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Abstract
In recent decades, the demand for vegetables has increased significantly due to the blooming global population. Climate change 
has affected vegetable production by increasing the frequencies and severity of abiotic and biotic stresses. Among the abiotic 
stresses, drought and salinity are the major issues that possess severe threats on vegetable production. Many vegetables (e.g., 
carrot, tomato, okra, pea, eggplant, lettuce, potato) are usually sensitive to drought and salt stress. The defence mechanisms of 
plants against salt and drought stress have been extensively studied in model plant species and field crops. Better understand-
ing of the mechanisms of susceptibility of vegetables to drought and salt stresses will help towards the development of more 
tolerant genotypes as a long-term strategy against these stresses. However, the intensity of the challenges also warrants more 
immediate approaches to mitigate these stresses and enhance vegetable production in the short term. Therefore, this review 
enlightens the updated knowledge of responses (physiological and molecular) against drought and salinity in vegetables and 
potentially effective strategies to enhance production. Moreover, we summarized different technologies such as seed priming, 
genetic transformation, biostimulants, nanotechnology, and cultural practices adopted to enhance vegetable production under 
drought and salinity stress. We propose that approaches of conventional breeding, genetic engineering, and crop management 
should be combined to generate drought and salt resistance cultivars and adopt smart cultivation practices for sustainable 
vegetable production in a changing climate.
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Introduction

Climate change is increasingly threatening agricultural produc-
tion via increasing incidents and severity of two types of unfa-
vorable conditions, i.e., biotic (e.g. insects, diseases) and abiotic 
(e.g. drought, flooding, salinity, heat, frost, nutrients imbal-
ance). Drought and salinity are two major abiotic factors that 
affect plant growth, development, and ultimately its yield (Niu 
et al. 2014; Khalid et al. 2019; Zhang et al. 2022a, b). Plants 
developed several defense mechanisms that cope with the stress 
to maintain their metabolism and growth (Khalid et al. 2019). 
Plants such as vegetable crops are capable of surviving under 
different environmental stresses by natural acclimation and 
adaptation mechanisms, but these abilities may not be sufficient 
to cope with the swift climate changes (Dhankher and Foyer 
2018). How plants respond to abiotic stresses depend on the 
species, stress intensity, stress duration, phenological stage of 
the plant, and the parts of the plant (tissue or organ) involved 
in the responsive mechanisms. Abiotic stresses cause changes 
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in plant physiology and metabolism which can be reversible or 
irreversible (Seymen 2021). These factors affect the vegetable 
crops which are usually susceptible to abiotic stresses (Shan-
non and Grieve 1998; Walter et al. 2013; Devi and Arumugam 
2019; Parkash and Singh 2020). To fulfill the future demand for 
vegetables globally, we urge to develop new cultivation tech-
niques or tolerant genotypes to tackle the pressing drought and 
salinity issues (Pathak et al. 2018).

Vegetables are a major constituent of the human diet, as 
they are a rich source of antioxidants, vitamins, minerals, 
and dietary fibers (Slavin and Lloyd 2012). Vegetables are 
also consumed for their unique taste, texture, and religious 
importance. Global vegetable production increased 65% 
from 446 Mt in 2000 to 1128 Mt in 2019. However, there 
are still over 770 million undernourished people out of the 
close to 8 billion global population (FAO 2021). Scientists 
and growers are investing efforts to increase the production 
and nutritional value of vegetables under stressful condi-
tions (Gruda et al. 2019). The magnitude of drought and salt 
stress depends on various environmental factors, such as the 
occurrence and distribution of solar radiation, evapotranspi-
ration needs, and the ability to retain soil moisture (Khalid 
et al. 2019). Therefore, sustainable breeding technologies 
and agricultural management practices should be developed 
to monitor drought and salt stress in order to minimize their 
damage to vegetable crops.

Drought and salinity not only affect the production, but 
also the quality of vegetables. Most vegetables are sensi-
tive to salt with salinity threshold at electrical conductiv-
ity (EC) ~ 2.5 dS  m−1 (Behera et al. 2022) and sensitive 

to drought at volumetric water content of ~ 20% (Prakash 
and Singh 2020; Razi and Muneer 2021). Drought- and 
salinity-induced osmotic, ionic and oxidative stresses lead 
to the closure of plant stomata in the short-term to result 
in a decrease in size of plants in the long-term (Safdar 
et al. 2019) (Fig. 1). Stomatal closure results in reduced 
 CO2 uptake (Chen et al. 2005; Liu et al. 2014; Cai et al. 
2017), limiting carboxylation and lowering internal  CO2 
levels, resulting in increased photorespiration (Fig. 1). The 
production of reactive oxygen species is also enhanced in 
the plants when exposed to drought and salt stress condi-
tions which lead to oxidative damage to cellular organelles 
(Fig. 1).

Despite the abundance of research in vegetables in the 
past few decades, there are still some unfilled knowledge 
gaps on the responses of vegetables to drought and salin-
ity. This review aims to present the latest knowledge on 
two major abiotic stresses, drought and salinity in modern 
agriculture, and the responses of plants to these stresses. 
We review physiological and molecular responses to 
drought and salinity in vegetables and potentially effective 
strategies to enhance production. Moreover, we summa-
rized different technologies such as seed priming, genetic 
transformation, biostimulants, nanotechnology, and cul-
tural practices adopted to enhance vegetable production 
under drought and salinity stress For reviews on the mech-
anisms of drought and salinity tolerance in model plants 
and crops, the readers are referred to (Cattivelli et al. 2008; 
Munns et al. 2020; Van et al. 2020).

