a decoder network [10]. The encoder network is responsible for encoding the input

data into a fixed-length representation, which is often referred to as a “latent code”

or “embedding”. The encoder network typically consists of several layers of neurons

that transform the input data into a high-dimensional vector epresentation. This vector

representation captures the most salient features of the input data and can be used to

generate the corresponding output data [10]. The decoder network takes the latent code

generated by the encoder network and uses it to generate the output data. The decoder

network typically consists of several layers of neurons that transform the latent code

into the desired output format. For example, in an image captioning task, the decoder

network might transform the latent code into a sequence of words that describe the

11



contents of the image. During training, the encoder-decoder network is optimized to

minimize the difference between the generated output and the ground truth output. This

is typically done using a loss function that measures the distance between the generated

output and the ground truth output Fig. 2.5.

Figure 2.5. A standard autoencoder’s internal structure.

2.5. Generative Adversarial Networks

A generative adversarial network is a machine learning model that is used to

generate synthetic data. It consists of two components: a generator (G) network and

a discriminator (D) network. The generator is trained to generate synthetic data that

is similar to the training data, while the discriminator is trained to distinguish between

real and synthetic data. The two networks are trained together, with the generator

network trying to generate data that is indistinguishable from the real data, and the

discriminator network trying to correctly classify the data as real or synthetic [11], [12].

This competition between the two networks drives the generator network to improve its

ability to generate realistic data as shown in Fig. 2.6, resulting in synthetic data that is

12



highly realistic and has a high level of detail. The concept of a min-max loss function

is used by all GANs to train the generator and the discriminator at the same time [11].

This means that the generator and the discriminator explicitly learn by maximizing the

discriminator loss function LD and minimizing the generator loss function LG [13], as

per the equation in 2.1.

min
G

max
D

Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[1− logD(G(z))] (2.1)

Where x ∼ pdata is the real data and z ∼ pz is the synthetic data that is generated

using the generator network. GANs have been used for a variety of tasks, including

image generation and audio synthesis. There are many different types of GANs that can

be used for audio reconstruction such as Context Encoder GAN (CEGAN) which is the

model we based our research on as detailed in section 4.3.

Figure 2.6. General GAN architecture.

CEGAN is a type of GAN architecture combined with Encoder-Decoder networks

that can generate realistic images by filling in missing or corrupted parts of an input

image. CEGAN was first introduced in a research paper in 2016 [14]. While CEGAN

13



was originally proposed for image inpainting, the concept of context encoding was also

applied to audio signals [15] [16], which is known as audio reconstruction. Context

Encoder Decoder GANs use an encoder to extract the features of the input data and a

decoder to generate the output data. The encoder-decoder architecture of the network

allows it to learn the structure of the input data which will be useful to generate the

missing parts of the data.

Figure 2.7. Example for encoder-decoder network with a multi-scale GAN used in [17].

2.6. Convolutional Neural Network

Convolutional Neural Network (CNN) is a type of neural network architecture

that is commonly used for image and video analysis tasks and lately, was applied to the

audio context, In a CNN [18], the input data is typically an image, audio, or a video,

which is processed through several layers of convolutional filters. These filters extract

features from the input data by performing a convolution operation, which involves

sliding a small window over the input data and computing the dot product between the

filter weights and the values in the window. The output of the convolutional layer is
14



then passed through one or more activation functions, such as ReLU (rectified linear

unit) or sigmoid, which help to introduce non-linearity into the network and make it

more expressive. After the convolutional layers, the output is typically flattened and

passed through one or more fully connected layers, which act as a classifier and make a

prediction about the input data. The output of the final layer is often passed through a

softmax function, which normalizes the output and produces a probability distribution

over the different classes. The key advantages of CNNs with audio are their ability

to extract local features from audio using 1D convolutional filters [19]. Prior to the

use of CNNs, audio data often required extensive feature engineering to extract useful

information from the raw signal [20], [21]. CNNs can learn to extract useful features

directly from the raw signal, eliminating the need for manual feature engineering. In

addition, CNNs can be trained to be robust to noise in the input signal, which can be

especially important in real-world scenarios where audio data is often corrupted by

environmental noise[22].

2.6.1. CNN layers

A typical CNN architecture consists of several layers, each of which performs a

specific function [18]. The mos commonly used layers in a CNN are:

• Input layer: This layer accepts the input data, which is typically an image or a 1D

signal such as audio.

• Convolutional layer: This layer performs convolutional filtering on the input data,

which helps to extract local features from the data. The output of this layer is

typically a set of feature maps.

• Activation layer: This layer applies an activation function to the output of the
15



convolutional layer, introducing non-linearity into the network and making it

more expressive. Common activation functions include ReLU (rectified linear

unit) and sigmoid.

• Pooling layer: This layer downsamples the output of the previous layer by tak-

ing the maximum or average value within a small region of the feature maps.

This helps to reduce the dimensionality of the data and make the network more

computationally efficient.

• Dropout layer (optional): This layer randomly drops out a certain percentage of

the neurons in the network during training, which helps to prevent overfitting and

improve generalization performance.

• Fully connected layer: This layer takes the output of the previous layer and passes

it through a set of fully connected neurons, which perform a classification task or

produce a regression output.

• Output layer: This layer produces the final output of the network, which could

be a class label (in the case of classification) or a numerical value (in the case of

regression).

Overall, the combination of these layers in a CNN architecture helps to extract local

features from the input data, perform hierarchical feature learning, and produce a final

output that is suitable for the given task.

2.6.2. Loss function

In machine learning, a loss function is a measure of how well a model is able to

predict the output for a given input [23]. The goal of training a model is to find the set

16



of parameters that minimize the loss function, thereby improving the accuracy of the

model’s predictions. Adam (Adaptive Moment Estimation) is a variation of the famous

stochastic gradient descent (SGD) used to update the parameters of a neural network

during training. Adam uses both the gradient of the loss function and the second moment

of the gradient to adaptively adjust the learning rate for each parameter. This allows

the algorithm to converge faster and more reliably than other optimization algorithms,

such as stochastic gradient descent [23]. The Adam optimization algorithm is typically

used in conjunction with a specific loss function, which depends on the problem being

solved. In our problem we use a combination between mean absolute error (MAE) and

mean squared error (MSE):

The mean absolute error (MAE) loss function, computes the absolute difference

between the predicted value and the true value and then takes the mean of all the

differences. Mathematically, it can be defined as:

MAE =
∑N

i=1 |Yi − Ŷi|

where N is the number of samples in the dataset, Y true is the true value, and Ŷ

is the predicted value.

The mean squared error (MSE) loss function, computes the squared difference

between the predicted value and the true value and then takes the mean of all the squared

differences. Mathematically, it can be defined as:

MSE =
∑N

i=1(Yi − Ŷi)
2

where N is the number of samples in the dataset, Y true is the true value, and Ŷ

is the predicted value.

17



2.7. Clustering

A clustering algorithm is a type of unsupervised learning algorithm used in

machine learning and data analysis to group a set of data points or objects into clusters

based on their similarity. The goal of clustering is to identify meaningful patterns or

structures in the data that can be used for further analysis or decision-making. There

are many different clustering algorithms, each with their own strengths and weaknesses

[24]. In this work, we used agglomerative clustering.

