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ABSTRACT

Suwaileh, Reem, Ali., Doctorate : June : 2023, Doctorate of Philosophy in Computer

Science

Title: Location Mention Prediction from Disaster Tweets

Supervisor of Dissertation: Dr. Tamer Elsayed.

While utilizing Twitter data for crisis management is of interest to different response

authorities, a critical challenge that hinders the utilization of such data is the scarcity

of automated tools that extract and resolve geolocation information. This dissertation

focuses on the Location Mention Prediction (LMP) problem that consists of Location

Mention Recognition (LMR) and Location Mention Disambiguation (LMD) tasks. Our

work contributes to studying two main factors that influence the robustness of LMP

systems: (i) the dataset used to train the model, and (ii) the learning model. As for the

training dataset, we study the best training and evaluation strategies to exploit existing

datasets and tools at the onset of disaster events. We emphasize that the size of training

data matters and recommend considering the data domain, the disaster domain, and

geographical proximity when training LMR models. We further construct the public

IDRISI datasets, the largest to date English and first Arabic datasets for the LMP

tasks. Rigorous analysis and experiments show that the IDRISI datasets are diverse,

and domain and geographically generalizable, compared to existing datasets. As for the

learning models, the LMP tasks are understudied in the disaster management domain.

To address this, we reformulate the LMR and LMD modeling and evaluation to better

suit the requirements of the response authorities. Moreover, we introduce competitive

and state-of-the-art LMR and LMD models that are compared against a representative

set of baselines for both Arabic and English languages.
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CHAPTER 1: INTRODUCTION

During disaster and emergency events, georeferenced information is crucial for

response authorities to identify impacted areas and population segments, and plan re-

lief operations. Concretely, crisis (or disaster) maps are invaluable tools for drawing

up-to-date situational awareness [1] and for taking actions that should ideally be per-

formed within the first 48 to 72 hours of a disaster event [2]. Situational awareness

is concerned with capturing the status on the ground, such as the inundated areas,

landslides, electricity outages, or resource needs. Actionable information, on the other

hand, refers to requests that demand actions from a particular response authority [3].

Examples include offering resources (e.g., food, water, and shelter), rescuing trapped or

injured individuals, and rebuilding or repairing damaged infrastructure (e.g., bridges,

roads, hospitals). The geographical context raises the value of situational and actionable

information in several ways. First, responders must determine whether the reported

incidents and requests are within their jurisdiction; otherwise, they redirect them to the

responsible authorities [3]. Second, responders use geolocation information to locate

incidents, resources, and requests for timely decision-making and response. Indeed,

the geolocation information makes requests actionable as it specifies where the help is

needed. Third, responders need to assess the overall impact of the disaster event at

different granularity (e.g., state or city). For these use cases, crisis maps greatly help

response authorities.

Crisis mapping refers to the real-time acquisition, analysis, and visualization

of relevant information during a crisis [4]. Examples of crisis maps are (1) spatial

situational awareness maps, (2) hotspot maps of causalities, damages, and resources,

(3) first responders (i.e., eyewitnesses) and resources maps (e.g., food and shelters), (4)

1



population mobility maps (e.g., evacuations), or (5) impact assessment maps, among

others (refer to Section 6.2.2 for further elaboration). The process of crisis mapping

leverages multiple heterogeneous data sources, such as mobile and web technologies,

hotlines, volunteering, crowdsourcing, and physical surveys. Nevertheless, relying on

traditional sources to perform real-time crisis mapping during large-scale disaster events

becomes challenging. Several studies demonstrated the effectiveness of non-traditional

data sources such as social networking sites and remote sensing to acquire real-time

crisis information [5]. Twitter, particularly during disaster events, has been proven to

be a useful information source to gather time-sensitive situational and actionable data

directly posted by the affected people [6]. Notably, effective social sensing via crisis

mapping depends on the availability and quality of geolocation information on Twitter

[7].

What makes Twitter content invaluable is the fine- and coarse-grained locations

of incidents and needs that are reported by eyewitnesses [8]–[11]. There are different

successful real-world examples of exploiting Twitter for disaster response. For instance,

the Ushahidi platform [12] was deployed to map geotagged tweets during the Port-

au-Prince earthquake 2010 in Haiti [13]. It was also used for Typhoon Haiyan 2013

in Southeast Asia to map damages and requests. Furthermore, Fairfax County in

Virginia, US, is a case in point. It employed the Geofeedia platform to monitor and

aggregate data from various social media platforms, including Twitter. It also took

part in releasing the “National Capital Region News and Information” portal that offers

geotagging capabilities for crisis communication and management.

Response agencies’ requirements to use Twitter for situational awareness or

mapping tasks vary. In a participatory design workshop, participants from different
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agencies (e.g., police officers, firefighters, paramedics, among others) provided a set

of example tweets for what they look for on Twitter to respond during disaster events.

Most of these tweets contain fine-grained LMs such as intersections and buildings [8].

Other studies have emphasized the need for coarse-grained locations in planning relief

activities and assessing the disaster impact by emergency managers [9]–[11].

Nevertheless, Twitter announced removing the geotagging feature in tweets in

June 20191 as users often set imprecise geotags to their tweets which necessitates the

development of automated geolocation information extraction tools. This dissertation

addresses this need to enable drawing useful situational awareness reports and action-

able requests from Twitter in the disaster management domain. Different computational

tasks were defined in the literature over Twitter for geolocation information extraction,

includingUser Location Prediction,Home Location Prediction,User Movement Model-

ing, Next Location Prediction, Tweet Location Predicting, Locational Focus Prediction,

and Location Mention Prediction. However, we mainly focus on the Location Mention

Prediction (LMP) task because it is vital in tackling all other geolocation computational

tasks. The LMP task aims to (1) extract Location Mentions (LMs) from the textual

content of tweets, known as Location Mention Recognition (LMR), and (2) disam-

biguate them using toponyms from geo-positioning databases (i.e., gazetteers), known

as Location Mention Disambiguation (LMD).

1https://twitter.com/TwitterSupport/status/1141039841993355264
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Figure 1.1. Locating the LMP task in the disaster response pipeline

We provide an overview of the LMP problem in Section 1.1. We further discuss

the challenges associated with utilizing geolocation information from Twitter for crisis

management in Section 1.2. Next, we briefly summarize our proposed solutions and

findings in Sections 1.3 and 1.4. We then thoroughly elaborate on the contributions of

this dissertation in Section 1.5.

1.1. Research Problem: Location Mention Prediction

To articulate the role of an LMP module in the emergency management domain,

we depict a high-level computational response pipeline in Figure 1.1. While tweets are

noisy and arrive at a very high rate, the responders demand high-quality situational re-

ports and actionable tweets for reliable decision-making and relief deployment. Hence,

pre-filters have to precede the LMP components; these pre-filters are depicted as up-

stream tasks in Figure 1.1. Among them are (i) relevance filters: to discard all irrelevant

content to the target disaster event, (ii) qualification filters: to discard spam, rumors, and

bot-generated content, among other low-quality content, (iii) informativeness filters: to

filter out sympathy, opinions, and criticism, among other less informative content. The
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pre-qualified tweets continue to the LMPmodule that constitutes two main components:

(i) Location Mention Recognition (LMR) to extract toponym spans from the text of

tweets, and (ii) Location Mention Disambiguation (LMD) to link the potential extracted

LMs to existing toponyms in a geo-positioning database (i.e., gazetteer). Finally, the

output of the LMP components can be directly used by the disaster response authorities

or fed into other downstream tasks such as mapping services (refer to Section 6.2.2).

Figure 1.2 illustrates a high-level overview of the LMP problem and its tasks.
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Figure 1.2. High-level overview of the LMP tasks.

The LMR and LMD tasks have different names in the literature. For example,

some studies refer to LMR as location extraction or geoparsing. The LMD has been

alternatively named resolution, linking (looking up a geo-positioning database to find

matches), or geocoding (assigning geo-coordinates to LMs regardless of the sources

used). In rare cases, geoparsing could jointly refer to both LMR and LMD tasks. We

use LMR and LMD task names throughout this dissertation for expository clarity.

Table 1.1 shows a few example tweets shared during different real-world disaster
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events including Chennai floods 2015, Houston floods 2016, Louisiana floods 2016,

Christchurch earthquake 2012, and Hurricane Sandy 2012 [14], [15]. These tweets

are important for the relief organizations and first-responders, who exploit Twitter to

extract (i) situational reports such as incidents and casualties statistics, or (ii) actionable

information, including the calls for rescue, requests for resources, need for volunteers,

to name a few.

Locations appear in different patterns and types in tweets, such as:

• Full address: Examples are the location where rescue boats are needed in tweet

#1, and the location of reported water levels in tweet #3.

• Administrative divisions: Different administrative levels are commonlymentioned

during disasters. For instance, states are mentioned for high level updates, such as

“TX” and “LA” in tweets #3 and #5, respectively. Cities are also reported, such as

“ValleyMills” and “Ocean City” in tweets #4 and #8, respectively. Neighborhoods

are also mentioned, such as “Greens Bayou” in tweet #3.

• Points-of-interest (POI): Fine-grained locations appear frequently on Twitter dur-

ing disaster events. For instance, the “Bosque River” in tweet #4 presents a natural

POI where a flood warning is issued. The human-made POIs are also frequent

such as institutions (e.g., “Cashmere kindergarten” in tweet #7), or worship places

(e.g., “Tangipahoa Parish” in tweet #3).

• Streets: Similar to the POIs, streets are important to study the impact of disaster

on the population and responders mobility during disaster events. This includes

bridges, e.g., “Adayar Bridge Saidape” and “TVK bridge” in tweets #1 and #2,

respectively, and flooded streets, e.g., “East 8th” and “Avenue C” in tweet #9.
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Table 1.1. Tweets from real-world disaster events with location mentions
(gray-shaded). HRC, EQK and FLD refer to Hurricane, Earthquake, and Floods
respectively.

T# Dataset Tweet text
#1 Chennai FLD [user_mention] Dear Friends, Pl help by sending boat to

54 and 58, Vivekananda Nagar Street, Nesapakkm, Chennai
[...]

#2 [user_mention] Fear bridge being washed away. Adayar
Bridge Saidapet. Hope TVK bridge is holding up fine at
Malhar [url]

#3 Houston FLD #USGS08076700 - Greens Bayou at Ley Rd, Houston, TX
is above NWS flood stage (30ft) [URL]

#4 FWD cancels FloodWarning for North Bosque River at Val-
ley Mills [TX] [url] #ntxwx

#5 Louisiana FLD Flash Flood Warning for Livingston, St. Helena, and Tangi-
pahoa Parish in LA until 7:45am Saturday.

#6 This line of storms in Evangeline is moving to the southwest
towards Allen, which will bring heavy rainfall #LAwx [url]

#7 ChCh EQK RT [user_mention]: all kids safe at Cashmere kindergarten.
#eqnz

#8 HRC Sandy All roads into and out of Ocean City, New Jersey are closed
due to flooding that has cut off the popular Jersey... [url]

#9 Flooding at East 8th and Avenue C before the blackout (GIF)
[url]

1.2. Challenges

Learning to detect and disambiguate location mentions in tweets is a non-trivial

task. As a result, LMP systems have to address many challenges related to the nature of

Twitter stream or the difficulty of LMR and LMD tasks. This section elaborates on the

challenges we address while tackling the LMP problem.
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1.2.1. Twitter Stream Challenges

Data domain-wise, processing Twitter data requires tackling various challenges

stemming from its stream’s nature. We discuss a few in the following:

Tweet sparsity: Tweets are limited to only 280 characters causing the lack of context

challenge for the learning models, which requires enriching the context of tweets using

different techniques, e.g., text expansion.

Hashtag riding: Spammers typically use viral hashtags for advertisements, self-promotion,

and propaganda, to list a few. A potential way to alleviate this challenge is pre-qualifying

tweets before applying LMP. This enables the delivery of high-quality tweets to respon-

ders and reduce the processing time.

Mismatch between tweets and gazetteers: Compared to gazetteers, Twitter stream is

noisy; tweets contain informal language, misspellings, grammar mistakes, shortened

words, and slang, causing the so-called mismatch challenge [16]. Employing semantic

models alongside the lexical models for text processing could alleviate this challenge.

We list different types of issues in the following with examples in Table 1.2:

• Nicknames: Some places have common nicknames used by locals. For example,

in Tweet #1, Chennai is nicknamed “The Detroit of India". The nicknames often

do not exist in the gazetteers.

• Abbreviations: Short names of places are prevalent on Twitter due to the character

limit of tweets. For example, “T. Nagar" and “GMChetty Road" are abbreviations

of “Theagaraya Nagar" and “Gopathi Narayanaswami Chetty", respectively, in

Tweet #3.

• Misspellings: Misspellings and grammar mistakes are common over Twitter. For
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Table 1.2. Example tweets from Chennai floods to illustrate the challenges of
processing Twitter stream for LMP task. LMs are gray-shaded in text.

T# Challenge Tweet text

#1 Nickname #ChennaiFloods sad to see the state of city. Detroit of India
is suffering. Hv personal experienced.

#2 Capitalization Accommodation in t nagar to 30-50 people in Rameswaram
Road, T. Nagar. Contact 9843111199 #ChennaiRainsHelp
#ChennaiFloods chennai micro

#3 Abbreviations Anyone around T. Nagar, needing shelter or food, can ap-
proach the Gurudwara on GM Chetty Road #Chennai

#4 Misspelling Medical students of shri ramchandra medical college in
chennai stranded without supplies. Need help.

#5 Shortcuts sm 1 help providing water 50 children @Lawrence Char-
itable Trust.safe.2/4,1st cross st,3rd avenue,AshokNagar-
LakshmanSruti #ChennaiFloods

instance,“shri ramchandra medical college" in Tweet #4 should be written as “sri

ramchandra medical college".

• Shortcuts: Users tend to use shortened words due to the character limit of tweets.

For example, using “st” instead of “road”, in Tweet #5. Also, using “@” symbol

instead of the literal “at” prepositions in the same tweet.

• Capitalization: Users tend to ignore capitalization when writing tweets (e.g.,

“chennai" instead of “Chennai" in Tweet #4.

1.2.2. LMP Task-Specific Challenges

Tackling the LMP task imposes addressing several challenges. We discuss some

of them below and elaborate further on LMR and LMD task-specific challenges in

Sections 1.2.3 and 1.2.4.
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Scarcity of labeled data: Supervised learning algorithms need a large representative

dataset to perform effectively. However, acquiring training datasets is critical in dis-

aster management where systems must be trained and deployed promptly in real-time.

We extensively review the existing public LMR and LMD datasets and discuss their

limitations in Sections 2.4.2.1 and 2.5.2.1.

Time-criticality of solutions: Empirically effective solutions are not necessarily ready

for efficient deployment at the onset of disaster events. Therefore, the developed systems

must be trained and evaluated to run in real-time to enable effective crisis management.

1.2.3. LMR-Specific Challenges

Different challenges arise when tackling the LMR task, including:

Emerging locations: New toponyms emerge while disaster events develop over the

Twitter stream. Recognizing frequent toponyms is easier than unseen ones as learnable

models often memorize the vocabulary of toponyms rather than learning their syntactic

and semantic patterns, preventing generalizing to unseen data.

Toponymic polysemy: Location mentions might have different meanings referring to

different entity types other than locations. For example, “Sabah Al-Ahmad” could mean

the “Sabah Al-Ahmad city, in Kuwait” or the former Emir of Kuwait “Sabah Al-Ahmad

Al-Jaber Al-Sabah”.

Incompleteness of gazetteers: The gazetteer-based LMR approaches verify LMs using

gazetteers before making the final predictions. Nevertheless, many locations, especially

the fine-grained locations, might not appear in the gazetteers causing failure in detection.

Temporary locations: Temporary facilities (i.e., medical camps and shelters) are con-

structed during emergencies to provide resources and support the affected people. How-
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ever, these facilities are disassembled (e.q., quarantine centers) once the emergency is

over. Additionally, the names of some locations could change during emergencies, such

as converting schools into shelters and giving them new expressive names (e.g., “main

shelter”). Once the disaster event is over, schools will return to providing their original

services. The difficulty of detecting and disambiguating these temporary locations is

due to the need to comprehend their context.

1.2.4. LMD-Specific Challenges

Tackling the LMD task requires alleviating different challenges, including:

Toponymic homonymy: The same location name might refer to different locations.

For instance, "Doha" might refer to the "capital city of Qatar state" or the "Doha city

in Kuwait," "Kuwait" could refer to the "State of Kuwait" or the capital city "Kuwait"

(different granularity), and "Ooredoo"may refer to any branch of the telecommunications

service provider inside, or outside Qatar.

Incompleteness of gazetteers: LMD systems will not be able to resolve missing LMs

in gazetteers when detected by the LMR systems. Therefore, consolidating multiple

gazetteers is a pivotal solution to cover as many locations as possible with different

properties into a unified gazetteer. Nevertheless, the augmentation and deduplication

processes are nontrivial.

Dynamism: The toponyms in gazetteers are dynamic and do change over time due to: (i)

changing names (or properties) of locations (e.g., street names), (ii) deleting locations

(e.g., permanently closing a restaurant), or (iii) building and opening new facilities (e.g.,

malls, airports, and parks) which require maintaining up-to-date gazetteers.
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1.3. Overview of Proposed Solutions

Two main factors that influence the robustness of an LMP system are: (i) the

learning model, and (ii) the dataset used to train the model. As for the learning model

for the LMR task, there are two well-established approaches. The first is adopting

existing general-purpose Named Entity Recognition (NER) taggers. NER task aims to

extract entity mentions (e.g., location and organization) in a given text. However, the

general-purpose NER systems fail to generalize to Twitter data due to the noisiness of the

Twitter stream (refer to the “mismatch” challenge in Section 1.2.1). The second common

approach is matching potential LMs against gazetteers. However, the gazetteer-based

approaches fail to generalize to toponyms that do not exist in the employed gazetteers

(refer to the “incompleteness” issue in Section 1.2.4). Recent studies have proposed

deep learning approaches to alleviate the mismatch and incompleteness challenges.

Nevertheless, deep learning models are data hungry and demand longer training time,

which introduces a limitation when deploying them at the onset of disaster events

(refer to the “scarcity of labeled data” and “time-criticality of solutions” challenges in

Section 1.2.2). To address the challenges above, we fine-tune a BERT pre-trained model

[17] for the LMR task for two reasons. First, it eliminates the cost of hand-crafting

features. Second, it does not require huge training data to perform reasonably.

As for the training data, existing studies assume sufficient training data is avail-

able. However, we explore how the choice of training and evaluating the LMR models

influences their performance in the disaster management domain. Hence, our empirical

exploration contributes to the effectiveness and efficiency of deploying the LMRmodels

in emergencies. We investigate the effect of multiple factors on the LMR model during

training, including the data domain, entity types, disaster domain, geo-proximity, and
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language.

The dataset exploration we performed has revealed many limitations to address,

such as the limited size, the confined domain and geographical coverage, the absence of

location type annotations, and the inconsistency of annotations, among others. Unfortu-

nately, there is no public Arabic LMR dataset up to the time of this writing. In fact, the

absence of large and generalizable LMR datasets impedes the comparison of existing

LMR models. Thus, we build IDRISI-R datasets that consist of the largest to date

available English LMR dataset (IDRISI-RE) and the first public Arabic LMR dataset

(IDRISI-RA), which contributes to enriching the low resources languages. For that, we

extend the English HumAID and Arabic Kawarith disaster datasets that are labeled for

humanitarian categories to combat the low-quality content (refer to the “hashtag riding”

challenge in Section 1.2.1). Additionally, we conduct extensive analysis on the reliability

(high inter-annotator agreement), coverage (geographical, domain, temporal, dialectical

for Arabic, and location type granularity), and generalizability (domain, geographical,

and over unseen events) of the datasets showing that IDRISI-R is second to none.

We further extend the IDRISI-R datasets for the LMD task and introduce IDRISI-

D datasets (IDRISI-DE English dataset and IDRISI-DA Arabic dataset). IDRISI-DE is

the largest English LMD dataset (toponym-wise) to date. IDRISI-DA is the first Arabic

LMD dataset that enriches the low resources languages. We annotate both datasets by

(i) linking LMs to toponyms in OpenStreetMap (OSM) gazetteer, and (ii) judging the

usefulness of different features (e.g., URLs, replies, entities) for disambiguating LMs.

The goal of exploring the usefulness of features is to tackle the tweet sparsity challenge

(refer to Section 1.2.1) by context expansion.

As for the learningmodels, we have also trained our twomodels, namelyCrf𝐿𝑀𝑅
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and Bert𝐿𝑀𝑅 models. We extensively compare our models against a representative set

of English LMR models and Arabic NER models over IDRISI-R datasets. Our models

showed state-of-the-art performance under different data and task setups. As for the

LMD task, different from existing studies, we perceive the LMD task as a ranking

problem allowing a lenient hierarchical evaluation of solutions. We further propose

employing a pre-trained model (BERT𝐿𝑀𝐷) to account for the efficient deployment of

models in the disaster domain with competitive effectiveness.

1.4. Findings Overview

Below, we elaborate on the essential findings that pave the way for better future

research on LMP in the crisis domain.

Our empirical exploration of the best practices of using the existing datasets and

tools for training and evaluation at the onset of disaster events suggests that disaster-

specific Twitter datasets are the best when compared to the general-purpose web and

Twitter datasets [18], [19]. Limiting the training data to location entities, in contrast

to using all types of entities (e.g., person or organization), makes a notable difference

in performance. We also found that considering the disaster domain and geographical

proximity are critical factors in improving the LMR performance. Additionally, as

little as 263-356 tweets from the target language could improve the performance when

combined with all available multilingual data. One fundamental rule we confirm in

our study is training on all available data from all domains to minimize the labeling

cost at the onset of disaster events; this means technically developing and testing the

models under zero-shot learning. When little budget is available to annotate tweets

from the target event, labeling only 500 tweets would be sufficient to obtain reasonable
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LMR models; this means technically developing and testing the models under few-shot

learning.

Over and above, our exploration on existing datasets highlighted the need for

larger and more generalizable datasets for English and Arabic. We target English for

having several datasets that suffer from many shortcomings. We target Arabic for being

a low resources language with no public Twitter LMR datasets. Our rigorous empirical

analysis on the generalizability of our IDRISI-R datasets demonstrates that IDRISI-RE

is the best domain and geographically generalizable LMR Twitter dataset for the disaster

management domain, compared to all public datasets of its kind. We also found that

geographical coverage and data size are the top influencers on the generalizability of the

LMR datasets. Our experiments confirm the reasonable generalizability of IDRISI-R

datasets. Both IDRISI-RE and IDRISI-RA datasets show decent reliability, reasonable

geographical, domain, temporal coverage, and location type annotations. Moreover,

the benchmarking experiments testify Bert𝐿𝑀𝑅 as the state-of-the-art LMR model over

both IDRISI-RE and IDRISI-RA datasets.

Furthermore, both IDRISI-RE and IDRISI-RA datasets are labeled for features’

usefulness. The analysis of the manual annotations showed that the event context,

hashtags, and other location mentions appearing within the same tweet are helpful

for accurate disambiguation. Our experiments confirm that the Bert𝐿𝑀𝐷 model is

competitive over IDRISI-DE dataset and provides a state-of-the-art performance over

IDRISI-RA dataset.

Throughout the dissertation, we elaborate on these findings and their respective

research questions.
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1.5. Contributions

The contribution of this dissertation is multifold, covering both learning models

and datasets. In Table 1.3, we link these contributions to the respective chapters.

a. We exhaustively and comparatively review the disaster-specific LMP solutions

and evaluation tools over crisis tweets. The review describes the current status,

the associated challenges, and the future directions. It also attempts to link

stakeholders’ requirements with existing geolocation computational tasks.

b. We empirically study the best practices of exploiting the existing resources and

tools for effective LMR at the onset of disaster events:

• We tackle the bottleneck of lack of annotated data, drawbacks of gazetteer-

based solutions, and the high cost of hand-engineered features by exploiting

the vanilla pre-trained BERT model for LMR (Bert𝐿𝑀𝑅).

• We study the effect of different factors, including data domain, entity types,

disaster domain, geo-proximity, and language, under zero-shot learning.

Out of this exploration, we recommend the best practices for deploying

reasonable LMR models at the onset of disaster events.

• We investigate the cost of incrementally acquiring target labeled data at the

onset of disaster events for training reasonably performing LMRmodel (i.e.,

few-shot learning).

• We conduct a failure analysis on our Bert𝐿𝑀𝑅 model to gain insights for the

future development of LMR models.

c. We release six public LMR and LMD datasets2 including:

2https://github.com/rsuwaileh/IDRISI/
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• IDRISI-RE: The largest to datemanually-labeled English LMR dataset (gold

version). It contains around 20.5K tweets and 21.9K LMs.

• IDRISI-RA: The first manually-labeled Arabic LMR dataset (gold version).

It contains around 4.6K tweets and 5.2K LMs.

• IDRISI-RE𝑠𝑖𝑙𝑣𝑒𝑟 : The largest automatically-labeled English LMR dataset

(silver version) constituting around 57K tweets and 43.4K LMs.

• IDRISI-RA𝑠𝑖𝑙𝑣𝑒𝑟 : The largest automatically-labeled Arabic LMR dataset

(silver version) constituting around 1.2M tweets and 884K LMs.

• IDRISI-DE: The largest to date manually-labeled English LMD dataset of

around 9.6K tweets.

• IDRISI-DA: The firstmanually-labeled Arabic LMD dataset of around 4.7K

tweets.

d. The value of the IDRISI datasets is due to the types of annotations that we

collected, including:

• The LMR annotations include location mentions and their coarse- and fine-

grained location types.

• The LMD annotations comprise linking location mentions to toponyms in

OpenStreetMap (OSM) and the human assessment of the usefulness of differ-

ent features for disambiguation, including the event context, URLs, hashtags,

entities, and other locations.

e. A key advantage of IDRISI datasets is their domain and geographical generaliz-

ability. We empirically demonstrate that

• IDRISI-RE dataset is the best generalizable dataset compared to the existing
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English datasets.

• IDRISI-RA dataset is a reasonably generalizable dataset.

f. We establish a set of baselines for the research community:

• We benchmark the IDRISI-RE dataset using diverse and representative En-

glish LMR models

• We benchmark the IDRISI-RA dataset using standard Arabic NER models.

g. We develop and present the state-of-the-art English and Arabic Bert𝐿𝑀𝑅 models

for the disaster domain.

h. We develop and present the competitive English and state-of-the-art Arabic

Bert𝐿𝑀𝐷 models for the disaster domain.

We motivate and elaborate on each of these contributions in their respective

chapters. We also list the research outcomes in Section 6.3.

Table 1.3. Links between contributions and respective chapters in the dissertation.

Chapter #
2 3 4 5

C
on
tri
bu
tio
n
# a ✓
b ✓
c ✓
d ✓
e ✓
f ✓
g ✓
h ✓

The remainder of this dissertation is organized as follows. Chapter 2 discusses

the usefulness of exploiting Twitter in the crisis management domain (Section 2.1) and
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presents the Twitter geolocation studies (Section 2.2). It also briefly reviews the non-

disaster LMP studies (Section 2.3). It then thoroughly discusses both LMR (Section 2.4)

and LMD (Section 2.5) approaches in the disaster management domain. Chapter 3

discusses our empirical exploration of the best practices of utilizing the existing resources

and tools for the Location Mention Recognition task at the onset of disaster events. It

presents the problem definition (Section 3.1), methodology (Section 3.2), experimental

setups (Section 3.3), results (Section 3.4), and a failure analysis (Section 3.5). We

conclude the chapter with a list of limitations of the study in Section 3.6. Chapter 4

presents our efforts in creating IDRISI datasets and benchmarks. It introduces IDRISI-

R English (IDRISI-RE) and Arabic (IDRISI-RA) LMR datasets and benchmarks in

Sections 4.2 and 4.3, respectively. This includes construction (Sections 4.2.1 and 4.3.1),

description and quality (Sections 4.2.2 and 4.3.2), benchmarking experiments (Sections

4.2.3 and 4.3.3), and empirical analysis on generalizability (Sections 4.2.4 and 4.3.4). It

then presents the silver LMRdatasets in Section 4.4. The chapter also introduces IDRISI-

D English (IDRISI-DE) and Arabic (IDRISI-DA) LMD datasets in Section 4.5. It

presents the construction efforts of the dataset (Section 4.5.1), and description and quality

analysis (Section 4.5.2). The chapter concludeswith a discussion on datasets’ limitations

in Section 4.6. Chapter 5 discusses the Location Mention Disambiguation task in

detail including the problem formulation (Section 5.1), methodology (Section 5.2),

experimental setups (Section 5.3), and results (Section 5.4). Chapter 6 sums up the entire

dissertation in Section 6.1. It also discusses this dissertation’s theoretical, practical, and

research implications in Section 6.2. It then lists the research outcomes in Section 6.3

and elaborates on potential future directions in Section 6.4.
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CHAPTER 2: RELATED WORK

In this section, we thoroughly review the literature. We first discuss the infor-

mation extraction research from Twitter for crisis management in Section 2.1. Next,

we discuss the geolocation information extraction over Twitter for crisis management

in Section 2.2. We then provide an overview of LMP studies in general domains in

Section 2.3. Finally, we exhaustively review the LMR and LMD tasks in Sections 2.4

and 2.5, respectively.

2.1. Information Extraction from Twitter for Crisis Management

Recently, Hiltz, Hughes, Imran, et al. [20] conducted a survey to prioritize

the computational tasks developed by technologists based on the guidance of experts

from the crisis management domain in different countries. The study showed that

Twitter is the most preferred social media platform by experts during emergencies,

alongside Facebook. Technologists have made invaluable efforts to utilize social media

for preparedness, relief, and recovery of emergency situations [21]. The proposed tasks

involve but are not limited to, detecting disasters and incidents [22]–[24], summarizing

them [25], filtering relevant tweets [26]–[29], identifying situational reports [30]–[33],

identifying actionable information [3], [34]–[36], geolocation inference and other types

of information extraction [14], [37]–[40].

Nevertheless, current solutions are rarely deployed by relief organizations [41],

[42] due to several reasons. For instance, the unreliability of information, the inefficiency

of solutions in disaster scenarios, and the lack of customized solutions for the different

needs of different stakeholders. Fortunately, there are some recent efforts to bridge the

gap between technologists and responders from relief organizations by understanding
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their needs [20] and the utility of existing solutions [3].

For example, Hughes and Shah [43] proposed a monitoring and analytical appli-

cation that helps Public Information Officers (PIO) to document and report information

about emergencies from social media. The development of the application was in light

of observation of the PIO activities. Furthermore, Vieweg, Hughes, Starbird, et al.

[30] was the first to define different types of situational updates grounded on a manual

exploration of disaster datasets. The list of types has evolved to include finer classes

and actionable classes, such as calls for actions (evacuation, volunteers, donations) [35],

availability and needs for different resources (generally or for a specific location), and

activities of relief organizations [36]. Further efforts have been put into establishing the

definition of actionability and defining the criteria for ranking actionable tweets to prior-

itize response [44]. Furthermore, Zade, Shah, Rangarajan, et al. [3] moved the attention

beyond extracting decision-support reports to aiming at supporting mission-specific re-

sponders. Through surveys and interviews with response authorities, they explored the

varying definitions of actionability for different responders. Similarly, Kropczynski,

Grace, Coche, et al. [8] investigated the characteristics of actionable tweets by inter-

viewing administrators, telecommunicators, and first responders. Researchers have also

spent efforts on extracting geolocation information. Next, we elaborate further on this

and show the vital role of geolocation information in the disaster management domain.

2.2. Geolocation Information Extraction over Twitter for Crisis Management

According to Hiltz, Hughes, Imran, et al. [20], grouping social media content

on a map by their geographic locations is the most demanded feature by responders.

Another important feature was to automatically geotag posts. In addition to providing
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a spatial view of the situation during emergencies, these features facilitate efficient

management of relief activities by making actions or routing them to the responsible

authorities [3], [8]. Geolocation information allows responders to locate resources (e.g.,

food, shelters, etc.) and their status, activities (e.g., evacuation zones), causalities, and

damages [8]–[11]. Since the early emergence of social media, relief organizations have

utilized geotagged content. A good case in point is exploiting mashup technologies

to map disaster events and improve situational awareness. Those applications follow

a crowd-source-based model for collecting updates (e.g., comments, photos, or videos

of incidents). Different mashup platforms have been used to map crisis data (real-time

mapping of situational and actionable data), such as Ushahidi,1 Geofeedia,2 ESRI-

ArcGIS,3 Google Crisis Response,4 and Factal.5

Many such services were deployed during past disasters, including the 2020

earthquake in Port-au-Prince, Haiti,6 Typhoon Haiyan (Visov) in 2013, and Chennai

Floods 2016, in India.7 Furthermore, Fairfax County in Virginia, US, explored the

usefulness of Geofeedia that provides location-based analytical modules to monitor and

aggregate various social media data, including Twitter, Instagram, and YouTube. The

county also took part in releasing the "National Capital Region News and Information"

portal that uses a web-based system to exploit social media and geotagging capabilities

for crisis communication and management.8

Additionally, Roy, Hasan, and Mozumder [45] created dynamic disruption maps

from Twitter data to visualize types of disruption and their status. They employed

1www.ushahidi.com/
2en.wikipedia.org/wiki/Geofeedia
3www.esri.com/en-us/disaster-response/overview
4crisisresponse.google/
5www.factal.com
6www.hsdl.org/?abstract&did=805223
7www.ushahidi.com/support/examples-of-deployments
8www.hsdl.org/?abstract&did=805223
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the NLTK NER model [46] to extract location mentions from tweets’ text. Hong and

Frias-Martinez [47], on the other hand, used the geolocation information extracted from

Twitter data to model evacuation flow patterns at different coarse-grained geographical

levels such as country, state, and areas. This study is limited to users with the automatic

geotagging feature of tweets enabled, which allows tracking and analyzing users’ location

during the disaster. However, Twitter removed this feature in 2019.9 Following a similar

line of analysis, Roy and Hasan [48] used the geolocation information of tweets to infer

the evacuation behavior of individuals during hurricanes, including whether people

evacuated or not, when did they evacuate, and what are their destination points. The

study aimed to extract the effect of evacuation behavior on highway traffic.

Moreover, Uchida, Kosugi, Endo, et al. [49] implemented a real-time system

to support the collaborative response through reporting and retrieving Twitter disaster-

related content. The system combined two web-based subsystems for sharing and

mapping information. The information-sharing subsystem attaches the user location

to the tweet used by the mapping subsystem to pin the content on the map. The

system started operating in early 2015 and improved further in 2017 [50]. Kosugi, Utsu,

Tomita, et al. [51] introduced a better andmore user-friendlyweb-based real-time system

to support collaborative response with the same types of use cases, including reporting,

displaying reports (latest or nearby) and facilities’ locations (evacuation places or disaster

base medical centers), and searching reports. Zhang, Fan, Yao, et al. [52] reviewed

several other state-of-the-art applications of social media informatics in disaster events

and highlighted their challenges. The authors also proposed some research frontiers for

social media informatics in the disaster management domain.

At the other end of the spectrum, a large body of the technical literature focuses

9twitter.com/TwitterSupport/status/1141039841993355264
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on different geolocation computational tasks (e.g., user and tweet location prediction,

and location mention prediction) and diverse data domains (news articles, research

articles, and social media posts) [37]. The central task among these is the LMR task,

which aids all others by extracting evidence from the text for the user, tweet, and incident

locations. Therefore, we exhaustively review the LMP studies in the following sections.

2.3. Location Mention Prediction over Twitter for General Domains

The first exploration of the LMR task is dated back to the Message Understand-

ing Conference (MUC) [53] in 1996 as part of the Named Entity Recognition (NER)

task. The LMD task, on the other hand, has its root, as part of the Entity Linking (EL)

task in Natural Language Processing (NLP) as cross-document coreference resolution

and in databases as record linkage [54]. The practical role of LMR and LMD tasks

is evident through the different available spatial address geocoding systems and APIs

such as commercial Google Maps platform,10 the open-source QGIS,11 ArcGIS,12 and

TomTom,13 among others. Moreover, the LMR and LMD tasks are essential for different

domains such as crisis management domain [14], [15], [18], [55]–[72], traffic moni-

toring [39], [73]–[75], POIs recommendation [76], [77], geographical text analysis and

retrieval [78], [79], to name a few. In this section, we briefly review the non-disaster-

specific LMR and LMD solutions. We elaborate thoroughly on the disaster-specific

LMR and LMD solutions in Sections 2.4 and 2.5, respectively.

10https://developers.google.com/maps
11https://qgis.org/en/site/
12https://geocode.arcgis.com/
13https://developer.tomtom.com/
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2.3.1. Location Mention Recognition

Departing from the NER general task, Hoang and Mothe [80] analyzed the

trade-off between recall and precision of NER tools alongside a filtering step using DB-

pedia14 over tweets. The NER tools are StanfordNER, Gate NLP framework (Gate) [81],

and Ritter tool (originally trained StarfordNER on Twitter data) [82]. They reported

increased recall levels when using more than one NER tool. On the other hand, the

precision improves when filtering tweets to determine whether they contain toponyms or

not. TwitterStand [83] was among the first studies to exploit geotagging tweets’ content

for automatic extraction and mapping of breaking news. The tool uses a training-free

method to extract candidate LMs to identify key phrases in tweets using term frequency.

To resolve the candidate LMs, it searches the GeoNames gazetteer using pre-defined

heuristics. Differently, Malmasi and Dras [84] extract noun phrases (NPs) from tweets

using a recursive rule-based tree parser. To link extracted locations to Geonames’ to-

ponyms, they apply fuzzymatching. Themajorweakness of the gazetteer-basedmethods

is the mismatch between the noisy Twitter stream and the often clean gazetteers. To alle-

viate this issue, Sultanik and Fink [85] proposed an Information Retrieval (IR) approach

to identify the location mentions in tweets. They indexed the locations of gazetteers by

their phonetic encodings using a K-D data structure to enable efficient matching using

fuzzy matching to mitigate misspellings in the input data (e.g., Qatr versus Qatar.). For

that, their matching component hashes the gazetteer’s toponyms based on a phonetic en-

coding algorithm dubbed "Double Metaphone". More interestingly, a couple of studies

[56], [66] adopted an ensemble-based LMR model to achieve high coverage of recog-

nized locations. Zhang and Gelernter [66] combined the output of four LMR models

14http://dbpedia.org/snorql/
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with different techniques, including lexico-semantic based, rules-based building, rules-

based street, and machine learning-based parsers. Differently, Kinsella, Murdock, and

O’Hare [86] proposed learning a language model of varying location granularity using

geotagged tweets. Tweets are collected using geo-coordinates. Furthermore, in 2014,

the topic of the fifth Australasian Language Technology Association (ALTA) shared task

was on LMR in tweets [87]. Participants explored techniques such as feature engineer-

ing, ensemble classifiers, rule-based classification, knowledge infusion, CRFs sequence

labelers, and semi-supervision. As for features, they used different features, including

geospatial, structural, and lexical features. Participants used a retrained StanfordNER

on tweet datasets as well.

2.3.2. Location Mention Disambiguation

A couple of studies [88], [89] had tackled the LMR and LMD tasks jointly to

allow passing feedback between the LMR and LMD models for a robust LMP. Guo,

Chang, and Kiciman [88] trained a structural SVM model to perform recognition and

disambiguation tasks. Ji, Sun, Cong, et al. [89] used beam search to find the best

combination of recognition and disambiguation labels. Nevertheless, this approach

leads to error propagation between LMR and LMD models. To elaborate, inaccurately

detected LMs would negatively affect the performance of the LMD model as it would

fail to resolve them.

Contrarily, Li, Hu, Feng, et al. [90] conducted a coherence linking at the user

level since location mentions in tweets posted by users usually fall within their home

city. After detecting the user’s home city using LMs appearing in the user timeline,

they disambiguate the target LMs according to their relation to the home city. Similarly,
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Ji, Sun, Cong, et al. [89] used a coherence measure that relies on the average distance

between potentially relevant toponyms to the LMs.

2.4. Disaster-Specific Location Mention Recognition

In this section, we discuss the LMR studies from two angles, their technical

solutions (Section 2.4.1) and evaluation tools (Section 2.4.2).

2.4.1. Solutions

Existing studies exploit different techniques and features to extract location

mentions (LMs) from text [37]. However, it is worth mentioning that comparing the

performance across approaches is unattainable due to the absence of a unified evaluation

framework. Hence, this section’s will solely focus on methodology.

2.4.1.1. NER-based Approaches with Domain Transfer

An intuitive LMR solution is to exploit off-the-shelf NER models. Existing

studies did not only employ the existing NER models directly but also used the NER

datasets to train their own LMR models. For instance, Lingad, Karimi, and Yin [55]

explored the effectiveness of four NER models on toponyms extraction over disaster-

related tweets. The models are StanfordNER [91], OpenNLP,15 Yahoo! PlaceMaker,16

and TwitterNLP [92]. The results showed that StanfordNER is the top-performing

tool when retrained on Twitter data; otherwise, it poorly performs. Gelernter and Balaji

[56] developed GeoLocator that uses OpenCalais NER tool [93] to extract toponyms and

facilities (i.e., buildings). To combat the gazetteer incompleteness issue, they augmented

15https://opennlp.apache.org/
16No longer available.
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OpenCalais with a list of building types to improve its recall when detecting buildings.