Fig. 1  Effect of drought and 
salt stress on vegetables and its 
physiological and molecular 
response mechanism. The water 
deficit and accumulation of 
toxic ions leads to physiological 
changes in plants, i.e., closure of 
stomata, decrease in leaf traits, 
and carbon dioxide, which ulti-
mately enhance the photorespi-
ration and decrease in photosyn-
thesis. At the molecular level, 
plants responded to drought 
and salinity with changes in 
expression of genes, proteins, 
and metabolites such as the 
production of ROS, which leads 
to oxidative damage in the cell 
and lipid carboxylation
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Vegetable production and drought stress

Physiological response

Water is the main constituent of plants as it is required 
by many vital functions. However, due to climate change, 
water scarcity is a critical global challenge nowadays espe-
cially to agriculture (Khalid et al. 2019). When plants are 
exposed to drought stress, stomatal closure was induced 
to retain water in the plant by decreasing leaf transpira-
tion. However, stomatal closure also results in declined 
photosynthesis and gas exchange. Water use efficiency can 
be derived by comparing biomass accumulation to tran-
spiration because they are tightly coupled. Genetic analy-
ses showed that a large part of the variation in water use 
efficiency is controlled by genes in several species, but 
with low heritability (Chen et al. 2011). Indeed, water use 
efficiency varies with evaporative demand, time of day, 
seasons, soil types and crop species. Therefore, breed-
ing plants for high water use efficiency has most often 
resulted in slow-growing plants that are uninteresting from 
an agronomical perspective (Blum 2009). For instance, it 
was shown that increase water use efficiency lead to a 15% 
yield increase under water deficit condition, but this yield 
increase was declined with precipitation and nullified with 
rainfall of 400 mm (Condon et al. 2004).

Protective cell responses to ABA-mediated hydraulic 
and non-hydraulic signals support a fundamental role of 
ABA in plant drought signaling (Chen et al. 2017; Xue 
et al. 2017; Munns et al. 2020). Under drought stress, 
the photosynthetic rate is slowed down because the cap-
tured light cannot be completely converted into chemical 
binding energy. Meanwhile, the excess energy leads to 

photoinhibition, that is, a decrease in the maximum quan-
tum yield (Fv/Fm) of the PSII reaction center. Several 
mechanisms mitigate the negative effects of photoinhibi-
tion, such as non-photochemical quenching, photorespi-
ration via Mehler reactions, non-radiative energy dissi-
pation, and chlorophyll content regulation. Fv/Fm values 
can be used not only as an indicator of water deficit stress 
conditions but also to distinguish tolerant and sensitive 
genotypes to drought stress. For example, when drought 
tolerant genotypes of tomato were subjected to water defi-
cit stress, the PSII activity was not decreased and thus 
had higher photosynthetic activity compared to sensitive 
genotypes (Chatterjee and Solankey 2015).

The production of reactive oxygen species (ROS) leads 
to oxidative damage to the chloroplast, thereby reducing 
carboxylation. Reducing leaf size also limits carboxyla-
tion. Low control of acyclic electron transport inhibits 
ATP synthesis. These events together lead to a signifi-
cant reduction in plant photosynthesis. When the plant is 
exposed to water deficit conditions, the ability to tolerate 
water deficit stress and maintain water potential is also 
reduced. Vegetables usually contain more than 90% of 
water because of their succulent nature. Many physiologi-
cal and biochemical processes that are involved in plant 
growth and development are affected by drought stress 
conditions (Bahadur et al. 2011). Water deficiency during 
critical growth stages (e.g. flowering, and fruit set stages) 
of vegetables can severely affects the yield and quality of 
vegetables. Examples of vegetable affected by water defi-
ciency at some critical growth stages are shown in Fig. 2.

Fig. 2  Critical stages of irriga-
tion that affect the yield and 
quality of vegetables

Tomato, Eggplant,
Chilli, Cucumber,

Melons

Carrot, Radish,
Turnip, Potato

Leafy vegetables

Okra, Peas

CRITICAL STAGES OF IRRIGATION

Drought stress

Flowering, Fruit set, Fruit development

Growth and development

Flowering, Pod filling, Pod development

Root / Tuber enlargement

Drought stress

Significant decrease in 
yield and quality
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Molecular response

Water scarcity forces the plants to close their stomata which 
increases the production of ROS, i.e., singlet oxygen  (O2