2.7.1. K-means clustering

K-means is a popular unsupervised clustering algorithm used in machine learning

to group similar data points into clusters based on their similarities [25], [26]. The

algorithm works by iteratively assigning each data point to the closest centroid and

updating the centroids based on the mean of the assigned data points until a stopping

criterion is reached. The basic steps of the K-means algorithm are as follows:

1. Initialize the centroids: Choose K initial centroids randomly from the data points.

2. Assign each data point to the closest centroid: Calculate the distance between each

data point and each centroid, and assign each data point to the closest centroid.

3. Update the centroids: Calculate the mean of the assigned data points for each

centroid, and update the centroid to the mean.

4. Repeat steps 2 and 3 until convergence: Iterate steps 2 and 3 until the assignment

of data points to clusters no longer changes or a maximum number of iterations is

reached.

18



The K-means clustering algorithm is commonly used for tasks such as image

segmentation, customer segmentation, and anomaly detection. One of the advantages of

K-means clustering is that it is fast and efficient for clustering large datasets. However,

K-means clustering can be sensitive to the initial choice of centroids and can converge to

local optima rather than the global optimum [25]. To address this, variants of K-means

clustering, such as K-means++, have been developed to improve the initialization of

centroids and increase the likelihood of convergence to the global optimum.

2.7.2. Agglomerative clustering

Agglomerative clustering is a hierarchical clustering algorithm used in machine

learning to group similar data points into clusters. The algorithm works by iteratively

merging the two closest clusters into a single larger cluster until a stopping criterion

is reached [27]. The resulting cluster hierarchy can be represented as a dendrogram,

which shows the sequence of merges that occurred during the clustering process. In

agglomerative clustering, the distance between two clusters is determined by a linkage

criterion, which can be one of several types:

• Single linkage: The distance between two clusters is defined as the minimum

distance between any two points in the two clusters.

• Complete linkage: The distance between two clusters is defined as the maximum

distance between any two points in the two clusters.

• Average linkage: The distance between two clusters is defined as the average

distance between all pairs of points in the two clusters.

• Ward linkage: The distance between two clusters is defined as the increase in the

19



sum of squared distances between the points in the two clusters when they are

merged.

Agglomerative clustering can be used for a variety of tasks, such as image

segmentation, document clustering, and gene expression analysis. One of the advantages

of agglomerative clustering is that it can handle different types of distance metrics

and linkage criteria, making it a flexible and versatile clustering algorithm. However,

agglomerative clustering can be computationally expensive for large datasets, as the

algorithm has to calculate the distances between all pairs of data points during each

iteration [27].

20



CHAPTER 3: LITERATURE REVIEW

Many studies have investigated GAN-based data reconstruction for images and

sounds using various methodologies. Our research will attempt to find a general pro-

cessing pipeline that uses GANs to reconstruct audio data. Although we mainly target

acoustic data, previous literature highlights similar GAN-based reconstruction tech-

niques for visual data. Thus, we categorize previous work according to the target data

type.

3.1. Visual data

The use of GANs for computer vision applications is very popular. In images,

when parts of an image are missing, GANs have been used to reconstruct the missing

parts so that they appear intact and believable to human audiences. In order to construct

matching patches, attention to contextual data is critical when training GANs. Typically,

the surrounding features of the missing regions are used as input during network training

to produce coherent fillings. This approach produces good results and was deemed useful

for reconstruction [28].

The contributions of [29] and [30] proposed an inpainting and character recog-

nition approach using an improved GoogLeNet and DCGANs. Their method was able

to inpaint and recognize occluded characters without knowing the precise locations of

corrupted sections. However, when large areas of original characters were obliterated

and critical parts were damaged, their approach was unable to recreate them.

In [17] and [31], researchers employed an encoder-decoder network with a multi-

scale GAN as shown in Fig. 2.7. Despite achieving a fast model, and some impressive

output, there remained other instances with unsatisfactory results. Another research

21



conducted in 2020 [32] used a similar technique, called PEPSI, that used a parallel

decoding approach. Their results show that the technique shortens the overall processing

time via a parallel decoding path and an effective joint learning scheme.

Another approach for reconstructing the missing parts in images was imple-

mented in [33]. They presented a Wasserstein GANs with new Discriminator and

Generator architectures as an improvement method and succeeded in building an appli-

cation to generate faces based on reference faces’ attributes.

Several others resorted to using special loss functions such as that of [34], [35]

which used a modified loss function by combining MSE loss function with MAE during

GAN training for having a better picture reconstruction. Similarly, the authors of [36]

suggested a semantic image reconstruction technique based on adversarial loss and a

self-learning encoder-decoder model. The authors argue that the structural integrity and

the clarity must be preserved in an effective picture restoration method. Other known

contributions include that of [37] which used a GAN-based approach for facial image

reconstruction, and the FiNet approach [38] where a generator network combined with an

encoder-decoder was used for filling in the gaps in fashion photographs, both delivering

good quality of reconstructed images. Table 3.1 summarizes the contributions of this

field.

Despite previous methods delivering good performance in image inpainting, the

algorithms require high computational cost resulting in long training times. In addition,

all the above methods considered training one GAN for the entire dataset except [5],

who presented a picture inpainting model for cultural images based on a divide-and-

conquer method. The basic idea is to group cultural images with similar visual contexts

and then train a generative model for each group. When the system is presented with

22



an incomplete image, it first determined the image’s category and then used the GAN

associated with that category to accomplish inpainting. Our work is inspired by this

contribution. However, we target the audio domain instead of the visual one which poses

new challenges.

Table 3.1. Summary for the latest studies that used GANs to regenerate visual data.

Reference Year Architecture used Dataset Evaluation
method

[28] 2018 WGAN with
contextual

attention layer

CelebA,
ImageNet, DTD

PSNR
Visualization
comparison

[5] 2019 Apply a divide-
and-conquer

strategy prior to
training DC GAN

WikiArt,
Metropolitan

Museum,
Rijksmuseum

Visualization
comparison,

Survey

[32] 2020 Encoder-decoder
network with a

multi-scale GAN

CelebA-HQ,
Place2

PSNR, SSIM,
Visualization
comparison

[35] 2022 Two adversarial
discriminators
were used in

GAN

CelebA,
CelebA-HQ

PSNR, SSIM,
Visualization
comparison

3.2. Sound data

Deep learning succeeded in generating synthesized sounds using models such

as SampleRNN [39] and WaveNet [40] with autoencoders [41], [42] based on the wave

features, while [8] synthesized speech. In the latter, Text-to-Speech (TTS) relied on

extracted Mel spectrogram features.

Filling the gaps in audio signals was introduced first by Adler et al. [43], they

developed a tool to reconstruct gaps in the audio, based on the OMP method to extract

23



the features from the audio domain and called it “audio inpainting”. The authors of [44],

[45] focused on exploiting TF sparsity to reconstruct audio signals. However, these

methods are only effective for inpainting short gaps that are less than 10ms. Therefore

researchers tried to develop more effective methods as done by [46] where they utilize

sparse modeling in the TF domain by developing a dictionary learning technique. This

technique learns the dictionary from reliable sections adjacent to the gap. They aimed

to achieve a signal representation that exhibits enhanced sparsity in the TF domain, but

even here, the maximum gap they could fill was (10 ms – 100 ms).

New techniques for inpainting audio were presented based on deep learning to

extract and learn the features. One of the most popular DL techniques that have been used

in inpainting is GAN. One of the studies that used GANs to reconstruct the missing part

of sounds considered the neighboring borders [47]. The research group used objective

difference grading (ODG) and magnitude spectrograms [15] as evaluation measures

which are also used in this work and described in section 5.2.