Recently, GazPNE2 [94] exploited Stanza NER model to accelerate recognition and

detect hard LMs.

Later, several LMR studies exploited StanfordNER tool due to its superiority.

Among the four participating teams in the LMR shared task in the ALTA Workshop

2014 [87], a couple used the StanfordNER tool for toponym recognition. One team

used it in a data transfer mode as a pre-trained model within an ensemble LMR system

with rule-based modules that identify abbreviations and location specifiers in text [57].

Alternatively, Liu, Rahimi, Salehi, et al. [58] retrained the StanfordNER model over

the ALTA training data. Ghahremanlou, Sherchan, and Thom [59] and Yin, Karimi,

and Lingad [60] had also retrained StandfordNER using tweet datasets to improve its

effectiveness. Furthermore, Mao, Thakur, Sparks, et al. [61] compared three NER

models, including the original StanfordNER model, a retrained version on tweets, and

the Bi-LSTM model to map places of power outages using Twitter data.

Following the same line of research, Nizzoli, Avvenuti, Tesconi, et al. [65] have

recently used the NER dataset from the Named Entity rEcognition and Linking (NEEL)

challenge [95] to train their LMR model. They then employed the TAGME tool [96] to

capture meaningful short phrases in the text and match them against Wikipedia articles

to detect LMs. Wang and Hu [68], alternatively, retrained the three top systems from

the Toponym Resolution in Scientific Papers task, at SemEval 2019 [97], on CoNLL

2003 NER Web dataset [98]. The systems are DM_NLP [69], UniMelb [70], and

UArizona [71]. The LMR models are at their core Bidirectional Long Short Term

Memory (BiLSTM) network (Discussed further in Section 2.4.1.4). We discuss the

disambiguation components of these systems in Section 2.5 in detail. Furthermore, to
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create dynamic disruption maps during disaster events, Roy, Hasan, andMozumder [45]

extracted LMs from tweets using the NLTK-NER model [46].

To sum up, a key motivation for adopting domain transfer techniques is to

mitigate the response latency of relief authorities at the onset of disaster events. The

latency could occur due to the time-costly annotation of target disaster data. Directly

applying the NER models trained on web data does not lead to effective performance in

the disaster domain. Although this group of studies had used general-purpose taggers,

their experiments did not investigate the gains and losses of considering all types of

entities against the location entity during training. In this dissertation, we empirically

investigate how limiting the training on location entities affects the performance of LMR

models. Additionally, existing studies did not consider evaluation under the zero-shot

setup. Hence their performance cannot be anticipated for future disaster events, i.e.,

when deployed during real-world emergencies. Differently, we study the performance of

LMRmodels under zero- and few-shot learning to examine their potential to generalize.

2.4.1.2. Gazetteer-based Approaches

The subsequent research direction was to develop disaster-specific LMRmodels.

The intuitive approach is to verify the potential LMs against a geolocation database (i.e.,

gazetteers) while detecting them. Many of the existing LMRmodels are gazetteer-based

models with two consecutive components [14], [15], [56], [62], [63]: (i) extraction:

aims to detect potential LMs from text, and (ii) retrieval: aims to link the candidate

LMs with toponyms in gazetteers. Hence, these approaches could be categorized under

joint approches of recognition and disambiguation, as the resulting LMs correspond to

existing toponyms in gazetteers.
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Several existing gazetteers were employed in the gazetteer-based approaches,

includingGeonames [62], [63], OpenStreetMap [14], [15], [63], andNationalGeospatial

Intelligence Agency gazetteer of New Zealand [56], to name a few.

The gazetteer-based approaches extract LMs from the textual content; however,

they only qualify LMs after verifying them against a gazetteer. For example, after

extracting candidate LMs using OpenCalais NER model, the GeoLocator [56] matches

(exact matching) the potential LMs against a gazetteer after correcting misspellings. To

alleviate the mismatch issue between the user-generated text (tweets) and gazetteers,

GeoLocator expands tweets with abbreviations and acronyms using a C4.5 decision

tree classifier. Middleton, Kordopatis-Zilos, Papadopoulos, et al. [15] proposed the

map-database approach that relies on direct matching with the gazetteer. An index of

locational phrases is constructed by augmenting different variations of LMs in the Open-

StreetMap gazetteer using a set of heuristics. The collected variations are represented as

n-grams before being indexed and searched. All combinations of n-grams for the input

tweet are issued against the index of the locational phrases.

Another direction for matching gazetteers is utilizing language models. For

instance, Middleton, Kordopatis-Zilos, Papadopoulos, et al. [15] adopted a language

modeling approach, namely the lm-tags-gazetteer that was proposed by the top team

in the MediaEval 2016 Placing Task [99] after extending it for location entities. The

extended system uses gazetteers and a large geo-tagged social media dataset (Flicker

posts) to build a language model. Then, the language model is computed regionally to

account for the location indicative terms.

Similarly, Al-Olimat, Thirunarayan, Shalin, et al. [14] proposed an unsupervised

statistical approach to construct regional languagemodels. The tagger identifies the LMs
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by simultaneously traversing a tree of n-grams and matching them against a pre-built

region-specific gazetteer. Alternatively, Dutt, Hiware, Ghosh, et al. [63] applied syn-

tactical heuristics to identify candidate LMs before matching them against the gazetteer.

After identifying the nouns in a text using a POS tagger, they consider the candidate

nouns followed by common suffixes as LMs. Then, a suffix list is pre-compiled using

different naming conventions of locations (e.g., streets and cities). To tokenize text, they

also constructed a prefix list of prepositions (e.g., at) and directions (e.g., north).

Acquiring labeled data is a key bottleneck during emergencies. The elegance of

gazetteer-based solutions lies in their essence being unsupervised approaches that enable

them to evade the need for acquiring annotated data at all. Additionally, the gazetteer-

based approaches do achieve high precision levels. However, albeit being training-free

models and highly accurate, they have two main drawbacks. First, the noisiness of

Twitter streams causes a mismatch between the textual content of tweets and gazetteers,

which introduces two challenges: (i) the need for careful text preprocessing (e.g., spell

checking), and (ii) the need for augmenting all variations of the LMs including their

abbreviations and acronyms into gazetteers for more effective matching. As an alterna-

tive, these steps could be replaced by semantic text representation models. Second, the

incompleteness of gazetteers affects the performance of LMR models when detecting

correct LMs that do not exist in the used gazetteer. To alleviate these challenges, we

propose using the pre-trained BERT𝐿𝑀𝑅 model which learns semantic and contextual

text features without relying on gazetteers.
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2.4.1.3. Learning-based Approaches

The machine learning-based (ML-based) LMR models alleviate the limitations

of the gazetteer-based LMR solutions. The virtue of ML-based approaches lies in their

promising ability to generalize beyond the seen data if supported with good features.

Before discussing the ML-based models, we first discuss the different features used

to train these models. Note that most are token-level features (except one type of

geographical features, and temporal features), as the LMR task is defined here as a

sequential token-level tagging/classification task.

Textual features: While words are the essential component of tweets, they constitute

the basic feature in all the ML-based approaches. Tweets are typically represented as

a bag of words. N-grams are employed at both word- [100]–[102] and character- [72]

levels.

Lexical features: Following the NER tools, which are trained on formal documents

and heavily rely on capitalization, different features of capitalization were used for the

LMR models [101], [102]. For instance, binary features for whether all characters

are uppercased, all characters are lowercased, only the first character is uppercased,

and mixed capitalization. Also, the prior probabilities for (i) having the first character

capitalized, and (ii) having all characters capitalized. While capitalization shows a strong

signal for entities, Twitter users do typically ignore capitalization. Thus, applying letter

case correction before recognition is essential to use the NER models. Furthermore, Li

and Sun [101] used an indicator feature for whether a token is numeric or alphanumeric.

Contextual features: The bi-directional context of tokens is usually considered in the

Conditional Random Fields (CRFs) classifiers to capture the boundaries of locations by

adding the adjacent words within a window of a maximum size of 2 [100], [102] or
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5 [101]. Furthermore,word embeddings have been used for the LMR task [18], [64], [72]

to contextually represent tokens/tweets using pre-trained models such as GloVe [103]

and BERT [17].

Syntactic features: Assigning thePart-Of-Speech tags (POS), e.g., noun, verb, adjective,

among other types, to words (or tokens) showed to be effective when combined with

other features [100]–[102].

Geographical features: To trade-off between precision and recall, a few studies [72],

[101], [102] pre-labeled the tweet tokens using a toponym inventory. This approach is

proven to be influential on the LMR performance. To build the toponym inventory, Li

and Sun [101] labeled the common names of POIs mentioned in tweets with the as-

sociated Foursquare check-ins. This method generates a Twitter-like noisy gazetteer.

Alternatively, Han, Yepes, MacKinlay, et al. [102] combined the GeoNames gazetteer

with a manually-crafted list of location abbreviations and codes to account for the in-

completeness and mismatch challenges. They leveraged the ConceptMapper [104] to

link locations extracted from gazetteers and use them for tweet tokens representation.

Xu, Pei, Li, et al. [72] assigned the BIO-like LMR pre-labels predicted using a CRFs

model to represent the tweet tokens alongside their distributed word and character rep-

resentations. Crafting this type of feature is similar to the phase of extracting LMs

candidates from gazetteers in the gazetteer-based approaches (refer to Section 2.4.1.2).

Entity features: This type of feature is more general than the Geographical features

in which the LMR models are fed with the NER tags extracted by NER models and

their confidence scores [65]. In addition to that, some Entity features are extracted

from knowledge bases such as the DBpedia ontology class of the entity, the number of

classes and superclasses of the entity, the node degree of the entity, the length of the
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corresponding Wikipedia article in characters, among other features [65].

Temporal features: These features aim to capture common words based on chronology.

For example, Li and Sun [101] manually compiled a time-trend list of 36 common

English verbs, auxiliary verbs, adjectives, or adverbs with scores of 1, 0, and -1 rep-

resenting the future-, present-, and past-trends, respectively. These scores are used to

compute the time-trend score per tweet by averaging the scores of the tweet tokens that

appear in the time-trend list.

To this end, we discuss the proposed ML-based approaches that exploit the dif-

ferent categories of features. We note that the Stanford NER tool employs a linear chain

CRF model in its core [100]; hence all studies that leverage it are considered ML-based

as long as a gazetteer verification does not interrogate their output. The first employ-

ment of LM-based approaches for the LMR task is dated back to 2014 when the PETAR

system was introduced [101], [105]. PETAR uses a linear-chain Conditional Random

Fields (CRF) model and is trained over features from all feature categories above. To

overcome the mismatch issue in informal abbreviations and misspellings, Li and Sun

[101] applied the Brown clustering technique [106] that groups tokens appearing in

similar contexts. Concomitantly, Han, Yepes, MacKinlay, et al. [102] leveraged various

lexical, semantic, syntactic, and geographical features on top of a CRF classifier [87].

Although CRF models accompanied by noisy gazetteers and a variety of hand-

engineered features have achieved competitive performance in different studies [87],

[101], [102], [105], their main limitation is the expensive feature engineering phase.

There is still a big room for improvement to build robust LMR models with a minimal

cost, which we explore through training BERT𝐿𝑀𝑅 model (to reduce the training time)

with different combinations of available data (to eliminate the data annotation time).
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2.4.1.4. Riding the Wave of Deep Learning Models

More recently, a few studies proposed Deep Learning (DL) approaches. The

first exploitation of DL approaches for LMR in the disaster domain was proposed in

2019 by Kumar and Singh [64]. They trained a Convolutional Neural Network (CNN)

model to learn tweets representation and perform the recognition. Xu, Pei, Li, et al.

[72] proposed DLocRL, a deep learning sequential pipeline for location recognition and

disambiguation in tweets. For recognition, they employed the BiLSTM-CRFmodel with

contextualized word- and character-level features concatenated with their geographical

CRF pre-labels. Following the same approach, Wang et al. [40] proposed the NeuroTPR

model that employs BiLSTM-CRF NER model [107] for recognition.

Furthermore, Wang and Hu [68] employed Toponym Resolution systems that

exploit neural-based BiLSTM recognition modules. The DM_NLP [69] model learns

character- and word-level text features to represent documents. The learned representa-

tions go through a CRF layer added to the BiLSTM model to generate the final LMR

token-level labels. The model uses other syntactic features such as POS, StanfordNER,

and chunking labels. It also uses contextual features that improve the performance of

the model. Differently, UniMelb [70] is a BiLSTM-based model that learns word-level

text representation and employs a self-attention mechanism with a binary softmax layer

on top of it. The UArizona [71] goes to the extreme and learns from concatenated word,

character, and affix-level representations of text data. Akin to DM_NLP, a CRF layer is

added on top of the BiLSTM model. nLORE [108] is a deep learning-based model that

exploits LORE’s [109] rule-based features for recognition.

Diverging from others, Hu, Al-Olimat, Kersten, et al. [110] introduced the

GazPNE recognizer, which is an unsupervised model that fuses CNN and Bi-LSTM
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models to learn from around 4.6M positive training examples extracted from gazetteers

and 220M negative synthesized examples. The advantage of GazPNE is that it does

not require labeled examples for training. GazPNE2 [94] is an enhanced version of

GazPNE that employs an LMD module to improve the LMR accuracy. In addition, it

uses synthesized training data extracted from gazetteers to train a CLSTM model.

Recently, Khanal, Traskowsky, and Caragea [111] and Khanal and Caragea

[112] exploited the transform-based pre-trained models for the LMR task. Khanal,

Traskowsky, and Caragea [111] further pre-trained LUKE [113] model on their data to

learn contextualized entity embeddings that allow optimizing a self-attention mecha-

nism for recognizing LMs. Khanal and Caragea [112] investigated multi-task learning

for different crisis management computational tasks, including LMR, key-phrase iden-

tification, eyewitness identification, and humanitarian categories classification. They

empirically confirmed the positive impact of multi-task learning on LMR performance.

The main disadvantage of the DL approaches is being data-hungry. To alleviate

this issue, we followed three directions. First, we report the first results for employing the

pre-trained BERT to reduce the amount of training data; we introduce BERT𝐿𝑀𝑅 [18].

Second, we explore different transfer learning setups that account for the difference

between the sources and target disaster events for different factors, including the data

domain, entity type, disaster domain, geo-proximity, and language. We attempt to find

the best non-target training data at the onset of disaster events. Third, we build the

largest-scale manually- and automatically-labeled LMR datasets for both English and

Arabic languages. We anticipate these invaluable resources to empower research on

LMR.
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2.4.2. Evaluation

Unfortunately, the lack of a unified evaluation framework prevented comparing

the methods discussed in Section 2.4 under fair conditions. Long-delayed, the first effort

to provide a unified framework for the LMP task was the EUPEG framework [114] in

2019. EUPEG provides access to 5 non-disaster-specific LMPmodels and eight general-

purpose datasets. Unfortunately, only one is a Twitter dataset, GeoCorpora [115].

Surprisingly, solely Wang, Hu, and Joseph [40] used the framework.

A fair evaluation framework for the LMR task in the disaster domain has to

provide diverse evaluation datasets, evaluation measures, and a set of representative

baselines. This section compares the available evaluation datasets and the commonly-

used LMR evaluation measures and setups.

2.4.2.1. Datasets

In this section, we review the Twitter NER datasets, the general LMR datasets,

and the disaster-specific LMR datasets. First, we present their characteristics and issues

and discuss how our LMR datasets, IDRISI-R, overcome these limitations. Then, in

Tables 2.1 and 2.2, we summarize the existing NER and LMR English and Arabic

datasets, respectively.

Twitter NER Datasets: As LMR is a subtask of NER by definition, different studies

explored the effectiveness of the general off-the-shelf NER tools for LMR or retrained

their LMR models using NER datasets [19], [40], [55], [80]. On the other hand, the

Arabic NER studies have a limited focus on Twitter. In this section, we review the

English and Arabic NER datasets.

• English Datasets: Out of the six Twitter NER datasets presented in Table 2.1,
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Table 2.1. Summary of the NER and LMP English datasets. “Type” and “Pblc”
columns indicate whether the dataset contains location types annotations and whether
it is public, respectively. “∗” indicates the disaster-related datasets, entirely or partially.
“+𝐷” indicates LMD datasets.

Dataset # Twt # LM (unique) Annotation Type Pblc

Twitter NER datasets
Ritter et al. [92] 2,400 276 (193) In-house × ✓
Liu et al. [116] 12,245 - In-house × ×
Li et al.[117] 7,750 - In-house × ×
Gelernter et al. [118] ∗ 4,488 2,866 (-) Translation × ×
WNUT2017 [119] ∗ 2,296 773 (559) In-house × ✓
BTC [120] ∗ 9,551 3,114 (1,295) In- & Crowd × ✓

General Twitter LMP datasets
Sultanik et al. [85] 500 99 (-) In-house - ×
Zhang et al. [66] 956 1,393 (779) In-house - ×
Inkpen et al. [121] 6,000 4,369 (-) In-house - ×
Ji et al. [89] +𝐷 3,611 1,542 (-) In-house - ×
Li et al.[101], [105] 3,570 2,056 (906) Automatic - ×
Kumar et al. [64] 5,107 3,230 (-) In-house - ×
Chen et al. [122] 6,571 2,604 (-) In-house ✓ ✓

Disaster-specific Twitter LMP datasets
GEL [56] ∗ 3,987 - In-house ✓ ×
MID [123] ∗ 3,996 2,030 (451) In-house × ✓
ALTA [87] ∗ 3,003 4,854 (1,704) Crowd × ✓
OLM [14] ∗ 4,500 5,323 (1,619) In-house × ✓
DUT [63] ∗ 1,000 ∼100 (-) In-house × ×
GeoCorpora [115] ∗ +𝐷 6,648 3,100 (1,119) Crowd × ✓
HU1 [124] ∗ 1,000 2,139 (989) In-house ✓ ✓
HU3 [125] ∗ 3,000 3,530 (1,351) In-house × ✓
FGLOCTweet [126] ∗ 9,435 5,958 (3,457) Automatic × ✓
KHAN [111] ∗ 9,339 9,655 (1,639) Crowd ✓ ✓
Bahnasy et al. [127] ∗ 297,150 - Automatic × ×
IDRISI
IDRISI-RE𝑔𝑜𝑙𝑑 ∗ 20,514 21,879 (3,830) Crowd ✓ ✓
IDRISI-RE𝑠𝑖𝑙𝑣𝑒𝑟 ∗ 56,682 43,404 (2,675) Automatic ✓ ✓

only three are made public [82], [119], [120]. We note here that there is a

burgeoning literature on NER and available datasets, but we solely list the ones

used in the LMR research. The main drawback of the Ritter, Clark, Etzioni,

et al. [92] and WNUT2017 [119] datasets is the modest number of Location
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Table 2.2. Summary of the NER and LMR Arabic datasets. “Type” and “Pblc”
columns indicate whether the dataset contains location types annotations and whether
it is public, respectively. “∗” indicates the disaster-related datasets, entirely or partially.

Dataset # Twt # LM (unique) Annotation Type Pblc

Twitter NER datasets
Darwish [128] 5,069 1,300 (299) In-house × ✓
Aguilar et al. [129] 11,155 1,412 (440) In-house × ✓
Jarrar et al. [130] 5,653 435 (175) In-house × ✓

Twitter LMR datasets
Al Emadi et al. [73] - - In-house × ×
Alkouz et al. [131] 100 - In-house × ×
Alkouz et al. [74] - - In-house × ×
Bahnasy et al. [127] ∗ 297,150 - Automatic × ×
IDRISI
IDRISI-RA𝑔𝑜𝑙𝑑

∗ 4,593 5,236 (918) In-house ✓ ✓
IDRISI-RA𝑠𝑖𝑙𝑣𝑒𝑟

∗ 1,205,373 884,217 (18,609) Automatic ✓ ✓

entities. The Broad Twitter Corpus (BTC) [120] that constitutes the largest

public Twitter NER dataset offers roughly 2,852 Location entities. Nevertheless,

our experiments demonstrated that the disaster-specific datasets are preferable

over the general-purpose data, e.g., BTC, for training LMR models in the disaster

domain [18].

• Arabic Datasets: Table 2.2 presents the Arabic NER dataset (refer to the first

group). Although the Arabic NER datasets could be sufficient for training accept-

able LMRmodels at the onset of disaster events, several challenges are associated

with this line of research. Even though the NER models trained on web data

perform poorly on tweets [132], the Arabic NER studies have a limited focus on

Twitter. While this requires creating data domain-specific datasets, a few public

Arabic Twitter NER datasets suffer from the limited size and inadequate cover-

age [128]–[130]. Darwish and Gao [132] introduced the first Arabic Twitter NER

dataset containing 5,069 tweets and 1,300 LMs, 299 of which are unique. Aguilar,
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AlGhamdi, Soto, et al. [129] created a dataset comprising 12,334 tweets and 5,306

LMs. However, only the training and development sets are public for the research

community. As of Jan 2023, we managed to crawl 11,155 tweets containing 1,412

LMs, 440 of which are unique. Recently, Jarrar, Khalilia, and Ghanem [130]

created the first Arabic Multi-domain nested NER dataset. It contains a subset

of 5,653 tweets containing 435 entities of LOC and GPE, only 175 of which

are unique. Additionally, a significant challenge in processing Arabic documents

is handling the common dialectical (colloquial) text over Twitter. Although the

MSA-EGY [129] dataset is of reasonable size, it is limited to only MSA and

Egyptian dialect, which could make it geographically confined. Other datasets do

not report the dialectical distributions. Furthermore, the Arabic NER datasets are

randomly filtered using the sampling Twitter API; they are not disaster-specific.

These datasets could serve at the onset of disaster events for deploying accept-

able LMR models but should be augmented with disaster-specific Twitter data to

improve accuracy [19]. We aim to address these limitations while constructing

IDRISI-RA by being an event-centric dataset that geographically covers all Arab

countries and reasonably represents their dialects.

General LMR Twitter Datasets:

• English Datasets: The LMR problem is of interest to many domains such as emer-

gency management (refer to Section 2.4.1), traffic monitoring [74], [133], [134],

POIs recommendation [76], [77], geographical text analysis and retrieval [78],

[79], to name a few. There are a few existing general English LMR tweet datasets

(refer to the second group of datasets in Table 2.1). These datasets are not event-

centric; however, they are useful to evaluate the generalizability of the LMR
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models to domains other than the disaster domain. Although these datasets are

of appropriate sizes and mostly labeled by experts, only one is publicly-available

(i.e., [122]) due to the issue of third-party copyrights.

• Arabic Datasets: Table 2.2 presents the LMR Arabic dataset (refer to the second

group). Alkouz and Al Aghbari [131] adopted an English LMR system [84] to

extract LMs from English and Arabic traffic-related tweets (filtered using traffic

keywords such as “traffic” and “jam”). The system issues the n-grams extracted

from the tweet text against Google PlaceAPI and assigns the latitude and longitude

coordinates to n-grams that obtained results from the API. The resultant data,

however, is geographically limited to United Arab Emirates (UAE). There are a

couple of other cross-lingual traffic monitoring systems (for English and Arabic

languages) [73], [74], however, the datasets are nonpublic and very small. They

contain around 500-600 tweets, and the percentage ofArabic data is undetermined.

Disaster-Specific LMR Twitter Datasets: Despite the abundance of English and Arabic

disaster datasets that are made available by academic researchers, e.g., [135]–[139], a

few of them are labeled for the LMR task. In this section, we review both disaster-

specific Twitter Recognition and Disambiguation (LMD) datasets as the latter could be

used to develop and evaluate LMR models. We further compare our IDRISI-R dataset

to the existing ones.

• English Datasets: Generally, the existing datasets (refer to the third group in

Table 2.1) are limited in size, with the largest being the KHAN dataset which

constitutes 9,339 tweets and 9,655 LMs [115]. While the size of the datasets forms

a challenge for the supervised models, these datasets suffer from the confined

domain and geographical coverage. For instance, in all public natural disaster
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event-centric English LMR datasets, five flood events happened in Australia,

India, the UK, and the US (ALTA, KHAN, and OLM), three hurricane events

happened in the US (ALTA and KHAN), two earthquake events happened in

New Zealand (MID) and Nepal (KHAN), one bombing event happened in Sri

Lanka (KHAN), and one COVID-19 dataset (KHAN). The GeoCorpora dataset is

collected using general disaster keywords such as “earthquake”, “flood”, “fires”,

among others, with the most coverage of toponyms for the United States (42%),

the United Kingdom (12%), among other countries. Albeit the good diversity, the

small number of data per disaster type forms the main barrier to exploiting these

datasets.

As for the location types, not all datasets contain location types for LMs [56],

[111], [122], [123]. Chen’s dataset [122] contains very generic types (point

and area) or particular location types (road and river). GEL [56] contains 4,000

tweets collected during the 2011 Christchurch Earthquake in New Zealand. The

four categories of LMs are street, building, toponym, and abbreviation. However,

the GEL dataset is not available to the research community. MID dataset [123]

contains three types of locations including “admin”, “building”, and “transport”.

Similarly, KHAN dataset [111] has categories of locations that further requires

finer annotations to split types out. For example, all fine-grained locations ( e.g.,

buildings, landmarks) are labeled into one category called “lan”. We augment

annotations for different coarse-grained and fine-grained location types in IDRISI-

RE to overcome this shortcoming.

Additionally, new LMs within the affected areas emerge in the Twitter stream

during disasters, demanding extended data coverage during the entire disaster
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period. Nevertheless, the OLM dataset is the only dataset that we could analyze

its temporal coverage as other datasets either do not release the IDs (MID), or the

event notion is ignored when they are collected (GeoCorpora is a keyword-based

dataset) or released (all events are merged in ALTA and KHAN datasets). Using

the tweets we managed to crawl at the time of this writing, we found that the

OLM dataset misses long critical periods, especially during the Chennai Floods

2015. To articulate, while the floods happened between 8 Nov - 14 Dec 2015,17

the tweets only cover the period between 2-4 Dec 2015.

Moreover, while an LMR dataset could cover all relevant topics discussed during

the disaster, it has to contain informative and actionable tweets useful for the

responders. Unfortunately, only the ALTA dataset is labeled for relevance, and

the GEL nonpublic dataset is labeled for informativeness. We aim to select

events that are already filtered for relevance and contain informative tweets when

constructing IDRISI-R datasets. Themain imperfection of the LMRdatasets is the

inconsistency of the “location mentions” definition between and within datasets.

Indeed, the guidelines used to train annotators are rarely discussed [66], [115].

Therefore, we release our annotation task instructions that articulate our “location

mention” definition, and we further elaborate on them in Section 4.2.2.1.

• Arabic Datasets: Table 2.2 presents the only disaster-specificArabic LMRdataset.

Bahnasy, El-Mahdy, et al. [127] employed LM extraction to aid event detection

over Arabic tweets. Although the dataset is large, it is confined from different

angles; its geographical coverage is limited to Egypt; its dialectical coverage is

limited to Egyptian dialect; and its disaster domain is limited to fire, flood, and

17https://en.wikipedia.org/wiki/2015_South_India_floods
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pandemic disaster types only. In contrast, IDRISI-R dataset contains diverse

disaster types that form the most happening types in Arabic-speaking countries.

These events happened in 22 different countries. IDRISI-RA also captures a fair

coverage of Arabic dialects.

2.4.2.2. Evaluation Measures

The standard evaluation measures for LMR effectiveness are Accuracy (Acc),

Precision (P), Recall (R), and 𝐹𝛽 score (the harmonic mean of Precision and Recall),

per entity. Nevertheless, researchers compute these measures in different ways based on

three main factors: (1) handling the partial matches, i.e., whether to reward the model

when detecting part of the LM span, (2) evaluating per tweet or event, i.e., whether

to report token-level macro or micro average performance, and (3) handling the true

negatives, i.e., whether to reward the models when they correctly predict no LMs for

a single tweet. The partial matches are typically ignored from evaluation except in a

few studies, e.g., [14], [87], [110]. Molla et al. [87] report that they account for partial

matches but do not elaborate on their strategy nor make their evaluation script public.

Al-Olimat et al. [14] and Hu et al. [110] penalize models by adding 0.5 to both false

positives and false negatives counts before computing the Precision and Recall. Our

evaluation script accounts for factors (2) and (3) but not factor (1) as it requires further

investigation that we keep for the future.

Given the scarcity of publicly-available large-scale representative LMR datasets

and the critical real-time nature of the deployment of LMRmodels at the onset of disaster

events, LMR systems should be extensively evaluated in different possible scenarios.

Typically, the existing models are evaluated under an unrealistic assumption that labeled
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target data is available during the early stages of disaster events. As acquiring labeled

data is costly during disasters, researchers should report the performance of their models

under the zero-shot setup, where the model had never been introduced to training data

from the target disaster. Therefore, studying the models’ generalizability under zero-

shot learning is important while considering different factors such as disaster domain,

geographical proximity, and language. In this dissertation, we investigate LMR model

performance under these different scenarios, we explored the effect of data domain,

entity type, disaster domain, geographical proximity, and language under the zero-shot

setup using five disaster-specific datasets [14][15]. Our rigorous experiments suggest

that “target” evaluation setups show misleadingly high performance compared to cross-

and out-of-domain scenarios during emergencies.

2.5. Disaster-Specific Location Mention Disambiguation

In this section, we discuss the LMD studies and discuss their technical solutions

(Section 2.5.1) and evaluation tools (Section 2.5.2).

2.5.1. Solutions

This section reviews the current solutions from the methodology perspective

due to the absence of a unified evaluation framework that allows performance com-

parison across proposed solutions. A few studies tackle the LMD task using limited

machine learning and deep learning approaches. Thus, we present the hand-crafted and

automatically-computed features employed before discussing the existing approaches.

Akin to the LMR systems, existing approaches exploit contextual features at character

and word levels (e.g., learned by CNNs), syntactic (e.g., POS tags), and geographical
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features (extracted from gazetteer attributes) for tackling the LMD task. In addition to

a few other features we discuss below:

Contextual features: In addition to the features discussed in Section 2.4, the gazetteer

entries lack context to learn rich representations. Thus, external resources, such as

Wikipedia articles, are useful for expanding their representations. Articles could be

used as a whole or only extracted segments for efficiency concerns.

Similarity features: These features are computed by the similarity of the candidate

LMs extracted from tweets against the toponym names in gazetteers. The similarity is

encoded using exact matching, substring matching (i.e., candidate LM partially matches

a gazetteer toponym or the opposite), prefix matching (LM matching the beginning of a

gazetteer toponym or the opposite), Jaccard similarity, or Levenshtein similarity.

Gazetteer features: The properties of toponyms in gazetteers are employed to capture

relevance signals and prioritize gazetteer candidates. These features change according

to the employed gazetteer. In addition, different attributes are helpful, including the

popularity of the toponym, the number of ancestor LMs, and the administrative division

level, among others.

Mention neighbors features: The LMs often co-occur with their child (fine-grained) or

parent (coarse-grained) toponyms as illustrated in Figure 2.1. i.e., addresses. upon this

observation, the mention neighbors features improved the LMD performance. Using

all LMs in the tweet besides the target LM, we can encode the relationship between

the multi-level mention lists by examining whether the gazetteer (i) toponym, (ii) the

ancestor, or (iii) alternate names exist in the mention lists of the LM. The collective

disambiguation considers the co-occurring LMs as features (refer to Section 2.5.1.3).

There are three commonly used English digital gazetteers, namely:
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Name  @username  Dec 3, 2015 
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Name  @username  Dec 3, 2015 

Figure 2.1. Example user profile during floods in Chennai.



• Geonames: Geographical database covers all countries and contains over 11M

unique places (with 25 million different geographical names) available for down-

load. The locations are categorized into nine main types (e.g., country, parks,

village, and road) and subcategorized into 645 feature codes.

• OpenStreetMap: An international street-level gazetteer constructed by a commu-

nity of mappers. They continuously add and maintain data about streets, trails,

and POIs worldwide.

• Foursquare: A database with more than 105M placenames collected using a

collective crowdsourcing method. Specifically, the platform logs the users’ check-

ins from social media platforms such as Twitter and Instagram.

2.5.1.1. Learning-based Models

Middleton et al. [15] trained an SVM model on gazetteer-based features, in-

cluding location type, population, and alternative names. Following the same line,

the disambiguation models of the toponym resolution system employed by Wang and

Hu [68] are essentially machine learning models: (i) DM_NLP [69] is a Light Gradient

Boosting Machine (LightGBM) model trained on similarity scores, contextual repre-

sentations, gazetteer attributes, and mention list features. (ii) UniMelb [70] is a Support

Vector Machine (SVM) that uses different feature types such as the history results in

the training dataset, population, gazetteer attributes, similarity, and mention neighbors

features. (iii) UArizona [71] is a heuristic-based system that selects the toponym with

the highest population in gazetteers.
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2.5.1.2. Deep Learning Models

Xu et al. [72] proposed a novel attention-based two-pairs of bi-LSTMs for match-

ing location mentions against the Foursquare gazetteer. The Foursquare gazetteer con-

stitutes a collection of location profiles. Each location profile (lp) contains several

attributes, including title, category, address, tips, tips’ counts, visitors count, visits

count, and rating. To process the lps, the researchers represent the category attribute in

a one-hot vector, the word-based attributes are represented by averaging their TF-IDF

vector representations, and the numeric-based attributes are normalized using the global

gazetteer counts. Finally, all these representations are concatenated before being fed to

the disambiguation model. On the other hand, tweet-LM pairs are represented using

their text contextual representation; text contextual representation attended to the lp

representation and geographical distance. The two-pair networks learn the left (starting

from the first token in the tweet and ending at the end of the LM) and right (starting from

the LM and ending at the last token of the tweet) contexts of the LM. The geographi-

cal distance is measured using the Manhattan distance between the geo-coordinates of

the user location, if available, and every lp. Both representations then go through a

fully-connected layer to learn disambiguation.

2.5.1.3. Collective Disambiguation

To disambiguate location mentions in the same tweet, such as "Kuwait" and

"Ooredoo," one might expect that "Ooredoo" is a branch in "Kuwait" not in "Qatar" (the

original headquarter). The general approaches differ in whether to resolve entities in

isolation, using a pair-wise strategy, or collectively. Inspired by the pair-wise methods,

Zhang et al. [66] consider the hierarchy of the locationmentions in tweetswhen resolving
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them. Recently, Xu et al. [72] collectively disambiguated all LMs in a tweet by adopting

the Pair Linking algorithm [67] that improved the disambiguation performance.

2.5.2. Evaluation

Evaluating LMDsystems requires ground truth data of tweets containing the LMs

and their corresponding toponyms from gazetteers. A non-gazetteer-specific dataset

would contain the full addresses of the LMs allowing the LMD systems to freely chose

their geo-positioning database. Next, we discuss the LMD datasets and evaluation

measures in the literature.

2.5.2.1. Datasets

There needs to be more Twitter disaster-specific LMD datasets. Table 2.1

presents only two LMD datasets (marked by “+𝐷”) and their statistics. Only Geo-

Corpora [115] is available for the research community. Wang and Hu [68] evaluated it

using eight different datasets available through EUPEG framework [114], solely one of

which is a tweet dataset that is GeoCorpora. Xu et al. [72] used the dataset released by

Ji et al. [89], but it is not public for the research community.

2.5.2.2. Evaluation Measures

Similar to the LMR task, researchers evaluate the LMD systems using Precision

(P), Recall (R), and the F𝛽 score. Karimzadeh [140] proposed more evaluation measures

that overcome the shortcoming of P, R, and F𝛽 scores. Moreover, distance-basedmethods

are also used in non-disaster-specific studies to evaluate LMD systems in which the

distance between the GPS coordinates of the gold and predicted LMs is computed using

great circle distance. The Median and Mean Distance Errors then measure the system’s
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overall performance. Other discrete measures such as Acc, P, R, and F𝛽 can evaluate

the predictions within a distance 𝑑 that is commonly set to 161 KM (100 miles). To

articulate, Acc@𝑑 is the fraction of correctly predicted LMs within 𝑑.
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CHAPTER 3: LOCATION MENTION RECOGNITION

The LMR task is generally defined as the automatic extraction of toponyms from

text. The scope of this chapter is limited from two angles; the extraction is focused

on the textual content of tweets, and more specifically disaster-related tweets that are

posted during disaster events.

Two main factors that influence the robustness of an LMR system are: (i) the

learning model, and (ii) the dataset used to train the classifier. As for the learning model,

there are two well-established approaches. The first is adopting existing general-purpose

Named Entity Recognition (NER) taggers. NER is the generalized task of LMR, by

definition, which aims to extract entity mentions in a given text. However, the general-

purposeNERsystems do not effectively extract toponyms fromTwittermessages because

tweets often contain informal language, misspellings, grammar mistakes, shortened

words, and slang [16]. Moreover, entities mentioned in tweets may have inconsistent

capitalization, which is one of the main features that standard NER systems rely on

[37]. The second common approach is employing gazetteers to maintain highly-precise

location mentions recognizers. However, the gazetteer-based models are restricted to

the geographical coverage of their databases. Additionally, the noisiness of Twitter

stream contracts the gazetteers’ formal nature, causing the so-called mismatch problem.

Recently, several deep learning approacheswere proposed. However, the general practice

for these solutions is to train the models using data from the target disaster event, which

is usually scarce or hard to obtain at the onset of disaster events.

We employ the BERT model to address the challenges mentioned above, which

achieved state-of-the-art results in many NLP tasks with little data [17]. Moreover,

it eliminates the cost of hand-crafting features, allowing us to overcome the limita-
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tions of gazetteer-based and traditional learning models that highly depend on feature

engineering.

While most existing studies focus on learning algorithms and assume sufficient

training data is available, we explore how the choice of a training dataset influences the

performance of an LMR system in the domain of humanitarian crises where the cost and

time of acquiring training data should be minimized. This exploration, thus, contributes

to the effectiveness and efficiency of deploying the LMR models in emergencies. We

run our experiments in two settings related to training data augmentation strategies:

(i) zero-shot setting where there is no available training data, and (ii) few-shot setting

where limited training examples, in order of hundreds, are available. In the zero-shot

setting, we investigate the effect of multiple factors on the LMR model during training,

including the data domain, entity types, disaster domain, geo-proximity, and language.

In the few-shot setting, we investigate the performance of multilingual models when

trained with limited labeled data from the target language. We also seek to determine

the performance gains of our best LMR model when incrementally adding labeled data

from the target event in a monolingual setting. This enables us to learn the minimal cost

of acquiring data from just-occurred disasters.

Considering all these diverse settings, we formulate our research questions as

follows:

• RQ1: How effective is the LMR system when trained on the web-based general-

purposeNER datasets with all types of entities, including location (LOC), organi-

zation (ORG), person (PER), and miscellaneous (MISC), versus Twitter general-

purpose datasets?

• RQ2: How effective are the general-purpose web-based datasets compared with
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general-purpose Twitter datasets when using only LOC entities (i.e., without ORG

and PER)?

• RQ3: Does training on crisis-related Twitter datasets improve the performance

of the LMR system compared to the general-purpose Twitter datasets?

• RQ4: Does training on combined data from different types of crisis events yield

better performance than training on data from the same type of events?

• RQ5: Does the geospatial proximity of training events to the target event affect

the performance?

• RQ6: Can amodel trained on one language be used to recognize locationmentions

from another language?

• RQ7: How many target event tweets are required to train a reasonably performing

(e.g., 𝐹1 >= 0.70) LMR model?

The research on the LMR task is currently lacking answers to these questions.

In this work, we perform extensive experiments to provide answers to them empirically.

We fix our learning model to a pre-trained model (i.e., Bert𝐿𝑀𝑅) and use a variety of

datasets, i.e., web-based general-purpose, Twitter general-purpose, and Twitter crisis-

specific. Our results suggest that the general-purpose datasets are not the best for LMR

in crisis tweets. Moreover, the types of entities (e.g., person or organization) used

to train a model make a difference. Specifically, training using only location entities

performs better than training on all entity types. Furthermore, while Twitter datasets are

preferred over general-purpose datasets, we observe that Twitter crisis-related datasets

help achieve better performance. More interestingly, we found that training on past

disasters of the same type as the target disaster generally improves performance. While

labeled data from the target event yield the best performance, we note that labeling data
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from nearby disasters is helpful when the target labeled data is unavailable. Additionally,

training on little labeled data, around 263-356 tweets, from the target language notably

improves the performance when combined with all available multilingual data. Finally,

we suggest training on all available data from all domains to minimize the labeling cost

at the onset of disaster events. Labeling around 500 tweets would generally be sufficient

to obtain an acceptable LMR model.

The contributions of this paper are as follows:

• We tackle the bottleneck of lack of annotated data, drawbacks of gazetteer-based

solutions, and the expense of hand-engineered features by exploiting a BERT-

based LMR model, Bert𝐿𝑀𝑅.

• We explore different data transfer setups, including data domain, types of entities,

disaster domain, geo-proximity, and language. We further suggest the best option

for each aspect at the onset of disaster events.

• We study the cost of incrementally acquiring labeled data at the onset of disaster

events for training reasonably performing LMR model.

• Weconduct failure analysis onBert𝐿𝑀𝑅 to gain insights for the future development

of LMR models.