•−), 
hydrogen peroxide  (H2O2), hydroxyl radical  (OH•), super-
oxide radical (1O2) in cellular organelles. The increase in 
ROS production will cause oxidative stress which ultimately 
affects plant growth and production. Subcellular compart-
ments, such as the chloroplast, mitochondria, and peroxi-
somes, are sites of major metabolic activities and ROS gen-
eration (Mittler 2002). The Mehler reaction in chloroplasts, 
electron transfer in mitochondria, and photorespiration in 
peroxisomes are the main metabolic activities, leading to 
cellular ROS accumulation. The balance between production 
and elimination of intracellular ROS must be tightly regu-
lated and/or metabolized efficiently. This balance is neces-
sary to minimize potential damage to cellular components by 
ROS, as well as to maintain growth, metabolism, develop-
ment, and overall plant productivity (Moller and sweetlove 
2010). To cope with the destructive consequences of ROS 
in cellular organelles, plants produce different antioxidative 
enzymes including superoxide dismutase (SOD), peroxi-
dase (POD), catalase (CAT), ascorbate peroxidase (APX), 
glutathione reductase (GR), and osmolytes (proline, glycine 
betaine, etc.) (Mittler 2002; Khalid et al. 2021). SODs are 

the frontline fighters against the ROS, responsible for the 
conversion of 1O2 into  H2O2. CATs play a critical role to 
convert  H2O2 into  H2O. APXs help in the conversion of 
 H2O2 into  H2O using ascorbate as a specific electron donor 
(Razi and Muneer 2021) (Fig. 3). Vegetables enhance the 
production of antioxidant enzymes and osmolytes when 
they are exposed to drought stress conditions. The tolerant 
genotypes tend to have higher levels of SOD, POD, CAT, 
APx, GR, proline, and glycine betaine as compared to the 
sensitive genotypes. However, this trend may vary among 
different vegetables. This may underlie the observation of 
higher levels of  H2O2 accumulation and lipid peroxidation 
in drought-sensitive vegetables. In tomato plants, antioxi-
dant activity has been reported to increase when plants are 
exposed to drought conditions (Zhou et al. 2019). To miti-
gate the drought stress and enhance the activity of different 
antioxidative enzymes, researchers have introduced nano-
organic fertilizers (Ahanger et al. 2021), foliar application of 
minerals (Farzane et al. 2021), and grafting techniques (San-
zhez-Rodriguez et al. 2012). Drought-tolerant eggplant and 
sweet pepper genotypes with strong antioxidant activities 
were found to tolerate drought stress efficiently at the seed-
ling stage (Maham and Muhammad 2019; Abdelaal et al. 
2020a; Kopta et al. 2020; Alabdullah et al. 2021; Mahmood 
et al. 2021; Semida et al. 2021). Cucumber seedlings also 

Fig. 3    A model of different cellular organelles (chloroplast, mito-
chondria, and peroxisomes) where ROS are generated and scav-
enged by antioxidative enzymes under water deficit conditions. The 
production of ROS is carried out by electron transport chain via PSI 
and PSII (Mehler reaction) and conversion of  O2

·− into  H2O2 with 
the help of SOD in chloroplast. In mitochondria, complex 1 and 2 

of electron transport chain are involved in the production of ROS. In 
peroxisome, xanthine and fatty acids are involved in the production of 
 H2O2.  O2

·− Superoxide ion, PSI II Photosystem I, II, H2O2 Hydrogen 
peroxide, SOD  Superoxide dismutase, APX  Ascorbate peroxidase, 
CAT  Catalase, NADH Nicotinamide adenine dinucleotide, ROS Reac-
tive oxygen species
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showed a similar result when exposed to drought stress con-
ditions. They increased the production of SOD, POD, CAT, 
when exposed to water deficit conditions (Jing et al. 2009; 
Fan et al. 2017).

When plants are exposed to water deficit conditions, roots 
are the first part that sense the water loss and communicate 
water deficit as a stress signal to shoot through the xylem. 
Abscisic acid (ABA) is the main chemical signal that inte-
grates into the roots and moves towards shoots and leaves 
to regulate stomata under water deficit conditions (Osakabe 
et al. 2014; Malcheska et al. 2017) or rapidly biosynthesized 
in leaves in response to stomatal closure (Zhang et al. 2018). 
ABA helps the regulation of plant growth and development 
by inducing stomata closure (He et al. 2018) and triggering 
a complex cascade of signaling pathways and expression of 
drought responsive genes under the drought stress condition 
(Chen et al. 2017; Xue et al. 2017).

Under water deficit conditions, plant undergoes different 
defence strategies and production of cuticular wax is one 
example. Plant cuticular wax acts as barrier against water 
deficit conditions (Shepherd and Griffiths 2006; Xue et al. 
2017). The cuticle is synthesized by the epidermal cells. As 
a barrier, it prevents water loss from non-stomatal channels 
(Xue et al. 2017; Kosma and Jenks 2007) reported that ABA 
was responsible for the upregulation of 10 cuticle-related 
genes. The increase in cuticular wax production has been 
observed in tomatoes (Al-Abdallat et al. 2014) and cucum-
bers (Wang et al. 2015), contributing to the decrease in 
non-stomatal transpirations and hence enhanced tolerance 
against water deficit conditions. By increasing cuticular 
wax production, SlSHN1 overexpression reduced tomato 
cuticular permeability and improved drought tolerance 
(Al-Abdallat et al. 2014). A major component of cuticular 
wax in tomatoes is n-alkanes, which are synthesized in both 
tomato leaves and fruit by SlCER1s and SlCER3s. Overex-
pression of SlCER1–1 resulted in accumulation of n-alkanes 
in tomato leaves and fruits, which enhance their drought 
tolerance and postharvest shelf life of fruit (Wu et al. 2022; 
Liu et al. 2022a, b) found that ectopic expression of orange 
CsECR increases the content of total wax and aliphatic wax 
fractions in the transgenic tomato plants as well as decreased 
the cuticle permeability in fruits and leaves.