Other researchers were able to fill a larger gap in the audio as GACELA [15] and

VIAI [16]. In GACELA the idea is to use a Wasserstein cGAN that can restore missing

audio data with intervals ranging from hundreds of milliseconds to a few seconds. The

authors of VIAI successfully filled an 8 milliseconds gap in a 4 second audio-video

segment by creating synthetic versions of missing audio for videos that do not have it

using a semantic image inpainting model based on spectrogram audio features. There

are other studies that worked on inpainting audio using other models, such as DNN [48],

[49]. Table 3.2 summarizes the studies that targeted audio completion using GANs.

Despite showing some success, none of the previous studies examined the effec-

tiveness of training GANs in a similar “divide and conquer” fashion to Jaboor et al’s

24



image inpainting in [5] which was described in the previous section. This work inspired

us to investigate the feasibility of using a similar strategy on audio reconstruction while

using a contextual encoder-decoder GAN architecture such as that in [5].

Table 3.2. Summary for the latest studies that used GANs to regenerate audio data.

Refer-
ence

Year Architecture
used

Dataset duration Evaluation
method

[48] 2019 Context
encoder
decoder

NSynth 64ms ODG, SNRs

[47] 2020 WGAN PIANO,
SOLO,

MAESTRO

500 ms ODG, SNRs

[15] 2020 cGAN Built their
own dataset

375 to
1500 ms

ODG

[16] 2019 Generate
missing audio
segments that
correspond to

their
accompanying
videos using

WaveNet
decoder

MUSIC-
Extra-Solo

Not dis-
closed

SSIM, PSNR,
MSE, User study,

Visualization

25



CHAPTER 4: PROPOSED METHOD

After trying to reconstruct audio gaps with GANs trained on whole datasets,

we found that training took a long time, and results were not convincing. From this

point, we hypothesized that clustering samples into similar groups and training special

GANs for each group cluster rather than a single general GAN on the whole dataset may

lead to performance improvements. To this end, we propose an audio reconstruction

paradigm which applies the divide-and-conquer strategy to separate audio contexts prior

to training specialized-GANs for each context as summarized by Fig. 4.1. The system

is composed of four steps – namely, data representation, clustering, GAN training, and

audio completion which are discussed next.

Figure 4.1. The system pipeline. In the first step, the sound is separated into small
sound segments and converted into spectrograms that are fed to a CNN model for
feature extraction. After that, the sounds are clustered using agglomerative clustering.
During training, the center part of each sound sample is removed and a specalized-GAN
is trained to reconstruct the missing part. The last step is where we do the cluster lookup
and audio completion as shown in Fig. 4.3.

26



4.1. Audio data representation

Choosing the right data representation is of paramount importance since most

clustering approaches employ feature-dependent distance functions. As such, single-

instrument music files of a public dataset were first divided into 1-second clips and a

pre-trained model is used to extract the pertinent features. For the sake of completeness,

two popular audio pre-trained models were used; VGGish model [50] and Yamnet model

[51]. VGGish is a deep learning model developed by Google for audio classification

and feature extraction. It is based on the VGG architecture and was designed to classify

short audio clips of human speech and music. The model is trained on a large dataset

of audio recordings and can be used to extract features from audio recordings to use

in downstream applications such as audio classification, speech recognition, and audio

search. VGGish can be used to identify different types of sounds, such as speech,

music, and background noise. It can also be used to extract features such as pitch,

timbre, and loudness. Yamnet is an audio classification developed by Google AI’s

research team. It is designed to recognize a wide range of sounds and classify them

into one of 521 audio event categories, including human and animal sounds, musical

instruments, natural sounds, and mechanical sounds. The Yamnet model is based on a

multi-scale convolutional neural network architecture, which processes audio waveforms

at a different time and spectral resolutions. The model is pre-trained on a large-scale

dataset of labeled audio clips, and the learned feature representations are used to classify

new audio signals.

27



4.2. Clustering audio

In order to train a specialized-GAN for each audio context separately, sound clips

must first be clustered into groups based on their similarity. We applied agglomerative

clustering to separate data and chose the ideal number of clusters using a dendrogram

[52]. Additionally, the popular K-means algorithm was used as an alternative approach

to be compared against.

4.3. Training strategy

In contrast to the traditional method of training one general GAN on the entire

dataset, our proposed method trains a specialized GAN for each audio cluster separately.

The goal is to apply the divide-and-conquer strategy to minimize variance within each

cluster thereby reducing the complexity of the distribution to be learned. To train

each specialized-GAN, an encoder-decoder approach is used as shown in Fig. 4.2.

Specifically, the architecture includes five convolutional neural network layers in the

encoder. The encoder and the decoder are then connected by ReLU activation functions

along with batch normalization, whereas the decoder begins with a fully connected layer

and is followed by five transposed convolutional layers. Audio signals are divided into 3

parts (i.e., left context with 400ms (LC), the right context (RC) with 400 ms and 200 ms

gap (G) in the middle) are used to train the GAN in a similar fashion to previous state-of-

the-art techniques; applying Mel spectrogram to the wave files and using normalization

and rescaling to the range [-1, 1] to obtain the output of G’. We use LC and RC as input

to the GAN.

28



Figure 4.2. Context-Encoder Generative Adversarial Network architecture.

4.4. Cluster lookup and audio completion

This step commenced by identifying the closest signal from the training dataset

to the testing signal under consideration. Subsequently, the testing signal was assigned

to the specialized GAN associated with the closest signal from the training dataset.

The determination of the closest signal was accomplished by calculating the smallest

distance using the Euclidean distance measure which is used widely to find the similarity

between audio data [53]. Fig. 4.3 illustrates the cluster lookup and audio completion

pipeline.

Instead of training a single general GAN on the entire dataset, the proposed

method trained specialized GANs for each audio cluster separately. This divide-and-

conquer strategy aimed to reduce variance within each cluster, simplifying the distribu-

tion to be learned. The GAN architecture employed an encoder-decoder approach, with

convolutional neural network layers in the encoder and transposed convolutional layers

in the decoder. The GAN was trained using left and right context audio signals, along

with a gap in the middle, to generate the missing audio segment.

29



Figure 4.3. Cluster lookup and completion process.

Finally, the audio completion step involved inserting the generated audio segment

between the left and right context audio, reversing the preprocessing steps, and applying

the inverse Mel spectrogram function which was borrowed from the library Librosa [54]

to obtain the reconstructed audio in waveform format.

In summary, this chapter presents a comprehensive methodology for audio recon-

struction; the proposed paradigm has the potential to improve the quality and efficiency

of audio reconstruction tasks.

30



CHAPTER 5: EXPERIMENTAL SETUP

The used GAN implementation is close to that followed by [5], [14], [16] with

minor modifications such as the input shape for GAN, number of layers in the encoder-

decoder and the model’s parameters. The model was implemented in Python using

PyTorch and trained on an Intel(R) Xeon(R) CPU @ 2.20GHz processor with 12 cores

and 84GB of RAM coupled with an NVIDIA A100 GPU with 40GB VRAM. All audio

samples were preprocessed using the Mel spectrogram from the Librosa library at a

sampling rate of 22050Hz with hop length 0.125 out of the sample rate, windows length

0.05 of the sample rate and 2046 to the length of the Fast Fourier Transform window

(FFT). The audio segment length used is 1 second (1000 ms), with a silence of 200

ms in the center. The dataset is divided into a training set which is used to train the

specialized GANs and the general GAN, and a testing set which is used only during the

testing phase. To ensure fairness, the exact same GAN architecture was used for the

generalized approach that is trained on the entire dataset. It is a worthy note that we

trained and tested specialized and general GANs with the same training and completion

hyper-parameters. The aim of the experiments is to answer the following research

questions:

• RQ1: Which audio representations are most suitable for effective clustering?