For reproducibility, we make the NER datasets (in BILOU format), steps to

acquire the licensed datasets, the best performing models, and the steps to run Bert𝐿𝑀𝑅

model publicly available.1

The remainder of this chapter is organized as follows. First, we discuss the

LMR problem definition in Section 3.1. Then, we present the LMR learnable model in

Section 3.2. Next, we explain the experimental setups in Section 3.3. We then discuss

1https://github.com/rsuwaileh/TLLMR4CM.git
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the results and conduct failure analysis in Sections 3.4 and 3.5, respectively. We finally

discuss the limitation of our empirical study in Section 3.6.

Location 
Mention

Recognition

Name
@username

Disaster-related Twitter stream

…

Candidate Location Mentions

24 <Road> 

113 <Road>

kothaval chavadi st <Street>

Saidapet <Neighbourhood>

Chennai <District>

Figure 3.1. High-level overview of the LMR task

3.1. Problem Definition

The LMR task is formally defined as follows: Given a tweet 𝑡 that is related

to a disaster event 𝑒, the LMR system aims to identify all location mentions (LMs):

𝐿𝑀𝑡 = {𝑙𝑚𝑖; 𝑖 ∈ [1, 𝑛𝑡]} in the tweet 𝑡, where 𝑙𝑚𝑖 is the 𝑖th location mention and 𝑛𝑡 is

the total number of location mentions in 𝑡, if any. The location mention may constitute

one or more tokens in the tweet text.

To distinguish the LMR from other tasks, we emphasize that LMR aims at

removing the geo/non-geo ambiguity of tokens in text. It is also known as location

extraction or geoparsing in the literature.

There are two task setups for LMR. The first recognizes toponyms without their

types, denoted as “type-less” LMR and the second distinguishes between types of LMs

(e.g., country, city, and street), denoted as “type-based” LMD. The latter better serves

developing and evaluating geolocation processing systems in light of the responders’

needs. Furthermore, it enables a variety of downstream tasks (e.g., crisis maps) at

different location granularity, in addition to being crucial for accurately disambiguating
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the toponyms. Table 1.1 shows a few example tweets shared during different real-world

disaster events.

3.2. Transfer Learning for LMR using BERT-based model

Pretrained models, such as BERT, have shown impressive performance in the

sequence modeling tasks, including the NER task [17]. In this work, we employ Bert-

large-cased model in all experiments, except for the cross- and multilingual training,

we use Bert-base-multilingual-cased model. We added a linear classification layer

on top of the BERT model and fine-tuned it using the source dataset. We preprocessed

the tweets to remove ‘RT,’ user mentions, non-ASCII characters, and URLs. We also

segmented the hashtags using the word segment library,2 since some location mentions

appear as subtokens of hashtags in the ground truth of datasets we use for evaluation.

From hereafter, we refer to it as “Bert𝐿𝑀𝑅”.

We perceive the LMR task as a multi-class sequence tagging task and use the

BILOU scheme, which we adopt from NER studies, due to its superior performance

over the BIO scheme [141]–[143]. In the BILOU scheme, tokens are assigned positional

tags; “B” denotes the beginning token of an LM; “I” denotes a token inside an LM; “L”

denotes the last token in an LM and “U” indicates that the LM has only one token, such

as “Qatar”; and “O” denotes a token outside any LM.

3.3. Experimental Setup

In this section, we describe the details of our experimental setup. First, we present

the datasets in Section 3.3.1 and the experimental configurations in Section 3.3.2. We

2http://www.grantjenks.com/docs/wordsegment/
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then discuss the hyper-parameters fine-tuning in Section 3.3.3 followed by the evaluation

measures in Section 3.3.4.

3.3.1. Datasets

To answer RQ1.1-RQ1.7, we mainly need three types of datasets: (i) general-

purpose NER dataset, (ii) Twitter NER dataset, and (iii) crisis-related multilingual

Twitter LOC dataset. Tables 3.1 and 3.2 show various statistics of all the datasets we

used in our experiments, described below.

• General-purpose NER dataset: A well-known candidate for this category is the

CoNLL-2003 NER dataset [98], which comprises newswire text from Reuters,

tagged with four different entity types, namely PER, LOC, ORG, and MISC.

Overall, the dataset contains 22,137 sentences and 35,089 entities. In addition,

we use the standard training development segments for training and tuning hyper-

parameters.

• Twitter NER dataset: We use the Broad Twitter Corpus (BTC) as our Twitter

NER dataset [144]. It consists of 9,515 tweets taggedwith three entity types: PER,

LOC, and ORG. The dataset broadly covers spatial, temporal, and social aspects.

Various segments in the dataset represent different types of data collection and

annotation methodologies. For instance, Segment A comprises random samples

of UK tweets about the “New Year". We randomly sampled 90% of the dataset

for training and 10% for development.

• Crisis-related Twitter LMR dataset: As this workmainly focuses on developing

a robust LMRsystem for toponymextraction fromcrisis-related tweets, we use sev-

eral Twitter datasets from real-world disasters to perform extensive experiments.
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Table 3.1. Statistics of the datasets used in our experiments. HRC, EQK, and FLD
refer to hurricanes, earthquakes, and floods.

Dataset Lang Country # Docs # Locs

CoNLL-2003 EN Global 22,137 10,645
BTC EN Global 9,383 2,852

Chennai FLD EN IND 1,500 2,226
Houston FLD EN US 1,500 1,701
Louisiana FLD EN US 1,500 1,396
HRC Sandy EN US 1,996 735
ChCh EQK EN NZ 1,999 291
Milan Blackout IT IT 391 705
Turkish EQK TR TR 2,000 442

We use seven datasets in this category; three represent floods, two earthquakes,

one hurricane, and one blackout. The floods dataset consists of 4,500 tweets from

Chennai floods 2015, Louisiana floods 2016, and Houston floods 2016 [14]. The

tweets in these datasets are tagged using several location-related tags. In this

work, we only use inLOC and outLOC, indicating whether the location is within

or outside the disaster-affected areas. We filter out all hashtags used to collect

the datasets, thus limiting their effect towards biasing the model’s training pro-

cess. The remaining four datasets in this category are adopted from [145]. This

source contains 6,386 multilingual tweets in total. It contains English, Italian, and

Turkish tweets from four disasters, namely Hurricane Sandy 2012, Christchurch

earthquake 2012, Milan blackout 2013, and Turkey earthquake 2013. Hurricane

Sandy and the Christchurch earthquake are English datasets, the Milan blackout

is in Italian, and the Turkey earthquake is in Turkish.

59



Table 3.2. BILOU tokens’ statistics of the datasets used in our experiments. The
numbers in parentheses show the percentage of training data. HRC, EQK, and FLD
refer to hurricanes, earthquakes, and floods. For the annotations, “U” denotes a
single-token (unit) LM. “B”, “I”, and “L” denote the beginning, inside, and last tokens
of an LM, respectively. “O" denotes a non-location token.

Dataset B I L U O

CoNLL-2003 1,041 (69) 116 (70) 1,041 (690) 6,099 (67) 250,660 (68)
BTC 665 (100) 293 (100) 665 (100) 2,187 (100) 168,721 (100)

Chennai FLD 840 (80) 275 (78) 840 (80) 1,386 (80) 22,194 (70)
Houston FLD 508 (81) 155 (84) 508 (81) 1,193 (81) 22,114 (70)
Louisiana FLD 227 (81) 77 (78) 227 (81) 1,169 (81) 24,620 (69)
HRC Sandy 665 (79) 665 (79) 595 (81) 70 (76) 32,525 (70)
ChCh EQK 220 (79) 220 (79) 544 (80) 71 (77) 27,633 (71)
Milan Blackout 114 (71) 27 (78) 114 (71) 591 (69) 6,083 (71)
Turkish EQK 28 (68) 0 (0) 28 (68) 414 (71) 16,081 (68)

3.3.2. Experimental Configurations

We used several training and testing configurations in our experiments. In this

section, we define the adopted terminology and discuss the different generic experimental

configurations.

We define the “source dataset" as the dataset (or the combination of datasets)

that we use to train our LMRmodel and the “target dataset" as the dataset on which we

test our LMRmodel. The source dataset can be of any document type (e.g., web articles

or tweets) and any topic type (e.g., general or event-oriented); however, the target dataset

is always a crisis-related Twitter dataset.

Furthermore, our experiments use different terminology to articulate the match

between the source and target datasets. First, we use “domain” to refer to the domain

of the target dataset, which is always of a specific disaster type. We use “in-domain"

to denote the case when the source and target datasets are of the same disaster type,

e.g., a hurricane. We use “cross-domain" to denote the case when the source and target
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datasets are both disasters but of different types (e.g., earthquake vs. flood). Finally, we

use “out-of-domain" to denote the case when the source dataset is not a disaster dataset

(e.g., general tweets or web articles).

Using the above terminology, we define different configurations based on the

source and target datasets as follows:

• <source dataset>.ner denotes the case when we use the NER source dataset with

all entity types (e.g., LOC, PER, ORG, and MISC) in the BILOU scheme.

• <source dataset>.loc denotes when we use the NER source dataset with only the

LOC entity and discard all other entity types (e.g., PER, ORG, and MISC). Doing

so converts the LOC entity into the BILOU scheme, and the non-LOC entities are

labeled as “O".

• DIS.others denoteswhen the source dataset includes all English disaster datasets,

regardless of the type, except the target dataset. For example, if the target event is

Chennai floods, then we use the other two flood events (i.e., Louisiana floods and

Houston floods) in addition to the hurricane and earthquake datasets for training.

• DIS_<source_type>.others denotes the case when the target disaster is of a

different type than the source_type, which (in our experiments) can be either

Floods (FLD), Hurricane (HRC), or Earthquake (EQK).

• DIS_<source_area>.others denotes the case when the target disaster happens

in a different geographical area than the source_area, which (in our experiments)

can be either India (IN), United States (US), or New Zealand (NZ).

• “Combined" denotes the case when we use different document types (i.e., web

and tweets) in our source dataset. In this case, we use “joint" (“seq") to denote the

case when we feed the different types together in one stage (sequentially in two
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stages) while training our model.

• <source dataset>_%Target denotes when we use a percentage of the target data

for training.

• Cross-lingual_Zero_shot denotes the case whenwe train on a disaster dataset

in a source language and test on a different target language. For example, we train

on English tweets but test on Italian or Turkish tweets.

• Cross-lingual_Few_shots denotes the case whenwe train on a disaster dataset

in a source language with a few examples from a different target language. We

test on the target language. For example, we train on English tweets combined

with a few Italian or Turkish tweets but test on Italian or Turkish tweets.

• Multilingual_Few_shots denotes the case when we train on disaster datasets

in multiple languages including the target language and test on the target language.

For example, we train on all available languages, and test on the Italian or Turkish

tweets.

3.3.3. Hyper-parameters Tuning

During training, we tuned the hyper-parameters such as batch size, number of

training epochs, and the learning rate using configuration values recommended in [17]

as the batch size of 16 or 32, number of epochs of 2, 3, or 4, and learning rate of 5E-5,

3E-5, or 2E-5. For every experimental configuration, we search hyper-parameters space

using the grid search method on the development set. We further experiment with five

different seed initialization values for every combination of hyper-parameters, seeking

reliability of results, and eventually use the median 𝐹1 score from the five runs. We

finally select the best hyper-parameter combination and report its 𝐹1 score on the test
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set. We found that the best hyper-parameters primarily differ from the default settings

across different training setups [18]. No one combination of hype-parameters fits all

experimental setups (refer to results in Table A.1, Appendix A).

3.3.4. Evaluation Measures

Tomeasure the effectiveness of the LMRmodel over different setups, we compute

Precision (P), Recall (R), and their harmonicmean (𝐹1 score) for each entity (i.e., location

mention) using the seqeval (v1.2.2) package,3 which adopts the evaluation scripts used

to evaluate the chunking tasks (e.g., named-entity recognition) in CoNLL-2000 NER

shared task [146]. The package evaluates the model’s output on the entity-level rather

than the token-level.4 We use the default micro-average metric to account for the class

imbalance issue in our datasets (see class distributions in table 3.2).

3.4. Results and Analysis

In this section, we discuss the seven research questions in detail, present the

experiments we carried out to answer each of them and analyze their results. First, we

explore the usefulness of exploiting “out-of-domain" training data with either multiple

entity types such as person and organization alongside the location (Section 3.4.1) orwith

location entity alone (Section 3.4.2). We further study the performance when training on

“in-domain" and “cross-domain" data in Sections 3.4.3 and 3.4.4, respectively. We then

study the performance of the LMR models when considering the geographic proximity

of disaster events during training (Section 3.4.5). Moreover, we discuss the effectiveness

of cross-lingual setup when training on data in a different language than the language

3https://pypi.org/project/seqeval/
4The seqeval package uses all predicted and all gold LMs to compute precision and recall, respectively.

Malformed tag sequences are discarded from evaluation.
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Figure 3.2. The results of exploiting out-of-domain general-purpose datasets for
training an LMR model.

of the tweets discussing the target event in Section 3.4.6. We finally explore the gain

in performance when incrementally acquiring training data from the target disaster in

Section 3.4.7.

3.4.1. General-Purpose (Out-of-Domain) Training with Multiple Entities (RQ1)

Due to the limited location-labeled data, we study the effect of using general-

purpose NER datasets to train our LMRmodel. Since general-purpose NER data is more

prominent in size and has location as an entity type, it might be sufficient to train models

that effectively recognize toponyms in tweets posted during disasters. This is useful in

emergencies when time is critical and acquiring new training data is time-consuming

and expensive. The delay in response may negatively affect relief actions.

To this end, we explore the usefulness of the general-purpose NER dataset vs.

Twitter NER dataset for the LMR task. We use the following training settings:

• CoNLL.ner: Using the CoNLL-2003 dataset with all entity types (LOC, PER,

ORG, and MISC) for training.

• BTC.ner: Using the BTC dataset with all entities (LOC, PER, and ORG) for

training.
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We test our LMR model on each crisis-related Twitter dataset (refer to Section

3.3.1). Figure 3.2 presents the results (the second and third bars from left in all charts).

Except for Hurricane Sandy, the BTC.ner model outperforms the CoNLL.ner model

in all datasets, suggesting that the general-purpose datasets built on documents written

in formal language might not be suitable for disaster-related tweets. However, such

models’ performance is comparable to Hurricane Sandy’s case.

To answer RQ1, we conclude that Twitter NER datasets are more effective than

general-purpose NER datasets for training an LMR model for toponym recognition in

disaster-related tweets. While the general-purpose NER models did not outperform the

Twitter-based models in any of the setups above, the general-purpose NER datasets are

a valuable resource for training an LMR system when no other data is available, e.g.,

at the onset of a disaster event. Furthermore, they exhibit an acceptable performance

ranging between 0.5 and 0.6 𝐹1 (with even better performance if trained only on LOC

entities, see RQ2 below) given the unavailability of domain data.

3.4.2. General-Purpose (Out-of-Domain) Training with Location Entities (RQ2)

Similar to RQ1, we aim to determine the effectiveness of an LMR model trained

on general-purpose (out-of-domain) datasets, but this time excluding non-location enti-

ties such as PER, ORG, etc.

To this end, we adopt the following training settings:

• CoNLL.loc: Using the CoNLL-2003 dataset with only the LOC entity.

• BTC.loc: Using the BTC dataset with only the LOC entity.

According to the results in Figure 3.2 (considering the fourth and fifth bars

from left in all charts), training the LMR model using only LOC entity improves the
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performance by 5.6-22.7% and 2.6-22.6% across the different disasters for CoNLL and

BTC respectively. However, we noticed that the improvement is evident in precision

but not recall (refer to results in Table A.1 in Appendix A), suggesting that focusing the

training on locations only improves the precision of recognizing locations with little or

no degradation in recall (except for Hurricane Sandy’s where degradation reached about

12%). We anticipate the reason to be the distinct patterns of LMs compared to other

entities in the data. For instance, as opposed to other types of entities, location mentions

are usually attached to their category or surrounded by adpositions such as “near", “at",

or “10Km away from". Based on such results, we conclude that the location-specific

datasets are better for training the LMR model than the general-purpose NER datasets,

which answer RQ2.

Although the CoNLL-2003 dataset is 2.4% larger and it contains 3.7 times

the number of LMs compared to the BTC dataset, we notice that BTC.loc model is

better than CoNLL.loc on the three flood datasets, but not on Hurricane Sandy and

Christchurch Earthquake datasets. Upon investigation, we interestingly found a notice-

able overlap between some of the top frequent LMs in those two disaster-related datasets

and the CoNLL-2003 dataset, which justifies such an unexpected high performance. For

example, one of the top frequent LMs in Hurricane Sandy is “NewYork”, which appears

289 times (208, 24, and 57 times in training, development, and test sets, respectively).

On the other hand, the same LM appears 123 times in CoNLL-2003 dataset (100, 23,

and 27 in training, development, and test data, respectively). Similarly, the second top

LM in Christchurch Earthquake dataset, which is “New Zealand” with frequency = 57

(40, 5, and 12 times in training, development, and test data, respectively), is mentioned

50 times in CoNLL-2003 dataset (41, 9, and 10 in training, development, and test data
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respectively). On the contrary, the top 3 most-frequent LMs in Chennai, Houston, and

Louisiana floods appear 0, 16 (12, 0, and 4 in training, development, and test subsets,

respectively), and 0 times, respectively, in CoNLL-2003 dataset.

3.4.3. Crisis-Related Training (RQ3)

Thus far, we confirmed our need for location-specific data to train the LMR

system. However, in contrast to disaster-specific streams, the location mentions in

the general streams might appear in different patterns. To clarify, people might use

more accurate and complete addresses of locations when reporting incidents happening

during emergencies, aiming to help responders take immediate actions (e.g., Tweet #1

in Table 1.2). To investigate further, we train our LMR model using a combination of

BTC.loc dataset (as using it achieved the best 𝐹1 score earlier in most datasets) and

the available crisis-related datasets. By this, we aim to address RQ3: Does training on

crisis-related Twitter datasets improve the performance of the LMR system compared to

the general-purpose Twitter datasets?

An interesting aspect to explore in this context is the effect of combining the

in-, cross-, and out-of-domain data. To address this, we train an LMR model using

crisis-related datasets as follows.

• DIS.others: Combining all disaster datasets except the target disaster for training.

• Combined.joint: Combining in-, cross-, and out-of-domain datasets for training.

Specifically, we use BTC.loc and all DIS.others for training. All the datasets

are merged before training.

• Combined.seq: Using BTC.loc and DIS.others for training; however, we first

train a model using the former and then fine-tune it using the latter.
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Figure 3.3. The 𝐹1 results of exploiting in- and out-of-domain data for training an
LMR model

We show the results of these runs in Figure 3.3. Generally, the results are

inconsistent across disasters; hence we cannot draw a clear conclusion on which setup is

the best. As references, we compare the results with the case when we train on the target

dataset (denoted as Target in Figure 3.3) and with BTC.loc (as using it mostly achieved

the best 𝐹1 score among the non-target setups). Using training data other than the

target data shows significant degradation in performance concerning the Target model.

This finding emphasizes the importance of providing in-domain (i.e., “target”) data

for better effectiveness. Additionally, employing only in- and cross-domain data (i.e.,

DIS.others) shows improvement againstBTC.loc, except for theChennai floods. These

results confirm the potential of using in- and cross-domain data for better performance.

Moreover, combining in-, cross-, and out-of-domain training data provide rea-

sonable performance comparable to DIS.others for early location extraction when a

sudden disaster happens. In the worst scenario, such a reasonable model can be em-

ployed to augment labeled data to improve performance over time automatically. This

can be achieved by exploiting active learning, and automatic labeling, among other

known data augmentation techniques.

Furthermore, theCombined.seq setup is slightly better than theCombined.joint
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setup by approximately 1.6%on average across all datasets, except for theChennai floods.

This is intuitive since the fine-tuning, exclusively on in- and cross-domain disaster data,

should impact the model more than training on combined/mixed data.

To answer RQ3, we conclude that disaster-related training data helped improve

the LMR model by 5.3% on average for all datasets except Chennai floods.

3.4.4. Cross-Domain Training (RQ4)

Although using disaster-related training data shows slight gains in most cases,

the improvement is still far from the “Target" performance. We anticipate the problem

to be the difference in disaster types that we employed for training. Consequently, we

study the effect of training on “cross-domain" data, i.e., training on data from previous

disasters but a different type than the target, compared to the case when both the source

and target disasters are of the same type. In this section, we addressRQ4: Is training on

combined data from different types of crisis events (cross-domain) better than training

on data from the same type of events (in-domain)?

To this end, we use the following training setups:

• DIS_FLD.others: Using data from all flood events for training and testing on

other disasters (in this case, other disasters are of type FLD, HRC, and EQK).

• DIS_HRC.others: Using data from the hurricane event for training and testing on

other disasters (in this case, other disasters are of type FLD and EQK).

• DIS_EQK.others: Using data from the earthquake event for training and testing

on other disasters (in this case, other disasters are of type FLD and HRC).

Figure 3.4 shows the results. The missing bars in the case of Hurricane Sandy

and Christchurch earthquake are because we only have one hurricane and one earthquake
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Figure 3.4. The 𝐹1 results of training on cross-domain data. Missing bars indicate no
more than one disaster dataset of the target type.

events.

Looking at the results when the target type is floods (the first three sub-figures),

training on disasters of the same type as the target (FLD) consistently achieves better

performance compared to training on HRC and EQK data. Interestingly, the training

performance on FLD and HRC is slightly close for the Houston and Louisiana floods.

We suspect the reason is the proximity between the affected areas of Hurricane Sandy,

Houston floods, and Louisiana floods, which enhances the model’s ability to detect more

LMs.

We also notice that training on EQK data is consistently the worst across all

disasters. Upon investigation, we found that the location distribution in Christchurch

Earthquake is highly skewed (refer to location distributions, Figures E.1-E.5 in Ap-

pendix E). Precisely, the location mention “Christchurch” constitutes 262 out of 527

locations (49.7%) and 84 out of 156 locations (53.8%) in the training and test data,

respectively. Moreover, 68% of the tweets constituting this dataset have no locations.

For this reason, we believe that this dataset is inadequate for training compared to other

datasets.

To answer RQ4, we found that training on disasters of the same type generally
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achieves better performance. To further understand these results, we explore how the

geospatial proximity of source events to the target event affects the performance in the

following.

3.4.5. Geo Proximity-based Training (RQ5)

The location mentions within the affected areas of a target disaster are expected

to emerge in the tweets stream over time. However, LMRmodels trained on past disaster

events data have not seen such locations. Employing an LMRmodel trained on the closer

geographical area as the target disaster (within the same country in our experiments)

can alleviate this issue. A concrete example of this is the case of Louisiana floods when

trained on Hurricane Sandy data (refer to the previous section). To elaborate, not all

countries exhibit the same naming formats (e.g., using street numbers in contrast to

names) and administrative levels (e.g., states and counties). In this section, we address

RQ5: How does the geospatial proximity of source events to the target event affect the

performance?

To address this question, we use the following training settings:

• DIS_US.other: Combining all events from the USA except the target for training.

For example, we train on Houston and Louisiana floods if the target disaster is

Hurricane Sandy.

• DIS_IN.FLD: Training on Chennai Floods happened in India.

• DIS_NZ.EQK: Training on Christchurch Earthquake happened in New Zealand.

Due to the lack of diverse disaster-specific labeled data for the LMR task, we

could conduct experiments only on target datasets of disaster events in the US; for other

areas (NZ and IN), we do not have more than one disaster-specific dataset. Nonetheless,
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Figure 3.5. The 𝐹1 results of training on geo-proximity-based data.

the results in Figure 3.5 indicate that training on source disasters nearby areas (with

respect to the target event) achieves the best performance regardless of the type of

disaster.

To answer RQ5, we suggest training on disaster events that happened in close

areas to the target event to achieve the best performance regardless of the type of disaster.

3.4.6. Cross-lingual Training (RQ6)

Thus far, we have studied the performance of the LMR model from different

aspects (i.e., entity type, disaster type, geographical proximity) in a monolingual setup.

However, disasters may occur in areas of low-resource languages (e.g., Italian and

Turkish) where little or no training data is available. This motivates us to study the

performance of LMR models in cross- and multilingual setups. In this section, we

address RQ6: Can a model trained on one language effectively recognize location

mentions in another language?

To address this research question, we select three languages, namely English,

Italian, and Turkish, based on the availability of labeled data. The source language can

be monolingual (English only), bilingual (English and Italian, or English and Turkish),

or multilingual (English, Italian, and Turkish). The target is either Italian or Turkish.
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Figure 3.6. The 𝐹1 results of cross-lingual and multilingual training.

We use the following setups:

• Cross-lingual_Zero_shot: We fine-tune multilingual BERT on the monolin-

gual source language (English) using the Combined.joint and test on the target

language (Italian or Turkish).

• Cross-lingual_Few_shots: We fine-tune multilingual BERT on the monolin-

gual source language (English) and a little data from the target language (bilingual).

We then test on the target language.

• Multilingual_Few_shots: We fine-tune multilingual BERT on the training

data of all available languages, including the target language (multilingual). We

test on the target language.

Figure 3.6 demonstrates that the performance of Cross-lingual_Zero_shot

is acceptable but still far away from the performance level achieved by the Target setup.

However, adding little training data from the target (312 and 1,400 from theMilan Black-

out and Turkey Earthquake disasters, respectively) in Cross-lingual_Few_shots and

Multilingual_Few_shots setups significantly increases the 𝐹1 score of the LMR

model to beat the “Target" setup by 4.6% and 3.9%, respectively.
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Figure 3.7. The language distribution in Milan Blackout and Turkey Earthquake
datasets

Interestingly, Multilingual_Few_shots is slightly better than theCross-lin-

gual_Few_shots for both Milan Blackout and Turkey Earthquake. We anticipate the

reason to be the popularity of Italian and Turkish languages in both countries. To inves-

tigate, we analyzed the language distribution of both datasets using the langdetect tool.5

We show the distribution of languages in Figure 3.7. Surprisingly, the Italian and Turkish

tweets constitute only 87.7% and 25.4% of the Milan Blackout and Turkey Earthquake

datasets, respectively. The Turkish dataset is much noisier than the Italian dataset due to

the popularity of other languages in the country.6 Additionally, the Turkey Earthquake

dataset contains 2.2% Italian tweets, which might explain its usefulness in training when

the target is the Italian language. To answer RQ6, we conclude that training the mul-

tilingual LMR model with no target data achieves adequate performance, but using as

little as 263-356 training examples in the target language, which constitutes 87.7% and

25.4% of the Milan Blackout and Turkey Earthquake training data respectively, notably

improves the performance.

5https://pypi.org/project/langdetect/
6https://en.wikipedia.org/wiki/Languages_of_Turkey
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3.4.7. Incremental Training with Target (RQ7)

To this end, we confirmed the need for using reasonably large disaster-specific

training data (non-target data) to build an acceptable performing LMRmodel at the onset

of the disaster events. Nevertheless, training robust (highly accurate) LMR models is

crucial during emergencies as relief responders are expected to use the geolocation

information from these models to make critical decisions. According to our findings in

addressing the previous research questions, the LMR models must be trained on target

data whenever possible to reach the highest possible performance. To simulate acquiring

target-labeled data during disaster events, we study the effect of gradually feeding the

LMR model with increasing amounts of the target data. Precisely, we aim to determine

the minimum number of tweets to annotate from the target data to improve the model

performance before reaching a stable performance.

In this section, we address RQ7: How many target event tweets are required to

train a reasonably performing (i.e., 𝐹1 >= 0.70) LMR model? To answer this research

question, we explore two aspects: (1) the number of tweets to annotate before reaching

a high stable performance, and (2) the best base training data to start with besides

the target data. Furthermore, we assume our annotation budget (i.e., cost and time) is

sufficient to label 1,050 tweets from every disaster. Therefore, we first train our model

with a base training dataset, then incrementally add 105 tweets from the target event

chronologically. This number constitutes 10% of the entire training data that can be

labeled within our predefined budget. We use only the flood datasets as they contain the

tweets’ timestamps for the chronological sorting of the training data. We experimented

with three different setups of base training datasets:

• Cold-Start+%: We do not use any base training data. This setup simulates the
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Figure 3.8. The 𝐹1 results of incremental training on target data.

scenario when there is no data to pre-train the LMR model.

• BTC.loc+%: We use the BTC dataset with only the LOC entity type as the base

training data. This setup simulates the scenario when we do not have disaster-

related tweets to use for training.

• Combined.seq+%: We use the best-performing data setup as the base training

data (refer to Section 3.4.2). This setup simulates the scenario when we have

general-purpose and disaster-related tweet data for training.

In all setups, we increment the training with 10% from the target data and report

performance at each increment. As a reference, we also show Target baseline, i.e.,

when training only on the entire 1,050 training tweets.7

Results in Figure 3.8 show that increasing the training data improves performance

in all training setups. We also notice performance stability when reaching 70% of

the target data (training on 735 tweets) and afterward across all base setups for all

datasets. Additionally, using “Combined.seq" and “BTC.loc" base training is better

than the Cold-Start setup until we reach 40% in Chennai and Houston floods and 20%

in Louisiana. Furthermore, “Combined.seq" is even more promising than “BTC.loc"

as it contains cross- and in-domain data (i.e., disaster-specific tweets) that seem to

7Note that the performance of the “Target" in these experiments is different from previous research
questions due to sorting tweets chronologically.
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improve performance slightly over time. Indeed, these observations show the advantage

of exploiting external training data (i.e., out-of-domain or cross-domain) at the onset of

disasters to allow some time to collect target data for training.

Although the cold-start setup of base training is the worst compared to BTC.loc

and Combined.joint, it exceeds 𝐹1 of 0.8 when using approximately 30% of the target

training in Chennai and Houston and 20% in Louisiana. This again emphasizes the

need for target data for training. The results also indicate that leveraging other external

training data is almost no benefit once we have labeled about 1k tweets from the target

event.

Therefore, forRQ7, we suggest training on all available training data, regardless

of their domain, at the onset of a disaster event to allow some time for annotating target

tweets. As for the annotation budget, we suggest labeling around 500 tweets to achieve

good performance (about 0.9 𝐹1 in the three disasters we experimented with), in addition

to the cross- and out-or-domain training.

3.5. Error Analysis

To better understand the different types of errors our best model makes, in this

section, we closely examine the results of the model. Specifically, we investigate the

results obtained from the “target" setup for the five English disaster datasets.

3.5.1. Error Types

We examine four types of errors, i.e., false positives, false negatives, partial

matches, and malformed on the entity level. Given the fact that LMs can be composed

of more than one token (e.g., “New York"), we look at cases where the predicted LM
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Table 3.3. The types of errors in “Target" runs in English disaster datasets. “Partial
match +" and “Partial match -" indicate when the predicted LM contains more or less
tokens than the gold LM, respectively.

Error Type Chennai FLD Houston FLD Louisiana FLD HRC Sandy ChCh EQK

False positive 0 27 11 30 22
False negative 19 21 17 16 19
Partial match + 10 5 0 0 0
Partial match - 18 9 5 7 7
Malformed 28 12 14 10 6

Total 75 74 47 63 54

tokens either partially match the corresponding gold LM (i.e., “partial match -”) or

contains extra tokens compared to its gold LM (i.e., “partial match +”). We denote these

cases as partial matches. Additionally, any predicted multi-token LM must start with

B-LOC tag, end with L-LOC, and I-LOC used for in-between tokens; otherwise, it is

considered a malformed LM. Table 3.3 shows the number of errors representing false

positives, false negatives, partial matches, and malformed LMs (in the test set only).

Tables 3.4 and 3.5 show example tweets along with their error types highlighted.

The false positives are mostly valid fine- and coarse-grained LMs not annotated

in the datasets. For example, “HCSO" in tweet#1 and “manassas" in tweet #2 refer to

fine- and coarse-grained LMs, respectively, that were not labeled as such. The false

negatives are common in all datasets, which implies that the model may still need more

data to recognize the LMs better (tweets #3-6, 12-14). The partial matches are more

common in Chennai and Houston floods than in other disasters. The partial errors and

malformed sequences of BILOU tags are more common in Chennai floods because the

gold annotations in this dataset inconsistently sometimes include the location type (e.g.,

area) and prepositions (e.g., beyond and along) as part of the LM (e.g., tweet #7) which

potentially confuses the model. Additionally, there are location types such as “mosque",
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“ATM," and “area," to name a few cases, that are annotated as unit locations (U-LOC),

e.g., in tweet #6. These annotation decisions confused the model as to whether it should

recognize them as part of precedence LMs or independent LMs.

Below we list our general observations based on closely examining these errors.

a. Surprisingly, we observed that most of the false positives are indeed valid LMs.

They are either fine- or coarse-grained locations not annotated in the datasets.

This highlights a potential issue with the existing datasets. We note here that

some of the LMs are not actual location names but were used within a general

context, such as “Louisiana" which is mentioned to describe the way grills are

made in tweet #3. However, other LMs like "manassas" in tweet #2 should be

detected by the LMR model.

b. There are LMs that are misspelled such as “Christchurh" in tweet #4 and concate-

nated such as “apollohospitals" instead of “apollo hospitals" in tweet #5. This

emphasizes the need for an accurate preprocessing pipeline before the recognition

phase, including spell-checking and hashtag segmentation.

c. There are location types that are not actual geographical points, such as “area",

“ATM," and “mosque". An example of this issue is tweet #6. We suggest filtering

these sources of errors before using the datasets for training.

d. There are inconsistent annotations of LMs. LMs that appear multiple times in

the dataset are only sometimes annotated using the same sequence of BILOU

tags. For example, “South Texas" appears “south𝑂 TX𝑈", “south𝑂 Texas𝑂", and

“Southeast𝐵 Texas𝐿" in the same dataset. Also, “HCL office" appears twice in

tweets, but it is labeled once as a multi-token LM, and another time only “HCL"
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is labeled as a single token LM (e.g., tweets #11 and #12). Additionally, “5th

street" in tweet #10, which appears twice in the dataset, is labeled as an LM in the

original tweet but not annotated in its retweet.

e. There are ambiguous locations that we could not resolve to exist, such as “World",

“Swayamsevaks," and “Congress." An example of this issue is tweet #13.

f. There are abbreviated LMs such as “global hosp" instead of “global hospital" in

tweet #14, which adds difficulty to recognizing LMs. The issue becomes more

challenging when the LM abbreviations are common English words, such as “ok,"

that appear in the training data of “Houston Floods" dataset to denote “Oklahoma"

state (Refer to Figure E.2).

g. The LMRmodel correctly ignores some ORG entities, but they appear in the gold

annotations as LMs. For example, “FEMA" in Tweet #15 refers to the “Federal

Emergency Management Agency". Additionally, in Figure E.3, the ’Clinton

Foundations’ and ’nytimes’ are ORG entities rather than LOC entities. This issue

and its reverse exist across the datasets we adopted in our experiments. The reverse

of it can be illustrated by ORG entities in the “Houston Floods" event, where

“NWS" and “TXDOT" local organizations are correctly labeled as LMs by the

LMRmodel, but they are not gold LMs. Discovering such annotations in the LMR

datasets shows the difficulty of the annotation task conducted by human annotators,

as they are confused by whether such entities are mentioned within the context of

the tweet as organizations or locations of the offices of these organizations. Such

confusion does negatively affect the LMR model performance.
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3.5. ERROR ANALYSIS 81

Table 3.4. Examples of errors of Bert𝐿𝑀𝑅 model. Underlined text is the gold LM. The
double-underlined text refers to gold LMs in two duplicates of the same tweet.
Highlighted text is the predicted LM.

T# Error Type Tweet text

#1 False positive Here’s a look @ our downtown parking lot outside of HCSO headquar-
ters downtown. #HouNews #TurnAroundDontDrown [url]

#2 False positive Are the roads flooded in manassas??

#3 False positive
& False nega-
tive

Check out LouisianaGrills atRich & John’s "The Stove Shop" #summer
#BBQ [url]

#4 False negative:
misspelling

Another big quake, 6.3 has hit Christchurh during work hours. Not a
pretty site. Buildings damaged, some collapsed.

#5 False negative:
concatenated

#apollohospitals- helplines -share - [user_mention] [user_mention] ...
[url]

#6 False negative:
location type

All the #mosque in chennai now open for food and stay. Thank you
Allah !!

#7 Partial match:
adpositions

[user_mention] Navy rescue team deployed in Gandhi nagar area,
beyond Adyar Bridge along Buckingham Canal

#8 Partial match
& Malformed

Crescent College (B. S. Abdur Rahman University), #Vandalur is
open for shelter. [...]

#9 False positive
& Malformed

#SANDY ive never seen nyc look like this #HurricaneSandy the flooding
is unreal....long beach𝐿−𝐿𝑂𝐶 long island #unrecognizable

#10 False positive:
inconsisten-
cies

Looks like Malad :p [̈user_mention]]: Street flooding #NYC: 48th Ave
between 5th and Center Blvd #Sandy [url]

#11 Partial match:
inconsisten-
cies

anyone to help ppl stuck in HCL office for 4 days at Navalur. Boats r
reqd 2 transport ppl home. Phones unreachable..



Table 3.5. Examples of errors of Bert𝐿𝑀𝑅 model. Underlined text is the gold LM. The
double-underlined text refers to gold LMs in two duplicates of the same tweet.
Highlighted text is the predicted LM.

# Error Type Tweet text

#12 False negative:
inconsisten-
cies

Need help to people who are in ELCOT branch HCL office,
shollinganallur

#13 False negative:
ambiguous

Swayamsevaks preparing & distributing food to around 1500 poor peo-
ple in flood affected Lakshmipuram

#14 False negative:
abbreviation

[user_mention] [user_mention] No1 is allowed even 1 km ahead of
global hosp. Poliz army local helpers available on spot as of 6pm today.

#15 False Nega-
tive: ORG not
LOC

Louisiana Flooding, One Week Later: Author: J essica StapfUnprece-
dented. Historic. E ... disaster fema

3.5.2. Location Types

We further analyzed the errors based on their granularity level, i.e., fine-grained

location mentions such as point-of-interest (POI), road/street name, and neighborhood,

and coarse-grained locations such as country, county, and state. We first labeled the

LMs, which represent one of the error types mentioned above, with their granularity

level using Google Places API8 and manual search (in case Google API does not return

any result).

We show the number of LMs for each granularity level in Table 3.6. For

example, the “Other" type represents locations that were not resolved through Google

Places API as well as through manual search. Overall, we notice that most errors

are fine-grained, originating from flood-related disasters. Moreover, the model makes

more mistakes in detecting coarse-grained locations from Hurricane Sandy and the

Christchurch earthquake (tweets #9 and 4 in Table 3.4, respectively).

8https://developers.google.com/maps/documentation/places/web-service/
overview
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Table 3.6. Location types of miss predicted LMs. “FG” and “CG” refer to fine-grained
and coarse-grained locations. “FP”, “FN”, and “PM” refer to false positives, false
negatives, and partial matches.

Chennai FLD Houston FLD Louisiana FLD HRC Sandy ChCh EQK
FP FN PM FP FN PM FP FN PM FP FN PM FP FN PM Total

FG 0 11 23 19 11 7 3 13 2 6 6 6 2 6 6 121
CG 0 5 4 4 9 7 3 4 3 21 10 1 20 13 1 105
Other 0 3 1 4 1 0 5 0 0 3 0 0 0 0 0 17

Total 0 19 28 27 21 14 11 17 5 30 16 7 22 19 7 243

3.6. Limitations

The methodological limitations of our study are associated with the technical

aspect of the LMRmodel and the experimental evaluation (setups and datasets). We list

the main ones in the following:

a. Generally, two factors related to the construction of the dataset could affect our

results and conclusions. First, the datasets we adopt are scarce, with limited

disaster types and geographical area coverage. Over and above that, the datasets are

randomly drawn fromcollected tweet datasets using hashtags. Relying on hashtags

is a significant limitation for capturing the relevant posts discussing the target

disaster event, as some users do not use hashtagswhile posting about the event [28],

[147]. Additionally, hashtag-based datasets might have different characteristics

than other datasets collected in different ways, such as geographical-based ones,

affecting the drawn conclusions [26].

b. We explored the effect of the data domain, entity type, disaster domain, and

geo-proximity factors in monolingual setup for English language in the crisis

management domain. Our conclusions might not translate to other languages and

domains.
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c. The available datasets for experiments have limited disaster domain and geo-

graphical coverage. Thus, while studying the effect of associated factors, the

conclusions might not translate to other datasets with better coverage and exact

size for different disaster types and geographical areas.

d. For the language factor, we studied the cross- and multi-lingual setups for English,

Italian, and Turkish languages. Hence, we note that:

• The datasets we used, as shown in Figure 3.7, are not pure for their respective

languages. Further filtering by language is required for solid conclusions.

However, due to multiple reasons, including (1) the small size of the data,

(2) the employment of the multilingual BERT model, and (3) the concern of

making results comparable to future studies, we opted to use the data as is.

• Generalizing our conclusions to other languages requires further investiga-

tion.

• Our study relied on the power of the multilingual BERT model. Contextual

translation of the data might lead to different conclusions.

e. We discussed some issues in the annotations of the used datasets in Section 3.5,

that could affect the performance of our BERT𝐿𝑀𝑅 model. Unfortunately, there

are no standard guidelines for annotating LMR datasets of a higher standard yet.

In fact, the annotation guidelines used to train the annotators for constructing

the LMR datasets used in our study were not made publicly available to the

community.