Aquaporins are critical to the maintenance of hydraulic 
conductance in roots, maintenance of osmotic homeostasis, 
the expansion of the tissue structure, the efficiency of water 
usage, the viability of seeds, the response and recovery after 
drought stress (Tyerman et al. 2021). A variety of factors 
play a role in aquaporin regulation and expression, including 
pH, cations, ROS, stoichiometry, and phytohormones at var-
ious stages, including genes, transcripts, and proteins (Patel 
and Mishra 2021). As a result of drought stress, guard cell-
specific aquaporin genes are expressed differently, which 
alters the stomatal conductance. The overexpression of 

aquaporin genes PIP1, PIP2, and TIP increase gs, whereas 
PIP knocked-down mutants have a decrease in gs (Ahmed 
et al. 2021). For instance, ectopically expressing MdPIP1; 3 
increased fruit size and enhanced drought tolerance of toma-
toes (Wang et al. 2017).

Natural selection has led to plants evolving diverse stress 
adaptation mechanisms, which include modifying root sys-
tem architectures to obtain water and nutrients in response 
to water deficit (Kulkarni et al. 2017). The root system archi-
tecture is determined by the angle of root growth, the num-
ber and length of primary and lateral roots, and the density 
and length of root hairs (Gérard et al. 2017; Pagès 2021). 
Drought stresses significantly alter root system architecture, 
resulting in the generation of lateral roots and root hairs 
(Koevoets et al. 2016). It has been shown that phytohor-
mone homeostasis plays a critical role during root initiation 
and development under normal conditions as well as under 
abiotic stress conditions (Ranjan et al. 2021). Among the 
phytohormones that regulate root system architecture under 
stress, conditions are ABA, auxins, cytokinins, ethylene, and 
jasmonic acid. A recent report showed that root architecture 
was significantly enhanced in tomato plants under water 
deficit conditions when melatonin was applied exogenously 
(Altaf et al. 2022).

A wide variety of aspects of plant development and stress 
tolerance are regulated by microribonucleic acids (miRNAs) 
of 21–24 nucleotides length, which negatively modulate tar-
get genes through transcription cleavage and translational 
inhibition (Deng et al. 2022). It has now been demonstrated 
that drought stress-induced phytohormone signaling and gene 
expression have a significant influence on miRNA-mediated 
root growth and branching regulation, and ultimately deter-
mine RSA under stressed conditions (Bakhshi et al. 2016). 
Transcription factors or genes that are targeted by miRNAs 
control root growth and patterning. As an example, miR160 
regulates the expression of transcription factors ARF10 and 
ARF16, which are critical in primary root development 
(Wang et al. 2005a, b). For instance, in tomato, over-expres-
sion of microRNA169 enhanced drought tolerance (Zhang 
et al. 2011) and miR1916 was reported to be as a negative 
regulator in drought stress resistance (Chen et al. 2019).

In different species, some novel genes are identified that 
cause changes in physiological and morphological traits 
under drought stress. For example, root length and numbers 
depend on the activity of many genes and the expression 
of dominant alleles of those genes, while root thickness 
depends on the expression of recessive alleles (Kumar et al. 
2012). Genes involved in solute accumulation (e.g., the mtlD 
gene responsible for mannitol accumulation, or the P5CS 
gene for increased proline accumulation) help to balance 
the reduction in plant water potential and encode differ-
ent enzymes required for the synthesis of these molecules 
(Abebe et al. 2003). In vegetables, overexpression of these 
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genes resulted in specific responses to drought stress: ABF4 
transcription factor genes are not only important in tolerating 
drought stress in potato but also increase tuber quality and 
yield (Muñiz García et al. 2018). SlGRAS4 transcription fac-
tor gene is involved in increasing the sensitivity of stomata 
to ABA (Liu et al. 2021), thereby reducing water loss. AVP1 
gene is involved in root growth (Park et al. 2005). NADP-Me 
gene was involved in the reduction of stomatal conductance 
and the improvement of water use efficiency (Laporte et al. 
2002); Wilty gene was involved in the wilting process of 
tomato leaves under drought stress (Kumar et al. 2012).

Vegetable production and salinity

Physiological response

Soil salinization can be divided into primary salinization 
and secondary salinization. The saline soil generally con-
tains large amounts of cations such as  Na+,  Ca2+,  Mg2+, 
and lower amounts of  K+ and  Fe2+ while the most common 
anions are  Cl−,  SO4

2−,  NO3
− and  HCO3

−. Most saline soil 
(primary salinization) is formed through natural processes 
such as weathering (rock), salt accumulation from rainfall, 
and deposition of windblown salt. Secondary salinization is 
the result of human activities, such as the use of poor-quality 
water and fertilizers, and improper practice of agricultural 
management, together inducing soil salinization. Currently, 
7% of the world’s land surface (~ 1 Bha) contains salinized 
soil (Hopmans et al. 2021; Shahid et al. 2018). This includes 
approximately ~ 70 Mha of irrigated land which occupies 
around one-third of the total irrigated land in the Mediter-
ranean Basin. Water quality has become a limiting factor for 
agriculture due to the overuse of salt water in irrigated land 
and coastal areas (Petretto et al. 2019; Zhu 2001; Tyerman 
et al. 2019).