• RQ2: Which clustering techniques are sufficient to generate good-quality audio

clusters?

• RQ3: How do the completion results of specialized GANs (one per cluster)

compare to a general GAN trained on the entire dataset?

• RQ4: How do specialized GANs perform when the cluster memberships of unseen

31



damaged sound clips are unknown? And can the trained models generalize well

even when tested on a different musical instruments dataset?

• RQ5: How does the training computation cost of specialized GANs compare to a

general GAN?

5.1. Datasets and pre-processing

To evaluate the performance of the proposed method, the SOLO dataset from [55]

was used. This dataset consists of recordings of numerous instruments (i.e, accordion,

acoustic guitar, cello, flute, saxophone, trumpet, violin, and xylophone) which are each

played alone. During pre-processing, audio was segmented into one-second duration

segments for each file. Upon segmenting the sound clips, some segments were found

to be silent (i.e., their dB is between –20 and –80 dB) and with durations lasting longer

than 0.001-second [56]. Such identified segments were eliminated as it made no sense

to reconstruct the silence. In the end, the original 252 sound files were segmented into

36201 1-second segments. In order to evaluate the generalizability of the specialized

GAN, we sought to find a new instrument that was not present in the SOLO dataset,

which was used for training our models. For this purpose, we selected the Maestro

dataset [57]. The Maestro dataset focuses specifically on piano music and consists of a

large-scale collection of high-quality audio recordings of virtuosic piano performances,

totaling over 172 hours. The same data preprocessing steps were applied to the Meastro

dataset, including splitting the audio into segments and removing silent portions. By

doing so, we selected randomly 256 testing samples from the Maestro dataset for the

piano instrument.

32



5.2. Evaluation measures

We compared the reconstructed audio from the general GAN and the recon-

structed audio from the specialized GAN to the real audio, as well as the specialized

GAN trained on clusters generated from VGGish features to clusters generated from

Yamnet features, using both qualitative and quantitative methods.

• Quantitative: The first evaluation was done using the Mel spectrogram images;

after converting the original audio and the inpainted audio to Mel spectrogram

images, we calculated the PSNR values [58] where a larger value is associated

with better performance. Further more, we calculated the Mean Squared Error

(MSE) to evaluate the similarity of the reconstructed raw audio to the original

one, where a lower value signifies better reconstruction.

• Qualitative: A visualization of the inpainted sounds in terms of their raw audio

signal and spectrogram representation was used to evaluate the reconstruction

quality. Randomly selected samples filled by their respective specialized GANs

were compared to their equivalent filled by the general GAN and the ground

truth to assess their quality. Additionally, a survey was conducted asking 17

participants to listen to sounds generated by specialized GANs and the same

samples generated by the general GAN along with the ground truth samples and

rate the quality between 1 and 5 (i.e., 1 being the worst quality and 5 the best

quality). The survey can be seen in appendix A. This method is considered the

gold-standard to evaluate audio since qualitative approaches could give unreliable

results [59].

33



CHAPTER 6: RESULTS AND DISCUSSIONS

In this section, we will discuss the results of our experiments for each particular

research question respectively.

6.1. Audio representations and clustering (RQ1 and RQ2)

The first part of our framework is to group audio contexts based on similarity.

Our first thought was to group audio clips based on the instrument type and train a

different GAN model for each group. However, preliminary results revealed that train-

ing specialized GANs based on this grouping strategy did not provide improvements in

terms of reconstruction quality. It comes as a result of splitting the audio into 1-second

segments that each segment now has different harmonics though it is from the same

instrument. As a result, we sought popular unsupervised clustering approaches instead,

namely K-Means and Agglomerative clustering. Most distance-based clustering ap-

proaches require proper data representation (with relevant features) to work correctly.

To this end, we applied two popular pre-trained DNN models used in the audio domain

(Yamnet and VGGish described in section 4.1) to extract meaningful representations.

To visualize the clustering performance of the audio representation and clustering com-

binations, we plot the generated clusters using the TSNE visualization technique [60]

for each combination accordingly. To determine the best combination between the clus-

tering algorithm and feature extraction model for generating high-quality clusters, we

calculated the silhouette score. The silhouette score is a measure of how well each data

point fits into its assigned cluster, based on the distances between the point and the points

in the neighboring clusters. The silhouette score ranges from [-1,1], with higher values

indicating better clustering [61]. The best combination, as represented in table 6.1, is

34



the agglomerative model with VGGish features; though the k-means clustering model

is more popular and faster, this result may be due to specifying the number of clusters

at 8; perhaps reducing the number of clusters will yield a different result, which could

be a future direction to test.

Table 6.1. Silhouette score for the different combinations between clustering model and
feature extraction model.

Clustering model / Feature
extraction model

VGGish Yamnet

Agglomerative clustering 0.166 0.154
K-means clustering 0.133 0.125

Clustering based on instruments
type

0.132 0.108

Also after using TSNE visualization, we realized that clips from the same instru-

ment were not always close to each other. As depicted in Fig. 6.1 and Fig. 6.2, when

we compared the clustering audio based on the category with other feature extraction

models, we found clusters created using the agglomerative clustering with VGGish and

Yamnet feature extraction models were denser and well separated than using instrument

types. It comes as a result of splitting the audio into 1-second segments that each

segment now has different harmonics though it is from the same instrument.

To cluster the dataset, the CNN features vector generated by VGGish or Yamnet

is passed to the agglomerative clustering algorithm. This step may appear insignificant,

but it significantly impacts the clustering methods as illustrated in Fig. 6.3 and Fig. 6.4

the distribution of instruments differs based on the feature extraction model e.g using

Yamnet the eighth cluster has only 17 samples while using VGGish almost most of the

clusters have a significant number of samples. For each cluster produced we trained a

GAN except cluster number 7 in Yamnet because it doesn’t have sufficient numbers of

35



36

Figure 6.1. 2-dimensional TSNE visualization of clusters generated by an agglomerative
clustering method with VGGish features (A), and based on the musical instrument’s class
(B).

Figure 6.2. 2-dimensional TSNE visualization of clusters generated by an agglomerative
clustering method with Yamnet features (A), and based on the musical instrument’s class
(B).



samples to train. Moreover, from Table 6.4 by comparing the average for the PSNR

we found that the Specialized GAN from VGGish features outperforms the specialized

GAN from Yamnet features while the MSE shows the opposite, however, independent

user evaluations indicate that the sounds generated by Specialized GAN from VGGish

features are more clear and comparable to the ground truth than the ones generated

by the specialized GAN from Yamnet features as shown in Fig. 6.7. One possible

explanation for this is that VGGish extracts feature at a finer time resolution than Yamnet,

which makes it better suited for applications where fine-grained temporal information

is important.

Figure 6.3. The distribution of instruments over clusters when using VGGish features.

6.2. Performance comparison of specialized GANs and general GAN (RQ3)

To answer the third research question we compared the specialized GANs trained

on clusters generated by both feature extraction methods (Yamnet and VGGish) with

37



Figure 6.4. The distribution of instruments over clusters when using Yamnet features.

the general GAN, and then they are compared against each others, using quantitative

evaluation methods followed by the qualitative measures.