All the issues listed above motivate the need for a larger, domain- and geographi-

cally diverse, consistently annotated LMR datasets. Therefore, we construct our datasets
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in the following chapter.
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CHAPTER 4: GENERALIZABLE LMP DATASETS AND BENCHMARKS

There is no LMP unified evaluation framework with all essential components,

including annotated datasets, diverse open-source (or public black box) baselines, and

fair evaluation metrics for the disaster management domain over Twitter. In fact, the

absence of large and generalizable datasets, specifically, makes the comparison difficult

between the existing LMP systems. Therefore, we exhaustively review the efforts made

to provide LMR and LMD datasets in Sections 2.4.2.1 and 2.5.2.1, respectively. In

a nutshell, the existing English LMP tweet datasets are either nonpublic non-disaster-

specific [39], [64], [66], [73], [85], [89], [101], [105], [121], or disaster-specific but

suffer from several limitations [14], [56], [63], [87], [111], [115], [123]–[126] such as

the limited size, the confined domain and geographical coverage, the absence of location

type annotations, among others.

Table 4.1. Datasets and Benchmarks chapter outline.

Topic IDRISI-RE IDRISI-RA IDRISI-DE IDRISI-DA

Introduction 4.2 4.3 4.5 4.5
Constructions 4.2.1 4.3.1 4.5.1 4.5.1
Analysis 4.2.2 4.3.2 4.5.2 4.5.2
Benchmarking 4.2.3 4.3.3 5.4 5.4
Generalizability 4.2.4 4.3.4 - -

In this chapter, we discuss our effort to fill this gap in the disaster management

domain. Specifically, we introduce IDRISI1 largest to date and generalizable datasets

and establish a set of competitive baselines for the LMP task. We start the section by

setting our objectives for the LMP datasets in Section 4.1. We then thoroughly discuss

theLMRandLMDdatasets’ creation, analysis, and benchmarking. Table 4.1 outlines the

chapter for all datasets. The introduction discusses the motivation, research questions,

1Named after Muhammad Al-Idrisi, who is one of the pioneers and founders of advanced geography:
https://en.wikipedia.org/wiki/Muhammad_al-Idrisi.
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and contributions. For datasets construction, we discuss the selection, sampling, and

annotation efforts. We then analyze the reliability and coverage of the IDRISI-R datasets.

We also analyze the reliability and usefulness of features in IDRISI-D datasets. For

benchmarking, we employ a representative set of models under different data and task

setups and discuss their results. Furthermore, we study the domain and geographical

generalizability of IDRISI-R datasets. Finally, we discuss the limitations of IDRISI

datasets in Section 4.6.

4.1. Objectives

Creating LMP datasets for practical, event-centric, and fine-grained evaluation

requires identifying characteristics that guide the dataset construction efforts. Grounded

on our review of past efforts (refer to Section 2.4.2.1 in Chapter 2), we introduce a set

of characteristics that, we anticipate, can form optimal LMP datasets in the following:

O1. Geographical coverage: The naming conventions of places vary from one country

to another, which decisively affects the performance of LMP models. The wider

the geographical coverage of an LMP dataset, the more naming conventions it cap-

tures. While constructing IDRISI, we aim to capture various naming conventions

by annotating disaster events covering many English-speaking countries.

O2. Domain coverage: At the onset of disaster events, acquiring training data is im-

practical and expensive. Alternatively, an acceptable performing LMP model

could be trained using previous disasters of the same type (i.e., in-domain

data) [19]. However, as such an approach is infeasible due to the limited do-

main coverage of existing datasets, we aim to cover various disaster types with a

greater number of tweets when constructing IDRISI.
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O3. Location type annotations: The location types (e.g., cities, streets, and POIs)

allow customizing the downstream applications to meet the responders’ needs,

such as generating crisis maps at different location granularity. Additionally, the

evaluation per location type shows the weaknesses and strengths of LMP models

based on the responders’ preferences. Therefore, when constructing IDRISI, we

aim to annotate the LMs into location types to remedy such deficiency.

O4. Large-scale: Learning models, in particular deep neural networks, are data hun-

gry. Thus, models trained on many training examples tend to yield higher perfor-

mance and generalize to unseen data. However, most of the existing LMP datasets

are limited in size (refer to Table 2.1). We aim to overcome this shortcoming

while creating IDRISI by annotating more LMs than the existing datasets.

O5. Temporal coverage: As new LMs emerge in Twitter stream during disaster

events, longer temporal coverage of the disaster events is demanded to provide

geographical-aware situational reports to responders throughout the disaster event.

While existing datasets do not show proper temporal coverage of disaster events,

we aim to overcome this issue while creating IDRISI.

O6. Relevance and informativeness: An LMP dataset has to contain informative

and actionable tweets to support effective disaster management. Unlike existing

datasets, in constructing IDRISI, we extend a dataset already labeled for infor-

mativeness. This simulates the expected input to the LMP models in real-world

information processing systems for disaster management.

O7. Dialectical Arabic coverage: Dialects are widespread in Arabic tweets; therefore,

a diverse set of them should be represented in Arabic datasets, besides Modern

Standard Arabic (MSA). Therefore, we aim to cover as many dialectical tweets as
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possible in IDRISI.

We emphasize here that these objectives constitute a generalizable LMP dataset

and should be collectively achieved to eliminate any barrier against establishing an

effective and fair evaluation framework for LMP tasks. Throughout this chapter, we

elaborate on how IDRISI achieves these objectives.

4.2. English LMR Datasets and Benchmarks

In this section, we introduce IDRISI-RE dataset,2 the largest to date manually-

labeled (gold version) and automatically-labeled (silver version) tweet datasets for LMR

comprising 19 English events, whose tweets are labeled to identify both toponyms

and their geographical types. IDRISI-RE covers 19 disaster incidents occurred in 22

English-speaking countries.

To demonstrate the domain and geographical generalizability of IDRISI-RE, we

empirically answer the following research questions. In comparison to existing datasets,

can an LMR model that is trained on IDRISI-RE generalize to:

• Unseen events of the same disaster type? (RQ8)

• Unseen events of different disaster types? (RQ9)

• Unseen events that happen in the same geographical areas? (RQ10)

• Unseen events that happen in different geographical areas? (RQ11)

Our rigorous empirical analysis demonstrates that:

• IDRISI-RE is the best domain and geographically generalizable LMR Twitter

dataset for the disaster management domain compared to all public datasets of its

kind.
2The “R” and “E” letters refer to the Recognition task and the English language, respectively.
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• The geographical coverage and the data size are the top influencers on the gener-

alizability of the English LMR datasets.

• IDRISI-RE shows a decent reliability level and reasonable geographical, domain,

temporal, and location granularity coverage.

• A thorough experimental evaluation of a representative set of LMRmodels shows

that Bert𝐿𝑀𝑅 model is the state-of-the-art LMR model over IDRISI-RE dataset.

The contributions of this work are as follows:

• We present IDRISI-RE, the largest manually-labeled publicly-available English

LMR dataset of about 20.5k tweets (gold version) for the LMR task.3 It covers

diverse disaster types and geographic areas around the globe. We also release

the largest automatically-labeled LMR dataset (silver version), constituting 57k

tweets.

• We annotate the extracted location mentions in IDRISI-RE into coarse- and fine-

grained location types to enable building more accurate LMPmodels and to allow

finer evaluation and comparison between models.

• We benchmark the IDRISI-RE using diverse and representative LMR models to

establish a set of baselines for the interested community.

• We empirically demonstrate that IDRISI-RE is the best domain- and geographi-

cally- generalizable dataset for LMR compared to the existing datasets.

4.2.1. Construction

Two main factors guided the choice of our underlying dataset. First, while re-

sponders look for informative posts on Twitter, the tweets become more invaluable with

3https://github.com/rsuwaileh/IDRISI/
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the geographical context [20]. Second, the likelihood of LMs occurrence increases dur-

ing events [148]. Consequently, we selected an event-centric dataset already labeled for

humanitarian categories to simulate the deployment phase of LMRmodels in real-world

information processing systems for disaster management. We analyzed multiple exist-

ing disaster-related tweet datasets and selected HumAID [149] due to its geographically

broad coverage and disaster domain diversity.

We carried out two annotation versions: (i) the gold annotations using crowd-

sourced human labels, and (i) the silver annotations using an automatically-learned

model.

4.2.1.1. Gold Dataset Sampling

We focus our sampling on the most informative tweets to label them by human

annotators. In the following, we describe the sampling methods we used for IDRISI-RE.

Before creating our pool of tweets for manual annotation (i.e., gold), we dropped

the less informative classes (to relief authorities) in HumAID including sympathy and

support, not humanitarian, do not know or cannot judge, and other relevant information.

The gold annotations contain only tweets that belong to one of the following humanitarian

categories: caution and advice, displaced people and evacuations, infrastructure and

utility damage, injured or dead people, missing or found people, requests or urgent

needs, and rescue volunteering or donation effort.

Using an overall cost budget of $4,300, we estimated a maximum of 21k tweets

to label for the gold version of the dataset. Using this upper bound estimate, we equally

sampled a representative number of tweets from each of the 19 disaster events. This

led us to sample a maximum of 1,300 tweets per event randomly. As some events
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contain fewer tweets that fall within the humanitarian categories of interest (inherited

from HumAID dataset) than our sample size per event, we included all their tweets in

the sample. We used stratified sampling to inherit the distribution of the humanitarian

classes from the HumAID dataset.

4.2.1.2. Gold Annotations

We gather two types of annotation on the selected data in two tasks. The first

task involves human annotators identifying toponyms within the tweet text, such as

geographical names of places. In the second task, they assign location types to the

identified toponyms. These location types include country, province/state, city/town,

district, neighborhood, road/street, natural points of interest like river and sea, and

human-made points of interest such as schools and hospitals. Toponyms not belonging

to the defined location types are assigned the “other location" label. We provided

detailed annotation guidelines for annotators with examples to clearly articulate our

definition of location mentions.4

We used Appen crowdsourcing platform5 due to its cost efficiency in labeling

large datasets. In the annotation task, the textual content of tweets is automatically

tokenized by the platform using the SpaCy NLP tool.6

Following Appen’s recommendation, we randomly picked around 88 tweets

for quality control. For workers to be eligible to begin and continue working on the

annotation task, their annotation accuracy (i.e., trust score) should not fall below 70%

while performing the task. To increase the reliability of the final annotations, we

configured the task to collect three annotations per tweet; however, if the agreement

4https://github.com/rsuwaileh/IDRISI/tree/main/LMR/annotation_guidelines
5http://success.appen.com
6https://spacy.io/
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level is below a minimum confidence of 80%,7 we allowed dynamically collecting of

up to five more annotations by different annotators, achieving a maximum of eight

annotations per tweet. We ran our crowdsourcing task for around three weeks and

collected annotations for 20,527 tweets from all the disaster events.

To decide the final set of gold LMs, we selected the text spans that received at

least two votes from annotators, regardless of the agreement on their location types.

Moreover, as the nature of the annotation task allows overlapping annotated spans, we

favored the overlapped span with the maximum number of votes by annotators. In the

case of ties, we selected the longest span. Finally, to ensure the quality of labels, we

deleted all annotated spans of length equal to or longer than 70% of the length of the

original tweet text as we considered them spam or human errors. As a result, we dropped

around 13 annotations from all events.

As for the location types, while we cannot prevent human errors in the crowd-

sourced annotations, we rely on two factors to increase the reliability of the location

type annotations: (i) the local annotators’ agreement on the types assigned to a potential

LM, and (ii) the global distribution of the types assigned by all annotators to the occur-

rences of the potential LM within the event’s tweets. We achieved the former factor via

majority voting. We employed the latter in case of ties. Moreover, we plan to extend the

IDRISI-RE dataset for the LMD task in which annotators correct the location types of

LMs while disambiguating them.

Table 4.10 shows the final number of tweets (column “Tweets”), the number of

tweets with no LMs (column “Tweets|𝐿𝑀 |=0”), and the total number of annotated LMs

with the unique LMs in parentheses (column “LMs (uniq)”).

7The confidence level is computed by adding up the confidence scores of the contributed workers.
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4.2.2. Description and Quality

In this section, we thoroughly evaluate the IDRISI-RE dataset in terms of relia-

bility, consistency, coverage, and diversity.

4.2.2.1. Reliability and Consistency

To evaluate the quality of IDRISI-RE, we computed the Inter-Annotator Agree-

ment (IAA) that quantifies the reliability of annotations. We further compared the LM

definition against the existing LMR datasets.

Annotation Quality: We computed Krippendorff’s alpha (𝑘-𝛼) [150] to measure the

reliability of annotations. Unlike Fleiss Kappa, 𝑘-𝛼 does not require a fixed number

of votes per example. We have two types of annotations: location mentions (LOC)

and location types (TYPE). Due to the class imbalance in token-level classes (having

dominant non-LOC tokens compared to the LOC tokens), computing the 𝑘-𝛼 for the

LOC annotation is unreasonable, as we will get an almost full agreement (a score of 1)

since annotators highly agree on non-LOC tokens. Thus, we only report 𝑘-𝛼 for TYPE

annotation (which implicitly encodes the LOC annotation). Figure 4.1 shows the 𝑘-𝛼

per disaster event in IDRISI-RE. We only consider the LMs that received two votes

or more. As a result, annotators achieve approximately 71.5% IAA across all disaster

events, showing acceptable reliability. Overall, the IAA shows that the annotations are

highly reliable for three events, acceptable for twelve events, and low quality for four

events.

LM definition across English datasets: Table 4.2 compares the definition of LMs in

the public disaster-specific LMR datasets. Columns "Hashtags," "Mentions," "URLs,"

and "Location Expressions (LEs)" refer to whether these tokens and expressions are
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Figure 4.1. 𝑘-𝛼 for IDRISI-RE per disaster event.

considered LMs or not in the corresponding datasets. Table 4.3 presents example tweets

from IDRISI-RE to articulate our LM definition and distinguish it from other datasets.

In particular, in the existing LMR datasets, an LM can be a substring of a hashtag (tokens

start with "#"); however, in IDRISI-RE, we only consider a hashtag as a potential LM

if it is entirely an LM (e.g., Tweet #1 in Table 4.3). The locations within user mentions

(tokens start with "@") are considered LMs in the ALTA and KHAN datasets while

ignored in all other datasets. Although user mentions could indicate the location of

incidents discussed in the tweet, we do not consider them as LMs in IDRISI-RE because

they typically refer to organizations or people, not locations. We follow the same

intuition for URLs. Furthermore, in ALTA, OLM, KHAN, and FGLOCTweet datasets,

the LEs and addresses are annotated as a whole, but in IDRISI-RE, we differentiate

between LMs and LEs; an LE has to be broken down into its locational units. This is

mainly because our focus in the LMR task is to detect geographical units. Detecting the

LEs as a whole requires an additional text processing layer. For example, in Tweet #3,

the annotators have to label "Mohra-Saang" and "Jatlan" separately as two LMs, not the
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entire expression "Mohra-Saang, a village 1km away from Jatlan". We follow the same

intuition for addresses and routes. For instance, in Tweet #4, the consecutive LMs have

to be labeled independently.8

Table 4.2. Comparison between IDRISI-RE and the existing LMR dataset in the
annotation guidelines for the special cases of Location Mentions.

Dataset Hashtags Mentions URLs LEs

MID [123] ✓ ✓ × ×
ALTA [87] ✓ ✓ ✓ ✓
OLM [14] ✓ × × ✓
GeoCorpora [115] ✓ × × ×
HU1 [124] ✓ × × ×
HU3 [125] ✓ × × ×
KHAN [111] ✓ ✓ × ✓
FGLOCTweet [126] ✓ ✓ × ✓

IDRISI-RE ✓ × × ×

Table 4.3. Example tweets from IDRISI-RE dataset. In our annotation guidelines, the
bold and gray-shaded LMs represent the undesired and desired LMs, respectively.

T# Tweet

#1 To all my followers please RT: Where to #Donate to #Mexico #Earthquake
Victims - @nytimes #PrayForMexico

#2 Stay safe @california Camp Fire burns over 6700 structures and 9 dead
become the most destructive fire in #California history. A state of emergency
was declared in @ButteCounty ...

#3 Mohra-Saang, a village 1km away from Jatlan #Earthquake has been levelled.
Not a single house left in the village. 3 confirmed dead so far, More than
hundred injured. Road that leads to village is no more functional.

#4 Flooding. roadway closed in #SilverSpring on Sligo Crk Pkwy Both NB/SB
between Piney Branch Rd and Maple Ave #DCtraffic

8The annotation guidelines used to construct IDRISI-RE are available in the GitHub repository.
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4.2.2.2. Coverage and Diversity

In this section, we discuss how IDRISI-RE satisfies the properties presented in

Section 4.1.

Geographical Coverage: To ensure that IDRISI-RE can train generalizable models that

are effective in future disaster events, it has to cover different naming conventions of

locations that are used in different countries (refer to O1 in Section 4.1). The disaster

events in IDRISI-RE are indeed geographically-spread over several countries across

continents, including Canada, Colombia, Cuba, Dominican Republic, Ecuador, Greece,

Haiti, India, Italy, Madagascar, Malawi, Mexico, Mozambique, New Zealand, Pakistan,

Peru, Puerto Rico, Sri Lanka, The Bahamas, Turks and Caicos Islands, The United

States, and Zimbabwe.

Domain Coverage: To remedy the lack of diversity in disaster types (refer to O2 in

Section 4.1), IDRISI-RE has to cover the frequently-happening natural disaster events

in the English-speaking countries during the past decade (between 2010-2019) that

are earthquakes, floods, hurricanes, cyclones, and wildfires [26], [135], [136], [151]–

[153]. IDRISI-RE contains diverse events including six hurricanes, five earthquakes,

four floods, three wildfires, and one cyclone.

Location Types Coverage: To support advanced development and finer evaluation of

LMR models, we labeled IDRISI-RE for fine- and coarse-grained location types (refer

toO3 in Section 4.1). Figure 4.2 shows the distribution of the location types per disaster

event in IDRISI-RE. HRC, EQK, FLD, CYC, and FIR refer to hurricanes, earthquakes,

floods, cyclones, and wildfires, respectively. The coarse-grained LMs (e.g., Country,

State, and City) dominate IDRISI-RE by approximately 89%. Upon further analysis, we

found that the key factor that explains the dominance of coarse-grain LMs is theHumAID
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Figure 4.2. Distribution of location types in IDRISI-RE. HRC, EQK, FLD, CYC, and
FIR refer to Hurricanes, Earthquakes, Floods, Cyclones, and Wildfires, respectively.

dataset creation method. HumAID was collected by tracking relevant keywords to the

disaster events, usually the coarse-grained impacted areas’ names. Indeed, these coarse-

grained LMs are less challenging to detect by annotators. Consequently, we could

not prevent annotators from detecting them, or reduce their frequency in the dataset.

Furthermore, annotators are more likely to disagree on fine-grained LMs. Hence the

annotations of potential fine-grained locations are more likely to be discarded when we

had initially selected the gold annotations from the crowdsourced data. To mitigate this

issue, we provided the location type annotations that allows researchers to evaluate the

LMR models at different location granularity. We also reported the number of unique

LMs for all datasets in Table 2.1, showing that IDRISI-RE contains the maximum

number of unique LMs (3,830 LMs). Figures E.6-E.9 show the distribution of the top

15 LMs per disaster event in Appendix E.

Temporal Coverage: Ideally, the event-centric datasets should span over the entire

period of a disaster event to allow the response authorities to operate efficiently during

all phases of the disaster events (refer to O5 in Section 4.1). The events in IDRISI-RE
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were crawled two days before and two days after their peak incidents [149]. In Figure B.1

in Appendix B, we depict the number of tweets during two events showing the coverage

of important developments.

4.2.3. Benchmarking Experiments

To provide baselines for the LMR task, we benchmark IDRISI-RE dataset for

different task, data, and disaster domain setups. As for the task setup, we experiment

with type-based and type-less LMR (refer to Section 3.1). We also use two data setups:

(i) random and (ii) time-based. We ignore tweets’ timestamps in the random setup and

randomly select train, development, and test examples. The data is chronologically

ordered in the time-based setup before splitting it into training, development, and test

sets. Tweets are randomly shuffled and split into 70% training, 10% development, and

20% test sets per event. We report the detailed stats in Tables B.1 and B.2 in Appendix B.

4.2.3.1. Learning Models

We have developed our own LMR models:

• Crf𝐿𝑀𝑅 [154]: The Conditional Random Fields (CRFs) model is a competitive

probabilistic tagging algorithm, which can be used as a standalone tagger [101],

[105] or integrated into an LMR system [38]–[40], [155]. We used the crfsuite

library9 to train a Crf𝐿𝑀𝑅 model using word-level syntactic features, including

the identity, suffix, shape, and POS tags. Additionally, we used words contextual

tokens such as adjacent words and their syntactical features.

• Bert𝐿𝑀𝑅 [19]: This models is a fine-tuned pre-trained BERT model for the LMR

task. We add a linear layer on top of the vanilla BERTmodel (refer to Section 3.2).

9https://sklearn-crfsuite.readthedocs.io/
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We have also select a representative set of LMR models as described below:

• Gpne [110]: An unsupervised LMRmodel that specifically shows better detection

performance for location mentions within the disaster-hit areas.

• Gpne2 [94]: An enhanced version for GazPNE that employs an LMD module

to improve the LMR accuracy. It exploits the Stanza NER model to accelerate

recognition and detect hard LMs. This system uses synthesized training data

extracted from gazetteers. Hence, we cannot retrain/fine-tune it using our data.

Instead, we use its public CLSTM-trained model.

• Ntpr𝑂 [40]: A neural-based toponym recognition tool trained on recurrent neural

networks. We run the original trained model made public by the authors.

• Ntpr𝑅: A retrained Ntpr𝑂 model from scratch on IDRISI-RE dataset per event.

We do not tune the hyper-parameters and adopt the values used by the authors [40].

• Ntpr𝐹 : A fine-tuned Ntpr𝑂 on IDRISI-RE dataset per event. Similar to Ntpr𝑅,

we do not tune the hyperparamters.

• Lore [109]: An untrainable rule-based recognition model [109]. We run the

original application that is made public by the authors.

• nLore [108]: A deep learning-based model that exploits Lore’s rule-based fea-

tures for recognition. We run the original trained application that is made public

by the authors. We could not retrain this model or fine-tune it since it is not open

source.10

4.2.3.2. Hyperparameter Tuning

During training, we tune the hyperparameters of the Bert𝐿𝑀𝑅 model, including

the sequence length, the batch size, the number of training epochs, and the learning rate.

10The authors promise to make it open source in the future.
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We experiment with different batch sizes (i.e., 8, 16, 32), the number of epochs (i.e., 2,

3, 4), and learning rates (i.e., 5E-5, 3E-5, 2E-5).

For the Crf𝐿𝑀𝑅 model, we experiment with five training algorithms, namely

Gradient Descent using the L-BFGS method (LBFGS), Stochastic Gradient Descent

with L2 regularization term (L2EG), Averaged Perceptron (AP), Passive Aggressive

(PA), and Adaptive Regularization Of Weight Vector (AROW). For LBFGS, we tune

the coefficients for L1 and L2 regularization parameters. For the L2EG, we tune

the coefficient for L2 regularization and the initial value of the learning rate used

for calibration. For AP, we tune the epsilon parameter that determines the condition of

convergence. ForPA, we tune the strategy for updating featureweights and the sensitivity

parameter that determines whether errors are considered in the objective function. For

AROW, we tune the initial variance of every feature weight and the tradeoff between

loss function and changes of feature weights (gamma). We tune the regularization

parameters for values between 0.05 and 1 with a step value of 0.05. We tune the initial

learning rate and epsilon using values {1×10𝑖 |𝑖 ∈ [2, 6]}. The PA sensitivity parameter

is boolean, and the updating strategy includes three types: without slack variables, type

I, or type II. We tune the variance and gamma parameters of AROW algorithm for values

{2−𝑖 |𝑖 ∈ [0, 3]}.

4.2.3.3. Evaluation Measures

To evaluate the LMR models, we compute the harmonic mean (𝐹1 score) of

Precision (P) and Recall (R). We evaluate LMR models on the entity level rather than

the token level. Our evaluation differs from seqeval11 in three aspects: (1) it evaluates

per tweet and reports the average performance, (2) it rewards the models when they

11https://pypi.org/project/seqeval/
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correctly predict no LMs for a single tweet, and (3) it accepts BILOU-like or JSON

formats.

Table 4.6. The 𝐹1 results for the LMR models on IDRISI-RE for the type-based LMR
task setup.

Data setup Random Time-based
Event Crf𝐿𝑀𝑅Bert𝐿𝑀𝑅 Crf𝐿𝑀𝑅Bert𝐿𝑀𝑅

Ecuador EQK 0.932 0.939 0.910 0.926
Canada FIR 0.853 0.733 0.865 0.771
Italy EQK 0.906 0.890 0.881 0.881
Kaikoura EQK 0.879 0.909 0.875 0.899
HRC Matthew 0.901 0.919 0.899 0.952
Sri Lanka FLD 0.910 0.925 0.897 0.912
HRC Harvey 0.906 0.909 0.914 0.895
HRC Irma 0.906 0.833 0.893 0.823
HRC Maria 0.882 0.924 0.890 0.897
Mexico EQK 0.838 0.913 0.880 0.911
Maryland FLD 0.751 0.892 0.873 0.805
Greece FIR 0.896 0.925 0.886 0.887
Kerala FLD 0.880 0.880 0.857 0.919
HRC Florence 0.879 0.772 0.889 0.778
California FIR 0.907 0.909 0.902 0.902
Cyclone Idai 0.877 0.900 0.852 0.895
Midwestern U.S. FLD 0.917 0.936 0.920 0.944
HRC Dorian 0.875 0.858 0.865 0.852
Pakistan EQK 0.820 0.894 0.780 0.828

Average 0.880 0.883 0.880 0.878

4.2.3.4. Benchmarking Results

Type-less LMR: In this setup, the LMR models recognize LMs, regardless of their

types. Tables 4.4 and 4.5 present the 𝐹1 results of all LMR models over IDRISI-

RE events. We also report the detailed results, including precision and recall, with

the best hyper-parameters for the Bert𝐿𝑀𝑅 and Crf𝐿𝑀𝑅 models in Appendix C. On

average, the Bert𝐿𝑀𝑅 model exhibits a compelling performance against all other type-

less LMR models for both random and time-based scenarios. On average, the Ntpr𝐹

and Ntpr𝑅 models show the second-best performance followed by the Crf𝐿𝑀𝑅 model
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for the random data setup. In some cases where the Ntpr𝐹 and Ntpr𝑅 models show

the best performance, their absolute results are slightly better than the Bert𝐿𝑀𝑅 model.

In contrast to the random setup, the Ntpr𝑂 performance is better than the Crf𝐿𝑀𝑅

model under the time-based data setup. Specifically, the Crf𝐿𝑀𝑅 model’s average score

on the time-based is around 17% lower than the random data setup. The Lore and

nLoremodels exhibit modest performance compared to the others. Gpne shows poorer

performance than the other models. However, its new release (Gpne2) outperforms

Lore and nLore under the random and time-based data setups and the Crf𝐿𝑀𝑅 model

in the time-based data setup.

Type-based LMR: In this setup, the LMR models recognize the LMs and predict their

types simultaneously. Table 4.6 showed the results of all models over IDRISI-RE dataset.

The Crf𝐿𝑀𝑅 model is a strong competitor to the Bert𝐿𝑀𝑅 model under the type-based

and shows comparable performance for many events in both random and time-based

settings.

4.2.4. Generalizability

Generalization allows learning algorithms to identify features and patterns that

are universal and not specific to one situation, event, or geographical area. The ba-

sic building block required to obtain a model’s generalizability is its training dataset.

However, most existing datasets lack essential characteristics to achieve better generaliz-

ability. To overcome these issues, IDRISI-RE dataset is designed to cover data events that

span broader geographical locations and multiple disaster types/domains (e.g., floods,

earthquakes). To this end, we compare the performance of models trained on IDRISI-RE

with models trained on seven public datasets, namely, OLM, MID, GeoCorpora (GEO),
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KHAN, HU1, HU3, and FGLOCTweet (refer to Section 2.4.2.1). We did not use the

ALTA dataset because the tweets are not mapped to their corresponding disaster events.

This missing mapping prevented us from grouping the tweets by disaster domain and

geographical area, which is required for running the generalizability experiments.

For all generalizability experiments, we use our Bert𝐿𝑀𝑅 model, as it exhibits

the best performance in the benchmarking experiments for the type-less task setup (refer

to Section 4.2.3); from hereafter, we refer to it as “the model”. We define the source

dataset as the dataset (or the combination of datasets) used to train the model, and the

target dataset as the dataset used to test it. All the experiments are designed using

fairness practices that we list below:

• We use the standard training and test splits of the respective data setups for training

and testing the model unless indicated.

• We use the default values of hyperparameters of the model from Hugging Face

Transformers to avoid biasing the model towards any of the datasets.

• We mitigate the influence of training data size on the model performance when

comparing different datasets by normalizing the size across all sets. Specifically,

after combining events, we divide the training set into n tweet subsets of the same

size as the smallest training set. We apply the size normalization to the training

sets of size 70% larger than the smallest training set. We then run n experiments,

one for each subset, and report the average performance. We also report the results

without size normalization and mark the respective runs with “∗”.

• We limit our experiments to only the random data setup and the type-less task

setup; only KHAN and HU1 datasets are labeled for location types. KHAN

is labeled for location categories higher in granularity compared to IDRISI-RE,

104



which requires manual mapping of annotations. HU1 contains more branched

types, which requires mapping to common types with IDRISI-RE. It is also

limited in size and confined in both domain and geographical aspects. Hence, it

is inadequate for drawing solid conclusions regarding generalizability.

4.2.4.1. Domain Generalizability

We use “domain” to refer to the domain of the target dataset, which is always

a specific disaster type, e.g., flood. To this end, we define the domain generalizability

as the ability of the model trained on disaster events of a specific domain (source)

to generalize and perform well when tested on unseen disaster events (target) of the

same domain (denoted as “in-domain” setup) or a different domain (denoted as “cross-

domain” setup).

Experimental Setups: When a dataset contains multiple events of the same type,

we randomly choose one of the events as target (test set), and the remaining events

(combined) as source (training set). This is a zero-shot learning setup for specific events.

We note that all of the reported experiments are under zero-shot learning (experiments,

where the training and test sets include the same event are hidden/greyed in the figures).

Hence, we use the test splits of Hurricane Dorian 2019, Midwestern US Floods 2019,

Puebla Mexico Earthquake 2017, Greece Wildfires 2018, and Louisiana Floods 2016

as the IDRISI.HRC, IDRISI.FLD, IDRISI.EQK, IDRISI.FIR, and OLM.FLD target/test

sets, respectively. All remaining events are used for training (only their standard training

splits). Table D.1 in Appendix D shows the detailed setups for all source and target sets.

We follow the same data partitioning method for the event-centric datasets, including

OLM, MID, HU1, and HU3. We note that the event context is discarded in the released
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KHAN dataset; hence we manually categorized tweets into their respective events using

the tracking hashtags made public by the authors. We used only the Hurricane Michael

2018 event since the other events have very few tweets in the order of tens, which

is inadequate for training the model [19]. For the keyword-based datasets, GEO and

FGLOCTweet, we split the tweets based on the domains that overlap with IDRISI-RE

(earthquake, fire, and flood). We used the tracking keywords used in crawling the dataset

to extract matching tweets for each domain [115], [126]. We excluded the hurricane

tweets from the FGLOCTweet dataset due to the small number of relevant tweets (only

13). We then partition each domain’s tweets into 70% training, 10% development, and

20% test. We split the GEO dataset because no standard splits are public for the research

community. We also split the FGLOCTweet dataset since its standard splits become

unbalanced after categorizing the tweets by their disaster domain. Furthermore, we also

train the model using IDRISI.ALL and GEO.ALL training sets to show the performance

of models trained on all source/training domains for each respective dataset.

Results and Discussion: We made several observations on the model’s performance

and analyzed the results to answer the domain generalizability research questions: can

an LMR model that is trained on IDRISI-RE generalize to:

• Unseen events of the same disaster type? (RQ8)

• Unseen events of different disaster types? (RQ9)

In-domain: To addressRQ8, we study the domain generalizability of IDRISI-REwithin

the same disaster type for source and target sets. The sub-matrices marked in “orange”

borders in Figure 4.3 presents the 𝐹1 results for the in-domain experiments. The “AVG”

and “In-domain AVG” columns show the average over all and in-domain test sets,

respectively. We make the following observations:
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Figure 4.3. The 𝐹1 results of the domain generalizability experiments of IDRISI-RE
against existing datasets. The best results per column are boldfaced column-wise, per
disaster domain. EQK, FIR, FLD, and HRC refer to Earthquake, Wildfire, Flood, and
Hurricane, respectively.

• Inconsistent yet reasonable average performance of IDRISI.<domain> source

sets: The models trained on IDRISI.EQK consistently outperform MID.EQK per

target set and on in-domain average. Unexpectedly, augmenting the size of source

data by merging GEO.EQK and MID.EQK source sets (Geo+MID.EQK) does

not improve the performance on majority of the target sets (12 out of 15 sets). The

GEO.EQK source set alone and FGLOCTweet.EQK show better average perfor-

mance, but both are comparable with IDRISI.EQK when looking at the in-domain
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average performance. Training on IDRISI.FIR source set is the worst compared

to the other datasets. Further failure analysis is required to understand the reason

behind this low performance. The models trained on IDRISI.FLD outperform

the ones trained on GEO.FLD, OLM.FLD, and GEO+OLM.FLD as per the in-

domain average and the total average. The models trained on IDRISI.HRC are

significantly better than the ones trained on MID.HRC, KHAN.HRC, HU1.HRC,

and HU3.HRC.

• Superior performance of IDRISI.<domain>∗ source sets: Generally, using IDRISI-

RE dataset without size normalization generates the top performing LMR models

per target set for all domain. In particular, over all domains, the IDRISI.<domain>∗

sources sets consistently generate better models compared to IDRISI.<domain>

sources sets. These results emphasize the importance of acquiring large training

data to build superior models.

• Geographical vicinity affects the model performance: We found that the geo-

graphical vicinity of the source and target sets is a potential factor in improving

performance. For instance, we found that 40% of the LMs in GEO.EQK source

set is in the United States, while the events in IDRISI.EQK training set happened

in Ecuador, Italy, New Zealand, and Pakistan. Having the IDRISI.EQK test set

containing tweets about an event that happened in Mexico shows that training on

GEO.EQK generates a superior model than training on IDRISI.EQK.

To answer RQ8, we show that IDRISI-RE dataset generates the best domain

generalizable models per domain, compared to the other LMR datasets.

Cross-domain: To address RQ9, we study the domain generalizability of IDRISI-RE

within different disaster types for source and target sets. Figure 4.3 presents the 𝐹1 results
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for the different setups. The “AVG” and “Cross-domain AVG” columns indicate the

average over all and cross-domain (cells outside the orange boxes) test sets, respectively.

We make the following observations:

• Inferior performance of MID, KHAN, HU1, and HU3 source sets: Training on

these source sets leads to the lowest average performance across all test sets. Upon

investigation, we found that the location distribution in Christchurch Earthquake

(MID.EQK), for example, is highly skewed; the “Christchurch” LM constitutes

approximately 49.7% and 53.8% of the total number of LMs in the training and

test sets, respectively. Moreover, around 68% of the tweets in the dataset have no

LMs. In KHAN.HRC, “Florida” appears in around 20% and 19% in the training

and test sets, respectively, and the 10 most frequent LMs constitute 42% and 40%

of the training and test sets respectively. For this reason, these two datasets are

inadequate for training generalizable LMR models.

• Competitive performance of FGLOCTweet.<domain> source sets: In general,

these source sets exhibit better performance compared to IDRISI.<domain>, in

FIR andFLDdomains. Upon investigation, we found that, unlike theFGLOCTweet

.EQK source set that US dominates its top 20 LMs (constituting 46% of the LMs

in the dataset), both FGLOCTweet.FIR and FGLOCTweet.FLD source sets are

more geographically diverse. For example, the 20 most frequent LMs in the

FGLOCTweet.FIR source set constitutes 20-22% for each US, UK, and China.

The FGLOCTweet.FLD source set is more geographically diverse, containing the

top 3 LMs: Jakarta (7%), Indonesia (4%), and Venice (4%).

• Superior performance of IDRISI.<domain>∗ source sets: We do not apply size

normalization for these models. They show better performance compared to
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their antonymic source sets (IDRISI.<domain>). They generate the best LMR

models on average (both “AVG” and “Cross-domain” columns) for EQK and

HRC domains. They also generate comparable performing models on average for

FIR and FLD domains, compared to the best source sets, FGLOCTweet.FIR and

FGLOCTweet.FLD (exhibits slightly lower performance by approximately 2.5%).

To answerRQ9, training on IDRISI-RE can produce domain-generalizable LMR

models with 𝐹1 of 80%, 77%, 75%, and 88%, for EQK, FIR, FLD, and HRC domains,

respectively, on cross-domain average. Other datasets show inferior cross-domain av-

erage performance on EQK and HRC domains. However, FGLOCTweet.FIR exhibits

better yet comparable performance to IDRISI.FIR∗. Similarly, GEO+OLM.FLD* and

FGLOCTweet.FLD show comparable performance to IDRISI.FLD∗.

Overall performance: We emphasize the superior performance of IDRISI-RE dataset

in the domain generalizability by highlighting a few points:

• Although GEO.<domain> and FGLOCTweet.<domain> show competitive per-

formance to IDRISI.<domain> per disaster domain, they exhibit lower overall per-

formance than IDRISI-RE (GEO.ALL andFGLOCTweet.ALL versus IDRISI.ALL).

• We note that part of the geographical coverage of IDRISI-RE is held out for the

IDRISI.<domain> target/test set; hence it does not appear in the source/training

sets of IDRISI.ALL. Thus, merging the held-out data into training could improve

the results further.

• As the size of IDRISI-RE is one of the advantages distinguishing it from the

existing datasets, training on IDRISI.ALL∗ generates LMR models that surpass

the ones trained on GEO.ALL, FGLOCTweet.ALL, and IDRISI.ALL, on average.

110



4.2.4.2. Geographical Generalizability

We use “geographical area” to refer to the country where the disaster of the

target dataset happened, e.g., the United States. To this end, we define the geographical

generalizability as the ability of the model trained on a specific geographical area

(source) to generalize and perform well when tested on an unseen disaster event in the

same or different geographical area (target).

Experimental Setups: To study whether IDRISI-RE can generalize to unseen events that

happened in the same or different geographical areas, we train the model using the data

of the common countries between IDRISI-RE and the existing datasets (OLM, MID,

GEO, and KHAN), namely, India (IN), New Zealand (NZ), and the United States (US).

We note that all of the reported experiments are under zero-shot learning (experiments

where the training and test sets include the same event are hidden/greyed in the figures).

Results and Discussion:

We address two research questions: Can an LMR model that is trained on

IDRISI-RE generalize to:

• Unseen events that happen in the same geographical areas? (RQ10)

• Unseen events that happen in different geographical areas? (RQ11)

Geographical Generalizability within the same country: Figure 4.4 presents the 𝐹1

scores for the geographical generalizability experiments for the events in the United

States. We limit our experiments to events in the United States because it is the only

country covered by all the public datasets. We found that training on IDRISI.US generates

higher performing LMR models compared to KHAN.US,MID.US,MID.US∗, OLM.US,

and HU1.US, on average. While HU3.US outperforms IDRISI.US, IDRISI.US∗ outper-
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Figure 4.4. The geographical inter-generalizability 𝐹1 results for IDRISI-RE for the
geographical few-shot learning. The blue color scale is global for the entire matrix.
The best results per column are boldfaced.

forms it significantly by approximately 5.3%. This improvement confirms the important

role of the size of source data that IDRISI-RE offers to the community. Additionally,

IDRISI.US∗ beats GEO.US over 4 out of 7 target sets, but GEO.US beats IDRISI.US∗

over only 2 target sets. Nevertheless, both are comparable on average.

To answer RQ10, we conclude that the models trained on IDRISI-RE exhibit an

acceptable 𝐹1 average score of 0.75. Furthermore, they achieve the best performance

on 4 out of 7 target sets, compared to the models trained on the other source sets.

Geographical Generalizability across countries: Figure 4.5 shows the 𝐹1 results of the

models trained under the geographical zero-shot learning, where the source and target

data are sampled from events that happened in different countries. Looking at the results,

we find that training on IDRISI-RE is significantly better than training on MID, KHAN,

and OLM datasets for all geographical areas (IDRISI.<country> vs. MID.<country>,

KHAN.<country>, and OLM.<country>), on average. Additionally, IDRISI-RE out-

performs GEO data over most test sets. The poor performance of GEO.US requires

further investigation. HU1.US and HU3.US exhibit a way lower scores compared to

IDRISI.US and IDRISI.US∗. However,HU3 is more comparable to IDRISI for IN andNZ
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Figure 4.5. The geographical inter-generalizability 𝐹1 results for IDRISI-RE for the
geographical zero-shot learning. IN, NZ, and the US refer to India, New Zealand, and
the United States, respectively. The blue color scale is global for the entire matrix. The
best results per geographical area per column are boldfaced.

geographical areas. The high performance of HU3.IN on HU3.NZ and HU3.US leads

to the best average score, yet comparable to IDRISI.IN. Similarly, the high performance

of HU3.NZ on HU3.IN and HU3.US leads to a comparable average against IDRISI.NZ.