Plant salinity tolerance is a multigenic trait, regulated by 
multiple genes and associated mechanisms. Bahmani et al. 
(2015) outlined a myriad of cellular components related to 
salinity tolerance from very upstream signaling and hormone 
regulation to cellular protection and ion homeostasis against 
salinity. These components work interactively to maintain 
cellular activities under salinity stress via three mecha-
nisms: osmotic modulation, antioxidative regulation, and 
ion homeostasis. Increasing the level of NaCl in soil solu-
tion affects plant water uptake due to osmotic stress (Munns 
2002; Munns et al. 2020; Shabala et al. 2020). Ultimately, 
this osmotic stress has a flow-on effect, resulting in a reduc-
tion of the rate of cell expansion in growing tissues and the 
stomatal opening, as well as a reduction in the amount of 
nutrient diffusion in the leaves. Also, plants are less likely 
to be able to fully exploit light absorbed by photosynthetic 
pigments when stomatal closure is induced by osmosis or 

when  Na+ is accumulated in the cytosol under saline condi-
tions (Shabala et al. 1998; Tavakkoli et al. 2011).

Salts dissolved in soil solutions are in close contact with 
roots and affect plant growth because osmosis reduces water 
uptake by plants, thereby reducing water potential in leaves 
and tissues (Passioura and Munns 1984). Excessive salt con-
centrations in plant tissues can affect growth and productiv-
ity as they hinder several key processes such as germination, 
photosynthesis, nutrient balance, and redox balance (Pari-
har et al. 2015). For example, salinity affects germination 
because it reduces the osmotic potential of the germina-
tion medium for seed adsorption and alters the activities of 
enzymes involved in nucleic acid and protein metabolism 
(Parihar et al. 2015). The salinity stress effect on seed ger-
mination varies by species, variety, and salinity. In general, 
there is a negative correlation between salinity and germi-
nation rate, such as in carrots (Bolton and Simon 2019), 
cucumbers (Baghbani et al. 2013), sweet peppers (Chartzou-
lakis and Klapaki 2000), eggplants (Hannachi and Labake 
2018) and tomatoes (Singh et al. 2012). The effect of salinity 
on plant growth has two consecutive stages (Parihar et al. 
2015). In the first stage, saline conditions do not significantly 
alter plant growth, as  Na+ and  Cl− that enter the xylem are 
collected in the vacuole, while the meristem continues to 
grow through the phloem. At this stage, only reduced leaf 
and root development have been observed (Munns 1993). 
In the second stage, as the amount of salt accumulated in 
plant tissues exceeds the storage capacity of the vacuoles, 
the concentrations in the cytoplasm increase, and the activity 
of many enzymes is severely inhibited (Munns 2005).

Molecular response

Under salt stress, plants are mainly affected by distur-
bance of rhizosphere osmotic potential, which is caused 
by higher salt levels. The accumulation of ions in cellu-
lar compartments and organelles can reach toxic levels, 
hindering many physiological processes, and leading to 
plant death. Salinity-induced stomatal closure reduces 
the diffusion of  CO2 into the stomata, reducing the rate 
of photosynthesis, transpiration, and carbohydrate accu-
mulation (Munns 2002). When plants encounter reduced 
intercellular carbon dioxide content, this often accelerates 
ROS accumulation due to photorespiration (Gupta et al. 
2016). Although ROS are considered signaling molecules 
that play an important role in plant defense mechanisms 
(Mittler 2017), they can also adversely affect cellular 
metabolism and photosynthesis mechanisms. To protect 
cellular systems from ROS, plant defense mechanisms 
produce several oxidative scavenging enzymes (Khalid 
et al. 2020). When salt accumulates in chloroplasts, it 
reduces chlorophyll content, affects the photosynthetic 
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transport system, and inhibits the activity of photosystem 
II. To overcome salinity, plants regulate and sequester 
toxic ions and produce osmotic substances (e.g. proline, 
betaine) that help maintain osmotic pressure (Khalid 
et al. 2020). Under saline conditions, the activity of these 
antioxidant enzymes, including SOD, CAT, and POD, 
and the concentrations of inactive compounds, including 
glutathione and ascorbic acid, are increased. For exam-
ple, tomato plants showed an increase in antioxidative 
enzymes when exposed to salt stress conditions, but the 
tolerant genotype appeared to have more antioxidative 
enzymes as compared to the sensitive ones (Gharsallah 
et al. 2016). Similar observations have been also reported 
for eggplants and sweet peppers, in which salt-tolerant 
genotypes tend to have more antioxidant enzymes as com-
pared to the sensitive ones (Wu et al. 2012; Fikret et al. 
2013; Abdelaal et al. 2020b). Similar findings have been 
highlighted in salt-tolerant cucumber and potato cultivars 
that were exposed to salt stress (Zhu et al. 2004; Rahnama 
and Ebrahimzadeh 2005; Aghaei et al. 2009; Furtana et al. 
2010). Increases in enzymatic activity and concentrations 

of bioactive compounds increase tolerance in plants and 
can be used to estimate plant salt tolerance.