In Fig. 6.5 and Table 6.2, we compare the average PSNR and MSE for 10 samples

from each cluster using reconstructions from the general GAN and from the respective

specialized GAN of the sample (using the VGGish-based clusters). We found that the

PSNR for the specialized GAN was more favorable than the PSNR for the general GAN

for all clusters. Similarly, the average MSE value for all samples generated by the

specialized GAN is closer to zero than the MSE for the same samples generated by the

General GAN. Thus, higher-quality sounds can be generated using specialized GANs.

The same outcome is observed in Fig. 6.6 and Table 6.3 where the comparison was

between the specialized GAN that is based on clustering using Yamnet features and the

general GAN for each cluster. Here also, the specialized GAN beat the general GAN;

the results of the experiments show a clear advantage when using the specialized-GAN

38



setup over the traditional general GAN approach. The difference in performance is

more apparent in some clusters than others. For example, Table 6.2 shows that the gap

of clusters 2, 4, and 8 are more pronounced than the others. This could be attributed

to these clusters having distinct sound samples when compared to others. The same

performance difference is also observed on some samples in Fig. 6.8. The first (top)

example experienced less degradation with the use of the general GAN than the other

two. It is worth mentioning that in addition to the produced quality, the general GANs

always required a higher number of epochs to converge due to the complexity of the

dataset they are trying to model.

Figure 6.5. The average PSNR for 10 samples generated by the specialized GAN
(VGGish clusters) and by the general GAN.

39



Table 6.2. The average MSE for 10 samples generated by the specialized GAN (VGGish
clusters) and by the general GAN.

Cluster number General GAN Specalized GAN

Cluster 1 0.090 0.076
Cluster 2 0.126 0.090
Cluster 3 0.102 0.080
Cluster 4 0.100 0.070
Cluster 5 0.075 0.072
Cluster 6 0.145 0.124
Cluster 7 0.128 0.086
Cluster 8 0.205 0.142

Figure 6.6. The average PSNR for 10 samples generated by the specialized GAN
(Yamnet clusters) and by the general GAN.

Table 6.3. The average MSE for 10 samples generated by the specialized GAN (Yamnet
clusters) and by the general GAN.

Cluster number General GAN Specalized GAN

Cluster 1 0.082 0.047
Cluster 2 0.108 0.062
Cluster 3 0.148 0.100
Cluster 4 0.142 0.089
Cluster 5 0.105 0.086
Cluster 6 0.199 0.126
Cluster 7 0.106 0.064

40



Table 6.4. The average PSNR and the MSE of the three models.

GAN PSNR MSE

General-GAN 19.0197 0.1213
Specialized-GAN

(VGGish)
19.4788 0.0924

Specialized-GAN
(Yamnet)

19.1377 0.0644

In terms of qualitative evaluation, according to the evaluations of independent

users, as described in the evaluation section 5.2, the sound quality produced by the

specialized GANs was significantly better than the sounds produced by the general

GAN as shown in Fig. 6.7. Also, Fig. 6.8 compares the samples reconstructed using

the specialized GAN and the ones reconstructed using the general GAN. Evidently, the

specialized GANs generated sound waves and spectrograms comparable to the original

sounds.

41



42

Figure 6.7. User study results of a comparison between the quality of two generated
sounds one by general GAN and one by specialized GAN with reference to ground truth.



43

(a) Reconstruction sample results from cluster 1. (A) is the original audio, (B) masked audio, (C)
audio generated by general GAN (D) audio generated by specialized GAN (VGGish clusters),
and (E) audio generated by specialized GAN (Yamnet clusters).

(b) Reconstruction sample results from cluster 2. (A) is the original audio, (B) masked audio, (C)
audio generated by general GAN (D) audio generated by specialized GAN (VGGish clusters),
and (E) audio generated by specialized GAN (Yamnet clusters).



44

(c) Reconstruction sample results from cluster 3. (A) is the original audio, (B) masked audio, (C)
audio generated by general GAN (D) audio generated by specialized GAN (VGGish clusters),
and (E) audio generated by specialized GAN (Yamnet clusters).

(d) Reconstruction sample results from cluster 4. (A) is the original audio, (B) masked audio, (C)
audio generated by general GAN (D) audio generated by specialized GAN (VGGish clusters),
and (E) audio generated by specialized GAN (Yamnet clusters).



45

(e) Reconstruction sample results from cluster 5. (A) is the original audio, (B) masked audio, (C)
audio generated by general GAN (D) audio generated by specialized GAN (VGGish clusters),
and (E) audio generated by specialized GAN (Yamnet clusters).

(f) Reconstruction sample results from cluster 6. (A) is the original audio, (B) masked audio, (C)
audio generated by general GAN (D) audio generated by specialized GAN (VGGish clusters),
and (E) audio generated by specialized GAN (Yamnet clusters).



46

(g) Reconstruction sample results from cluster 7. (A) is the original audio, (B) masked audio, (C)
audio generated by general GAN (D) audio generated by specialized GAN (VGGish clusters),
and (E) audio generated by specialized GAN (Yamnet clusters).

(h) Reconstruction sample results from cluster 8, (A) is the original audio, (B) masked audio, (C)
audio generated by general GAN (D) audio generated by specialized GAN (VGGish clusters),
and (E) audio generated by specialized GAN (Yamnet clusters).

Figure 6.8. Reconstruction sample results, two samples from each cluster.



6.3. Cluster lookup and validation on a different dataset (RQ4)

To address the fourth research question, we conducted two experiments. The

first experiment involved testing samples from the SOLO dataset. We utilized the

cluster lookup approach described in section 4.4 to determine the cluster label for each

testing sample based on the closest training sample. Subsequently, we generated a new

audio signal using the assigned specialized GAN for that cluster. The purpose of this

experiment is to find out whether our cluster lookup approach is effective. A comparison

was made between the specialized GAN output and the general GAN output, as shown

in Table 6.5. We observed that the specialized GAN still outperformed the general GAN

in terms of PSNR and MSE values. However, the results are slightly worse compared to

those from the previous experiment, where the clusters of test examples were assumed

to be known. This may have been attributed to potential errors in assigning samples to

the correct cluster during the lookup process.

Table 6.5. The average PSNR and MSE of the General-GAN, and Specialized-GAN
(with and without cluster lookup).

GAN PSNR MSE

General-GAN 19.0197 0.1213
Specialized-GAN
(without lookup)

19.4788 0.0924

Specialized-GAN
(with lookup)

19.3451 0.0937

In addition to the quantitative evaluation, we employed visualizations of the

samples to demonstrate the effectiveness of the specialized GAN after the cluster lookup

in generating spectrograms that closely resemble the original. Fig. 6.9 illustrates that

the spectrogram generated by the specialized GAN after the lookup process is closer to

47



the original and exhibits better quality compared to the spectrogram generated by the

general GAN. This indicates that the lookup process successfully identifies the correct

cluster for the samples.

Figure 6.9. Reconstruction sample results after applying cluster lookup. (A) is the
original audio, (B) masked audio, (C) audio generated by general GAN (D) audio
generated by specialized GAN after cluster lookup.