To answer RQ11, it is pretty evident that training on IDRISI-RE generates the

best-performing LMR models that can reasonably generalize to events that happened in

different geographical areas. On the other hand, the performance of models generated

by other datasets is usually relatively poor.

4.2.4.3. Domain Transfer within IDRISI-RE

We use “domain” to refer to the domain of the target dataset, which is always

a specific disaster type, e.g., flood. We study the domain transfer within IDRISI-RE

dataset in two setups: “in-domain”, where the source and target sets are of the same
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disaster type, and (ii) “cross-domain”, where the disaster type of source and target sets

are different.

Experimental Setups: We use the Bert𝐿𝑀𝑅 model as it shows the best 𝐹1 scores. We

use the random data setup for both type-less and type-based task setups. We tune the

hyperparameters of the model (refer to Section 4.2.3.2) for each transfer setup over

the development sets (same events as the training/source sets). IDRISI-RE covers

four disaster types: hurricane, earthquake, flood, and wildfire. A transfer data setup

comprises a source-target pair, resulting in 16 setups.

Results and Discussion: Figure 4.6 illustrates the 𝐹1 scores of the model over the test

sets. Below, we elaborate on the results per domain setup:

• In-Domain: As expected, the best results appear on the diagonal, which rep-

resents the in-domain setup, for both type-less and type-based LMR. The high

performance shows the advantage of using IDRISI-RE for training LMR models

at the onset of disaster events of the same types as the ones offered by IDRISI-RE.

• Cross-Domain: Interestingly, the model achieved a minimum of 80% and 75%

of 𝐹1 score for the type-less and type-based LMR task setups, respectively. This

reasonably good performance shows the promising advantage of using IDRISI-RE

for training LMR models at the onset of disaster events of different types than the

ones offered by IDRISI-RE.

To this end, we confirm that training on IDRISI-RE dataset could generate

reasonably performing models in the range of 80% and 75% of 𝐹1 score for the type-less

and type-based LMR, respectively.
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Figure 4.6. The 𝐹1 results for the domain transfer experiments within IDRISI-RE.
HRC, EQK, FLD, and FIR refer to HRCs, EQKs, FLD, and FIR, respectively.

4.3. Arabic LMR Datasets and Benchmarks

Worldwide and in the Arab region, Twitter has played a critical operational role

in crisis management. The Beirut explosion in 2020 is an excellent case in point, where

on-site individuals started intuitively responding to each other. What makes tweets

invaluable is location mentions at different granularity [8]–[11]. Response authorities

exploit this geographical information to effectively manage emergencies using Crisis

Maps. Although the geographical dimension adds situational and operational values to

Twitter data, Twitter announced on 18 June 2019 that it removed the geotagging feature

in tweets.12 This necessitates developing automatic geolocation tools. Nevertheless,

the main obstacle for the Arabic language is being a low-resource language where the

geolocation tasks are severely understudied due to the absence of a unified evaluation

framework constituting annotated datasets, a representative set of baselines, and fair

evaluation metrics.

To address these barriers, we introduce IDRISI-RA,13 the first human-labeled

dataset comprising Arabic tweets from 7 disaster events (gold annotations). IDRISI-

RA offers the first large-scale automatically-labeled tweets (silver annotations) from 22

12https://twitter.com/TwitterSupport/status/1141039841993355264
13The “R” and “A” letters refer to the Recognition task and the Arabic language, respectively.
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disaster events that cover the Arab world. It also covers the most occurring disaster

types in the Arab world. More importantly, it is labeled for two annotation types that

are location mentions (i.e., toponym textual spans) and their types (e.g., city, street, and

POIs). Hence, it supports type-less and type-based LMR.

Although adapting Named Entity Recognition (NER) models and datasets goes

a long way towards tackling the LMR task, we have empirically shown that training

English-specialized LMR models is compulsory for highly performing models in the

emergency management domain (refer to Chapter 3) [19]. Translating this to Arabic

LMR requires Twitter NER datasets; however, a few datasets exist yet suffer from the

limited size and the confined domain, geographical, and dialectical coverage (refer to

Section 2.4.2.1) [128]–[130].

What exacerbates the low resources issue for theArabic LMR is the unavailability

of the few LMR datasets created for traffic surveillance or event detection tasks [73],

[74], [127], [131]. Therefore, to expedite the development of Arabic LMR models and

shape the future directions, we perform extensive experiments to answer the following

research questions empirically:

• RQ12: Are standardArabicNERmodels sufficient for effective LMRover disaster

tweets?

• Can LMRmodels trained on IDRISI-RA generate generalizable LMRmodels that

reasonably perform on:

– RQ13: Unseen disaster events?

– RQ14: Unseen disaster events of the same or different types (domain gener-

alizability)?

– RQ15: Unseen disaster events in different countries (geographical general-

116



izability)?

Our rigorous analyses and experiments necessitate the development of specific

LMR datasets and models that performs accurately in the disaster domain. Additionally,

the experiments empirically confirm the promising generalizability of IDRISI-RA under

zero-shot learning, and the reasonable domain and geographical generalizability.

The contribution of this paper is fourfold:

• We present IDRISI-RA,14 the first public human-labeled Arabic LMR dataset

(gold version) of about 4.6k tweets. The dataset covers diverse disaster types and

countries.

• We release the largest automatically-labeled Arabic LMR dataset (silver version),

constituting about 1.2M tweets.

• We annotate the location mentions into coarse- and fine-grained location types to

enable hierarchical LM recognition, disambiguation, and evaluation.

• We benchmark IDRISI-RA using the standard Arabic NER models and our own

simple yet competitive LMRmodels to establish a set of baselines for the research

community.

• We empirically demonstrate that IDRISI-RA is a reasonably generalizable dataset.

4.3.1. Construction

Similar to IDRISI-RE, we selected an event-centric dataset already labeled for

humanitarian categories. We analyzed multiple existing disaster-related tweet datasets

and selected Kawarith [138], as it contains tweets from 22 disaster events from the Arab

region, which makes it geographically wide and domain (disaster domain) diverse.

14https://github.com/rsuwaileh/IDRISI
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4.3.1.1. Gold Dataset Sampling

To sample the most informative tweets for human annotation, we selected tweets

from seven events (listed in Table 4.10) labeled as relevant for humanitarian purposes.

Selected tweets (6,182) are used to download full tweet content using the Twitter API,

which resulted in 4,593 tweets.

4.3.1.2. Gold Annotations

We perform two annotation types on the selected data: (1) location mentions

identification, such as geographical names of places, within the tweet text, and (2)

location type selection for the identified toponyms. These location types include country,

province/state, city/town, district, neighborhood, road/street, natural points of interest

like rivers and seas, and human-made points of interest such as schools and hospitals.

Toponyms not belonging to the defined location types are assigned the “other location"

label. Detailed annotation guidelines are available in the GitHub repository.15

Seven graduate-level students were trained to carry out the annotation task using

the WebAnno NLP annotation tool.16 We selected the WebAnno tool as it supports

Unicode right-to-left languages (e.g., Arabic). Furthermore, to ensure the quality of

annotations, we selected the annotators to be either citizen or have a good familiarity

with the country of the disaster event. Finally, all annotators had to pass a quiz of 20

tweets before being eligible to start the annotation task.

Disagreements between annotatorswere examined by an additionalmeta-annotator

and resolved. In Table 4.10 column “LMs (uniq)”, we show the total number of an-

notated LMs and unique LMs in parentheses. The unique number of LMs changes

15https://github.com/rsuwaileh/IDRISI/tree/main/LMR/annotation_guidelines
16https://webanno.github.io/
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depending on the granularity of the affected area. On average, 26% LMs are unique.

4.3.2. Description and Quality

In this section, we present a thorough evaluation of IDRISI-RA dataset in terms

of reliability, consistency, coverage, and diversity.

4.3.2.1. Reliability

To evaluate the reliability of annotations, we computed Cohen’s Kappa [156] for

both annotation tasks separately and jointly. Results in Figure 4.7, show the average

reliability achieved is 83% (almost perfect), 67% (substantial), 70% (substantial), for

LOC (i.e., toponym identification task), TYPE (i.e., location type assignment), and

LOC+TYPE, respectively. All events show high-quality annotations, except the “Hafr

Floods 2019" event with 12% agreement for the TYPE task (slight reliability) and

44% for LOC+TYPE (moderate reliability). Upon investigation, we found that “Hafr

Albatten" is the most frequent LM in the dataset; one annotator assigns “city" type for

all occurrences and the other assigns “province." While both annotators are correct (as

in the Arab world, both types are used interchangeably), we anticipate an increase in the

agreement level when accepting both types. Furthermore, the COVID-19 event shows

slight agreement for the TYPE task for similar reasons across Arab countries.

4.3.2.2. Coverage and Diversity

In this section, we discuss how IDRISI-RA satisfies the properties presented in

Section 4.1.

Geographical Coverage: To ensure that IDRISI-RA can train geographical generalizable

models, it has to cover a wide geographical Arab area (refer to O1 in Section 4.1).
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Figure 4.7. The Inter Annotator Agreement using Cohen’s Kappa for IDRISI-RA per
event. 0.2, 0.4, 0.6, and 0.8 indicate the degree of reliability as slight, fair, moderate,
and substantial, respectively.

IDRISI-RA covers five different Arab countries, namely Jordan, Kuwait, Egypt, Saudi

Arabia, and Lebanon. Additionally, the whole Arab region is represented by the COVID-

19 pandemic event. Figure 4.8a shows the distribution of distinct LMs per location type.

Domain Coverage: To remedy the lack of diversity in disaster types (refer to O2

in Section 4.1), IDRISI-RA represents the most happening disaster types in the Arab

region discussed over Twitter [138], [157]–[159], including three floods, two explosions,

one storm, and the global COVID-19 pandemic.

Location Types Coverage: We labeled the dataset for coarse- and fine-grained location

types to support advanced development and finer evaluation of LMRmodels. Figure 4.8b

shows the distribution of the location types in IDRISI-RA. The coarse-grained (e.g.,

Country, State, and City) LMs dominate the dataset due to Kawarith collection strategy

that depends on tracking relevant keywords, mostly hashtags which are the names of the

coarse-grained affected areas by the disaster event.

Temporal Coverage: Covering long critical periods of disaster events allows the response

authorities to operate efficiently (refer to O5 in Section 4.1). For example, IDRISI-RA
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Figure 4.8. Distribution of location types in IDRISI-RA.

covers recent disaster events between 2018-2020. The period for events is approximately

8.8 days, on average (refer to Table B.3 in Appendix B). In Figure B.2 in Appendix B,

we depict the number of tweets during two events showing the coverage of important

developments.

Dialectical Distribution: To analyze the distribution of dialects vs. MSA in IDRISI-RA,

we employed the ASAD dialectical classifier [160]. We found that around 86.8% of the

tweets in the dataset are MSA. Table 4.7 shows the dialectical distribution of around

13% tweets. The largest portion goes to the Egyptian dialect, as Cairo BMB 2019 and

Dragon STR 2020 happened in Egypt. The next dialect is Kuwaiti because Kuwait FLD

2018 event contains the second top number of tweets. Qatari and Saudi dialects are very

close to the Kuwaiti dialect, explaining their prevalence.
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Table 4.7. The dialects distribution in IDRISI-RA. The 18 countries are represented by
their 2-letter ISO codes.

EG KW QA SA MA LB
27.2% 26.6% 8.7% 7.4% 4.0% 3.8%
PS BH JO LY AE SD
3.6% 3.4% 3.2% 2.3% 2.1% 2.1%
TN DZ OM YE IQ SY
1.7% 1.1% 1.1% 0.8% 0.6% 0.6%

4.3.3. Benchmarking Experiments

To provide baselines for the LMR task, we benchmark IDRISI-RA dataset for dif-

ferent task, data, and disaster domain setups (to avoid redundancy, refer to Section 4.2.3

for details). We report the detailed statistics in Table B.3 in Appendix B.

4.3.3.1. Learning Models

We have developed our own LMR models:

• Crf𝐿𝑀𝑅 [154]: The Conditional Random Fields (Crf𝐿𝑀𝑅) is a competitive prob-

abilistic tagging algorithm. We used word syntactic features, including the suffix,

POS tag, and context (adjacent words and their syntactical features).

• Bert𝐿𝑀𝑅: We selected MARBERT model [161] for its superiority in Arabic

Twitter NER when used for embeddings [162].

We tune the hyper-parameters of these two models (refer to Section 4.2.3.2).

We further employ two standard Arabic NER models for benchmarking, as

described below.

• CAMeLBERT-Mix (Cml) [163]: An NER model trained on ANERcorp dataset,

including MSA, Dialectal Arabic (DA), and Classical Arabic (CA) data.

• Farasa (Frs) [164]: A commonly used NER model in Farasa Arabic tool.
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4.3.3.2. Results and Discussion

Table 4.8 presents the 𝐹1 results of all setups over IDRISI-RA (refer to Sec-

tion 4.2.3.3 for more details about the evaluation measures) of the adopted NER and our

LMR models below. Detailed results are presented in Appendix C.

Type-less LMR: In this setup, the LMR models are only required to recognize LMs,

regardless of their types. Bert𝐿𝑀𝑅 model achieves the best performance for both

random and time-based scenarios. Next in order are the Crf𝐿𝑀𝑅, FARASA (Frs), and

CAMeLBERT-Mix (Cml). Although the CAMeLBERT-Mix is considered a BERT-

based model, it shows poor performance compared to Bert𝐿𝑀𝑅, as it was fine-tuned on

news wire documents for the NER (entities include LOC, ORG, PER, and MISC) task.

Type-based LMR: Bert𝐿𝑀𝑅 is evidently the best model for the random data setup. We

anticipate the reason behind the lower performance of the Crf𝐿𝑀𝑅 model to be the

limited features used to train the Arabic version (refer to Section 4.3.3.1). The Crf𝐿𝑀𝑅

model exhibits comparable 𝐹1 scores to the Bert𝐿𝑀𝑅 model in the time-based data

setup. To answer RQ12, we confirm the need for specific-LMR datasets and models

that can perform effectively over disaster tweets.

4.3.4. Generalizability

In this section, we empirically study the generalizability of IDRISI-RA dataset.

For that, we employ the best LMR model, Bert𝐿𝑀𝑅 (refer to Section 4.3.3);from here-

after, we refer to it as “the model”. We study three dimensions: (i) generalizability to

unseen events regardless of their type and location, (ii) generalizability to unseen events

of the same or different disaster types (domain generalizability), and (iii) generaliz-

ability to unseen events that happened in the same or different countries (geographical
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generalizability).

4.3.4.1. Experimental Setups

We run our experiments under both type-less and type-based task setups for only

random data setup. We tune the model’s hyper-parameters for every setup (refer to

Section 4.2.3.2). We define the source dataset as the dataset (or the combination of

datasets) used to train the model, and the target dataset as the dataset used to test it.

Domain generalizability: We examine the model’s performance under cross- and in-

domain transfer setups [18]. The “domain” in our experiments refers to the type of

disaster event. IDRISI-RA dataset covers the four most occurring disaster types in the

Arab region: flood, bombing, storm, and pandemic. A transfer data setup comprises a

source-target pair, resulting in 16 runs.

Geographical generalizability: We examine the model’s performance over events in

different countries than the source dataset. IDRISI-RA covers five countries (refer

to Table B.3 in Appendix B), besides the global COVID-19. A transfer data setup

comprises a source-target pair, resulting in 42 runs after excluding the target runs.

4.3.4.2. Results and Discussion

Generalizability to unseen events: Table 4.9 shows the model’s results. The results for

the type-less LMR demonstrate the potential of IDRISI-RA dataset under the zero-shot

setting. The difference against the target runs is mostly negligible. Due to the difficulty

of the type-based LMR, the performance under zero-shot learning is significantly lower

than the target runs. However, the zero-shot results are within a reasonable range (i.e.,

average 𝐹1 0.88), demonstrating the effectiveness of models trained on IDRISI-RA. To

answer RQ13, we confirm that training on IDRISI-RA generates generalizable Arabic
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LMR models that achieve, on average, around 0.75 and 0.88 𝐹1 scores for the type-less

and type-based LMR, respectively.

Table 4.9. The 𝐹1 results for the MARBert𝐿𝑀𝑅 model under zero- and target training
setups.

Task setup Type-less Type-based
Data setup Random Time-based Random Time-based
Training setup Zero Target Zero Target Zero Target Zero Target
Jordan FLD 2018 0.768 0.765 0.759 0.751 0.900 0.967 0.907 0.957
Kuwait FLD 2018 0.853 0.848 0.830 0.829 0.956 0.982 0.955 0.972
Cairo BMB 2019 0.642 0.632 0.651 0.626 0.835 0.992 0.805 0.991
Hafr FLD 2019 0.761 0.762 0.754 0.747 0.786 0.971 0.763 0.965
Dragon STR 2020 0.809 0.814 0.829 0.825 0.941 0.946 0.947 0.950
Beirut BMB 2020 0.616 0.633 0.594 0.603 0.914 0.936 0.841 0.851
COVID-19 0.879 0.883 0.842 0.853 0.961 0.972 0.960 0.964

Average 0.761 0.762 0.751 0.748 0.899 0.967 0.883 0.950

Domain generalizability: Figure 4.9 illustrates the 𝐹1 scores of the models over the

target sets.
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Figure 4.9. The 𝐹1 results for the domain generalizability within IDRISI-RA under
random data setup.

In-domain: Ideally, the best results should lay on the diagonal, which depicts the in-

domain setup. This assumption holds for all runs, except the STR-to-STR runs in the

Type-based LMR (Figure 4.9.b). Training on “bombing" data in the BMB-to-STR setup

achieves comparable results to training on “storm" data in the STR-to-STR because both

source and target data share the same or close affected areas (Egypt and Lebanon), which
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could imply the overlap of toponyms’ occurrences and patterns. The “bombing" (BMB)

includes data from the Cairo Bombing 2019 in Egypt and the Beirut Explosion 2020 in

Lebanon. The “storm" (STR) test data contains Dragon Storms 2020 that affected Egypt

and Jordan, among a few LMs from Levantine Arabic. Moreover, the FLD-to-STR run

achieves 6.3% better performance compared to the STR-to-STR run, as the FLD source

data is approximately 7.5 times larger in size than the “storm" STR source. The effect of

training dataset size on these results could be confirmed by the relatively low 𝐹1 scores

when the model trained on the “storm" data that has the smallest training data.

Cross-domain: Generally, the right upper part above the diagonal shows better results

than the counterpart, except for the BMB-to-FLD, where the size of training data

influences the results. We also note here that the model is tuned for every source-to-

target transfer setup over the development splits; hence, the poor results on the test

splits could indicate overfitting that prevents generalizability. This motivates the use

of more advanced transfer learning techniques. Finally, to answer RQ14, we confirm

that IDRISI-RA can generate acceptable domain generalizable models for most disaster

types. It also provides challenging examples for the LMR models.

Geographical generalizability: Figure 4.10 shows the 𝐹1 scores of the models over the

target countries that are the same or different than the affected area of the source data.

On average, the model achieves approximately 0.61 and 0.84 𝐹1 scores for type-less and

type-based LMR, respectively. Due to its geographical coverage, the model achieves the

top performance over “GL” target data (i.e., the COVID-19 event). To answerRQ15, we

found that IDRISI-RA can generate reasonable geographically generalizable models.
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Figure 4.10. The 𝐹1 results for the domain generalizability within IDRISI-RA under
random data setup.

4.4. Silver Annotations

Thus far, we have discussed acquiring gold annotations using human workers.

However, to increase the size of the dataset beyond our limited budget, we automatically

amplify the size of IDRISI-R by using an automatic labeler, which is the best perform-

ing LMR models on the gold annotations (refer to Sections 4.2.3 and 4.3.3). More

specifically, we trained Bert𝐿𝑀𝑅 models using the entire gold annotations (all events

combined) of IDRISI-R and IDRISI-RA, separately. We then ran the resulting model

on the tweets not sampled for the gold annotations from all disaster events, including the

tweets that belong to the low informative classes. Out of this process, we constructed

the largest automatically-labeled English and Arabic LMR datasets, comprising 56,682

and 1,205,373 tweets, respectively. We denote this version as silver to imply its level of
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reliability and report its statistics in Table 4.10 (rows 2 and 4). We anticipate it to enable

developing robust LMR models and support research on advanced learning techniques

(e.g., transfer learning and domain adaptation).

Table 4.10. Tweet and Location Mention statistics of IDRISI-RE dataset.

Version Tweets Tweets|𝐿𝑀 |=0 LMs (uniq)

IDRISI-RE𝑔𝑜𝑙𝑑 20,514 5,723 21,879 (3,830)
IDRISI-RE𝑠𝑖𝑙𝑣𝑒𝑟 56,682 25,034 43,404 (2,675)
IDRISI-RA𝑔𝑜𝑙𝑑 4,593 1,619 5,236 (918)
IDRISI-RA𝑠𝑖𝑙𝑣𝑒𝑟 1,205,373 639,178 884,217 (18,609)

4.5. English and Arabic LMD Datasets and Benchmarks

In this section, we discuss the effort we made to extend the IDRISI-R datasets

for the LMD task. First, we present the datasets’ sampling and annotation in detail in

Section 4.5.1. We then analyze the annotations in Section 4.5.2. We benchmark the

datasets in the next chapter (Chapter 5, Section 5.4).

The research community lacks access to Twitter disaster-specific public LMD

datasets, consequently preventing comparing existing studies. The only public English

dataset is GeoCorpora [115]; however, it is a keyword-based dataset that misses the event

context, which is important for disambiguating LMs. Furthermore, the dataset is limited

to tweets containing the tracking keywords that may only appear in some informative

tweets, which causes an information loss. Additionally, a fundamental limitation of

GeoCorpora is the dominance of LMs from the United States (42%) and the United

Kingdom (12%). More and above, up to the time of this writing, there are no Arabic

LMD datasets.

In this section, we address these drawbacks and build IDRISI-D datasets17 for

17https://github.com/rsuwaileh/IDRISI/
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English (IDRISI-DE) and Arabic (IDRISI-DA) languages. IDRISI-DE is the largest-

scale human-labeled tweet English dataset constituting 5,591 tweets and 9,685 LMs,

1,395 of which are unique. IDRISI-DA is the first public human-labeled Arabic dataset

constituting 3,294 tweets and 6,445 LMs, 1,226 of which are unique. IDRISI-D datasets

encompass all properties of IDRISI-R such geographical, domain, location granularity,

temporal, informative, and dialectical (for Arabic) coverage.

Over and above, in an effort to alleviate the tweet sparsity issue (refer to Sec-

tion1.2.1), we collect usefulness annotations for different features (e.g., hashtags, enti-

ties) and information sources (e.g., URLs) from the human-annotators.

To this end, we analytically answer the following research questions:

• RQ16: What features within tweets’ textual content (replies, named entities, and

other LMs) would enrich LM context for effective LMD?

• RQ17: What auxiliary information sources of information (hashtags, event con-

text, and URLs) would enrich LM context for effective LMD?

The contributions of this section are as follows:

• We present IDRISI-DE, the largestmanually-labeled public English LMD dataset

of about 5,461 tweets.

• We present IDRISI-DA, the first Arabic LMD dataset containing about 2,909

tweets.

• We manually analyze the usefulness of different tweet features (hashtags, replies,

named entities, and other LMs) and information sources (event context and URLs)

for enriching the LM context for effective LMD.
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4.5.1. Datasets Construction

In this section, we discuss the process of constructing IDRISI-D datasets. We

start by describing the sampling in Section 4.5.1.1. We then discuss the annotation

process in Section 4.5.1.2.

4.5.1.1. Dataset Sampling

Constrained by not overwhelming the volunteered annotators, we sampled a set

of tweets from every disaster event whilemaintaining the distributions of LM types. This

set of tweets went through an annotation pipeline of 3 phases. As fine-grained LMs are

underrepresented in IDRISI-R (refer to Section 4.6) and wewant to include all of them in

IDRISI-D datasets, we carried out another annotation process for IDRISI-RE to include

all fine-grained LMs those which were not sampled in the first annotation process. Due

to a lack in budget, only one expert annotator conducted the latter annotation process.

On the other hand, IDRISI-RA was entirely sampled for LMD annotations.

4.5.1.2. Dataset Annotation

The LMD annotation removes the ambiguity of geo/geo entities (as a sequel to

the geo/non-geo LMR annotations). We collected the LMD annotations in 3 phases to

increase reliability with a minimum load on the expert annotators:

PH 1 We selected two in-house volunteered annotators per event. The annotators are

alumni who have a good familiarity with the country of the disaster event. When

one of the in-house annotators’ confidence level is low for a specific LM, or both

annotators disagree, a meta annotator labels such cases in Phase 2.
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PH 2 A meta annotator resolves the disagreement from Phase 1 and labels the low

confident examples. For that, she verifies the annotation by carefully searching

OSM and Google. When she fails to disambiguate an LM, it goes to experts in

Phase 3.

PH 3 Expert annotators disambiguate the hard unresolved LMs from Phases 1 and 2.

Experts are residents of the countries where the disaster events took place.

In all phases, we asked annotators to (1) disambiguate the LMs, (2) assign

a confidence score for their annotation, and (3) judge the usefulness of features and

sources for disambiguation. For disambiguation (1), annotators search OpenStreetMap

(OSM) gazetteer18 after reading the tweet online and checking all relevant content,

including the replies and the linked web pages. For the confidence level (2), annotators

assign a score between 1-3 to show their confidence level. For the usefulness of features

and information sources (3), we asked annotators whether the following features and

information sources help understand the context of the LMs and resolve them:

• Event: The corresponding disaster event. Some NER tools consider the “Event”

entity type (e.g., SpaCy tool). However, we limit the event notion to the corre-

sponding event that the tweet discusses.

• Hashtags: The tweets posted on the same hashtags that appear within the tweet’s

text.

• Replies: The tweet thread or responses from the community.

• Other LMs: Other location mentions appear within the same tweet text.

• URLs: The linked web pages or media within the tweet text.

• Entities: Named entities that appear within the tweet text.

18www.openstreetmap.org
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For every feature/source, annotators assign “Yes” if it is useful, “No” if it is

useless, or “None” when it does not exist. We release the usefulness annotations and

confidence scores within IDRISI-D datasets.

To avoid propagating human errors (refer to Section 4.6 for examples) from

IDRISI-R datasets to IDRISI-D, we asked the annotators to modify LMs, add new LMs,

or drop LMs in certain cases. In Table 4.13, we show example tweets and elaborate on

them in the following:

• Adding new LMs: Crowd LMR annotators missed a few LMs. Hence, we allow

the LMDannotators to add them if they are resolvable. For example, the “Pontagea

Health Centre” in Tweet #1. We have added 27 LMs to IDRISI-DE while no LMs

added to IDRISI-DA.

• Modifying LMs: Several cases require modification, such as decomposing ad-

dresses into address components (Tweet #2), separate multiple LMs (Tweet #3),

fixing LM boundaries (Tweets #4-#6), merging LMs (Tweet #6), and fixing LM

type (Tweet #8). We have modified 154 and 15 LMs in both IDRISI-DE and

IDRISI-DA, respectively. The IDRISI-RA is cleaner than IDRISI-RE as it is

in-house labeled.

• Dropping LMs: We asked annotators to drop LMs when they violate the LMR

annotations guidelines. Cases include organization or person entities, nationali-

ties, locational descriptions, among others. In Table 4.11, we show the types of

wrong LMs dropped from IDRISI-D dataset and their statistics.

• Adding LMs to OSM: Annotators have added 27 and 171 LMs to OSMwhen they

do not exist for both IDRISI-DE and IDRISI-DA, respectively.
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Table 4.11. Error types of LMR annotations that were cleaned out in IDRISI-D

Error Type IDRISI-DE IDRISI-DA Description

DESC 1044 0 Description of something related to the LOC
PER 124 0 Name or description of an individual person
ORG 337 10 Organization or campaign or group of people
NATION 145 0 Nationality or citizenship
AMBIG 110 18 Description of officially undefined location
MISSING 126 170 Valid LM that does not exist on OSM
ERROR 81 4 Conflicts IDRISI-R annotation guidelines
MULTIPLE 19 1 Referes to multiple locations (branches)

ALL 1,986 203

We ran the task for ten weeks and obtained the final IDRISI-DE and IDRISI-DA

datasets. We present the statistics of the resultant datasets in Table 4.12. Detailed

statistics are presented Tables B.4-B.6 in Appendix B. “Coarse-grained” LMs include

country, state, province, district, county, and city/town. “Fine-grained” LMs include

neighborhood, road/street, and point-of-interest. “Others” refer to LMs that do not fall

under coarse-grained and fine-grained types (e.g., villages).

Table 4.12. Tweet and Location Mention statistics of IDRISI-D dataset.

Dataset Tweets LMs (uniq) Coarse-grained Fine-grained Others

IDRISI-DE 5,591 9,586 (1,601) 6,633 714 487
IDRISI-DA 2,869 3,893 (763) 2,326 1,506 54
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Table 4.13. Examples of the annotations cases. Bold LMs are the wrong annotations in
IDRISI-R. Gray-shaded LMs are the corrected version of LMs in IDRISI-D.

T# Change Tweet text

#1 Add Pontagea Health Centre in Beira, #Mozambique, was partially destroyed by
#CycloneIdai, with many services such as paediatrics and full maternity no
longer available. Many medical supplies were lost or damaged.

#2 Modify:
decompose

High Springs Memorial Park, 17380 N.W. US Hwy 441. Sandbags donations
needed due to Santa Fe River flooding.

#3 Modify:
separate

Please join us for Hurricane Maria relief this Saturday on Melrose St btwn
Buchwick & Broadway. Every bit counts! #hurricanerelief #unidos

#4 Modify:
offsets
(multiple)

[user_mention] [user_mention] But if the victim is to be a non-agressor, then
that still moralizes the deaths of all victims of terrorism, 9/11,California,Sandy
hook those people just were, ...

#5 Modify:
offsets

Extremely heavy rains in lower Shire River districts of Chikwawa Nsanje in
#Malawi’s far south has been compounded by further rains from last week’s
#CycloneIdai. ...

#6 Modify:
offsets

The University of Nebraska Omaha Love Your Melon Crew sure knows how
to make kids happy - with potato chips and fruit (don’t worry, other food was
served)! Thank you for your continued support of #MealsThatHeal

#7 Modify:
undefined

8AM #Maria update: Tropical Storm Warning in effect for the Outer Banks
of NC. Good news, though, as central winds down to 75 mph.

#8 Modify:
type

Amidst applause, Canadas rescue team arrives in Mexico City Air-
port𝐶𝑖𝑡𝑦→𝑃𝑂𝐼 on Saturday #earthquake #CASDDA via [user_mention]

#9 Drop Rosen Hotels & Resorts in Orlando announces availability of 30 guestrooms
at [user_mention] for #HurricaneIrma evacuees. Call 407-996-9840.

#10 Drop Fast-moving wildfires near #Athens have killed at least 76. #Europe has
sweltered through an unusually hot and dry summer, breaking temperature
records and fueling significant fires in several countries, including #Sweden
and #Britain. ...

4.5.2. Description and Quality

4.5.2.1. Reliability

To evaluate the reliability of annotations, we measure the IAA for Phase 1 as

it has more than two annotators using Cohen’s Kappa [156]. We measure the IAA for

the ability to resolve LMs. In other words, our classes are about whether an LM is
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resolvable or not. We also compute the percentage of agreement for assigned toponyms

from gazetteers by annotators. Tables 4.14 and 4.15 show the Cohen’s Kappa and

agreement percentages for IDRISI-DE and IDRISI-DA, respectively.

For IDRISI-DE, Table 4.14 shows Cohen’s Kappa and agreement percentages.

The average IAA is 0.83 (almost perfect). In detail, 15 events show almost perfect

IAA (above 0.8), and the remaining events show substantial agreement (above 0.6).

The agreement percentages for most of the events are above 85%. Exceptions are

Mexico EQK and Pakistan EQK, which show approximately 68% and 76% agreement

(substantial).

For IDRISI-DA, the results are presented in Table 4.15 for all events showing

almost perfect IAA, except for Dragon STR 2020, which shows substantial IAA. On

average, the dataset achieves around 90% IAA. Moreover, the agreement percentages

for all events are above 90% (98% on average), which also confirms the quality of

annotations.

These results statistically demonstrate the high quality of annotations for both

IDRISI-DE and IDRISI-DA datasets. Furthermore, the disagreements were resolved in

Phases 2 and 3 of annotation by meta-annotator and expert annotation, respectively, to

ensure the quality of annotations with minimum cost.
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Table 4.14. Inter-Annotator for Phase 1 annotation for IDRISI-DE per event. For
Cohen’s k, 0.2, 0.4, 0.6, and 0.8 indicate the degree of reliability as slight, fair,
moderate, and substantial, respectively.

Event Cohen’s kappa % Agreement

Ecuador EQK 0.91 97.41%
Canada FIR 0.87 96.71%
Italy EQK 0.89 98.24%
Kaikoura EQK 0.80 93.07%
HRC Matthew 0.80 98.21%
Sri Lanka FLD 0.69 89.47%
HRC Harvey 0.96 99.87%
HRC Irma 0.66 87.44%
HRC Maria 0.86 99.59%
Mexico EQK 0.92 67.97%
Maryland FLD 0.80 95.39%
Greece FIR 0.98 99.85%
Kerala FLD 0.87 98.91%
HRC Florence 0.89 91.36%
California FIR 0.83 97.28%
Cyclone Idai 0.82 98.27%
Midwestern U.S. FLD 0.80 99.68%
HRC Dorian 0.75 91.82%
Pakistan EQK 0.72 75.91%

Average 0.83 93.50%

Table 4.15. Inter-Annotator for Phase 1 annotation for IDRISI-DA per event. For
Cohen’s k, 0.2, 0.4, 0.6, 0.8 indicate the degree of reliability as slight, fair, moderate,
and substantial, respectively

Event Cohen’s kappa % Agreement

Jordan FLD 2018 0.95 99.01%
Kuwait FLD 2018 0.97 98.95%
Cairo BMB 2019 0.87 98.15%
Hafr FLD 2019 0.98 99.47%
Dragon STR 2020 0.75 93.69%
Beirut BMB 2020 0.81 97.68%
CoVID-19 0.95 98.93%

Average 0.90 97.98%
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4.5.2.2. Usefulness Features

Tables 4.17 and 4.18 show the percentages of features’ presence in IDRISI-DE

and IDRISI-DA datasets, respectively. They also show the percentages of how useful

are they. Apparently, the “Event”, “Other LMs”, and “Hashtags” are the most useful

features for LMD. These features are more advantageous for fine-grained LMs.

Looking carefully at the usefulness annotations, we make different observations

through examples in Table 4.16.

• Event: Usually, events are characterized by the geographical dimension (i.e., the

affected area), whichmakes it recurrently contribute to narrowing the search space.

This helps annotators in mitigating the “Toponymic homonymy” challenge. An

exception to this are the LMs located outside the geographically affected area;

however, these LMs are usually not of interest to the responders. In tweet #1,

all results for “Corniche El Nile Street” are not within “Cairo” where the “Cairo

BMB 2019” event occurred. Thus, searching toponyms within the affected area

generates accurate annotations.

• Other LMs: This feature’s usefulness is due to the geo-vicinity between co-

occurring LMs with the same tweet. The geographical property between such

LMs is usually inclusion and containment. Coarse-grained LMs are useful to

disambiguate the finer-grained LMs that typically require tremendous effort. For

instance, in tweet #2, “Nebraska” (State) was useful to disambiguate “Elkhorn

River” (Human Point-of-Interest) to distinguish it from another part located in

“West Virginia” (State). The usefulness percentages are lower than expected for

this feature due to different reasons, e.g., the same LM is repeated in the same
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tweet (Tweet #3).

• Hashtags: As most hashtags indicate the disaster event (e.g., #HurricaneHarvey),

hashtags are equally important to the “Event” feature.

• Replies: We found a small number of tweets got interaction from the community.

Hence, replies are only sometimes useful for LMD.

• URLs: They are sometimes useful when the linked web page elaborates on the

geographical context of the reported information in the tweet. “Lake Butler” in

tweet #4 is challenging LM. The annotator found an address in the linked Facebook

post: “Lake Butler, FL, United States”. Using this address, there are a matching

administrative area called “Lake Butler” and a water feature called “Lake Butler”.

Using a comment on the Facebook post mentioning “Keystones Heights,” which is

closer to the administrative area “Lake Butler,” the annotator successfully resolved

this LM. The importance percentage of URLs is low as many of them are broken.

Also, some of the linked articles require access subscription (Tweet #2).

• Entities: Are the nSamed entities that appear within the tweet text.
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Table 4.16. Example tweets showing the usefulness of different features for the LMD
annotation. Bold text indicates the LMs. The gray-shaded text indicates the features.

# Useful features Tweet text

#1 Event, Other LMs,
Hashtag.

Newswebsites quoted a security source as saying thatwhen one of
the speeding cars was driving in the opposite direction bymistake
on Corniche El Nile Street in front of the #Cancer_Institute, it
collided with 3 cars, which led to an explosion as a result of the
collision.

#2 Other LMs Human remains discovered along Elkhorn River after flooding,
sheriff says https://buff.ly/2CEShla #Nebraska

#3 URL In the wake of Hurricane Irma, we’ve planned a food dis-
tribution event in Lake Butler to help anyone affected by...
fb.me/2fbe0b4YE

#4 None Labatt to help those affected by Fort McMurray wildfire [...]
#FortMcMurray #LCBO
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Table 4.17. Statistics of the LMD features in IDRISI-DE dataset.

Event Hashtags URLs Replies Other LMs Entities

All LMs

Exist 100.0% 63.9% 37.0% 0.4% 67.3% 31.2%
Doesn’t exist 0.0% 36.1% 63.0% 99.6% 32.7% 68.8%

Fine-grained LMs

Exist 100.0% 64.0% 34.3% 2.7% 65.5% 31.9%
Doesn’t exist 0.0% 36.0% 65.7% 97.3% 34.5% 68.1%

Coarse-grained LMs

Exist 100.0% 63.9% 37.2% 0.3% 67.7% 31.2%
Doesn’t exist 0.0% 36.1% 62.8% 99.7% 32.3% 68.8%
All LMs

Useful 98.4% 32.7% 3.9% 5.0% 38.3% 5.6%
Useless 1.6% 67.3% 96.1% 95.0% 61.7% 94.4%

Fine-grained LMs

Useful 94.0% 54.7% 28.2% 0.0% 66.9% 12.3%
Useless 6.0% 45.3% 71.8% 100.0% 33.1% 87.7%

Coarse-grained LMs

Useful 98.8% 30.9% 2.1% 32.1% 36.0% 5.1%
Useless 1.2% 69.1% 97.9% 67.9% 64.0% 94.9%
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Table 4.18. Statistics of the LMD features in IDRISI-DA dataset.

Event Hashtags URLs Replies Other LMs Entities

All LMs

Exist 100.0% 56.6% 41.9% 27.7% 42.7% 34.8%
Doesn’t exist 0.0% 43.4% 58.1% 72.3% 57.3% 65.2%

Fine-grained LMs

Exist 100.0% 77.5% 53.5% 59.8% 74.6% 63.8%
Doesn’t exist 0.0% 22.5% 46.5% 40.2% 25.4% 36.2%

Coarse-grained LMs

Exist 100.0% 50.6% 38.4% 17.8% 32.7% 25.8%
Doesn’t exist 0.0% 49.4% 61.6% 82.2% 67.3% 74.2%
All LMs

Useful 63.2% 22.2% 2.6% 0.9% 23.1% 2.0%
Useless 36.8% 77.8% 97.4% 99.1% 76.9% 98.0%

Fine-grained LMs

Useful 89.8% 21.2% 3.6% 0.6% 19.8% 1.0%
Useless 10.2% 78.8% 96.4% 99.4% 80.2% 99.0%

Coarse-grained LMs

Useful 54.4% 22.4% 2.0% 1.2% 24.8% 2.5%
Useless 45.6% 77.6% 98.0% 98.8% 75.2% 97.5%

To answer RQ16, our manual annotations confirm the utility of other LMs for

effective LMD. The replies and named entities rarely appear in disaster tweets.

To answer RQ17, we confirm that the event and hashtags are the most useful

sources for enriching the context of LMs for effective LMD. Indeed, the hashtags are

typically used to refer to the disaster event (e.g., #HurricaneIrma).

The other LMs, event, and hashtags are more useful for disambiguating fine-

grained LMs.
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4.6. Limitations

Our thorough analysis shows shortcomings in the annotations of IDRISI that we

discuss here.

• Underrepresented Fine-grained LMs: Although we had chosen a careful sam-

pling method focused on an event-centric informative dataset aiming to increase

the likelihood of fine-grained LMs’ occurrence [148], we think the low frequency

of fine-grained LMs in IDRISI-RE and IDRISI-RA is a major limitation as they

contain solely 9.77% and 25.5% fine-grained LMs, respectively.

• Human Errors: Some human errors are made during LMR annotation due to the

task’s difficulty.

– Annotators sometimes fail in distinguishing between Location and Organi-

zation entities (e.g., “Red Cross").

– Different location types could be used interchangeably for the exact locations,

which poses a difficulty for annotators (refer to Sections 4.2.2.1 and 4.3.2.1).

– Annotators highlight the LMs when they appear as descriptions within the

tweet’s context.

We fixed the majority of these errors as part of the LocationMention Disambigua-

tion (LMD) annotation (refer to Section 4.5.1.2).