The accumulation of toxic ions in plant cellular organelles 
leads to the disturbance in ion homeostasis. Transporters 
regulating  Na+ and  Cl− concentrations in mitochondria 
and chloroplasts are largely unknown and could be a major 
source of energy cost (Munns et al. 2020; Chen et al. 2021; 
Shabala et al. 2020; Jiang et al. 2021). Exclusion of  Na+ 
from roots, regulation of rhizome transport, cellular com-
partmentalization of  Na+, and maintenance of cytoplasmic 
osmotic balance are important mechanisms of salt tolerance 
(Van Zelm et al. 2020). Plants have evolved ways to elimi-
nate  Na+ ions from the cytoplasm to maintain low levels of 
ionic Na/H antiporters and transport  Na+ in exchange for 
 H+ ions. This involves the transfer of  Na+ ions by Na/H 
ion antiporters to apoplast at the plasma membrane, while 
Na/H ion antiporter maintains  Na+ ion separation in the vac-
uole (Fig. 4) (Hussain et al. 2018; Abdelaziz et al. 2019). 
Similarly, high-affinity potassium transpoter1 (HKT1) type 
transporters play a vital role in maintaining the  Na+ and  K+ 
ion homeostasis and decreasing sodium toxicity in plants. 

Fig. 4  The diagram illustrates the salinity induced-Ca2+ and ROS 
signaling, and important transporters involved in  Na+/K+ homeosta-
sis in plant cells. The hydraulic sensor firstly senses turgor pressure 
via reducing water potential (Ψw). The hydraulic sensor then triggers 
transient  Ca2+, ABA synthesis or both to activate short- and long-dis-
tance ROS and ABA signaling. SOS (Salt Overly Sensitive) pathway 
is a key component that activates  Na+ exclusion and compartmenta-
tion from the cytosol through SOS1 (PM  Na+/H+ antiporter), and 
NHX1 (tonoplast  Na+/H+ antiporter). Cytosolic  Na+ content deter-
mines ABA and ROS accumulation in cells which inhibits normal 

cellular functions such as promoting  K+ exclusion via GORK  (K+ 
outward rectified channel), inhibiting PM and tonoplast-based proton 
pump- VHA (vacuolar  H+ ATPase), and AHA (PM  H+ ATPase).  H+ 
ATPase provides a proton source to drive  K+ inward transporters-
HAK1 (High-affinity  K+ transporter), NHX2-4 (NHX type2 anti-
porter), and  Na+ antiporters- NHX1, SOS1 located at PM and tono-
plast. ANN  (Ca2+ permeable channel annexin), MCA  (Ca+ permeable 
mechanosensitive channels), SCABP8 (SOS3-like  Ca2+ binding pro-
tein 8), RBOH (NADPH/respiratory burst oxidase protein), NSCC 
(non-selective cation channel)
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They exclude the  Na+ ions from the xylem stream and roots 
to keep the shoots safe from toxic ions (Maser et al. 2002; 
Horie et al. 2005; Møller et al. 2009). The HKT1 transport-
ers mediate  Na+ ion movement in tomatoes (Almeida et al. 
2014; Romero-Aranda et al. 2020) and cucumbers grafted 
with pumpkin (Sun et al. 2018). In eggplants, the weak 
induction of HKT1 in roots has demonstrated higher  Na+ 
ion accumulation in stems and leaves (Assaha et al. 2015).

In contrast to vegetables, tissue compartmentalization 
and exclusion of toxic ions plays an important role in redis-
tribution of toxic ions in older or mature leaves in grasses 
(Liphschitz and Waisel 1974) and exclusion is carried out 
by salt glands or bladders. In many grasses, salt glands and 
bladders play a vital role in building tolerance of salinity 
(Ramadan and Flowers 2004; Yong et al. 2022). Salt glands 
mostly appear in epidermal cells, but they are usually found 
in mesophyll tissues in C4 grasses (Marcum 2006). The 
exclusion of salt toxic ions from salt glands in grasses is 
highly selective (Worku and Chapman 1998). The movement 
of toxic ions to salt glands is energy-dependent (Naidoo and 
Naidoo 1999). Other ions are also excreted from salt glands 
but in small quantities (Marcum and Murdoch 1994). There 
are many types of salt gland cells and epidermal bladder 
cells (EBCs) are an example (Shabala et al. 2014). EBCs 
take part in several roles, including acting as an external 
water reserve, depository of metabolites, a reservoir for ROS 
and osmolytes, and restricting sites for excessive toxic ions 
(Steudle et al. 1975; Agarie et al. 2007; Oh et al. 2015). 
Therefore, genetic engineering of salt glands in existing salt-
sensitive vegetables and selection of new vegetable crops 
with salt glands will be among the promising molecular 
strategies for improving the salinity tolerance of vegetables.

Accumulation of toxic ions induces imbalances in other 
ions, i.e.,  K+ and  Ca2+ (Munns and Tester 2008). Calcium 
ions play a vital role in transmitting external stimulus sig-
nals. These  Ca2+ signals are communicated downstream by 
 Ca2+-binding proteins (Hashimoto and Kudla 2011), ulti-
mately transferring information to the systems that regulate 
the physiological and biochemical processes or gene expres-
sion (Kurusu et al. 2015).  TPC1 cation channel is involved 
in the production of salinity stress-triggered systemic  Ca2+ 
signal in roots and may contribute to whole-plant resistance 
to salinity stress (Choi et al. 2014; Gilroy et al. 2014). The 
development of high-resolution calcium biosensors and the 
identification of the downstream CBL-CIPK pathway have 
helped the establishment of  Ca2+ waves as early signals of 
the sodium response and led to the identification of a novel 
cation sensing mechanism (Van Zelm et al. 2020). Tolerant 
plants seem to have certain genes that are not in sensitive 
plants. According to the literature, the genes involved in salt 
tolerance can be categorized into three groups: (i) genes that 
regulate salt absorption and distribution; (ii) genes involved 
in osmotic control; (iii) genes associated with plant growth. 