The second experiment was conducted by calculating the PSNR and MSE metrics

for the newly generated piano audio signal derived from the new dataset. As shown in

table 6.6, the obtained average PSNR value was 19.357, while the average MSE value

was 0.04, which is comparable to the value obtained from the specialized GAN with

SOLO testing samples. Moreover, the specialized GAN’s value is still better than the

general GAN in this experiment. Consequently, this shows that our model exhibits the

ability to successfully complete audio signals that closely resemble those in the training

dataset, despite their absence from the original training set. This is also confirmed by

48



the visualization results depicted in Fig. 6.10. That could be referred to as this type

of distance measurement fits the agglomerative clustering algorithm as it follows the

same determining; Although the cluster lookup technique we used finds the nearest

neighboring example in the training set to identify the cluster membership of a testing

sample, this would change depending on the clustering algorithm used. For example, in

K-Means, the closest centroid would be identified instead.

Table 6.6. The average PSNR and the MSE for Maestro dataset.

GAN PSNR MSE

General-GAN
(Maestro)

18.9165 0.143

Specialized-GAN
(SOLO with

lookup)

19.3451 0.0937

Specialized-GAN
(Maestro with

lookup)

19.357 0.04

6.4. Computation cost (RQ5)

While training the general GAN model, the first 300 epochs generated noise and

only after the 800 epochs acceptable sounds were produced. Compared to the other

specialized GANs this is more than the double number of epochs used to produce a

convincing output. As can be seen in Fig. 6.11 up to 300 epochs and the model still

did not produce a sensible output and even when we extended the number of epochs to

double as shown in column C in Fig. 6.8 the general GAN model is not able to fill the

spectrogram correctly which reflect a noise on the audio form, on the other hand, the

specialised GAN filled the spectrogram correctly with 300 epochs as shown in Fig. 6.12.

That is because the General GAN was trained on a wide range of sounds, which makes

49



Figure 6.10. Reconstruction sample results for Maestro audio signals after the comple-
tion. (A) is the original audio, (B) masked audio, (C) audio generated by general GAN
(D) audio generated by specialized GAN after cluster lookup.

the search space very big and makes it hard for the GAN to produce realistic sounds.

Furthermore, as shown in Table 6.7, the specialized GAN requires less time to complete

the training with acceptable output. It is worth noting that different clusters require

various computation to complete the training, and some started providing good output

with fewer epochs. To conclude, training the GAN on a mix of audio is an ineffective

way for sound reconstruction.

50



51

Figure 6.11. The generated spectrogram from the General GAN every 50 epochs up to
300 epochs.



52

Figure 6.12. The generated spectrogram from the Specialised GAN every 50 epochs up
to 300 epochs.



Table 6.7. Computation cost comparison between the general and specialized GANs.

GAN Average training
time

Number of
epochs

General-GAN 34 hours 1000
Specialized-GAN

(VGGish)
average 4 hours 300

Specialized-GAN
(Yamnet)

average 5 hours 300

53



CHAPTER 7: CONCLUSIONS AND FUTURE WORK

The goal of this study was to develop a model for reconstructing audio that could

fill in missing or corrupted audio segments whilst considering different audio contexts.

Our model is built around generative adversarial networks, which are used to generate

synthetic data. Experiments using a context encoder-decoder GAN show that training

a general GAN on the entire dataset to reconstruct missing audio parts could be not

persuasive, especially if the training dataset includes data from multiple audio contexts.

Using our divide-and-conquer strategy to target each context individually leads to great

improvements in the completion quality. Rather than train a general GAN with the

whole dataset, the agglomerative clustering technique was used to partition the dataset

into clusters with similar contexts to reduce the dataset complexity. In addition, the

quality of the clusters depends on the features fed to the clustering model which later

will affect the GAN performance. In terms of computational cost, specialized GANs

were able to produce better results with less time and number of epochs.

Throughout the literature review, it was discovered that the majority of audio

reconstruction research is focused on building models that are trained on large datasets

or are limited to a single instrument. At the time of this writing, no previous work tested

the effect of clustering audio segments, and analyzing the choice of clustering algorithm

and feature extraction technique and, therefore, the GAN performance.

The proposed method has several drawbacks linked to the Context-Encoder GAN

model training and reconstruction phases. These methods have high computational cost

because they necessitate hyperparameters and architectural tweaks to enhance the quality

and realism of the final outputs after several training and reconstruction repetitions.

Additionally, because the final audio depends on perceptual judgment, GAN training

54



lack clear stopping conditions and standard evaluation metrics. It is worth noting that

using some feature extraction methods with clustering may yield an insufficient number

of samples to train the model to learn from and produce a realistic output, such as the

case of Yamnet features.

For future work, we intend to test this approach on more complicated datasets,

such as voice conversations, and study the effect of varying the number of clusters.

Since this divide-and-conquer method is not limited to GANs, alternative approaches

can be pursued such as the idea of using Transformers to generate audio [62].

Part of this thesis has been published in IEEE Jordan International Joint Confer-

ence on Electrical Engineering and Information Technology (JEEIT), IEEE, 2023

55



REFERENCES

[1] “Audio inpainting toolbox - inria - institut national de recherche en sciences et

technologies du numérique.” (2020), [Online]. Available: https://inria.

hal.science/view/index/identifiant/hal-02963154.

[2] Y. Bahat, Y. Y. Schechner, and M. Elad, “Self-content-based audio inpainting,”

Signal Processing, vol. 111, pp. 61–72, 2015.

[3] S. Iizuka, E. Simo-Serra, and H. Ishikawa, “Globally and locally consistent image

completion,” ACM Transactions on Graphics (ToG), vol. 36, no. 4, pp. 1–14, 2017.

[4] Y. Feigin, H. Spitzer, and R. Giryes, “Cluster with gans,” Computer Vision and

Image Understanding, vol. 225, p. 103 571, 2022.

[5] N. H. Jboor, A. Belhi, A. K. Al-Ali, A. Bouras, and A. Jaoua, “Towards an

inpainting framework for visual cultural heritage,” in 2019 IEEE Jordan Interna-

tional Joint Conference on Electrical Engineering and Information Technology

(JEEIT), IEEE, 2019, pp. 602–607.

[6] A. Sable. “Introduction to audio analysis and processing.” (2021), [Online].

Available: https://blog.paperspace.com/introduction-to-audio-

analysis-and-synthesis.

[7] R. Pethiyagoda, S. W. McCue, and T. J. Moroney, “Spectrograms of ship wakes:

Identifying linear and nonlinear wave signals,” Journal of Fluid Mechanics,

vol. 811, pp. 189–209, 2017.

[8] J. Shen, R. Pang, R. J. Weiss, et al., “Natural tts synthesis by conditioning

wavenet on mel spectrogram predictions,” in 2018 IEEE international conference

56

https://inria.hal.science/view/index/identifiant/hal-02963154
https://inria.hal.science/view/index/identifiant/hal-02963154
https://blog.paperspace.com/introduction-to-audio-analysis-and-synthesis
https://blog.paperspace.com/introduction-to-audio-analysis-and-synthesis


on acoustics, speech and signal processing (ICASSP), IEEE, 2018, pp. 4779–

4783.

[9] Ai vs machine learning vs deep learning vs neural networks: Whats the difference?

[Online]. Available: https://www.ibm.com/cloud/blog/ai-vs-machine-

learning-vs-deep-learning-vs-neural-networks.

[10] F. Xiong, Z. Liu, K. Huang, X. Yang, and A. Hussain, “Primitives generation

policy learning without catastrophic forgetting for robotic manipulation,” in 2019

International Conference on Data Mining Workshops (ICDMW), IEEE, 2019,

pp. 890–897.