• Unlabeled Temporary Locations: Although the temporary locations (refer to

Section 1.2.3) are essential for the affected people and response authorities, not

all of them are labeled in IDRISI.
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• Unstudied Generalizability due to Absence of Arabic LMR datasets: Due to the

absence of publicArabic LMR datasets, we could not compare the generalizability

of IDRISI-RA to any other datasets. Hence, we study the generalizability within

IDRISI-RA for domain and geographical aspects.

• Ungeneralizable Conclusions for the LMD Usefulness Features: We note that

the conclusions we make on the usefulness of features and external information

sources might not translate to other datasets and languages. Therefore, further

empirical investigation is required to study the performance gains when employing

the most useful ones for context expansion.
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CHAPTER 5: LOCATION MENTION DISAMBIGUATION

The LMR task is generally defined as the automatic linking of candidate location

mentions in text to toponyms in gazetteers. The scope of this chapter is limited from

two angles; the disambiguation features are limited to the textual content of tweets, and

more specifically disaster-related tweets posted during disaster events.

This chapter starts with formulating the LMD task in Section 5.1. Next, we

discuss the proposed solution in Section 5.2. We then present the experimental evaluation

in Section 5.3. We finally thoroughly discuss the results in Section 5.4.

Once the LMR system identifies the candidate location mentions, the next step

is to resolve them into actual locations in a geo-positioning database (i.e., gazetteer);

LocationMention Disambiguation (LMD). In other words, the system has to pin LMs on

the map using a geographical representation such as the standard geographic coordinate

system (GCS) or the geocode system. The GCS is a spherical coordinate system [165]

that represents points on the earth using longitude and latitude angles measured with

respect to the earth’s center. The geocoding system represents geographical entities

(points, lines, or polygons) using unique human-readable codes (or hashes) generated

by dividing the geographic surface of the earth into grid cells at multi-level hierarchy.

Figure 5.1 illustrates a high-level overview of the LMD task accompanied by an LMR

component.
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Nesapakkam, Chennai, Tamil 
Nadu, India

Chennai, Tamil Nadu, India
Resolved Location Mentions

1

2

3

4

1
2

5

5

3

Figure 5.1. High-level overview of the LMD task

5.1. Problem Definition

To define the LMD task formally, we consider the following list of inputs:

• A tweet 𝑡 that is related to a disaster event 𝑒

• A set of location mentions (LMs): 𝐿𝑀𝑡 = {𝑙𝑚𝑖; 𝑖 ∈ [1, 𝑛𝑡]} in tweet 𝑡, where 𝑙𝑚𝑖

is the 𝑖th location mention and 𝑛𝑡 is the total number of location mentions in 𝑡, if

any.

• A geo-positioning database 𝐺 (i.e., gazetteer) that consists of toponyms: 𝑃 =

{𝑝𝑖; 𝑖 ∈ [1, 𝑘]}, where 𝑝𝑖 is the 𝑖th toponym, and 𝑘 is the number of location

profiles existing in𝐺. Different gazetteers may contain different properties for the

same toponym, such as the name (in different languages), alternative names (e.g.,

exonyms), geo-coordinates (latitude and longitude), hierarchical address, location

type (e.g., city, street, and POI), and other type-specific properties for different

location types (e.g., “population" property for type “city").
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Unlike the LMR task, LMDaims to resolve geo/geo ambiguity between candidate

LMs extracted by the LMR systems. The LMD task is also known as location resolution,

location linking (looking up a geo-positioning database), or geocoding (assigning geo-

coordinates to LMs) in the literature. We use a generic disambiguation terminology to

cover all tasks’ objectives.

The LMD system aims to match every location mention 𝑙𝑚𝑖 in the tweet 𝑡 to one

of the toponyms 𝑝𝑖 in 𝐺 that accurately represents 𝑙𝑚𝑖, if exists. Otherwise, the system

must abstain from prediction and declare the 𝑙𝑚𝑖 as irresolvable (or unlinkable). The

irresolvable LMs are usually due to the incompleteness of existing crowdsourced digital

gazetteers.

5.2. Disambiguation using BERT

Human annotators have prior accumulative knowledge that they exploit during

the disambiguation labeling task. Such knowledge is unavailable for the LMD models

that typically suffer from the cold start problem. Therefore, we employ the pre-trained

model for disambiguation, Bert𝐿𝑀𝐷 , in an attempt to account for efficiency and accel-

erate the model optimization for deployment in the disaster domain. Figure 5.2 depicts

a high-level overview of our Bert𝐿𝑀𝐷 model. Typically, LMD datasets contain the

correct candidate toponyms extracted from gazetteers. To augment negative examples,

we issue every gold LM against OpenStreetMap (OSM) online gazetteer and randomly

pick a toponym that does not match it. We limit the negative examples to only one to

balance the training data.

There are several toponym features in OSM, such as multilingual names, alter-

native names (e.g., exonyms), geo-coordinates (latitude and longitude), location type
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BERT

[CLS] Plz send boats to people trapped in Nagar st [SEP] Nagar st [SEP] Nagar Rd, Chennai, Tamil Nadu, India
Tweet LM Gazetteer candidate

Linear layer

[CLS] T0 T1 T2 Tn [SEP] LM0 … LMl [SEP]… C0 C1 Cm…T3 T4 T5

[CLS] Plz send boats to people trapped in Nagar st [SEP] Nagar st [SEP] Nagar Rd, Batticaloa, Sri Lanka
Tweet LM Gazetteer candidate

Gazetteers

Positive/Negative

Gold 
annotations

Positive

Negative

Figure 5.2. High-level overview of Bert𝐿𝑀𝐷 model (Training phase).

(e.g., city, street), address, population, place rank, and importance. In this approach,

we limit the features of the candidate toponyms to textual features. Moreover, we only

employ the full address of toponyms (dubbed “display_name” in OSM).

In this section, we answer the following research question for English (RQ18)

and Arabic (RQ19) LMD: Do pre-trained models (Bert𝐿𝑀𝐷) perform more effectively

for LMD task than the gazetteer retrieval-based (matching) approaches?

5.3. Evaluation Setup

In this section, we discuss the evaluation setup used to evaluate the proposed

solution. In detail, we discuss the Bert𝐿𝑀𝐷 models in Section 5.3.1, the training and

inference dataset in Section 5.3.2, the baselines in Section 5.3.3, and the evaluation

measures and strategy in Section 5.3.4.

5.3.1. Hyper-parameter Tuning

For theBert𝐿𝑀𝐷 model, we employBert-large-cased [17] andMarbert [161]

models for English and Arabic LMDmodels, respectively. Following the recommended

values in [17], we tune the number of training epochs as 2, 3, or 4, and the learning rate
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(Adam) as 5E-5, 3E-5, or 2E-5. We only remove diacritics from Arabic tweets and do

not apply any further preprocessing.

5.3.2. Dataset

We use IDRISI-D datasets for evaluation (refer to Section 4.5 for details). Due to

the imbalanced distribution of location types across the train, development, and test splits

of IDRISI-R datasets, we used stratified sampling to repartitioned IDRISI-D datasets

per event. As a result, we obtained fair distribution of location types across splits. To

provide the learnable models with sufficient training data, we merged all events in each

dataset (IDRISI-DE and IDRISI-DA).

5.3.3. Baselines

We have used retrieval-based and heuristic-based off-the-shelf LMD baselines.

• Nominatim [166]: A tool to search OSM data by name and address.

• Geolocator2 [66]: Off-the-shelf LMP system, which observed that the geo-

graphical coherence is effective in the location disambiguation task. It considers

the hierarchy of location mentions in tweets when resolving them.

• Geolocator3 [66]: An improved version of CMU-geolocator that uses the pop-

ulation to post-filter retrieved results from Nominatim.

• Geoparsepy [15]: A trained SVM model on gazetteer-based features, including

location type, population, and alternative names.

We use baselines for IDRISI-DE as they are originally developed for the English

language. We use only Nominatim and Geolocator for IDRISI-DA as Geoparsepy

cannot handle Arabic text. These LMD models are not disaster-specific, except Geop-
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arsepy. We could not employ the disaster-specific LMDmodels (i.e., DLocRL) as they

are not public or open source, except Geoparsepy. Furthermore, re-implementation is

not handy due to lacking technical details about these systems and nonpublic evaluation

datasets.

5.3.4. Evaluation Measures and Strategy

To evaluate the effectiveness of the LMD models, we compute the Mean Recip-

rocal Rank (𝑀𝑅𝑅@𝑟) measure at different cutoff (ranks). We currently set 𝑟 = 1,1 but

we can evaluate the LMD systems with different ranks when we perceive the task as

a ranking problem. We exclude the distance-based methods (refer to Section 2.5.2.2)

as tuning the distance threshold 𝑑 needs further empirical investigation for different

location types. We keep this for future work. Alternatively, we can leniently evaluate

systems using hierarchical evaluation. Inspired by the evaluation of Twitter user geolo-

cation [167], we evaluate the systems at different granularity, including country, state,

county, city, district, neighborhood, street, and point-of-interest. Table 5.1 shows the

address components involved in every evaluation level. We note that we do not evaluate

atDistrict andNeighborhood levels as corresponding location components are rarely

filled in OSM or have a variety of type names (districts are sometimes classified as

counties).

1The 𝑀𝑅𝑅@1 is equivalent to the accuracy measure for classification since for every LM, we have
only one correct toponym.
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Table 5.1. Evaluation levels and their corresponding location address components.

Address components
Country State County City Street Poi

Ev
al
ua
tio
n
Le
ve
ls Country ✓

State/Province ✓ ✓
County/District ✓ ✓ ✓
City/Town ✓ ✓ ✓ ✓
Street ✓ ✓ ✓ ✓ ✓
Poi ✓ ✓ ✓ ✓ ✓ ✓

5.4. Results and Discussion

In the section, we answer the research questions: Dopre-trainedmodels (Bert𝐿𝑀𝐷)

perform effectively for LMD task compared to the retrieval-based (matching) and

heuristic-based approaches, for English (RQ18) and Arabic (RQ19) LMD?

5.4.1. English LMD

Table 5.2 shows the results of the Bert𝐿𝑀𝐷 model over IDRISI-DE and against

the baselines. It is worth mentioning that Geolocator and Geoparsepy baselines rely

on searching gazetteers and applying post-filters. It is evident that these post-filters are

not effective for all evaluation levels, except for the Country level, and the raw results

from Nominatim are more accurate. Geolocator systems show the best results for the

Country level, but their performance decreases against the Bert𝐿𝑀𝐷 model at finer

evaluation levels including State, City, Street and Poi, but not County. Nominatim

is the top model at almost all evaluation levels. The Bert𝐿𝑀𝐷 model managed to

compete with it at only the Poi evaluation level, which counts for the Bert𝐿𝑀𝐷 as the

fine-grained LMs are of interest to the response authorities in the disaster domain [8].

The results confirm that disambiguating fine-grained LMs is more challenging than
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coarse-grained LMs.

To answer RQ18, we confirm that the pre-trained Bert𝐿𝑀𝐷 model outperforms

baselines at fine-grained evaluation levels. However, Nominatim is highly competitive

for English LMD models.

Table 5.2. The results for the LMD models on IDRISI-DE dataset.

System Country State County City Street Poi

Geolocator2 0.851 0.601 0.316 0.244 0.022 0.015
Geolocator3 0.825 0.608 0.309 0.235 0.022 0.015
Geoparsepy 0.642 0.316 0.141 0.090 0.000 0.000
Nominatim 0.809 0.663 0.379 0.355 0.244 0.073
Bert𝐿𝑀𝐷 0.734 0.612 0.294 0.275 0.144 0.073

Table 5.3. The results for the LMD models on IDRISI-DA dataset.

System Country State County City Street Poi

Geolocator2 0.454 0.079 0.000 0.027 0.000 0.006
Geolocator3 0.443 0.073 0.000 0.021 0.000 0.006
Nominatim 0.430 0.220 0.029 0.165 0.130 0.106
Bert𝐿𝑀𝐷 0.454 0.492 0.100 0.338 0.423 0.274

5.4.2. Arabic LMD

Table 5.3 shows the results of Bert𝐿𝑀𝐷 models over IDRISI-DA and against

the baselines. Similar to the English results, the Geolocator systems show high

performance at Country level. However, their performance is comparable to the

Bert𝐿𝑀𝐷 model. Geolocator systems fail at the fine-grained evaluation levels as they

employ the GeoNames gazetteer that does not support Arabic for fine-grained locations.

The Nominatim baseline is showing the best results among baselines, but it fails to

outperform the Bert𝐿𝑀𝐷 at all evaluation levels.

To answer RQ19, we confirm that the pre-trained Arabic Bert𝐿𝑀𝐷 model wins

by a large margin against all existing LMD systems, except at the Country evaluation
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level where Geolocator2 shows comparable performance. This win counts for the

Arabic language being a low-resource language; there is a lack of digital gazetteers that

widely and granularly cover the Arab world.

The pre-trained Bert𝐿𝑀𝐷 models are promising, but they still require further

improvements. The future directions for the LMD are two-fold: (i) enhancing the

representation of LMs and toponyms, and (ii) employing advanced learning algorithms.

As for enhancing the representation of LMs, the manual annotations illustrated

the usefulness of event context, hashtags, and other LMs for LMD. Therefore, LMD

models could utilize these features to expand the LM context for effective disambigua-

tion. As for enhancing the representation of toponyms, while we limit our study to the

textual representation of toponyms, different features can be employed from gazetteers

such as geo-coordinates (latitude and longitude), location type (e.g., city, street), popu-

lation, among others.

On the other hand, employing other learning models would allow exploiting

other types of features than the textual features. For instance, advanced algorithms, such

as reinforcement learning, are worth exploring.
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CHAPTER 6: CONCLUSION

In this chapter, we conclude with a summary of this dissertation (Section 6.1).

We then thoroughly discuss this dissertation’s theoretical, practical, and research impli-

cations in Section 6.2. We finally list our research outcomes in Section 6.3 and future

directions in Section 6.4.

6.1. Conclusion

This dissertation contributes towards a crucial task, i.e., Location Mention Pre-

diction in the crisis management domain. To sum up, we explored two main factors that

influence the robustness of an LMP system: (i) the dataset used to train the model, and

(ii) the learning model. As for the learning models, we introduce the state-of-the-art

LMRmodels over English and Arabic disaster tweets. We further introduce competitive

and state-of-the-art LMD English and Arabic models, respectively.

As for the training dataset, we formulated several research questions for which

evidence-based answers were unknown. We designed an extensive and reliable exper-

imental setup where several experiments investigate training effectiveness on general-

purpose NER datasets from news articles and tweets. We demonstrate how the per-

formance of an LMR model varies when trained on formal language (new articles)

compared to informal language (tweets) as well as when trained on past disasters while

considering the type, geoproximity, and language of the source and target disasters. Our

findings suggest that Twitter-based NER labeled data is preferred over general-purpose

data, and crisis-related labeled data is preferred over general-purpose Twitter data. Fur-

thermore, our results suggest that training on disaster events data from similar types

or geographically-nearby events to the target event improves performance compared to
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training on different types or distant events. We further show how training on previous

disasters of different languages than the target provides reasonable performing models

that can be improved with little training from the target. Moreover, out of our investi-

gation on the minimum number of tweets to label form the target event, we recommend

labeling around 500 tweets and combining them with all available data to obtain an

LMR model that achieves greater than 85% 𝐹1 score. Overall, our findings shape the

future directions in this line of research.

We introduced IDRISI-R datasets. IDRISI-RE is the large-scale Location

Mention Recognition Twitter dataset comprising around 20k human-labeled and 57k

machine-labeled tweets from 19 disaster events. The annotations include spans of loca-

tion mentions in tweets’ content and their geographical types, such as country, state, city,

and street. The dataset is domain diverse and covers several countries across continents.

Additionally, we benchmark IDRISI-RE using traditional and deep learning models,

offering competitive baselines for future LMR development. We further studied the

domain and geographical generalizability of IDRISI-RE against LMR English datasets

under fair comparison setups and reached nuanced conclusions that IDRISI-RE is the

most generalizable LMR dataset. The reliability, consistency, coverage, diversity, and

generalizability analyses show the robustness of IDRISI-RE that empowers research on

LMR.

IDRISI-RA is the first Arabic LMR Twitter dataset. It contains 22 disaster

events of different types that happened in the Arab region. We manually- (gold) and

automatically (silver) annotated about 4.6K and 1.2M tweets. Both versions contain

location mentions annotations and location types annotations. Our analysis showed that

IDRISI-RA is second to none in empowering research for Arabic LMR. We confirm
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the need for developing LMR-specific models for the disaster domain through extensive

experiments using NER Arabic models. The developed LMR baselines are simple yet

competitive ones. The results also demonstrated the decent generalizability of IDRISI-

RA.

We extended further extended IDRISI-R datasets with LMD annotations and in-

troduced IDRISI-D datasets. Both IDRISI-RE English and IDRISI-RA Arabic datasets

are labeled for feature and information source usefulness. The analysis of the man-

ual annotations showed that the event context, hashtags, and other location mentions

appearing within the same tweet are helpful for accurate disambiguation.

As for the learning models, we adopted the pre-trained BERT model for both

LMR and LMD tasks to compact all challenges for LMR and LMD. Our extensive LMR

experiments under different task and data setups testify Bert𝐿𝑀𝑅 as the state-of-the-art

LMRmodel over both IDRISI-RE and IDRISI-RA datasets. Moreover, our experiments

confirm that the Bert𝐿𝑀𝐷 model is competitive over IDRISI-DE dataset and provides a

state-of-the-art performance over IDRISI-RA dataset.

We provide all the resources and tools for the community to empower the devel-

opment of LMP systems in the disaster management domain.

6.2. Implications

Compared to the public datasets, IDRISI datasets provide the largest, domain

diverse, geographically representative, temporally representative, and informative LMR

and LMD datasets. They also contain annotations for different coarse- (e.g., country,

city) and fine-grained (e.g., street, POI) location types. In addition to that, the exten-

sive empirical generalizability analysis showed that IDRISI are the best domain and
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geographical generalizable LMP datasets. All these advantages of IDRISI cultivate

the basis for empowering research on LMP in the disaster response and management

domain. Indeed, the resources and models presented in this dissertation are useful for

other contexts and domains.

In this section, we describe the theoretical (Section 6.2.1), practical (Sec-

tion 6.2.2), and research (Section 6.2.3) implications of releasing IDRISI.

6.2.1. Theoretical Implications

While responders need to obtain all useful information that supports managing

emergencies effectively and efficiently, the geographical context enables a better un-

derstanding of the development of disaster events and the affected people’s behavior at

the events’ onset. For example, the geographical information is beneficial in creating

diverse crisis maps (refer to Section 6.2.3). Making IDRISI public enables develop-

ing and evaluating generalizable LMP models that better tackle domain shifts and are

less susceptible to changes in geographical areas. Such models should be ready for

deployment for any future disaster events. To ensure generalizability, IDRISI datasets

are designed to meet seven objectives, whose value we elaborate on in the following:

1. Geographical coverage: Deploying geographically generalizable LMP models at

the onset of disaster events require data that cover broad geographical areas. While

IDRISI cover 22 English-speaking and the Arab world, they support response

authorities from anywhere in the world to incorporate the geographical context

while drawing situational-awareness, assessing impact, managing resources, and

deploying relief plans. Hence, the responders gain a better understanding of the

disaster events and the impacted people’s behavior at different location granularity.
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2. Domain coverage: Similarly, building domain generalizable LMPmodels that are

ready for deployment at the onset of the disaster events of any type (e.g., flood,

earthquake) requires training them on data that is collected during diverse disaster

events. The domain diversity of IDRISI datasets enable the geographical-aware

management of disaster events of any type.

3. Location type annotations: Effective geographical-aware management of disaster

events is deemed attainable when the needs of different response authorities, in

terms of location granularity, are met. While IDRISI dataset offer not only

LM annotations but also location type annotations, they enable the development

and evaluation of robust LMP models that aid in drawing situational-awareness,

assessing the disaster impact, managing resources, and deploying relief plans, at

different location granularity.

4. Large-scale: The trainable LMPmodels, especially the deep learning-based mod-

els, require large training datasets to perform accurately. Thus, IDRISI, as being

the largest to date and most generalizable datasets, support the responders to

understand better the disaster events and the behavior of the impacted people.

5. Temporal coverage: As IDRISI datasets cover the critical periods of the disaster

events, they help different response authorities to better understand the disaster

events and the behavior of affected people during different disaster phases (pre-

disaster, during disaster events, and post-disaster).

6. Relevance and informativeness: Providing the geographical context to only in-

formative content, after discarding noise, is a high priority to aid the response

authorities in understanding the updates of the disaster events on the ground.

As IDRISI datasets solely contain informative tweets, they provide more realistic
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data for training LMPmodels ready for direct integration in real-world information

processing systems for disaster management.

7. Dialectical coverage: As IDRISI Arabic datasets contain various Arabic dialects,

they are suitable for training robust LMP models that generalize to unseen events

happening in the Arab world.

Moreover, while all these design factors are important, our conclusions empha-

size the influence of geographical coverage and data size for creating generalizable LMP

datasets (refer to Sections 4.2.4 and 4.3.4).

6.2.2. Practical Implications

Using IDRISI datasets enable the deployment of different surveillance and

decision-support systems during disaster events used by different response authori-

ties. These systems employ the underlying applications discussed in Section 6.2.3 and

generate reports at different location granularity for different phases of the disaster.

These reports could be in the form of real-time crisis maps that we briefly elaborate on

a few types of them below.

Situational awareness maps: These maps support the response authorities in under-

standing the development of the disaster, identifying the critical incidents, and detecting

the hotspots of damages and vulnerable people.

Impact assessment maps: These maps visualize and identify the most impactful inci-

dents, such as infrastructure damage, power outage, and facilities closure, among others.

They also help response authorities to manage relief activities and plan recovery.

Eyewitnesses maps: These maps locate eyewitnesses and first responders helping to

connect people in need with the first responders (e.g., first aid treatment performers).
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Furthermore, getting authentic situational information is a critical task that can be

achieved by communicating with eyewitnesses near the incidents’ locations.

Resources maps: These maps locate resources include facilities (e.g., shelters), funding

(e.g., donations), and supplies (e.g., food and water), to list a few. Locating such re-

sources is important to identify places of shortage, adequacy, or abundance of resources,

and redistribute them based on the need.

Population mobility maps: These maps aid in evacuating the vulnerable people away

from the affected areas as they help in monitoring their movement in real-time, which

in turn facilitates studying the resource allocation and recovery plans.

When exploiting Twitter for disaster relief activities, the essential step to con-

structing all these maps is to extract toponyms from the text. IDRISI can be utilized to

build automatic domain and geographically generalizable LMP models that perform at

acceptable accuracy levels.

6.2.3. Research Implications

IDRISIdatasets enable research in different computational tasks, such as event/incident

detection, relevance filtering, and geolocation tasks, to name a few. In addition to that,

as they cover different types of disaster events, we anticipate them to essentially support

transfer learning and domain adaption research. Below we briefly elaborate on a few

tasks.

Event/incident detection: Detecting disaster events/incidents facilitates timely pre-

vention and mitigation activities [168]. Fortunately, people tend to mention where

events/incidents take place when reporting them [124]. Harnessing the relation between

the occurrence (e.g., peaks) of LMs in tweets and the likelihood of events and inci-
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dents happening can aid early prediction and detection. For example, [169] and [170]

proposed content analysis of tweets by extracting locations for event/incident detection.

Relevance filtering: A pivotal barrier to exploiting social media for crisis management

is the noisiness of data which necessitates the need for automatic relevance filtering

methods [171]. Prior studies show that the geographical references in social media

messages could indicate their relevance and informativeness [30], [172]. Kaufhold,

Bayer, and Reuter [173] achieved the best performance when incorporating location-

related features in their rapid classification model. Thus, we anticipate IDRISI datasets

useful for relevance filtering models.

Geolocation applications: Several geolocation applications are required, e.g., (1) detect-

ing and disambiguating LMs in tweets, (2) predicting tweet location [174], (3) inferring

user location [175], and (4) modeling user movement [176]. While all these tasks are

crucial for crisis management, the LMP tasks, in particular, play an essential role in

tackling all of them using text-based techniques [37]. For instance, combining extracted

entities (e.g., LMs) from tweets and their relations inferred from a Knowledge-base

leads to a noticeable improvement in the user location prediction model [177].

Displacement monitoring: Internal and cross-border displacement is a terrible con-

sequence of crises. By early May 2019, displaced people reached about 41.3 million

due to conflicts and violence.1 Extracting the location mentions from tweets shared

by refugees would give some clues about the routes they are using or planning to use.

Therefore, IDRISI datasets support modeling the patterns of people displacement.

Geographical retrieval: The geographical information retrieval (GIR) systems are con-

cerned with extracting spatial information alongside the relevant multimodal data to the

user information need [79]. IDRISI datasets serve the GIR retrieval techniques that rely

1https://www.internal-displacement.org/global-report/grid2019/
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on detecting locations and spatial references in queries and documents [178]. Thus,

the large size of IDRISI datasets provide a promising resource for augmenting spatial

information of tweets for geographical indexing and retrieval over the Twitter streams.

Additionally, as IDRISI datasets are characterized by their wide geographical coverage,

we anticipate them to be a representative resource for Geographical retrieval.

6.3. Outcomes

This dissertation resulted in five major publications, one computational chal-

lenge, and one tutorial:

• Journal articles:

– Reem Suwaileh, Tamer Elsayed, and Muhammad Imran. IDRISI-RE: A

Generalizable Dataset with Benchmarks for Location Mention Recognition

on Disaster Tweets. Information Processing and Management. 2023.

– Reem Suwaileh, Tamer Elsayed, Muhammad Imran, and Hassan Sajjad.

When a Disaster Happens, We Are Ready: Location Mention Recogni-

tion from Crisis Tweets. International Journal of Disaster Risk Reduction

(IJDRR). 2022.

• Conference full/long papers:

– Reem Suwaileh, Muhammad Imran, and Tamer Elsayed. IDRISI-RA: The

First Arabic Dataset with Benchmarks for Location Mention Recognition on

Disaster Tweets. Proceedings of the 61st Annual Meeting of the Association

for Computational Linguistics (ACL’23), Toronto, Canada, July 9-14, 2023.

– Reem Suwaileh, Muhammad Imran, Tamer Elsayed, and Hassan Sajjad.

Are We Ready for this Disaster? Towards Location Mention Recognition
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from Crisis Tweets. Proceedings of the 28th International Conference on

Computational Linguistics (COLING’20), pp. 6252–6263, Barcelona, Spain

(Online), December 8-13, 2020.

• Book chapter: Reem Suwaileh, Tamer Elsayed, and Muhammad Imran. Role

of Geolocation Prediction in Disaster Management. International Handbook of

Disaster Research (IHDR). Springer, 2023.

• Hosted the first version of a task on Location Mention Recognition from Social

Media Crisis-related Text in the GeoAI Challenge Launched by the International

Telecommunication Union (ITU) withMuhammad Imran, Ehsan Ullah, Lokendra

Chauhan, Ferda Ofli, and Tamer Elsayed, 2022.

• Tutorial on Geo-tagging text documents with Umair Qazi, Ferda Ofli, and Im-

ran Muhammad (QCRI), in the Artificial Intelligence for Collective Intelligence

(AI4CI) hosted by Qatar Computing Research Institute (QCRI) and the United

Nations Development Programme (UNDP), 2022.

Other publications that are not directly contributing to the topic of this disserta-

tion:

• Workshop papers:

– Fatima Haouari, Maram Hasanain, Reem Suwaileh and Tamer Elsayed.

ArCOV19-Rumors: Arabic COVID-19 Twitter Dataset for Misinformation

Detection. Proceedings of the Sixth Arabic Natural Language Processing

Workshop (WANLP) at EACL 2021. pp. 72-81, Kyiv, Ukraine (Virtual),

April 2021.

– Fatima Haouari, Maram Hasanain, Reem Suwaileh and Tamer Elsayed.

ArCOV-19: The First Arabic COVID-19 Twitter Dataset with Propagation
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Networks. Proceedings of the Sixth Arabic Natural Language Processing

Workshop (WANLP) at EACL 2021. pp. 82-91, Kyiv, Ukraine (Virtual),

April 2021.

• Conference papers:

– MaramHasanain, Yassmine Barkallah,Reem Suwaileh, Mucahid Kutlu and

Tamer Elsayed. ArTest: The First Test Collection for Arabic Web Search

with Relevance Rationales. Proceedings of the 43rd annual international

ACM conference on Research and development in information retrieval:

SIGIR ’20, pp. 2017-2020, Virtual Event, China, July 2020.

– Alberto Barrón-Cedeño, Tamer Elsayed, Preslav Nakov, Giovanni Da San

Martino, Maram Hasanain, Reem Suwaileh, and Fatima Haouari. Check-

That! at CLEF 2020: Enabling the Automatic Identification and Verification

of Claims in SocialMedia. Proceedings of the 42nd EuropeanConference on

Information Retrieval (ECIR), Lisbon, Portugal, Lecture Notes in Computer

Science, vol. 12035, pp. 499–508, Springer, Cham, April 2020.

– Shahad Alshalan, Raghad Alshalan, Hend Al-Khalifa, Reem Suwaileh,

Tamer Elsayed. Improving Arabic Microblog Retrieval with Distributed

Representations. Proceedings of the 15 th Asia Information Retrieval Soci-

eties Conference (AIRS 2019), Hong Kong, China, November 2019.

– Tamer Elsayed, Preslav Nakov, Alberto Barrón-Cedeño, Maram Hasanain,

Reem Suwaileh, Giovanni Da San Martino, Pepa Atanasova. Overview of

the CLEF-2019 CheckThat! Lab: Automatic Identification and Verification

ofClaims. In: Crestani F. et al. (eds) Experimental IRMeetsMultilinguality,

Multimodality, and Interaction. CLEF 2019. Lecture Notes in Computer
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Science, vol. 11696, pp. 301-321. Springer, Cham, 2019.

– Tamer Elsayed, Preslav Nakov, Alberto Barrón-Cedeño, Maram Hasanain,

Reem Suwaileh, Giovanni Da San Martino, Pepa Atanasova. CheckThat!

at CLEF 2019: Automatic Identification and Verification of Claims. Pro-

ceedings of the 41st European Conference on Information Retrieval (ECIR),

Cologne, Germany, Lecture Notes in Computer Science, vol. 11438, pp.

309–315, Springer, Cham, April 2019.

– MaramHasanain,Reem Suwaileh, Tamer Elsayed, Alberto Barrón-Cedeño,

Preslav Nakov. Overview of the CLEF-2019 CheckThat! Lab: Automatic

Identification and Verification of Claims. Task 2: Evidence and Factuality.

Proceedings of CheckThat! Lab at the 10th International Conference of

the Cross-Language Evaluation Forum for European Languages (CLEF’19),

Lugano, Switzerland, Sep 2019

• Book chapters:

– Alberto Barrón-Cedeño, Tamer Elsayed, Preslav Nakov, Giovanni Da San

Martino, Maram Hasanain, Reem Suwaileh, Fatima Haouari, Nikolay Bab-

ulkov, Bayan Hamdan, Alex Nikolov, Shaden Shaar, and Zien Sheikh Ali.

Overview of CheckThat! 2020: Automatic Identification and Verification

of Claims in Social Media. In: Arampatzis A. et al. (eds) Experimental IR

Meets Multilinguality, Multimodality, and Interaction. CLEF 2020. Lecture

Notes in Computer Science, vol. 12260. Springer, Cham, 2020.

– Tamer Elsayed, Preslav Nakov, Alberto Barrón-Cedeño, Maram Hasanain,

Reem Suwaileh, Giovanni Da San Martino, Pepa Atanasova. Overview of

the CLEF-2019 CheckThat! Lab: Automatic Identification and Verification
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ofClaims. In: Crestani F. et al. (eds) Experimental IRMeetsMultilinguality,

Multimodality, and Interaction. CLEF 2019. Lecture Notes in Computer

Science, vol. 11696, pp. 301-321. Springer, Cham, 2019. 3.

6.4. Future Directions

There are several directions for future work. We elaborate on some of them in

the following:

LMP problem modeling: We have studied the LMR and LMD tasks indepen-

dently. However, optimizing the LMR and LMDmodels jointly rather than in a pipeline

architecture would allow passing feedback between models to optimize accordingly.

This direction was explored for the LMP tasks outside the disaster domain [89].

Learning features: Our study is limited to utilizing textual features for both LMR

and LMD. However, other features like metadata and social networks (e.g., followers

and interactions) are worth investigating.

Unified and up-to-date geo-positioning databases: The key bottleneck of

gazetteer-based LMR solutions and LMD systems is the choice of geo-positioning

databases. There is much room for contribution regarding augmentation, aggregation,

and maintaining up-to-date geo-positioning databases.

Evaluation: For LMR evaluation, in almost all existing studies, the evaluation

is limited to exact matches with gold annotations. The studies that focus on partial

matches are heuristics-based. We plan to further study the partial matches for LMR. For

LMD evaluation, we plan to investigate proper ways to tune the distance threshold 𝑑 in

the distance-based evaluation measures.

Efficiency analysis The literature and our work focus on the effectiveness of

168



models. While the disaster domain is time-critical, we plan to profile models and

further analyze their efficiency when integrated into information processing systems for

disaster management.

Deployment: We also plan to deploy both LMR and LMD models into online

information processing systems for disaster management.

169



REFERENCES

[1] S. E. Vieweg, “Situational awareness in mass emergency: A behavioral and

linguistic analysis of microblogged communications,” Ph.D. dissertation, Uni-

versity of Colorado at Boulder, 2012, isbn: 978-1-2673-3596-8.

[2] Five essentials for the first 72 hours of disaster response, 2017. [Online]. Avail-

able: https://www.unocha.org/story/five-essentials-first-72-

hours-disaster-response.

[3] H. Zade, K. Shah, V. Rangarajan, P. Kshirsagar, M. Imran, and K. Starbird,

“From situational awareness to actionability: Towards improving the utility of

social media data for crisis response,” Proc. ACM Hum.-Comput. Interact.,

vol. 2, no. CSCW, 2018. doi: 10.1145/3274464. [Online]. Available: https:

//doi.org/10.1145/3274464.

[4] J. Ziemke, “Crisis mapping: The construction of a new interdisciplinary field?”

Journal of Map & Geography Libraries, vol. 8, no. 2, pp. 101–117, 2012.

[5] I. Weber, M. Imran, F. Ofli, et al., “Non-traditional data sources: Providing

insights into sustainable development,” Communications of the ACM, vol. 64,

no. 4, pp. 88–95, 2021.

[6] A. L. Hughes and L. Palen, “Twitter adoption and use in mass convergence

and emergency events,” International journal of emergency management, vol. 6,

no. 3, pp. 248–260, 2009.

[7] R. Grace, “Toponym usage in social media in emergencies,” International Jour-

nal of Disaster Risk Reduction, vol. 52, no. July 2020, p. 101 923, 2021, issn:

170

https://www.unocha.org/story/five-essentials-first-72-hours-disaster-response
https://www.unocha.org/story/five-essentials-first-72-hours-disaster-response
https://doi.org/10.1145/3274464
https://doi.org/10.1145/3274464
https://doi.org/10.1145/3274464


22124209. doi: 10 . 1016 / j . ijdrr . 2020 . 101923. [Online]. Available:

https://doi.org/10.1016/j.ijdrr.2020.101923.

[8] J. Kropczynski, R. Grace, J. Coche, et al., “Identifying Actionable Information

on Social Media for Emergency Dispatch,” in ISCRAM Asia Pacific 2018: In-

novating for Resilience – 1st International Conference on Information Systems

for Crisis Response and Management Asia Pacific., Wellington, New Zealand,

Nov. 2018, p.428–438. [Online]. Available: https://hal- mines- albi.

archives-ouvertes.fr/hal-01987793.

[9] R. Grace, J. Kropczynski, and A. Tapia, “Community coordination: Aligning

social media use in community emergency management,” in Proceedings of the

15th ISCRAM Conference, 2018.

[10] S. McCormick, “New tools for emergency managers: An assessment of ob-

stacles to use and implementation,” Disasters, vol. 40, no. 2, pp. 207–225,

2016. doi: https://doi.org/10.1111/disa.12141. eprint: https:

//onlinelibrary.wiley.com/doi/pdf/10.1111/disa.12141. [Online].

Available: https://onlinelibrary.wiley.com/doi/abs/10.1111/

disa.12141.

[11] C. Reuter, T. Ludwig, M.-A. Kaufhold, and T. Spielhofer, “Emergency services’

attitudes towards social media: A quantitative and qualitative survey across

europe,” International Journal of Human-Computer Studies, vol. 95, pp. 96–

111, 2016, issn: 1071-5819. doi: https://doi.org/10.1016/j.ijhcs.

2016.03.005. [Online]. Available: https://www.sciencedirect.com/

science/article/pii/S1071581916000379.

[12] The ushahidi platform. [Online]. Available: www.ushahidi.com/.
171

https://doi.org/10.1016/j.ijdrr.2020.101923
https://doi.org/10.1016/j.ijdrr.2020.101923
https://hal-mines-albi.archives-ouvertes.fr/hal-01987793
https://hal-mines-albi.archives-ouvertes.fr/hal-01987793
https://doi.org/https://doi.org/10.1111/disa.12141
https://onlinelibrary.wiley.com/doi/pdf/10.1111/disa.12141
https://onlinelibrary.wiley.com/doi/pdf/10.1111/disa.12141
https://onlinelibrary.wiley.com/doi/abs/10.1111/disa.12141
https://onlinelibrary.wiley.com/doi/abs/10.1111/disa.12141
https://doi.org/https://doi.org/10.1016/j.ijhcs.2016.03.005
https://doi.org/https://doi.org/10.1016/j.ijhcs.2016.03.005
https://www.sciencedirect.com/science/article/pii/S1071581916000379
https://www.sciencedirect.com/science/article/pii/S1071581916000379
www.ushahidi.com/


[13] Innovative uses of social media in emergency management, application/pdf,

[Online; accessed 30 March 2022]. [Online]. Available: www . hsdl . org /

?abstract&did=805223.

[14] H. Al-Olimat, K. Thirunarayan, V. Shalin, and A. Sheth, “Location name ex-

traction from targeted text streams using gazetteer-based statistical language

models,” in Proceedings of the 27th International Conference on Computational

Linguistics, Aug. 2018, pp. 1986–1997.

[15] S. E. Middleton, G. Kordopatis-Zilos, S. Papadopoulos, and Y. Kompatsiaris,

“Location extraction from social media: Geoparsing, location disambiguation,

and geotagging,” ACM Transactions on Information Systems, vol. 36, no. 4,

pp. 1–27, Jun. 2018, issn: 1046-8188.

[16] B. Han, P. Cook, and T. Baldwin, “Lexical normalization for social media text,”

ACM Transactions on Intelligent Systems and Technology, vol. 4, no. 1, pp. 1–27,

Feb. 2013, issn: 2157-6904.

[17] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of deep

bidirectional transformers for language understanding,” in Proceedings of the

2019 Conference of the North American Chapter of the Association for Com-

putational Linguistics: Human Language Technologies, Jun. 2019, pp. 4171–

4186.

[18] R. Suwaileh,M. Imran, T. Elsayed, andH. Sajjad, “Arewe ready for this disaster?

towards location mention recognition from crisis tweets,” in Proceedings of

the 28th International Conference on Computational Linguistics, Dec. 2020,

pp. 6252–6263.

172

www.hsdl.org/?abstract&did=805223
www.hsdl.org/?abstract&did=805223


[19] R. Suwaileh, T. Elsayed, M. Imran, and H. Sajjad, “When a disaster happens,

we are ready: Location mention recognition from crisis tweets,” International

Journal of Disaster Risk Reduction, p. 103 107, 2022.

[20] S. R. Hiltz, A. L. Hughes, M. Imran, L. Plotnick, R. Power, and M. Turoff,

“Exploring the usefulness and feasibility of software requirements for social

media use in emergency management,” International Journal of Disaster Risk

Reduction, vol. 42, p. 101 367, 2020, issn: 2212-4209. doi: https://doi.

org/10.1016/j.ijdrr.2019.101367. [Online]. Available: https://www.

sciencedirect.com/science/article/pii/S2212420919311203.

[21] M. Imran,C.Castillo, F.Diaz, andS.Vieweg, “Processing socialmediamessages

in mass emergency: A survey,” ACM Comput. Surv., vol. 47, no. 4, 2015, issn:

0360-0300. doi: 10.1145/2771588. [Online]. Available: https://doi.org/

10.1145/2771588.

[22] B. Poblete, J. Guzmán, J.Maldonado, and F. Tobar, “Robust detection of extreme

events using twitter: Worldwide earthquake monitoring,” IEEE Transactions on

Multimedia, vol. 20, no. 10, pp. 2551–2561, 2018. doi: 10.1109/TMM.2018.

2855107.

[23] A. Hernandez-Suarez, G. Sanchez-Perez, K. Toscano-Medina, et al., “Using

twitter data to monitor natural disaster social dynamics: A recurrent neural net-

work approach with word embeddings and kernel density estimation,” Sensors,

vol. 19, no. 7, 2019, issn: 1424-8220. doi: 10.3390/s19071746. [Online].

Available: https://www.mdpi.com/1424-8220/19/7/1746.