Analysis of sensitive Arabidopsis mutations in high external 
 Na+ concentrations enabled the identification of three SOS 
genes involved in salt tolerance (i): SOS1 encapsulates the 
 Na+/H+ code of the plasma transporter membrane involved 
in the exclusion of  Na+ to the apoplast; SOS2 incorporates 
protein kinase, which activates SOS1; SOS3 incorporates 
calcium-binding protein and activates SOS2. In addition, the 
fourth gene (SOS4), appears to regulate SOS1, as it binds 
the cofactor, pyridoxal-5-phosphate, which binds SOS1. In 
addition to activating SOS2, there is also the protein SCaBP8 
regulated by SOS2 (Parihar et al. 2015). In Arabidopsis 
plants where excessive exposure to SOS genes has been 
observed, salt tolerance and low  Na+ concentration, and 
high  K+ concentration have been reported (Yang et al. 2009). 
The relationship between genetic interactions SOS1, SOS2, 
and SOS3genes, salt stress tolerance, and high  Na+/K+ lev-
els have also been demonstrated in brassica (Kumar et al. 
2009) and potato (Jaarsma and de Boer 2018) other genes 
include osmolytes or osmoprotectants or related solutes. 
These osmolytes are divided into four classes: N-containing 
solutes, such as proline and glycine betaine; sugars such as 
sucrose and raffinose; straight-chain polyhydric alcohols 
(polyols), such as mannitol and sorbitol; and cyclic polyhy-
dric alcohols (cyclic polyols). The genes involved in plant 
growth are associated with signal molecules, hormones, and 
transcription factors, and are more common in other stress 
conditions. Depression molecules acting as protective mol-
ecules can be metabolites that change their concentrations or 
proteins that change their structures in response to drought, 
salt, and cold from roots to shoots to promote salt stress 
tolerance (Munns 2015).

Strategies to enhance vegetable production

Molecular breeding toward drought and salinity 
tolerance vegetables

To understand the complex mechanisms of drought and 
salinity and to augment their production, the focus of 
research is entering the era of omics. The implementation of 
multi-omics and improved breeding strategies is a dynamic 
step towards drought and salt tolerance in vegetables. The 
identification of drought and salt-responsive genes, proteins, 
metabolites, and miRNAs has become possible through stud-
ies of genomics, transcriptomics, metabolomics, proteom-
ics, micromics, and phenomics. Many omics methods, tools, 
and resources have been developed for vegetable yield and 
quality improvement (Chaudhary et al. 2019). However, 
further investigation on the latest omics technologies will 
need to explore the myriad of pathways involved in drought 
and salt tolerance. Additionally, genome-wide association 
studies (GWAS) and quantitative trait loci (QTL) mapping 
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techniques have made an impressive contribution to improv-
ing plant responses to drought and salt stresses. Regarding 
the drought stress condition, the SiDHN gene induced in 
tomato plants showed drought tolerance by maintaining 
their photosynthetic machinery and antioxidative defence 
mechanism (Guo et al. 2019). The overexpression of gene 
CsATAF1 enhanced the drought tolerance in cucumber seed-
lings by regulating ABA-dependent pathways and more effi-
cient coping of ROS load (Wang et al. 2018). The tomato 
plants produced by crossing homozygous lines have showed 
upregulation of salt tolerance related genes LeNHX2 and 
SlSOS2 which are involved in improving the plant growth, 
water uptake, and yield under salt stress conditions as com-
pared to their parental plants (Baghour et al. 2019). Simi-
larly, the HAL1 gene responsible for salt tolerance in yeast 
was introduced in tomato plants. The overexpression of 
HAL1 significantly increases the crop tolerance under salt 
stress by improving the  K+/Na+ ratio which leads to sus-
tainable growth (Gisbert et al. 2000). The Arabidopsis gene 
LOS5 increases the salt tolerance in cucumber seedlings by 
enhancing germination, plant biomass, ABA, sugars, and 
antioxidative enzymes (Liu et al. 2013).