[11] I. Goodfellow, J. Pouget-Abadie, M. Mirza, et al., “Generative adversarial net-

works,” Communications of the ACM, vol. 63, no. 11, pp. 139–144, 2020.

[12] R. Kumar and S. K. Maji, “A novel framework for denoised high resolution

generative adversarial network–dhrgan,” in 2020 7th International Conference on

Signal Processing and Integrated Networks (SPIN), IEEE, 2020, pp. 1033–1038.

[13] J. Zakraoui, M. Saleh, S. Al-Maadeed, and J. M. Jaam, “Improving text-to-image

generation with object layout guidance,” Multimedia Tools and Applications,

vol. 80, no. 18, pp. 27 423–27 443, 2021.

[14] D. Pathak, P. Krahenbuhl, J. Donahue, T. Darrell, and A. A. Efros, “Context

encoders: Feature learning by inpainting,” in Proceedings of the IEEE conference

on computer vision and pattern recognition, 2016, pp. 2536–2544.

[15] A. Marafioti, P. Majdak, N. Holighaus, and N. Perraudin, “Gacela: A generative

adversarial context encoder for long audio inpainting of music,” IEEE Journal of

Selected Topics in Signal Processing, vol. 15, no. 1, pp. 120–131, 2020.

57

https://www.ibm.com/cloud/blog/ai-vs-machine-learning-vs-deep-learning-vs-neural-networks
https://www.ibm.com/cloud/blog/ai-vs-machine-learning-vs-deep-learning-vs-neural-networks


[16] H. Zhou, Z. Liu, X. Xu, P. Luo, and X. Wang, “Vision-infused deep audio inpaint-

ing,” in Proceedings of the IEEE/CVF International Conference on Computer

Vision, 2019, pp. 283–292.

[17] H. Wang, L. Jiao, H. Wu, and R. Bie, “New inpainting algorithm based on simpli-

fied context encoders and multi-scale adversarial network,” Procedia computer

science, vol. 147, pp. 254–263, 2019.

[18] E. Stevens, L. Antiga, and T. Viehmann, Deep learning with PyTorch. Manning

Publications, 2020.

[19] M. Maayah, A. Abunada, K. Al-Janahi, M. E. Ahmed, and J. Qadir, “Limitac-

cess: On-device tinyml based robust speech recognition and age classification,”

Discover Artificial Intelligence, vol. 3, no. 1, p. 8, 2023.

[20] J. Salamon and J. P. Bello, “Deep convolutional neural networks and data aug-

mentation for environmental sound classification,” IEEE Signal processing letters,

vol. 24, no. 3, pp. 279–283, 2017.

[21] R. Tang and J. Lin, “Deep residual learning for small-footprint keyword spot-

ting,” in 2018 IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP), IEEE, 2018, pp. 5484–5488.

[22] Y. LeCun, F. J. Huang, and L. Bottou, “Learning methods for generic object

recognition with invariance to pose and lighting,” in Proceedings of the 2004

IEEE Computer Society Conference on Computer Vision and Pattern Recognition,

2004. CVPR 2004., IEEE, vol. 2, 2004, pp. II–104.

[23] M. A. Nielsen, Neural networks and deep learning. Determination press San

Francisco, CA, USA, 2015, vol. 25.

58



[24] I. H. Witten and E. Frank, “Data mining: Practical machine learning tools and tech-

niques with java implementations,” Acm Sigmod Record, vol. 31, no. 1, pp. 76–77,

2002.

[25] D. Sculley, “Web-scale k-means clustering,” in Proceedings of the 19th interna-

tional conference on World wide web, 2010, pp. 1177–1178.

[26] Y. Li, K. Zhao, X. Chu, and J. Liu, “Speeding up k-means algorithm by gpus,”

Journal of Computer and System Sciences, vol. 79, no. 2, pp. 216–229, 2013.

[27] F. Nielsen and F. Nielsen, “Hierarchical clustering,” Introduction to HPC with

MPI for Data Science, pp. 195–211, 2016.

[28] J. Yu, Z. Lin, J. Yang, X. Shen, X. Lu, and T. S. Huang, “Generative image

inpainting with contextual attention,” in Proceedings of the IEEE conference on

computer vision and pattern recognition, 2018, pp. 5505–5514.

[29] J. Li, G. Song, and M. Zhang, “Occluded offline handwritten chinese character

recognition using deep convolutional generative adversarial network and im-

proved googlenet,” Neural Computing and Applications, vol. 32, pp. 4805–4819,

2020.

[30] J. Dong, R. Yin, X. Sun, Q. Li, Y. Yang, and X. Qin, “Inpainting of remote

sensing sst images with deep convolutional generative adversarial network,” IEEE

geoscience and remote sensing letters, vol. 16, no. 2, pp. 173–177, 2018.

[31] C. Wang, C. Xu, C. Wang, and D. Tao, “Perceptual adversarial networks for image-

to-image transformation,” IEEE Transactions on Image Processing, vol. 27, no. 8,

pp. 4066–4079, 2018.

59



[32] Y.-G. Shin, M.-C. Sagong, Y.-J. Yeo, S.-W. Kim, and S.-J. Ko, “Pepsi++: Fast and

lightweight network for image inpainting,” IEEE transactions on neural networks

and learning systems, vol. 32, no. 1, pp. 252–265, 2020.

[33] P. Vitoria, J. Sintes, and C. Ballester, “Semantic image completion through an

adversarial strategy,” in Computer Vision, Imaging and Computer Graphics The-

ory and Applications: 14th International Joint Conference, VISIGRAPP 2019,

Prague, Czech Republic, February 25–27, 2019, Revised Selected Papers 14,

Springer International Publishing, 2020, pp. 520–542.

[34] S. Lou, Q. Fan, F. Chen, C. Wang, and J. Li, “Preliminary investigation on single

remote sensing image inpainting through a modified gan,” in 2018 10th IAPR

Workshop on Pattern Recognition in Remote Sensing (PRRS), IEEE, 2018, pp. 1–

6.

[35] X. Zhang, X. Wang, C. Shi, et al., “De-gan: Domain embedded gan for high

quality face image inpainting,” Pattern Recognition, vol. 124, p. 108 415, 2022.

[36] N. M. Salem, H. M. Mahdi, and H. Abbas, “Semantic image inpainting using self-

learning encoder-decoder and adversarial loss,” in 2018 13th International Con-

ference on Computer Engineering and Systems (ICCES), IEEE, 2018, pp. 103–

108.

[37] H. Liu, G. Lu, X. Bi, J. Yan, and W. Wang, “Image inpainting based on generative

adversarial networks,” in 2018 14th International Conference on Natural Com-

putation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD), IEEE, 2018,

pp. 373–378.

60



[38] X. Han, Z. Wu, W. Huang, M. R. Scott, and L. S. Davis, “Finet: Compatible and

diverse fashion image inpainting,” in Proceedings of the IEEE/CVF International

Conference on Computer Vision, 2019, pp. 4481–4491.

[39] S. Mehri, K. Kumar, I. Gulrajani, et al., “Sample rnn: An unconditional end-to-

end neural audio generation model,” arXiv preprint arXiv:1612.07837, 2016.

[40] A. v. d. Oord, S. Dieleman, H. Zen, et al., “Wavenet: A generative model for raw

audio,” arXiv preprint arXiv:1609.03499, 2016.

[41] A. Oord, Y. Li, I. Babuschkin, et al., “Parallel wavenet: Fast high-fidelity speech

synthesis,” in International conference on machine learning, PMLR, 2018, pp. 3918–

3926.