173

https://doi.org/https://doi.org/10.1016/j.ijdrr.2019.101367
https://doi.org/https://doi.org/10.1016/j.ijdrr.2019.101367
https://www.sciencedirect.com/science/article/pii/S2212420919311203
https://www.sciencedirect.com/science/article/pii/S2212420919311203
https://doi.org/10.1145/2771588
https://doi.org/10.1145/2771588
https://doi.org/10.1145/2771588
https://doi.org/10.1109/TMM.2018.2855107
https://doi.org/10.1109/TMM.2018.2855107
https://doi.org/10.3390/s19071746
https://www.mdpi.com/1424-8220/19/7/1746


[24] M. Sreenivasulu and M. Sridevi, “Comparative study of statistical features to

detect the target event during disaster,” Big Data Mining and Analytics, vol. 3,

no. 2, pp. 121–130, 2020. doi: 10.26599/BDMA.2019.9020021.

[25] K. Rudra, P. Goyal, N. Ganguly, P. Mitra, and M. Imran, “Identifying sub-events

and summarizing disaster-related information from microblogs,” in The 41st In-

ternational ACM SIGIR Conference on Research & Development in Information

Retrieval, 2018, pp. 265–274.

[26] A. Olteanu, C. Castillo, F. Diaz, and S. Vieweg, “Crisislex: A lexicon for col-

lecting and filtering microblogged communications in crises,” in Eighth inter-

national AAAI conference on weblogs and social media, 2014.

[27] R. Mazloom, H. Li, D. Caragea, C. Caragea, and M. Imran, “A hybrid domain

adaptation approach for identifying crisis-relevant tweets,” International Jour-

nal of Information Systems for Crisis Response and Management (IJISCRAM),

vol. 11, no. 2, pp. 1–19, 2019.

[28] L. S. Snyder, Y.-S. Lin, M. Karimzadeh, D. Goldwasser, and D. S. Ebert, “In-

teractive learning for identifying relevant tweets to support real-time situational

awareness,” IEEE transactions on visualization and computer graphics, vol. 26,

no. 1, pp. 558–568, 2019.

[29] X. Ning, L. Yao, B. Benatallah, Y. Zhang, Q. Z. Sheng, and S. S. Kanhere,

“Source-aware crisis-relevant tweet identification and key information summa-

rization,” ACM Transactions on Internet Technology (TOIT), vol. 19, no. 3,

pp. 1–20, 2019.

174

https://doi.org/10.26599/BDMA.2019.9020021


[30] S. Vieweg, A. L. Hughes, K. Starbird, and L. Palen, “Microblogging during two

natural hazards events: What twitter may contribute to situational awareness,” in

Proceedings of the SIGCHI conference on human factors in computing systems,

2010, pp. 1079–1088.

[31] A. M.MacEachren, A. Jaiswal, A. C. Robinson, et al., “Senseplace2: Geotwitter

analytics support for situational awareness,” in 2011 IEEE conference on visual

analytics science and technology (VAST), IEEE, 2011, pp. 181–190.

[32] S. Vieweg, C. Castillo, andM. Imran, “Integrating social media communications

into the rapid assessment of sudden onset disasters,” in International Conference

on Social Informatics, Springer, 2014, pp. 444–461.

[33] M. Marbouti and F. Maurer, “Social media use during emergency response–

insights from emergency professionals,” inConference on e-Business, e-Services

and e-Society, Springer, 2016, pp. 557–566.

[34] H. Purohit, C. Castillo, M. Imran, and R. Pandev, “Social-EOC: Serviceability

model to rank social media requests for emergency operation centers,” in Pro-

ceedings of the 2018 IEEE/ACM International Conference on Advances in Social

Networks Analysis and Mining, 2018, pp. 119–126, isbn: 9781538660515.

[35] R. McCreadie, C. Buntain, and I. Soboroff, “Trec incident streams: Finding

actionable information on social media,” in International Conference on Infor-

mation Systems for Crisis Response and Management, 2019, pp. 691–705, isbn:

9788409104987.

175



[36] M. Basu, K. Ghosh, and S. Ghosh, “Information Retrieval from Microblogs

During Disasters: In the Light of IRMiDis Task,” SN Computer Science, vol. 1,

no. 1, p. 61, 2020. doi: 10.1007/s42979-020-0065-1.

[37] X. Zheng, J. Han, and A. Sun, “A Survey of Location Prediction on Twit-

ter,” IEEE Transactions on Knowledge and Data Engineering, vol. 30, no. 9,

pp. 1652–1671, 2018, issn: 15582191. doi: 10.1109/TKDE.2018.2807840.

arXiv: 1705.03172v2. [Online]. Available: https://ieeexplore.ieee.

org/document/8295255/%20https://doi.org/10.1109/TKDE.2018.

2807840.

[38] C. Xu, J. Pei, J. Li, C. Li, X. Luo, and D. Ji, “DLocRL: A deep learning pipeline

for fine-grained location recognition and linking in tweets,” in Proceedings of

the World Wide Web Conference, May 2019, pp. 3391–3397.

[39] R. D. Das and R. S. Purves, “Exploring the potential of Twitter to understand

traffic events and their locations in Greater Mumbai, India,” IEEE Transactions

on Intelligent Transportation Systems, vol. 21, no. 12, pp. 5213–5222, 2020,

issn: 15580016.

[40] J. Wang, Y. Hu, and K. Joseph, “NeuroTPR: A neuro-net toponym recognition

model for extracting locations from social media messages,” Transactions in

GIS, vol. 24, no. 3, pp. 719–735, 2020, issn: 14679671.

[41] C. Reuter, “Crisis 2.0: Towards a systematization of social software use (ijis-

cram),” inEmergent Collaboration Infrastructures: Technology Design for Inter-

Organizational Crisis Management. Wiesbaden: Springer Fachmedien Wies-

baden, 2015, pp. 35–48, isbn: 978-3-658-08586-5. doi: 10.1007/978-3-

176

https://doi.org/10.1007/s42979-020-0065-1
https://doi.org/10.1109/TKDE.2018.2807840
https://arxiv.org/abs/1705.03172v2
https://ieeexplore.ieee.org/document/8295255/%20https://doi.org/10.1109/TKDE.2018.2807840
https://ieeexplore.ieee.org/document/8295255/%20https://doi.org/10.1109/TKDE.2018.2807840
https://ieeexplore.ieee.org/document/8295255/%20https://doi.org/10.1109/TKDE.2018.2807840
https://doi.org/10.1007/978-3-658-08586-5_4
https://doi.org/10.1007/978-3-658-08586-5_4


658-08586-5_4. [Online]. Available: https://doi.org/10.1007/978-3-

658-08586-5_4.

[42] C. Reuter, A. L. Hughes, and M.-A. Kaufhold, “Social media in crisis man-

agement: An evaluation and analysis of crisis informatics research,” Interna-

tional Journal of Human–Computer Interaction, vol. 34, no. 4, pp. 280–294,

2018. doi: 10.1080/10447318.2018.1427832. eprint: https://doi.

org / 10 . 1080 / 10447318 . 2018 . 1427832. [Online]. Available: https :

//doi.org/10.1080/10447318.2018.1427832.

[43] A. L. Hughes and R. Shah, “Designing an application for social media needs

in emergency public information work,” in Proceedings of the 19th Interna-

tional Conference on Supporting Group Work, ser. GROUP ’16, Sanibel Is-

land, Florida, USA: Association for Computing Machinery, 2016, pp. 399–408,

isbn: 9781450342766. doi: 10.1145/2957276.2957307. [Online]. Available:

https://doi.org/10.1145/2957276.2957307.

[44] H. Purohit, C. Castillo, M. Imran, and R. Pandey, “Social-eoc: Serviceability

model to rank social media requests for emergency operation centers,” in 2018

IEEE/ACM International Conference on Advances in Social Networks Analysis

and Mining (ASONAM), IEEE, 2018, pp. 119–126.

[45] K. C. Roy, S. Hasan, and P. Mozumder, “A multilabel classification approach to

identify hurricane-induced infrastructure disruptions using social media data,”

Computer-Aided Civil and Infrastructure Engineering, vol. 35, no. 12, pp. 1387–

1402, 2020.

[46] S. Bird, E. Klein, and E. Loper, Natural language processing with Python:

analyzing text with the natural language toolkit. " O’Reilly Media, Inc.", 2009.
177

https://doi.org/10.1007/978-3-658-08586-5_4
https://doi.org/10.1007/978-3-658-08586-5_4
https://doi.org/10.1007/978-3-658-08586-5_4
https://doi.org/10.1007/978-3-658-08586-5_4
https://doi.org/10.1007/978-3-658-08586-5_4
https://doi.org/10.1080/10447318.2018.1427832
https://doi.org/10.1080/10447318.2018.1427832
https://doi.org/10.1080/10447318.2018.1427832
https://doi.org/10.1080/10447318.2018.1427832
https://doi.org/10.1080/10447318.2018.1427832
https://doi.org/10.1145/2957276.2957307
https://doi.org/10.1145/2957276.2957307


[47] L. Hong and V. Frias-Martinez, “Modeling and predicting evacuation flows

during hurricane irma,” EPJ Data Science, vol. 9, no. 1, p. 29, 2020.

[48] K. C. Roy and S. Hasan, “Modeling the dynamics of hurricane evacuation

decisions from twitter data: An input output hiddenmarkovmodeling approach,”

en, Transportation research part C: emerging technologies, vol. 123, e102976–

e102976, 2021, issn: 0968-090X. doi: 10 . 1016 / j . trc . 2021 . 102976.

[Online]. Available: http://dx.doi.org/10.1016/j.trc.2021.102976.

[49] O. Uchida, M. Kosugi, G. Endo, et al., “A real-time information sharing system

to support self-, mutual-, and public-help in the aftermath of a disaster utilizing

twitter,” IEICE Transactions on Fundamentals of Electronics, Communications

and Computer Sciences, vol. E99.A, no. 8, pp. 1551–1554, 2016. doi: 10.1587/

transfun.E99.A.1551.

[50] M. Kosugi, K. Utsu, S. Tajima, et al., “Improvement of twitter-based disaster-

related information sharing system,” in 2017 4th International Conference on

Information and Communication Technologies for Disaster Management (ICT-

DM), 2017, pp. 1–7. doi: 10.1109/ICT-DM.2017.8275693.

[51] M. Kosugi, K. Utsu, M. Tomita, et al., “A twitter-based disaster information

sharing system,” in 2019 IEEE 4th International Conference on Computer and

Communication Systems (ICCCS), 2019, pp. 395–399. doi: 10.1109/CCOMS.

2019.8821719.

[52] C. Zhang, C. Fan, W. Yao, X. Hu, and A. Mostafavi, “Social media for intelli-

gent public information and warning in disasters: An interdisciplinary review,”

International Journal of Information Management, vol. 49, pp. 190–207, 2019,

issn: 0268-4012. doi: https://doi.org/10.1016/j.ijinfomgt.2019.
178

https://doi.org/10.1016/j.trc.2021.102976
http://dx.doi.org/10.1016/j.trc.2021.102976
https://doi.org/10.1587/transfun.E99.A.1551
https://doi.org/10.1587/transfun.E99.A.1551
https://doi.org/10.1109/ICT-DM.2017.8275693
https://doi.org/10.1109/CCOMS.2019.8821719
https://doi.org/10.1109/CCOMS.2019.8821719
https://doi.org/https://doi.org/10.1016/j.ijinfomgt.2019.04.004
https://doi.org/https://doi.org/10.1016/j.ijinfomgt.2019.04.004


04.004. [Online]. Available: https://www.sciencedirect.com/science/

article/pii/S0268401218310995.

[53] R. Grishman and B. M. Sundheim, “Message understanding conference-6: A

brief history,” in COLING 1996 Volume 1: The 16th International Conference

on Computational Linguistics, 1996.

[54] R. Reinanda, E.Meij, andM. de Rijke, “Knowledge Graphs: An Information Re-

trieval Perspective,” Foundations and Trends® in Information Retrieval, vol. 14,

no. 4, pp. 1–158, 2020, issn: 1554-0669. doi: 10.1561/1500000063. [Online].

Available: http://www.nowpublishers.com/article/Details/INR-

063.

[55] J. Lingad, S. Karimi, and J. Yin, Location extraction from disaster-related

microblogs. New York, New York, USA: Association for Computing Machin-

ery, 2013, pp. 1017–1020, isbn: 9781450320382. doi: 10.1145/2487788.

2488108. [Online]. Available: http://opennlp.apache.org%20http:

//dl.acm.org/citation.cfm?doid=2487788.2488108.

[56] J. Gelernter and S. Balaji, “An algorithm for local geoparsing of microtext,”

Geoinformatica, vol. 17, no. 4, pp. 635–667, Oct. 2013, issn: 1384-6175.

[57] P. Nand, R. Perera, A. Sreekumar, and L. He, “A multi-strategy approach for

location mining in tweets: AUT NLP group entry for ALTA-2014 shared task,”

in Proceedings of the Australasian Language Technology Association Work-

shop 2014, Melbourne, Australia, Nov. 2014, pp. 163–170. [Online]. Available:

https://aclanthology.org/U14-1024.

179

https://doi.org/https://doi.org/10.1016/j.ijinfomgt.2019.04.004
https://doi.org/https://doi.org/10.1016/j.ijinfomgt.2019.04.004
https://doi.org/https://doi.org/10.1016/j.ijinfomgt.2019.04.004
https://www.sciencedirect.com/science/article/pii/S0268401218310995
https://www.sciencedirect.com/science/article/pii/S0268401218310995
https://doi.org/10.1561/1500000063
http://www.nowpublishers.com/article/Details/INR-063
http://www.nowpublishers.com/article/Details/INR-063
https://doi.org/10.1145/2487788.2488108
https://doi.org/10.1145/2487788.2488108
http://opennlp.apache.org%20http://dl.acm.org/citation.cfm?doid=2487788.2488108
http://opennlp.apache.org%20http://dl.acm.org/citation.cfm?doid=2487788.2488108
https://aclanthology.org/U14-1024


[58] F. Liu, A. Rahimi, B. Salehi, M. Choi, P. Tan, and L. Duong, “Automatic identi-

fication of expressions of locations in tweet messages using conditional random

fields,” in Proceedings of the Australasian Language Technology Association

Workshop 2014, Melbourne, Australia, Nov. 2014, pp. 171–176. [Online]. Avail-

able: https://aclanthology.org/U14-1025.

[59] L. Ghahremanlou, W. Sherchan, and J. A. Thom, “Geotagging twitter messages

in crisis management,” The Computer Journal, vol. 58, no. 9, pp. 1937–1954,

2015, issn: 14602067.

[60] J. Yin, S. Karimi, and J. Lingad, “Pinpointing locational focus in microblogs,” in

Proceedings of the 2014 Australasian document computing symposium, ACM,

2014, p. 66.

[61] H. Mao, G. Thakur, K. Sparks, J. Sanyal, and B. Bhaduri, “Mapping near-

real-time power outages from social media,” International Journal of Digi-

tal Earth, vol. 12, no. 11, pp. 1285–1299, 2019, issn: 17538955. doi: 10.

1080 / 17538947 . 2018 . 1535000. [Online]. Available: https : / / www .

tandfonline.com/doi/full/10.1080/17538947.2018.1535000.

[62] S.Malmasi andM.Dras, “Locationmention detection in tweets andmicroblogs,”

in Computational Linguistics, K. Hasida and A. Purwarianti, Eds., Singapore:

Springer Singapore, 2016, pp. 123–134, isbn: 978-981-10-0515-2.

[63] R. Dutt, K. Hiware, A. Ghosh, and R. Bhaskaran, “SAVITR: A system for real-

time location extraction from microblogs during emergencies,” in Companion

Proceedings of the The Web Conference 2018, 2018, pp. 1643–1649, isbn:

9781450356404.

180

https://aclanthology.org/U14-1025
https://doi.org/10.1080/17538947.2018.1535000
https://doi.org/10.1080/17538947.2018.1535000
https://www.tandfonline.com/doi/full/10.1080/17538947.2018.1535000
https://www.tandfonline.com/doi/full/10.1080/17538947.2018.1535000


[64] A. Kumar and J. P. Singh, “Location reference identification from tweets during

emergencies: A deep learning approach,” International journal of disaster risk

reduction, vol. 33, pp. 365–375, 2019.

[65] L. Nizzoli, M. Avvenuti, M. Tesconi, and S. Cresci, “Geo-semantic-parsing:

AI-powered geoparsing by traversing semantic knowledge graphs,” Decision

Support Systems, vol. 136, p. 113 346, 2020.

[66] W. Zhang and J. Gelernter, “Geocoding location expressions in Twitter mes-

sages: A preference learning method,” Journal of Spatial Information Science,

vol. 2014, no. 9, pp. 37–70, 2014.

[67] M. C. Phan, A. Sun, Y. Tay, J. Han, and C. Li, “Neupl: Attention-based semantic

matching and pair-linking for entity disambiguation,” in Proceedings of the

2017 ACM on Conference on Information and Knowledge Management, 2017,

pp. 1667–1676.

[68] J. Wang and Y. Hu, “Are we there yet? evaluating state-of-the-art neural network

based geoparsers using EUPEG as a benchmarking platform,” in Proceedings of

the 3rd ACM SIGSPATIAL International Workshop on Geospatial Humanities,

2019, pp. 1–6, isbn: 9781450369602.

[69] X. Wang, C. Ma, H. Zheng, et al., “DM_NLP at SemEval-2018 task 12: A

pipeline system for toponym resolution,” inProceedings of the 13th International

Workshop on Semantic Evaluation, Minneapolis, Minnesota, USA: Association

for Computational Linguistics, Jun. 2019, pp. 917–923. doi: 10.18653/v1/

S19-2156. [Online]. Available: https://aclanthology.org/S19-2156.

181

https://doi.org/10.18653/v1/S19-2156
https://doi.org/10.18653/v1/S19-2156
https://aclanthology.org/S19-2156


[70] H. Li, M. Wang, T. Baldwin, M. Tomko, and M. Vasardani, “UniMelb at

SemEval-2019 task 12: Multi-model combination for toponym resolution,” in

Proceedings of the 13th International Workshop on Semantic Evaluation, Min-

neapolis, Minnesota, USA: Association for Computational Linguistics, Jun.

2019, pp. 1313–1318. doi: 10.18653/v1/S19-2231. [Online]. Available:

https://aclanthology.org/S19-2231.

[71] V. Yadav, E. Laparra, T.-T. Wang, M. Surdeanu, and S. Bethard, “University

of Arizona at SemEval-2019 task 12: Deep-affix named entity recognition of

geolocation entities,” in Proceedings of the 13th International Workshop on

Semantic Evaluation, Minneapolis, Minnesota, USA: Association for Compu-

tational Linguistics, Jun. 2019, pp. 1319–1323. doi: 10.18653/v1/S19-2232.

[Online]. Available: https://aclanthology.org/S19-2232.

[72] C. Xu, J. Pei, J. Li, C. Li, X. Luo, and D. Ji, “DLocRL: A deep learning pipeline

for fine-grained location recognition and linking in tweets,” in Proceedings of

the World Wide Web Conference, May 2019, pp. 3391–3397.

[73] N. Al Emadi, S. Abbar, J. Borge-Holthoefer, F. Guzman, and F. Sebastiani,

“Qt2s: A system for monitoring road traffic via fine grounding of tweets,” in

Proceedings of the International AAAI Conference on Web and Social Media,

vol. 11, 2017.

[74] B. Alkouz and Z. Al Aghbari, “SNSJam: Road traffic analysis and prediction

by fusing data from multiple social networks,” Information Processing and

Management, vol. 57, no. 1, p. 102 139, 2020, issn: 03064573. doi: 10.1016/

j.ipm.2019.102139.

182

https://doi.org/10.18653/v1/S19-2231
https://aclanthology.org/S19-2231
https://doi.org/10.18653/v1/S19-2232
https://aclanthology.org/S19-2232
https://doi.org/10.1016/j.ipm.2019.102139
https://doi.org/10.1016/j.ipm.2019.102139


[75] Y. Zhang, X. Dong, D. Zhang, and D.Wang, “A syntax-based learning approach

to geo-locating abnormal traffic events using social sensing,” in 2019 IEEE/ACM

International Conference on Advances in Social Networks Analysis and Mining

(ASONAM), IEEE, 2019, pp. 663–670.

[76] C. Zhang, K. Zhang, Q. Yuan, et al., “Regions, periods, activities: Uncovering

urban dynamics via cross-modal representation learning,” in Proceedings of the

26th International Conference on World Wide Web, 2017, pp. 361–370.

[77] S. Zhao, T. Zhao, I. King, and M. R. Lyu, “Geo-teaser: Geo-temporal sequential

embedding rank for point-of-interest recommendation,” in Proceedings of the

26th international conference on world wide web companion, 2017, pp. 153–

162.

[78] L. Hong, A. Ahmed, S. Gurumurthy, A. J. Smola, and K. Tsioutsiouliklis,

“Discovering geographical topics in the twitter stream,” in Proceedings of the

21st international conference on World Wide Web, 2012, pp. 769–778.

[79] R. S. Purves, P. Clough, C. B. Jones, M. H. Hall, and V. Murdock, Geographic

Information Retrieval: Progress and Challenges in Spatial Search of Text. Now

Foundations and Trends, 2018.

[80] T. B. N. Hoang and J. Mothe, “Location extraction from tweets,” Information

Processing & Management, vol. 54, no. 2, pp. 129–144, 2018, issn: 03064573.

[81] K. Bontcheva, L. Derczynski, A. Funk, M. A. Greenwood, D. Maynard, and N.

Aswani, “Twitie: An open-source information extraction pipeline for microblog

text,” inProceedings of the International Conference Recent Advances in Natural

Language Processing, 2013, pp. 83–90.

183



[82] A.Ritter, S. Clark,Mausam, andO.Etzioni, “Named entity recognition in tweets:

An experimental study,” in Proceedings of the 2011 Conference on Empirical

Methods in Natural Language Processing, Jul. 2011, pp. 1524–1534.

[83] J. Sankaranarayanan, H. Samet, B. E. Teitler, M. D. Lieberman, and J. Sperling,

“Twitterstand:News in tweets,” inProceedings of the 17th ACM SIGSPATIAL In-

ternational Conference on Advances in Geographic Information Systems, 2009,

pp. 42–51, isbn: 9781605586496.

[84] S.Malmasi andM.Dras, “Locationmention detection in tweets andmicroblogs,”

inConference of the Pacific Association for Computational Linguistics, Springer,

2015, pp. 123–134.

[85] E. A. Sultanik and C. Fink, “Rapid geotagging and disambiguation of social

media text via an indexed gazetteer,” Proceedings of ISCRAM, vol. 12, pp. 1–

10, 2012.

[86] S. Kinsella, V. Murdock, and N. O’Hare, “I’m eating a sandwich in glasgow:

Modeling locations with tweets,” in Proceedings of the 3rd international work-

shop on Search and mining user-generated contents, ACM, 2011, pp. 61–68.

[87] D. Molla and S. Karimi, “Overview of the 2014 alta shared task: Identifying

expressions of locations in tweets,” inProceedings of the Australasian Language

Technology Association Workshop 2014, 2014, pp. 151–156.

[88] S. Guo, M.-W. Chang, and E. Kiciman, “To link or not to link? a study on end-

to-end tweet entity linking,” in Proceedings of the 2013 Conference of the North

American Chapter of the Association for Computational Linguistics: Human

Language Technologies, 2013, pp. 1020–1030.

184



[89] Z. Ji, A. Sun, G. Cong, and J. Han, “Joint recognition and linking of fine-grained

locations from tweets,” in Proceedings of the 25th International Conference on

World Wide Web, International World Wide Web Conferences Steering Com-

mittee, 2016, pp. 1271–1281, isbn: 9781450341431.

[90] G. Li, J. Hu, J. Feng, and K.-l. Tan, “Effective location identification from

microblogs,” in 2014 IEEE 30th International Conference on Data Engineering,

IEEE, 2014, pp. 880–891.

[91] J. R. Finkel, T. Grenager, and C.Manning, “Incorporating non-local information

into information extraction systems by Gibbs sampling,” in Proceedings of the

43rd Annual Meeting of the Association for Computational Linguistics (ACL’05),

Ann Arbor, Michigan: Association for Computational Linguistics, Jun. 2005,

pp. 363–370. doi: 10.3115/1219840.1219885. [Online]. Available: https:

//aclanthology.org/P05-1045.

[92] A. Ritter, S. Clark, O. Etzioni, et al., “Named entity recognition in tweets: An

experimental study,” in Proceedings of the conference on empirical methods in

natural language processing, Association for Computational Linguistics, 2011,

pp. 1524–1534.

[93] OpenCalais, Opencalais, OpenCalais, Ed., [Online; edited 31 March 2022],

2022. [Online].Available:https://github.com/ElusiveMind/opencalais.

[94] X. Hu, Z. Zhou, Y. Sun, et al., “GazPNE2: A general place name extractor for

microblogs fusing gazetteers and pretrained transformer models,” IEEE Internet

of Things Journal, pp. 16 259–16 271, 2022.

185

https://doi.org/10.3115/1219840.1219885
https://aclanthology.org/P05-1045
https://aclanthology.org/P05-1045
https://github.com/ElusiveMind/opencalais


[95] G. Rizzo, A. E. C. Basave, B. Pereira, et al., “Making sense of microposts (#

microposts2015) named entity recognition and linking (neel) challenge.,” in #

MSM, 2015, pp. 44–53.

[96] P. Ferragina and U. Scaiella, TAGME: On-the-fly annotation of short text frag-

ments (by Wikipedia entities), 2010. doi: 10.1145/1871437.1871689. [On-

line]. Available: http://dl.acm.org/citation.cfm?id=1871437.

1871689 (visited on 06/01/2021).

[97] D. Weissenbacher, A. Magge, K. O’Connor, M. Scotch, and G. Gonzalez-

Hernandez, “SemEval-2019 task 12: Toponym resolution in scientific papers,”

in Proceedings of the 13th International Workshop on Semantic Evaluation, Jun.

2019, pp. 907–916.

[98] E. F. Tjong Kim Sang and F. De Meulder, “Introduction to the CoNLL-2003

shared task: Language-independent named entity recognition,” in Proceedings

of the Seventh Conference on Natural Language Learning at HLT-NAACL, 2003,

pp. 142–147.

[99] G. Kordopatis-Zilos, A. Popescu, S. Papadopoulos, and Y. Kompatsiaris, “Plac-

ing images with refined language models and similarity search with pca-reduced

vgg features.,” in MediaEval, 2016.

[100] J. R. Finkel, T. Grenager, and C.Manning, “Incorporating non-local information

into information extraction systems by Gibbs sampling,” in Proceedings of the

43rd Annual Meeting of the Association for Computational Linguistics (ACL’05),

Ann Arbor, Michigan: Association for Computational Linguistics, Jun. 2005,

pp. 363–370. doi: 10.3115/1219840.1219885. [Online]. Available: https:

//aclanthology.org/P05-1045.
186

https://doi.org/10.1145/1871437.1871689
http://dl.acm.org/citation.cfm?id=1871437.1871689
http://dl.acm.org/citation.cfm?id=1871437.1871689
https://doi.org/10.3115/1219840.1219885
https://aclanthology.org/P05-1045
https://aclanthology.org/P05-1045


[101] C. Li and A. Sun, “Fine-grained location extraction from tweets with temporal

awareness,” in Proceedings of the 37th international ACM SIGIR conference on

Research & development in information retrieval, ACM, 2014, pp. 43–52.

[102] B. Han, A. J. Yepes, A. MacKinlay, and Q. Chen, “Identifying Twitter location

mentions,” in Proceedings of the Australasian Language Technology Associa-

tion Workshop 2014, Melbourne, Australia, Nov. 2014, pp. 157–162. [Online].

Available: https://aclanthology.org/U14-1023.

[103] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors for word

representation,” in Proceedings of the 2014 conference on empirical methods in

natural language processing (EMNLP), 2014, pp. 1532–1543.

[104] M. Tanenblatt, A. Coden, and I. Sominsky, “The conceptmapper approach to

named entity recognition,” in Proceedings of the seventh international confer-

ence on language resources and evaluation (LREC’10), 2010.

[105] C. Li and A. Sun, “Extracting fine-grained location with temporal awareness

in tweets: A two-stage approach,” Journal of the Association for Information

Science and Technology, vol. 68, no. 7, pp. 1652–1670, 2017.

[106] P. F. Brown, V. J. Della Pietra, P. V. deSouza, J. C. Lai, and R. L. Mercer, “Class-

based n-gram models of natural language,” Computational Linguistics, vol. 18,

no. 4, pp. 467–480, 1992. [Online]. Available: https://aclanthology.org/

J92-4003.

[107] G. Lample,M. Ballesteros, S. Subramanian, K. Kawakami, and C. Dyer, “Neural

architectures for named entity recognition,” in Proceedings of the 2016 Con-

187

https://aclanthology.org/U14-1023
https://aclanthology.org/J92-4003
https://aclanthology.org/J92-4003


ference of the North American Chapter of the Association for Computational

Linguistics: Human Language Technologies, Jun. 2016, pp. 260–270.

[108] N. J. Fernández and C. Periñán-Pascual, “nLORE: A linguistically rich deep-

learning system for locative-reference extraction in tweets,” in Intelligent Envi-

ronments 2021: Workshop Proceedings of the 17th International Conference on

Intelligent Environments, IOS Press, vol. 29, 2021, p. 243.

[109] N. J. F.Martínez and C. Periñán-Pascual, “Knowledge-based rules for the extrac-

tion of complex, fine-grained locative references from tweets,” RAEL: revista

electrónica de lingüística aplicada, vol. 19, no. 1, pp. 136–163, 2020.

[110] X. Hu, H. Al-Olimat, J. Kersten, et al., “GazPNE annotation-free deep learning

for place name extraction from microblogs leveraging gazetteer and synthetic

data by rules,” International Journal of Geographical Information Science,

2021.

[111] S. Khanal, M. Traskowsky, and D. Caragea, “Identification of fine-grained loca-

tion mentions in crisis tweets,” in Proceedings of the Language Resources and

Evaluation Conference, Marseille, France: European Language Resources Asso-

ciation, 2022, pp. 7164–7173. [Online]. Available: https://aclanthology.

org/2022.lrec-1.776.

[112] S. Khanal and D. Caragea, “Multi-task learning to enable location mention

identification in the early hours of a crisis event,” in Findings of the Association

for Computational Linguistics: EMNLP 2021, 2021, pp. 4051–4056.

[113] I. Yamada, A. Asai, H. Shindo, H. Takeda, and Y. Matsumoto, “LUKE: Deep

contextualized entity representations with entity-aware self-attention,” in Pro-

188

https://aclanthology.org/2022.lrec-1.776
https://aclanthology.org/2022.lrec-1.776


ceedings of the 2020 Conference on Empirical Methods in Natural Language

Processing (EMNLP), Online: Association for Computational Linguistics, Nov.

2020, pp. 6442–6454. doi: 10.18653/v1/2020.emnlp-main.523. [Online].

Available: https://aclanthology.org/2020.emnlp-main.523.

[114] J. Wang and Y. Hu, “Enhancing spatial and textual analysis with EUPEG: An

extensible and unified platform for evaluating geoparsers,” Transactions in GIS,

vol. 23, no. 6, pp. 1393–1419, 2019.

[115] J. O. Wallgrün, M. Karimzadeh, A. M. MacEachren, and S. Pezanowski, “Geo-

corpora: Building a corpus to test and train microblog geoparsers,” International

Journal of Geographical Information Science, vol. 32, no. 1, pp. 1–29, 2018.

[116] X. Liu, S. Zhang, F. Wei, and M. Zhou, “Recognizing named entities in tweets,”

in Proceedings of the 49th Annual Meeting of the Association for Computa-

tional Linguistics: Human Language Technologies-Volume 1, Association for

Computational Linguistics, 2011, pp. 359–367.

[117] C. Li, J. Weng, Q. He, et al., “Twiner: Named entity recognition in targeted

twitter stream,” in Proceedings of the 35th international ACM SIGIR conference

on Research and development in information retrieval, ACM, 2012, pp. 721–

730.

[118] J. Gelernter and W. Zhang, “Cross-lingual geo-parsing for non-structured data,”

inProceedings of the 7th Workshop on Geographic Information Retrieval, ACM,

2013, pp. 64–71.

[119] L. Derczynski, E. Nichols, M. van Erp, and N. Limsopatham, “Results of the

WNUT2017 shared task on novel and emerging entity recognition,” in Pro-

189

https://doi.org/10.18653/v1/2020.emnlp-main.523
https://aclanthology.org/2020.emnlp-main.523


ceedings of the 3rd Workshop on Noisy User-generated Text, Copenhagen, Den-

mark: Association for Computational Linguistics, Sep. 2017, pp. 140–147. doi:

10.18653/v1/W17-4418. [Online]. Available: https://aclanthology.

org/W17-4418.

[120] L. Derczynski, K. Bontcheva, and I. Roberts, “Broad Twitter corpus: A di-

verse named entity recognition resource,” in Proceedings of the 26th Interna-

tional Conference on Computational Linguistics: Technical Papers, Dec. 2016,

pp. 1169–1179.

[121] D. Inkpen, J. Liu, A. Farzindar, F. Kazemi, and D. Ghazi, “Detecting and disam-

biguating locations mentioned in twitter messages,” in Lecture Notes in Com-

puter Science (including subseries Lecture Notes in Artificial Intelligence and

Lecture Notes in Bioinformatics), vol. 9042, Springer Verlag, 2015, pp. 321–332,

isbn: 9783319181165. doi: 10.1007/978-3-319-18117-2_24. [Online].

Available: https://dev.twitter.com.

[122] P. Chen, H. Xu, C. Zhang, and R. Huang, “Crossroads, buildings and neigh-

borhoods: A dataset for fine-grained location recognition,” in Proceedings of

the 2022 Conference of the North American Chapter of the Association for

Computational Linguistics: Human Language Technologies, Seattle, United

States: Association for Computational Linguistics, Jul. 2022, pp. 3329–3339.

doi: 10.18653/v1/2022.naacl-main.243. [Online]. Available: https:

//aclanthology.org/2022.naacl-main.243.

[123] S. E. Middleton, L. Middleton, and S. Modafferi, “Real-time crisis mapping of

natural disasters using social media,” IEEE Intelligent Systems, vol. 29, no. 2,

pp. 9–17, 2014.

190

https://doi.org/10.18653/v1/W17-4418
https://aclanthology.org/W17-4418
https://aclanthology.org/W17-4418
https://doi.org/10.1007/978-3-319-18117-2_24
https://dev.twitter.com
https://doi.org/10.18653/v1/2022.naacl-main.243
https://aclanthology.org/2022.naacl-main.243
https://aclanthology.org/2022.naacl-main.243


[124] Y. Hu and J. Wang, “How Do People Describe Locations during a Natural

Disaster: An Analysis of Tweets from Hurricane Harvey,” Leibniz Interna-

tional Proceedings in Informatics, LIPIcs, vol. 177, 2020, issn: 18688969. doi:

10.4230/LIPIcs.GIScience.2021.I.6. eprint: 2009.12914. [Online].

Available: http://www.acsu.buffalo.edu/$%5Csim$yhu42/https:

//geoai.geog.buffalo.edu/people/.

[125] X. Hu, Z. Zhou, H. Li, et al., “Location reference recognition from texts: A

survey and comparison,” arXiv preprint arXiv:2207.01683, 2022.

[126] N. J. Fernández-Martínez, “The FGLOCTweet corpus: An english tweet-based

corpus for fine-grained location-detection tasks,” Research in Corpus Linguis-

tics, vol. 10, no. 1, pp. 117–133, 2022.

[127] K. Bahnasy, A. El-Mahdy, et al., “Twitter analysis based on damage detec-

tion and geoparsing for event mapping management,” Future Computing and

Informatics Journal, vol. 5, no. 1, p. 1, 2020.

[128] K. Darwish, “Named entity recognition using cross-lingual resources: Arabic as

an example,” in Proceedings of the 51st Annual Meeting of the Association for

Computational Linguistics (Volume 1: Long Papers), 2013, pp. 1558–1567.

[129] G. Aguilar, F. AlGhamdi, V. Soto, M. Diab, J. Hirschberg, and T. Solorio,

“Named entity recognition on code-switched data: Overview of the CALCS

2018 shared task,” in Proceedings of the Third Workshop on Computational

Approaches to Linguistic Code-Switching,Melbourne,Australia:Association for

Computational Linguistics, Jul. 2018, pp. 138–147. doi: 10.18653/v1/W18-

3219. [Online]. Available: https://aclanthology.org/W18-3219.

191

https://doi.org/10.4230/LIPIcs.GIScience.2021.I.6
2009.12914
http://www.acsu.buffalo.edu/$%5Csim$yhu42/https://geoai.geog.buffalo.edu/people/
http://www.acsu.buffalo.edu/$%5Csim$yhu42/https://geoai.geog.buffalo.edu/people/
https://doi.org/10.18653/v1/W18-3219
https://doi.org/10.18653/v1/W18-3219
https://aclanthology.org/W18-3219


[130] M. Jarrar, M. Khalilia, and S. Ghanem, “Wojood: Nested arabic named entity

corpus and recognition using bert,” in Proceedings of the International Confer-

ence on Language Resources and Evaluation (LREC 2022), Marseille, France,

June, 2022.

[131] B. Alkouz and Z. Al Aghbari, “Leveraging cross-lingual tweets in location

recognition,” in 2018 IEEE International Conference on Electro/Information

Technology (EIT), IEEE, 2018, pp. 0084–0089.

[132] K. Darwish and W. Gao, “Simple effective microblog named entity recognition:

Arabic as an example,” in Proceedings of the Ninth International Conference on

Language Resources and Evaluation (LREC’14), 2014, pp. 2513–2517.

[133] J. D. G. Paule, Y. Sun, and Y. Moshfeghi, “On fine-grained geolocalisation

of tweets and real-time traffic incident detection,” Information Processing &

Management, vol. 56, no. 3, pp. 1119–1132, 2019.

[134] L. Shang, Y. Zhang, C. Youn, and D. Wang, “Sat-geo: A social sensing based

content-only approach to geolocating abnormal traffic events using syntax-based

probabilistic learning,” Information Processing & Management, vol. 59, no. 2,

p. 102 807, 2022.

[135] A. Olteanu, S. Vieweg, and C. Castillo, “What to expect when the unexpected

happens: Socialmedia communications across crises,” inProceedings of the 18th

ACM conference on computer supported cooperative work & social computing,

ACM, 2015, pp. 994–1009.

[136] M. Imran, S. Elbassuoni, C. Castillo, F. Diaz, and P. Meier, “Practical extraction

of disaster-relevant information from social media,” in Proceedings of the 22nd

192



international conference on World Wide Web companion, International World

Wide Web Conferences Steering Committee, 2013, pp. 1021–1024.

[137] M. Imran, P.Mitra, and C. Castillo, “Twitter as a lifeline: Human-annotated twit-

ter corpora for nlp of crisis-related messages,” arXiv preprint arXiv:1605.05894,

2016.

[138] A. Alharbi and M. Lee, “Kawarith: An Arabic Twitter corpus for crisis events,”

in Proceedings of the Sixth Arabic Natural Language Processing Workshop,

Kyiv, Ukraine (Virtual): Association for Computational Linguistics, Apr. 2021,

pp. 42–52. [Online]. Available: https://aclanthology.org/2021.wanlp-

1.5.

[139] F. Haouari, M. Hasanain, R. Suwaileh, and T. Elsayed, “ArCOV-19: The first

Arabic COVID-19 Twitter dataset with propagation networks,” in Proceedings

of the Sixth Arabic Natural Language Processing Workshop, Kyiv, Ukraine

(Virtual): Association for Computational Linguistics, Apr. 2021, pp. 82–91.

[Online]. Available: https://aclanthology.org/2021.wanlp-1.9.

[140] M. Karimzadeh, “Performance evaluation measures for toponym resolution,”

in Proceedings of the 10th Workshop on Geographic Information Retrieval,

ser. GIR ’16, Burlingame, California: Association for Computing Machinery,

2016, isbn: 9781450345880. doi: 10.1145/3003464.3003472. [Online].

Available: https://doi.org/10.1145/3003464.3003472.

[141] L. Ratinov and D. Roth, “Design challenges and misconceptions in named entity

recognition,” in Proceedings of the Thirteenth Conference on Computational

Natural Language Learning, Jun. 2009, pp. 147–155.

193

https://aclanthology.org/2021.wanlp-1.5
https://aclanthology.org/2021.wanlp-1.5
https://aclanthology.org/2021.wanlp-1.9
https://doi.org/10.1145/3003464.3003472
https://doi.org/10.1145/3003464.3003472


[142] H.-J. Dai, P.-T. Lai, Y.-C. Chang, and R. T.-H. Tsai, “Enhancing of chemical

compound and drug name recognition using representative rag scheme and fine-

grained tokenization,” Journal of cheminformatics, vol. 7, no. S1, S14, Jan.

2015.

[143] J. Yang, S. Liang, and Y. Zhang, “Design challenges and misconceptions in

neural sequence labeling,” in Proceedings of the 27th International Conference

on Computational Linguistics, Aug. 2018, pp. 3879–3889.

[144] L. Derczynski, K. Bontcheva, and I. Roberts, “Broad Twitter corpus: A di-

verse named entity recognition resource,” in Proceedings of the 26th Interna-

tional Conference on Computational Linguistics: Technical Papers, Dec. 2016,

pp. 1169–1179.