[42] J. Engel, C. Resnick, A. Roberts, et al., “Neural audio synthesis of musical notes

with wavenet autoencoders,” in International Conference on Machine Learning,

PMLR, 2017, pp. 1068–1077.

[43] A. Adler, V. Emiya, M. G. Jafari, M. Elad, R. Gribonval, and M. D. Plumbley, “Au-

dio inpainting,” IEEE Transactions on Audio, Speech, and Language Processing,

vol. 20, no. 3, pp. 922–932, 2012. doi: 10.1109/TASL.2011.2168211.

[44] O. Mokrỳ, P. Záviška, P. Rajmic, and V. Veselỳ, “Introducing spain (sparse audio

inpainter),” in 2019 27th European Signal Processing Conference (EUSIPCO),

IEEE, 2019, pp. 1–5.

[45] O. Mokrỳ and P. Rajmic, “Approximal operator with application to audio inpaint-

ing,” Signal Processing, vol. 179, p. 107 807, 2021.

61

https://doi.org/10.1109/TASL.2011.2168211


[46] G. Tauböck, S. Rajbamshi, and P. Balazs, “Dictionary learning for sparse audio

inpainting,” IEEE Journal of Selected Topics in Signal Processing, vol. 15, no. 1,

pp. 104–119, 2020.

[47] P. P. Ebner and A. Eltelt, “Audio inpainting with generative adversarial network,”

arXiv preprint arXiv:2003.07704, 2020.

[48] A. Marafioti, N. Perraudin, N. Holighaus, and P. Majdak, “A context encoder

for audio inpainting,” IEEE/ACM Transactions on Audio, Speech, and Language

Processing, vol. 27, no. 12, pp. 2362–2372, 2019.

[49] Y.-L. Chang, K.-Y. Lee, P.-Y. Wu, H.-y. Lee, and W. Hsu, “Deep long audio

inpainting,” arXiv preprint arXiv:1911.06476, 2019.

[50] V. A. Embedding. “Opensource tools data for music source separation: A prag-

matic guide for the mir practitioner.” (2021), [Online]. Available: https://

github.com/tensorflow/models/tree/master/research/audioset/

vggish.

[51] E. Tsalera, A. Papadakis, and M. Samarakou, “Comparison of pre-trained cnns

for audio classification using transfer learning,” Journal of Sensor and Actuator

Networks, vol. 10, no. 4, p. 72, 2021.

[52] N. Oskolkov. “How to cluster in high dimensions.” (2019), [Online]. Avail-

able: https://towardsdatascience.com/how-to-cluster-in-high-

dimensions-4ef693bacc6.

[53] B. Mcfee, L. Barrington, and G. Lanckriet, “Learning content similarity for

music recommendation,” IEEE TRANSACTIONS ON AUDIO, SPEECH, AND

LANGUAGE PROCESSING, vol. 20, p. 2207, 8 2012. doi: 10.1109/TASL.

62

https://github.com/tensorflow/models/tree/master/research/audioset/vggish
https://github.com/tensorflow/models/tree/master/research/audioset/vggish
https://github.com/tensorflow/models/tree/master/research/audioset/vggish
https://towardsdatascience.com/how-to-cluster-in-high-dimensions-4ef693bacc6
https://towardsdatascience.com/how-to-cluster-in-high-dimensions-4ef693bacc6
https://doi.org/10.1109/TASL.2012.2199109
https://doi.org/10.1109/TASL.2012.2199109


2012.2199109. [Online]. Available: http://www.apple.com/pr/library/

2008/09/09itunes.html.

[54] “Librosa.feature.inverse.meltoaudio librosa 0.10.1dev documentation.” (), [On-

line]. Available: https://librosa.org/doc/main/generated/librosa.

feature.inverse.mel_to_audio.html.

[55] ZHOUSL16. “Solo audio.” (2022), [Online]. Available: https://www.kaggle.

com/datasets/zhousl16/solo-audio.

[56] audacityteam. “Truncate silence.” (2019), [Online]. Available:https://manual.

audacityteam.org/man/truncatesilence.html.

[57] “The maestro dataset.” (2018), [Online]. Available:https://magenta.tensorflow.

org/datasets/maestro.

[58] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assess-

ment: From error visibility to structural similarity,” IEEE transactions on image

processing, vol. 13, no. 4, pp. 600–612, 2004.

[59] E. Manilow. “Opensource tools data for music source separation: A pragmatic

guide for the mir practitioner.” (2020), [Online]. Available: https://source-

separation.github.io/tutorial/basics/evaluation.html.

[60] L. Van der Maaten and G. Hinton, “Visualizing data using tsne.,” Journal of

machine learning research, vol. 9, no. 11, 2008.

[61] P. J. Rousseeuw, “Silhouettes: A graphical aid to the interpretation and validation

of cluster analysis,” Journal of computational and applied mathematics, vol. 20,

pp. 53–65, 1987.

63

https://doi.org/10.1109/TASL.2012.2199109
https://doi.org/10.1109/TASL.2012.2199109
https://doi.org/10.1109/TASL.2012.2199109
http://www.apple.com/pr/library/2008/09/09itunes.html
http://www.apple.com/pr/library/2008/09/09itunes.html
https://librosa.org/doc/main/generated/librosa.feature.inverse.mel_to_audio.html
https://librosa.org/doc/main/generated/librosa.feature.inverse.mel_to_audio.html
https://www.kaggle.com/datasets/zhousl16/solo-audio
https://www.kaggle.com/datasets/zhousl16/solo-audio
https://manual.audacityteam.org/man/truncatesilence.html
https://manual.audacityteam.org/man/truncatesilence.html
https://magenta.tensorflow.org/datasets/maestro
https://magenta.tensorflow.org/datasets/maestro
https://source-separation.github.io/tutorial/basics/evaluation.html
https://source-separation.github.io/tutorial/basics/evaluation.html


[62] Z. Borsos, M. Sharifi, D. Vincent, E. Kharitonov, N. Zeghidour, and M. Tagliasac-

chi, “Soundstorm: Efficient parallel audio generation,” [Online]. Available:https:

//github.com/rishikksh20/SoundStorm-pytorch.

64

https://github.com/rishikksh20/SoundStorm-pytorch
https://github.com/rishikksh20/SoundStorm-pytorch


APPENDIX A: AUDIO COMPLETION QUALITY EVALUATION

65



66


	DEDICATION
	ACKNOWLEDGMENTS
	LIST OF TABLES
	LIST OF FIGURES
	Introduction
	Problem Statement 
	Research Questions 
	Contribution
	Document Overview

	Background
	Sound
	Audio representation and analysis
	Sound waveform
	Mel spectrogram

	Deep Neural Networks
	Encoder-Decoder
	Generative Adversarial Networks
	Convolutional Neural Network
	CNN layers
	Loss function

	Clustering
	K-means clustering
	Agglomerative clustering


	Literature review
	Visual data
	Sound data

	Proposed Method
	Audio data representation
	Clustering audio
	Training strategy 
	Cluster lookup and audio completion 

	Experimental setup
	Datasets and pre-processing
	Evaluation measures 

	Results and discussions
	Audio representations and clustering (RQ1 and RQ2)
	Performance comparison of specialized GANs and general GAN (RQ3)
	Cluster lookup and validation on a different dataset (RQ4) 
	Computation cost (RQ5) 

	Conclusions and Future Work
	References
	Audio Completion Quality Evaluation