[145] S. E. Middleton, L. Middleton, and S. Modafferi, “Real-time crisis mapping of

natural disasters using social media,” IEEE Intelligent Systems, vol. 29, no. 2,

pp. 9–17, 2014.

[146] E. F. TjongKimSang and S. Buchholz, “Introduction to the CoNLL-2000 shared

task: Chunking,” in Proceedings of the 2nd Workshop on Learning Language in

Logic and the 4th Conference on Computational Natural Language Learning,

2000, pp. 127–132.

[147] C. Reuter, T. Ludwig, C. Kotthaus, M.-A. Kaufhold, E. von Radziewski, and V.

Pipek, “Big data in a crisis? creating social media datasets for crisis management

research,” i-com, vol. 15, no. 3, pp. 249–264, 2016.

[148] A. Kitamoto and T. Sagara, “Toponym-based geotagging for observing pre-

cipitation from social and scientific data streams,” in Proceedings of the ACM

194



Multimedia 2012 Workshop on Geotagging and Its Applications in Multimedia,

ser. GeoMM ’12, Nara, Japan: Association for Computing Machinery, 2012,

pp. 23–26, isbn: 9781450315906. doi: 10.1145/2390790.2390799. [On-

line]. Available: https://doi.org/10.1145/2390790.2390799.

[149] F. Alam, U. Qazi, M. Imran, and F. Ofli, “Humaid: Human-annotated disaster

incidents data from twitter,” in 15th International Conference on Web and Social

Media (ICWSM), 2021.

[150] K. Krippendorff, “Estimating the reliability, systematic error and random error

of interval data,” Educational and Psychological Measurement, vol. 30, no. 1,

pp. 61–70, 1970. doi: 10.1177/001316447003000105. eprint: https://

doi.org/10.1177/001316447003000105. [Online]. Available: https:

//doi.org/10.1177/001316447003000105.

[151] M. Imran, P. Mitra, and C. Castillo, “Twitter as a lifeline: Human-annotated

twitter corpora for nlp of crisis-related messages,” in Proceedings of the Tenth

International Conference on Language Resources and Evaluation (LREC 2016),

Portoroz, Slovenia: European Language Resources Association (ELRA), 2016,

isbn: 978-2-9517408-9-1.

[152] F. Alam, S. Joty, and M. Imran, “Domain adaptation with adversarial training

and graph embeddings,” 2018.

[153] D. T. Nguyen, F. Ofli, M. Imran, and P. Mitra, “Damage assessment from social

media imagery data during disasters,” in Proceedings of the 2017 IEEE/ACM

International Conference on Advances in Social Networks Analysis and Mining

2017, ACM, 2017, pp. 569–576.

195

https://doi.org/10.1145/2390790.2390799
https://doi.org/10.1145/2390790.2390799
https://doi.org/10.1177/001316447003000105
https://doi.org/10.1177/001316447003000105
https://doi.org/10.1177/001316447003000105
https://doi.org/10.1177/001316447003000105
https://doi.org/10.1177/001316447003000105


[154] J. Lafferty, A. McCallum, and F. C. Pereira, “Conditional random fields: Prob-

abilistic models for segmenting and labeling sequence data,” 2001.

[155] Z. Ji, A. Sun, G. Cong, and J. Han, “Joint recognition and linking of fine-grained

locations from tweets,” in Proceedings of the 25th International Conference on

World Wide Web, 2016, pp. 1271–1281, isbn: 9781450341431.

[156] J. Cohen, “A coefficient of agreement for nominal scales,” Educational and

psychological measurement, vol. 20, no. 1, pp. 37–46, 1960.

[157] W. Alabbas, H. M. al-Khateeb, A. Mansour, G. Epiphaniou, and I. Frommholz,

“Classification of colloquial arabic tweets in real-time to detect high-risk floods,”

in 2017 International Conference On Social Media, Wearable And Web Analytics

(Social Media), 2017, pp. 1–8. doi: 10.1109/SOCIALMEDIA.2017.8057358.

[158] A. Alharbi and M. Lee, “Crisis detection from arabic tweets,” in Proceedings of

the 3rd workshop on arabic corpus linguistics, 2019, pp. 72–79.

[159] Y. A. Ameen, K. Bahnasy, and A. E. Elmahdy, “Classification of arabic tweets

for damage event detection,” 2020.

[160] S. Hassan, H. Mubarak, A. Abdelali, and K. Darwish, “Asad: Arabic social

media analytics and understanding,” in Proceedings of the 16th Conference of

the European Chapter of the Association for Computational Linguistics: System

Demonstrations, 2021, pp. 113–118.

[161] M. Abdul-Mageed, A. Elmadany, and E. M. B. Nagoudi, “Arbert & marbert:

Deep bidirectional transformers for arabic,” arXiv preprint arXiv:2101.01785,

2020.

196

https://doi.org/10.1109/SOCIALMEDIA.2017.8057358


[162] B. A. Benali, S. Mihi, N. Laachfoubi, and A. A. Mlouk, “Arabic named en-

tity recognition in arabic tweets using bert-based models,” Procedia Computer

Science, vol. 203, pp. 733–738, 2022.

[163] G. Inoue, B. Alhafni, N. Baimukan, H. Bouamor, and N. Habash, “The inter-

play of variant, size, and task type in Arabic pre-trained language models,” in

Proceedings of the Sixth Arabic Natural Language Processing Workshop, Kyiv,

Ukraine (Online): Association for Computational Linguistics, Apr. 2021.

[164] A. Abdelali, K. Darwish, N. Durrani, and H. Mubarak, “Farasa: A fast and

furious segmenter for arabic,” in NAACL, 2016.

[165] K.-T. Chang, Introduction to geographic information systems. McGraw-Hill

Boston, 2008, vol. 4.

[166] Nominatim api. [Online]. Available: https://nominatim.org/release-

docs/develop/.

[167] A. Mourad, F. Scholer, W. Magdy, and M. Sanderson, “A practical guide for the

effective evaluation of twitter user geolocation,” ACM Transactions on Social

Computing, vol. 2, no. 3, pp. 1–23, 2019.

[168] G. Pettet, H. Baxter, S. M. Vazirizade, et al., “Designing decision support

systems for emergency response: Challenges and opportunities,” in Proceedings

of the First Workshop on Cyber Physical Systems for Emergency Response

(CPS-ER) colocated with CPS-IOT Week 2022, 2022.

[169] J. Sankaranarayanan, H. Samet, B. E. Teitler, M. D. Lieberman, and J. Sper-

ling, “Twitterstand: News in tweets,” in Proceedings of the 17th acm sigspatial

197

https://nominatim.org/release-docs/develop/
https://nominatim.org/release-docs/develop/


international conference on advances in geographic information systems, 2009,

pp. 42–51.

[170] K.Watanabe,M.Ochi,M.Okabe, andR.Onai, “Jasmine:A real-time local-event

detection system based on geolocation information propagated to microblogs,”

in Proceedings of the 20th ACM international conference on Information and

knowledge management, 2011, pp. 2541–2544.

[171] V. Lorini, C. Castillo, S. Peterson, et al., “Social media for emergency manage-

ment: Opportunities and challenges at the intersection of research and practice,”

in 18th International Conference on Information Systems for Crisis Response

and Management, 2021, pp. 772–777.

[172] J. P. De Albuquerque, B. Herfort, A. Brenning, and A. Zipf, “A geographic

approach for combining social media and authoritative data towards identifying

useful information for disaster management,” International journal of geograph-

ical information science, vol. 29, no. 4, pp. 667–689, 2015.

[173] M.-A. Kaufhold, M. Bayer, and C. Reuter, “Rapid relevance classification of

social media posts in disasters and emergencies: A system and evaluation fea-

turing active, incremental and online learning,” Information Processing & Man-

agement, vol. 57, no. 1, p. 102 132, 2020.

[174] O. Ozdikis, H. Ramampiaro, and K. Nørvåg, “Locality-adapted kernel densities

of term co-occurrences for location prediction of tweets,” Information Process-

ing & Management, vol. 56, no. 4, pp. 1280–1299, 2019.

198



[175] X. Luo, Y. Qiao, C. Li, J. Ma, and Y. Liu, “An overview of microblog user

geolocation methods,” Information processing & management, vol. 57, no. 6,

p. 102 375, 2020.

[176] J. Wu, R. Hu, D. Li, L. Ren, W. Hu, and Y. Xiao, “Where have you been: Dual

spatiotemporal-aware user mobility modeling for missing check-in poi identi-

fication,” Information Processing & Management, vol. 59, no. 5, p. 103 030,

2022.

[177] T. Miyazaki, A. Rahimi, T. Cohn, and T. Baldwin, “Twitter geolocation using

knowledge-based methods,” in Proceedings of the 2018 EMNLP Workshop W-

NUT: The 4th Workshop on Noisy User-generated Text, Brussels, Belgium:Asso-

ciation for Computational Linguistics, Nov. 2018, pp. 7–16. doi: 10.18653/v1/

W18-6102. [Online]. Available: https://aclanthology.org/W18-6102.

[178] M. Á. García-Cumbreras, J. M. Perea-Ortega, M. García-Vega, and L. A. Ureña-

López, “Information retrieval with geographical references. relevant documents

filtering vs. query expansion,” Information processing & management, vol. 45,

no. 5, pp. 605–614, 2009.

199

https://doi.org/10.18653/v1/W18-6102
https://doi.org/10.18653/v1/W18-6102
https://aclanthology.org/W18-6102


APPENDIX A: DETAILED TRANSFER LMR RESULTS

Detailed results, including out-domain training, in/out-domain training, cross-

domain training, and training based on geo-proximity of events (Table A.1).
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APPENDIX B: IDRISI DATA RELEASE

The IDRISI-RA dataset is released1 data setups that are random and Time-

based. The location mention and location type annotations are made available for

the community to enable development of type-less and type-based LMR models. The

data is released in JSONL format where every lines corresponds to one tweet with the

following properties: “text”, “created_at”, “info_class” adopted from Kwaraith dataset,

and “location_mentions”.

Tables B.1, B.2, and B.3 show the detailed statistics of IDRISI-RE and IDRISI-

RA datasets for the random and time-based setups per event.

In Figure B.1, we depict the temporal coverage of Cyclone Idai 2019 and Kerala

FLD 2018 events from IDRISI-RE dataset. In Figure B.2, we depict the temporal

coverage of COVID-19 and Kuwait FLD 2018 events from IDRISI-RA dataset.

Tables B.4-B.6 show detailed statistics of IDRISI-D datasets.

1This dataset is licensed under a Creative Commons Attribution 4.0 International License: https:
//creativecommons.org/licenses/by/4.0/legalcode
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Figure B.1. The temporal coverage of tweets in IDRISI-RA.
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APPENDIX C: IDRISI-R DETAILED FINE-TUNING RESULTS AND BEST

HYPER-PARAMETERS

Tables C.1 and C.2 show the best hyper-parameters and detailed results of the

Bert𝐿𝑀𝑅 model for both type-less and type-based LMR over IDRISI-RE. Tables C.3

and C.4 show the best hyper-parameters and detailed results of the CRF LMR models

for both type-less and type-based recognition, respectively.

Tables C.5 and C.6 show the best hyper-parameters and detailed results for the

Crf𝐿𝑀𝑅 and Bert𝐿𝑀𝑅 models for IDRISI-RA, respectively.
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Table C.1. The best hyper-parameters and results of the Bert𝐿𝑀𝑅 model over
IDRISI-RE under the random data setup. e, bs, lr, and sl refer to the hyper-parameters,
number of epochs, batch size, learning rate, and sequence length, respectively.

Event e bs lr P R F1

Type-less
Ecuador Earthquake 4 32 4e-5 0.960 0.958 0.953
Canada Wildfires 4 8 4e-5 0.733 0.749 0.732
Italy Earthquake 3 8 3e-5 0.881 0.886 0.880
Kaikoura Earthquake 3 8 3e-5 0.914 0.919 0.912
Hurricane Matthew 4 8 5 0.948 0.945 0.941
Sri Lanka Floods 3 16 4e-5 0.921 0.929 0.917
Hurricane Harvey 4 8 5 0.919 0.902 0.906
Hurricane Irma 4 8 3e-5 0.843 0.839 0.835
Hurricane Maria 2 8 4e-5 0.932 0.926 0.925
Mexico Earthquake 4 8 3e-5 0.932 0.932 0.929
Maryland Floods 3 16 5 0.895 0.901 0.890
Greece Wildfires 3 8 5 0.935 0.934 0.927
Kerala Floods 4 32 5 0.897 0.893 0.887
Hurricane Florence 4 8 4e-5 0.773 0.755 0.755
California Wildfires 3 16 3e-5 0.923 0.930 0.920
Cyclone Idai 3 8 4e-5 0.932 0.927 0.925
Midwestern U.S. Floods 4 8 5 0.948 0.957 0.944
Hurricane Dorian 4 8 5 0.874 0.893 0.878
Pakistan Earthquake 3 32 4e-5 0.876 0.902 0.877

Type-based
Ecuador Earthquake 2 8 3e-5 0.951 0.940 0.939
Canada Wildfires 3 8 4e-5 0.733 0.749 0.733
Italy Earthquake 3 8 4e-5 0.894 0.894 0.890
Kaikoura Earthquake 4 16 5 0.914 0.916 0.909
Hurricane Matthew 4 32 5 0.931 0.923 0.919
Sri Lanka Floods 4 8 5 0.929 0.933 0.925
Hurricane Harvey 4 16 4e-5 0.921 0.905 0.909
Hurricane Irma 2 8 5 0.847 0.831 0.833
Hurricane Maria 2 8 5 0.936 0.924 0.924
Mexico Earthquake 2 16 4e-5 0.921 0.914 0.913
Maryland Floods 3 8 4e-5 0.906 0.894 0.892
Greece Wildfires 3 16 3e-5 0.927 0.940 0.925
Kerala Floods 4 8 5 0.891 0.885 0.880
Hurricane Florence 3 16 4e-5 0.795 0.774 0.772
California Wildfires 4 32 4e-5 0.913 0.919 0.909
Cyclone Idai 3 32 4e-5 0.906 0.906 0.900
Midwestern U.S. Floods 4 8 5 0.944 0.948 0.936
Hurricane Dorian 4 16 5 0.857 0.871 0.858
Pakistan Earthquake 4 8 5 0.899 0.908 0.894
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Table C.2. The best hyper-parameters and results of the Bert𝐿𝑀𝑅 model over
IDRISI-RE under the time-based data setup.. e, bs, lr, and sl refer to the
hyper-parameters, number of epochs, batch size, learning rate, and sequence length,
respectively.

Event e bs lr P R F1

Type-less
Ecuador Earthquake 4 32 4e-5 0.923 0.921 0.916
Canada Wildfires 4 8 4e-5 0.768 0.779 0.767
Italy Earthquake 8 3e-5 0.840 0.849 0.842
Kaikoura Earthquake 3 8 3e-5 0.912 0.893 0.896
Hurricane Matthew 4 8 5 0.949 0.956 0.944
Sri Lanka Floods 3 16 4e-5 0.904 0.918 0.904
Hurricane Harvey 4 8 5 0.900 0.893 0.894
Hurricane Irma 4 8 3e-5 0.829 0.833 0.825
Hurricane Maria 2 8 4e-5 0.913 0.909 0.904
Mexico Earthquake 4 8 3e-5 0.919 0.913 0.911
Maryland Floods 3 16 5 0.900 0.838 0.845
Greece Wildfires 3 8 5 0.897 0.895 0.883
Kerala Floods 4 32 5 0.927 0.934 0.923
Hurricane Florence 4 8 4e-5 0.801 0.785 0.784
California Wildfires 3 16 3e-5 0.914 0.906 0.906
Cyclone Idai 3 8 4e-5 0.911 0.900 0.898
Midwestern U.S. Floods 4 8 5 0.946 0.961 0.949
Hurricane Dorian 8 5 0.865 0.872 0.862
Pakistan Earthquake 3 32 4e-5 0.830 0.878 0.836

Type-based
Ecuador Earthquake 4 32 4e-5 0.941 0.922 0.926
Canada Wildfires 4 8 4e-5 0.772 0.780 0.771
Italy Earthquake 3 8 3e-5 0.879 0.888 0.881
Kaikoura Earthquake 3 8 3e-5 0.918 0.895 0.899
Hurricane Matthew 4 8 5 0.955 0.963 0.952
Sri Lanka Floods 3 16 4e-5 0.911 0.925 0.912
Hurricane Harvey 4 8 5 0.898 0.896 0.895
Hurricane Irma 4 8 3e-5 0.827 0.828 0.823
Hurricane Maria 2 8 4e-5 0.910 0.895 0.897
Mexico Earthquake 4 8 3e-5 0.918 0.914 0.911
Maryland Floods 3 16 5 0.851 0.795 0.805
Greece Wildfires 3 8 5 0.899 0.899 0.887
Kerala Floods 4 32 5 0.926 0.927 0.919
Hurricane Florence 4 8 4e-5 0.792 0.781 0.778
California Wildfires 3 16 3e-5 0.918 0.900 0.902
Cyclone Idai 3 8 4e-5 0.905 0.900 0.895
Midwestern U.S. Floods 4 8 5 0.944 0.957 0.944
Hurricane Dorian 4 8 5 0.864 0.860 0.852
Pakistan Earthquake 3 32 4e-5 0.819 0.868 0.828
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Table C.3. The best hyper-parameters and results for CRF model over IDRISI-RE for
Type-less LMR. The column “Algo.” refers to the training algorithm of CRF. The
“HP1” and “HP2” refer to the tuned hyper-parameters with respect to the algorithm.
“var”, “eps”, and “g” refer to “var” “epsilon”, and “g”, respectively.

Event Algo. HP1 HP2 P R F1

Random data setup
Ecuador Earthquake lbfgs c1=0.95 c2=0.95 0.890 0.842 0.866
Canada Wildfires ap eps=0.001 0.635 0.864 0.732
Italy Earthquake lbfgs c1=0.1 c2=0.1 0.547 0.569 0.558
Kaikoura Earthquake lbfgs c1=0.15 c2=0.15 0.872 0.884 0.878
Hurricane Matthew lbfgs c1=0.95 c2=0.95 0.925 0.857 0.890
Sri Lanka Floods ap eps=0.01 0.835 0.878 0.856
Hurricane Harvey lbfgs c1=0.15 c2=0.15 0.816 0.804 0.810
Hurricane Irma lbfgs c1=0.25 c2=0.25 0.843 0.714 0.773
Hurricane Maria lbfgs c1=0.15 c2=0.15 0.858 0.869 0.864
Mexico Earthquake arow var=0.1 g=0.5 0.838 0.884 0.860
Maryland Floods arow var=0.1 g=0.25 0.750 0.878 0.809
Greece Wildfires lbfgs c1=0.25 c2=0.25 0.757 0.941 0.839
Kerala Floods ap eps=1e-5 0.705 0.745 0.725
Hurricane Florence ap eps=0.001 0.660 0.673 0.667
California Wildfires lbfgs c1=0.5 c2=0.5 0.885 0.855 0.870
Cyclone Idai lbfgs c1=0.65 c2=0.65 0.899 0.885 0.892
Midwestern U.S. Floods lbfgs c1=0.6 c2=0.6 0.914 0.894 0.904
Hurricane Dorian lbfgs c1=0.55 c2=0.55 0.856 0.787 0.820
Pakistan Earthquake lbfgs c1=0.35 c2=0.35 0.872 0.885 0.879

Time-based data setup
Ecuador Earthquake arow var=0.25 g=0.25 0.933 0.933 0.932
Canada Wildfires ap eps=0.01 0.853 0.853 0.853
Italy Earthquake arow var=1 g=0.125 0.906 0.906 0.906
Kaikoura Earthquake arow var=0.5 g=0.25 0.880 0.880 0.879
Hurricane Matthew arow var=1 g=0.1 0.902 0.905 0.901
Sri Lanka Floods arow var=1 g=0.1 0.911 0.911 0.910
Hurricane Harvey arow var=0.1 g=0.125 0.906 0.906 0.906
Hurricane Irma lbfgs c1=0.95 c2=0.95 0.906 0.906 0.906
Hurricane Maria arow var=0.16 g=0.5 0.883 0.883 0.882
Mexico Earthquake arow var=0.25 g=0.16 0.839 0.839 0.838
Maryland Floods lbfgs c1=0.85 c2=0.85 0.754 0.759 0.751
Greece Wildfires arow var=0.5 g=0.1 0.895 0.901 0.896
Kerala Floods arow var=0.125 g=0.5 0.880 0.881 0.880
Hurricane Florence arow var=1 g=0.16 0.879 0.879 0.879
California Wildfires arow var=1 g=0.125 0.908 0.908 0.907
Cyclone Idai arow var=0.125 g=0.5 0.877 0.879 0.877
Midwestern U.S. Floods lbfgs c1=0.9 c2=0.9 0.920 0.923 0.917
Hurricane Dorian arow var=0.16 g=0.5 0.875 0.875 0.875
Pakistan Earthquake arow var=1 g=0.125 0.821 0.822 0.820
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Table C.4. The best hyper-parameters and results for CRF model over IDRISI-RE for
Type-based LMR. The column “Algo.” refers to the training algorithm of CRF. The
“HP1” and “HP2” refer to the tuned hyper-parameters with respect to the algorithm.

Event Algo. HP1 HP2 P R F1

Random data setup
Ecuador Earthquake lbfgs c1=0.8 c2=0.8 0.735 0.698 0.716
Canada Wildfires lbfgs c1=0.7 c2=0.7 0.597 0.699 0.644
Italy Earthquake ap eps=1e-5 0.534 0.477 0.504
Kaikoura Earthquake lbfgs c1=0.95 c2=0.95 0.856 0.675 0.755
Hurricane Matthew lbfgs c1=0.2 c2=0.2 0.774 0.808 0.790
Sri Lanka Floods lbfgs c1=0.4 c2=0.4 0.681 0.811 0.740
Hurricane Harvey lbfgs c1=0.9 c2=0.9 0.677 0.537 0.599
Hurricane Irma lbfgs c1=0.4 c2=0.4 0.586 0.497 0.538
Hurricane Maria lbfgs c1=0.25 c2=0.25 0.782 0.754 0.768
Mexico Earthquake arow var=0.1 g=0.5 0.828 0.770 0.798
Maryland Floods lbfgs c1=0.55 c2=0.55 0.796 0.547 0.648
Greece Wildfires lbfgs c1=0.7 c2=0.7 0.770 0.786 0.778
Kerala Floods lbfgs c1=0.55 c2=0.55 0.633 0.642 0.638
Hurricane Florence arow var=0.16 g=0.5 0.373 0.617 0.465
California Wildfires lbfgs c1=0.7 c2=0.7 0.861 0.804 0.832
Cyclone Idai lbfgs c1=0.95 c2=0.95 0.784 0.626 0.696
Midwestern U.S. Floods lbfgs c1=0.9 c2=0.9 0.794 0.791 0.792
Hurricane Dorian lbfgs c1=0.85 c2=0.85 0.621 0.378 0.470
Pakistan Earthquake lbfgs c1=0.55 c2=0.55 0.706 0.742 0.723

Time-based data setup
Ecuador Earthquake arow var=0.1 g=0.16 0.910 0.912 0.910
Canada Wildfires lbfgs c1=0.05 c2=0.05 0.865 0.865 0.865
Italy Earthquake arow var=0.5 g=0.16 0.881 0.881 0.881
Kaikoura Earthquake arow var=0.16 g=0.125 0.875 0.874 0.875
Hurricane Matthew lbfgs c1=0.15 c2=0.15 0.901 0.903 0.899
Sri Lanka Floods arow var=1 g=0.25 0.900 0.896 0.897
Hurricane Harvey ap eps=0.01 0.914 0.914 0.914
Hurricane Irma lbfgs c1=0.55 c2=0.55 0.893 0.893 0.893
Hurricane Maria arow var=1 g=0.1 0.890 0.890 0.890
Mexico Earthquake arow var=0.1 g=1 0.881 0.882 0.880
Maryland Floods arow var=1 g=0.16 0.875 0.878 0.873
Greece Wildfires arow var=0.25 g=0.5 0.886 0.890 0.886
Kerala Floods arow var=1 g=0.1 0.857 0.859 0.857
Hurricane Florence arow var=0.1 g=0.5 0.889 0.889 0.889
California Wildfires arow var=1 g=0.125 0.903 0.903 0.902
Cyclone Idai arow var=1 g=0.1 0.852 0.854 0.852
Midwestern U.S. Floods lbfgs c1=0.35 c2=0.35 0.924 0.925 0.920
Hurricane Dorian arow var=0.5 g=0.1 0.865 0.866 0.865
Pakistan Earthquake arow var=0.16 g=0.16 0.781 0.782 0.780
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Table C.5. The best hyper-parameters and results for CRF model over IDRISI-RA. The
column “Algo." refers to the training algorithm of CRF. The “HP1" and “HP2" refer to
the tuned hyper-parameters with respect to the algorithm.

Event Algo. HP1 HP2 P R F1

Random data setup Type-less LMR
Jordan Floods arow var=0.1 g=0.16 0.841 0.845 0.843
Kuwait Floods arow var=1 g=0.125 0.865 0.603 0.711
Cairo Bombing l2sgd c2=0.2 ce=1e-2 0.971 0.964 0.968
Hafr Floods lbfgs c1=0.05 c2=0.05 0.881 0.799 0.838
Dragon Storms pa c=1 e_sensitive=TRUE 0.787 0.627 0.698
Beirut Explosion arow var=0.1 g=0.5 0.943 0.813 0.873
CoVID-19 arow var=1 g=1 0.787 0.539 0.640

Random data setup Type-based LMR
Jordan Floods lbfgs c1=0.25 c2=0.25 0.766 0.786 0.776
Kuwait Floods arow var=0.5 g=0.1 0.822 0.530 0.644
Cairo Bombing l2sgd c2=0.9 ce=1e-4 0.929 0.938 0.933
Hafr Floods l2sgd c2=0.5 ce=1e-4 0.891 0.776 0.829
Dragon Storms ap eps=1e-5 - 0.659 0.569 0.611
Beirut Explosion l2sgd c2=0.15 ce=1e-2 0.692 0.874 0.772
CoVID-19 arow var=0.1 g=0.125 0.676 0.597 0.634

Time-based data setup Type-less LMR
Jordan Floods pa c=0 e_sensitive=TRUE 0.837 0.837 0.837
Kuwait Floods pa c=0 e_sensitive=TRUE 0.904 0.904 0.904
Cairo Bombing pa c=2 e_sensitive=TRUE 0.714 0.708 0.708
Hafr Floods l2sgd c2=0.75 ce=1e-6 0.861 0.861 0.859
Dragon Storms pa c=0 e_sensitive=TRUE 0.872 0.872 0.872
Beirut Explosion l2sgd c2=0.3 ce=1e-3 0.701 0.703 0.701
CoVID-19 pa c=0 e_sensitive=TRUE 0.928 0.928 0.928

Time-based data setup Type-based LMR
Jordan Floods arow var=0.25 g=0.1 0.776 0.778 0.775
Kuwait Floods pa c=0 e_sensitive=TRUE 0.891 0.891 0.891
Cairo Bombing l2sgd c2=0.05 ce=1e-6 0.740 0.741 0.737
Hafr Floods l2sgd c2=0.05 ce=1e-6 0.882 0.883 0.882
Dragon Storms pa c=0 e_sensitive=TRUE 0.880 0.880 0.880
Beirut Explosion arow var=0.5 g=0.16 0.617 0.643 0.621
CoVID-19 pa c=0 e_sensitive=TRUE 0.901 0.901 0.901



Ta
bl
e
C
.6
.T
he
be
st
hy
pe
r-p
ar
am
et
er
sa
nd
re
su
lts
of
th
e
B
er
t 𝐿

𝑀
𝑅
m
od
el
ov
er
ID
R
IS
I-
R
A
un
de
rT

yp
e-

le
ss
LM
R
.

e,
bs
,l
r,
an
d
sl
re
fe
rt
o
th
e
hy
pe
r-p
ar
am
et
er
s,
nu
m
be
ro
fe
po
ch
s,
ba
tc
h
si
ze
,l
ea
rn
in
g
ra
te
,a
nd
se
qu
en
ce
le
ng
th
,r
es
pe
ct
iv
el
y.

R
an
do
m

Ti
m
e-
ba
se
d

Ev
en
t

e
bs

lr
sl

P
R

F1
e
bs

lr
sl

P
R

F1

Ty
pe

-le
ss

Jo
rd
an
Fl
oo
ds

3
8
3e
-5
25
6
0.
95
4
0.
95
7
0.
95
3
3

8
3e
-5
12
8
0.
91
1
0.
91
6
0.
90
3

K
uw
ai
tF
lo
od
s

4
16

3e
-5
25
6
0.
93
5
0.
92
5
0.
92
8
3
16

3e
-5
12
8
0.
89
5
0.
90
5
0.
89
3

C
ai
ro
B
om
bi
ng

3
8
3e
-5
25
6
0.
99
5
0.
98
6
0.
98
9
2

8
3e
-5
12
8
0.
93
4
0.
93
9
0.
93
6

H
af
rF
lo
od
s

4
8
3e
-5
12
8
0.
88
3
0.
88
3
0.
87
9
4

8
3e
-5
25
6
0.
87
8
0.
89
7
0.
87
8

D
ra
go
n
St
or
m
s

3
8
3e
-5
12
8
0.
87
8
0.
87
3
0.
87
0
4

8
4e
-5
12
8
0.
88
2
0.
86
8
0.
86
9

B
ei
ru
tE
xp
lo
si
on

4
8
3e
-5
12
8
0.
88
5
0.
85
1
0.
85
5
4

8
3e
-5
25
6
0.
60
1
0.
61
1
0.
58
2

C
oV
ID
-1
9

3
8
3e
-5
12
8
0.
88
9
0.
88
4
0.
88
1
3

8
3e
-5
25
6
0.
89
6
0.
91
4
0.
89
7

Ty
pe

-b
as

ed
Jo
rd
an
Fl
oo
ds

4
8
3e
-5
12
8
0.
91
6
0.
90
7
0.
90
8
4

8
3e
-5
25
6
0.
88
0
0.
87
2
0.
86
2

K
uw
ai
tF
lo
od
s

4
8
3e
-5
12
8
0.
93
3
0.
92
5
0.
92
5
3

8
3e
-5
25
6
0.
87
4
0.
89
2
0.
87
9

C
ai
ro
B
om
bi
ng

4
8
3e
-5
12
8
0.
98
4
0.
97
0
0.
97
5
4

8
3e
-5
25
6
0.
93
0
0.
93
5
0.
93
1

H
af
rF
lo
od
s

4
8
3e
-5
25
6
0.
87
0
0.
85
7
0.
85
6
3

8
3e
-5
25
6
0.
84
1
0.
85
4
0.
83
8

D
ra
go
n
St
or
m
s

4
8
3e
-5
25
6
0.
79
8
0.
78
9
0.
78
7
4

8
3e
-5
25
6
0.
72
6
0.
72
2
0.
71
4

B
ei
ru
tE
xp
lo
si
on

4
8
4e
-5
25
6
0.
85
4
0.
82
1
0.
81
3
4

8
5
12
8
0.
61
6
0.
63
5
0.
59
6

C
oV
ID
-1
9

4
8
3e
-5
25
6
0.
89
5
0.
89
8
0.
89
3
4

8
3e
-5
12
8
0.
88
8
0.
89
8
0.
88
6

217



218

Table C.7. The best hyper-parameters and results of the Bert𝐿𝑀𝑅 model under disaster
domain transfer setting
e, bs, lr, and sl refer to the hyper-parameters, number of epochs, batch size, learning
rate, and sequence length, respectively.

Source-Target e bs lr sl P R F1

Type-less
BMB-BMB 4 8 3e-5 128 0.935 0.917 0.918
BMB-FLD 4 8 3e-5 128 0.584 0.664 0.596
BMB-PND 4 8 3e-5 128 0.854 0.840 0.839
BMB-STR 4 8 3e-5 128 0.839 0.833 0.831
FLD-BMB 3 8 3e-5 256 0.843 0.762 0.779
FLD-FLD 3 8 3e-5 256 0.940 0.928 0.930
FLD-PND 3 8 3e-5 256 0.898 0.887 0.887
FLD-STR 3 8 3e-5 256 0.839 0.819 0.826
PND-BMB 3 8 3e-5 128 0.526 0.524 0.488
PND-FLD 3 8 3e-5 128 0.686 0.744 0.687
PND-PND 3 8 3e-5 128 0.889 0.884 0.881
PND-STR 3 8 3e-5 128 0.749 0.716 0.728
STR-BMB 3 8 3e-5 128 0.574 0.535 0.518
STR-FLD 3 8 3e-5 128 0.491 0.544 0.501
STR-PND 3 8 3e-5 128 0.792 0.768 0.773
STR-STR 3 8 3e-5 128 0.878 0.873 0.870

Type-based
BMB-BMB 4 8 3e-5 256 0.972 0.934 0.945
BMB-FLD 4 8 3e-5 256 0.396 0.505 0.422
BMB-PND 4 8 3e-5 256 0.876 0.859 0.858
BMB-STR 4 8 3e-5 256 0.798 0.785 0.786
FLD-BMB 3 8 3e-5 256 0.850 0.763 0.786
FLD-FLD 3 8 3e-5 256 0.937 0.935 0.933
FLD-PND 3 8 3e-5 256 0.854 0.846 0.842
FLD-STR 3 8 3e-5 256 0.855 0.838 0.842
PND-BMB 4 8 3e-5 256 0.513 0.507 0.481
PND-FLD 4 8 3e-5 256 0.603 0.703 0.622
PND-PND 4 8 3e-5 256 0.895 0.898 0.893
PND-STR 4 8 3e-5 256 0.781 0.743 0.752
STR-BMB 4 8 3e-5 256 0.469 0.428 0.418
STR-FLD 4 8 3e-5 256 0.406 0.466 0.421
STR-PND 4 8 3e-5 256 0.743 0.715 0.72
STR-STR 4 8 3e-5 256 0.798 0.789 0.787



APPENDIX D: DETAILED DATA SETUPS FOR GENERALIZABILITY

EXPERIMENTS

TablesD.1 andD.2 show the detailed data setups for the domain and geographical

generalizability experiments, respectively.
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Table D.1. The data setups/splits of the domain generalizability experiments. EQK,
FLD, CYC, HRC, and FIR refer to Earthquake, Flood, Cyclone, Hurricane, and Fire,
respectively.

Tweet set Train Test Train Test Train Test Train Test

IDRISI.EQK MID.EQK GEO.EQK GEO+MID.EQK
Ecuador EQK 2016 ✓
Italy EQK 2016 ✓
Kaikoura EQK 2016 ✓
Pakistan EQK 2019 ✓
Puebla Mexico EQK 2017 ✓
ChristChurch EQK 2011 ✓ ✓ ✓ ✓
Geocorpora EQK ✓ ✓ ✓ ✓

IDRISI.FLD OLM.FLD GEO.FLD GEO+OLM.FLD
Sri Lanka FLD 2017 ✓
Maryland FLD 2017 ✓
Kerala FLD 2018 ✓
CYC Idai 2019 ✓
Midwest. US FLD 2019 ✓
Chennai FLD 2015 ✓ ✓
Houston FLD 2016 ✓ ✓
Louisiana FLD 2016 ✓ ✓
Geocorpora FLD ✓ ✓ ✓ ✓

IDRISI.HRC MID.HRC
HRC Matthew 2016 ✓
HRC Harvey 2017 ✓
HRC Irma 2017 ✓
HRC Maria 2017 ✓
HRC Florence 2018 ✓
HRC Dorian 2019 ✓
HRC Sandy 2012 ✓ ✓

IDRISI.FIRE GEO.FIRE
Canada FIRE 2016 ✓
California FIRE 2018 ✓
Greece FIRE 2018 ✓
Geocorpora FIRE ✓ ✓
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Table D.2. The data setups for the geographical generalizability experiments. US, IN,
NZ, IT, CA EC, MX, CR, and PK are the 2-char ISO country codes for the United
States, India, New Zealand, Italy, Canada, Ecuador, Mexico, Greece, and Pakistan,
respectively. AF refers to Africa continent and the countries covered are Mozambique,
Zimbabwe, Malawi, and Madagascar.

Tweets Train Test Train Test Train Test

IDRISI.US OLM.US MID.US
HRC Matthew 2016 ✓
HRC Harvey 2017 ✓
HRC Irma 2017 ✓
HRC Maria 2017 ✓
HRC Florence 2018 ✓
HRC Dorian 2019 ✓
Maryland FLD 2018 ✓
California FIRE 2018 ✓
Midwest. US FLD 2019 ✓
Houston FLD 2016 ✓
Louisiana FLD 2016 ✓
HRC Sandy 2012 ✓ ✓

IDRISI.IN OLM.IN
Kerala FLD 2018 ✓ ✓
Chennai FLD 2015 ✓ ✓

IDRISI.NZ MID.NZ
Kaikoura EQK 2016 ✓ ✓
ChristChurch EQK 2011 ✓ ✓

IDRISI.IT
Italy EQK 2016 ✓

IDRISI.CA
Canada FIRE 2016 ✓

IDRISI.EC
Ecuador EQK 2016 ✓

IDRISI.SK
Srilanka FLD 2017 ✓

IDRISI.MX
Puebla Mexico EQK 2017 ✓

IDRISI.CR
Greece FIRE 2018 ✓

IDRISI.PK
Pakistan EQK 2019 ✓

IDRISI.AF
CYC Idai 2019 ✓



APPENDIX E: LOCATION MENTION DISTRIBUTION

The location distribution of the English disaster-specific tweet datasets are shown

in Figures E.1-E.5).

Figures E.6-E.9 show the distribution of top 15 frequent location mentions in

IDRISI-RE dataset per disaster event.
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Figure E.1. The LMs distribution across training, development, and test data for
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Frequency %

U
ni

qu
e 

LM
s

louisiana
mississippi river

haiti
miss

st . amant
kansas city

louisiana highway 
china

unitedstates
biloxi

wilmer
clinton foundations

rapides parishes
red cross

rapides
louisiana state univer

ebrso
bend

fairgrounds
northshore

nytimes
lafayette parish

0% 25% 50% 75% 100%

Train Dev. Test

Louisiana Floods

Figure E.3. The LMs distribution across training, development, and test data for
Louisiana Floods disaster dataset.



224

Frequency %

U
ni

qu
e 

LM
s

new york
downtown
east river

dc
america

south jersey
mcdonalds
wall street

holland tunnel
oystercreek
sligo creek

pedestrian bridge
clinton hill

china
locations...along o

oakland
point pleasant

upper east side
louis vuitton

u.s.
florida

bali
potomac river

0% 25% 50% 75% 100%

Train Dev. Test

Hurricane Sandy

Figure E.4. The LMs distribution across training, development, and test data for
Hurricane Sandy disaster dataset.

Frequency %

U
ni

qu
e 

LM
s

christchurch
lyttelton

ctv building
chch airport

southland
hornby
sumner

north island
adelaide

powerhouse ventures
christchurh

rangiora
symonds st
rd hughes 

rialto cinemas
lynwood

main south rd
st johns on the 

riccarton
america

college in chch
whangarei

natcoll college
victoria

wgtn
nz career college

pgg building
0% 25% 50% 75% 100%

Train Dev. Test

Christchurch Earthquake

Figure E.5. The LMs distribution across training, development, and test data for
Christchurch Earthquake disaster dataset.



225

0 200 400 600 800

ecuador
japan

manta
quito

usa
guayaquil

pakistan
pedernales

colombia
manabi

africa
israel

kumamoto
nepal

new york

930
25
13
13
11
10
10
10
9
9
6
5
5
5
5

HRC Dorian

0 20 40 60 80 100 120 140

italy
amatrice

rome
pescara del tronto

lazio
vatican
arquata
europe
umbria

us
accumoli

cascia
israel

italian red cross
la

151
46

10
7

4
4
3
3
3
3
2
2
2
2
2

HRC Florence

0 100 200 300 400

new zealand
kaikoura

wellington
christchurch
south island
canterbury

north island
blenheim
auckland

marlborough
clarence river

culverden
east cape

seddon
chatham islands

457
145

131
36

23
17
14
11
10
9
8
8
8
8
7

HRC Harvey

0 50 100 150 200 250 300 350

pakistan
mirpur city

ajk
kashmir

jatlan
jhelum city
islamabad

lahore
punjab

mangla dam
karachi

pak
bhimber

jarikas
mangla

380
279

258
137

44
31

22
21
17

11
10
10
9
8
8

HRC Irma

0 200 400 600 800 1000

mexico
mexico city

oaxaca
morelos

usa
puerto rico

cdmx
la

puebla
texas
israel

chiapas
california

japan
bolivia

992
234

14
12
10
9
8
7
6
5
5
4
3
3
2

HRC Maria

0 50 100 150 200 250

florida
bahamas

abaco
georgia

fl
south carolina
united states

palm beach
jacksonville

miami
atlanta

north carolina
texas

brevard county
s.c.

267
217

67
42

37
33
30
27
24
22
19
19
16
14
14

HRC Matthew
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Figure E.8. The distribution of top 15 location mentions in IDRISI-RE per flood event.
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Figure E.9. The distribution of top 15 location mentions in IDRISI-RE per
wildfire/cyclone event.
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