Priming

Seed priming is a major strategy to sustain or increase veg-
etable production in the current climate change scenario. 
Priming not only increases germination, but also helps the 
plant to tolerate different biotic and abiotic stress factors. It 
also enhances seedling establishment under harsh environ-
mental conditions (Chen et al. 2012). Abiotic stresses such 
as drought, extreme temperatures, salinity, and heavy met-
als are major factors limiting global crop productivity and 
sustainability. Among them, drought has become a serious 
environmental constraint for horticultural production, espe-
cially in arid and semi-arid regions, and under rapidly chang-
ing climate scenarios (Khalid et al. 2019). Seed priming may 
help cells respond to drought stress through multiple mecha-
nisms, including modulation of antioxidant defense systems, 
and upregulation of osmoprotectants and phenolic compounds 
(Savvides et al. 2016). The seed priming technique appears to 
be very much effective in water deficit conditions. Chakma 
et al. (2021a) observed that tomato plants primed with silicon 
showed higher fruit yield and quality as compared to controls 
under 75% and 100% field capacity. Cucumber plants when 
primed with ascorbic acid and pyridoxine improved the plant 
physiological and biochemical attributes under 65 and 80% 
field capacity. Pea primed with Bacillus thuringiensis, sili-
con, potassium silicate, and carrot extract, and onion primed 
with polyethylene glycol (PEG) and gibberellic acid showed 
improved germination, higher biomass, and better biochemi-
cal attributes at 50% deficit irrigation conditions (Arafa et al. 
2021; Arvin and Kazemi 2003). Arvin and Kazemi (2003) 

also observed that seed priming of onion with PEG and gib-
berellic acid increased the tolerance against 85 mM salt stress. 
Di Stasio et al. (2020) showed that priming the tomato seeds 
with sea-weed extract enhances tomato production by up to 
50% under salt-affected soils (6.3 dS  m−1). In terms of prim-
ing techniques, osmopriming is regarded as the most efficient 
for sweet pepper against 60 and 80 mM NaCl (Shumaila and 
Ullah 2020). Similarly, various studies have been conducted 
to understand the priming compounds and techniques on veg-
etable seeds to mitigate the negative effect of drought and salt 
stress conditions (Table 1).

Agronomic practices

The abiotic stresses cannot be addressed without manage-
ment practices in the field. For instance, many agronomic 
practices have been developed by the Asian vegetable 
research and development center (AVRDC) now known as 
the World vegetable center to enhance vegetable yield under 
stress. To overcome water scarcity, the method of irrigation 
plays a pivotal role. It was reported by AVRDC (2005) that 
the use of drip irrigation enhances water use efficiency of 
capsicum by approximately 50–80% and the production was 
also increased as compared to furrow or flooding. Fewer 
chances of disease (fusarium wilt) were also reported in 
watermelon. The use of mulching is also very much impor-
tant to maintain soil moisture and enhance nutrient conser-
vation. Crop rotation, intercropping, crop diversification, use 
of organic mulches are important agronomic traits to con-
quer the stresses (Naik et al. 2017). These practices enhance 
the soil organic matter and nutrients in the soil which help 
the vegetables to tolerate abiotic stress conditions. The effi-
cient use of fertilizers also helps the vegetables to tolerate 
abiotic stresses. The use of nutrients can also help under salt 
stress conditions. For example, potassium has been reported 
to increase tuber yield (Elkhatib et al. 2004). Phosphorous 
can promote radish plant health (De Oliveira et al. 2010). 
Sulphur seems to activate defense mechanisms in brassica 
and legumes (Rausch and Wachter 2005), and zinc applica-
tion can reduce the uptake of sodium in pepper plants (Aktas 
et al. 2006).

Grafting

To counter the negative effects caused by climate change 
and to increase production, grafting is an environmentally 
friendly technique. Similar to perennial fruit crops, the root-
stock and scion compatibility and their tolerance support 
each other. Tomato drought-tolerant rootstocks (cv. Fraidah, 
Zarina, Beaufort) grafted on drought-sensitive scions (cv. 
Unifort, Josefina, M28) has demonstrated maintenance of 
efficient growth, proper nutrients uptake, enhanced osmotic 
adjustment and improved fruit yield and quality (Ibrahim 
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et al. 2014; Sanchez-Rodrigues et al. 2014; Altunlu and Gul 
2012). Pepper cv. Verset used as rootstock and grafted with 
sensitive scion cv. Atlante showed better osmotic adjust-
ment and strong photosynthetic machinery under water 
deficit conditions (Penella et al. 2014). Similarly, salt-tol-
erant Cucurbita hybrids rootstock cv. P360, PS1313 grafted 
with salt-sensitive cucumber scion cv. Akito and melon cv. 
Cyrano showed great tolerance against salt stress condi-
tions by less decline in photosynthetic attributes and strong 
defence mechanisms (Rouphael et al. 2012; Colla et al. 
2012).

Plant growth‑promoting rhizobacteria

Salt and drought stresses are serious environmental chal-
lenges that greatly reduce the yield of vegetables. The 
application of plant growth-promoting microorganisms in 
vegetable crop production has yet to attract research atten-
tion. Enhanced use of plant growth-promoting rhizobacteria 
(PGPR) is a new option to address agricultural challenges 
posed by soil environmental stress. The few reports pub-
lished underline that PGPR can enhance plant productiv-
ity by counteracting the negative effects of salt and water 
deficit stresses on plant growth, even in stressful environ-
ments. PGPR promotes plant growth through a variety of 
mechanisms, such as triggering osmotic responses, provid-
ing growth hormones and nutrients, acting as a biological 
control agent, and modifying plant root shoot signaling. The 
development of salt-tolerant crops is still being planned. 
Thus, the only viable alternative is the use of PGPR to 

increase vegetable yields in stressful environments. Under 
abiotic stress conditions, the complex and dynamic interac-
tions between microorganisms and plant roots influence not 
only the plants themselves, but also the physical, chemical, 
and structural properties of soils. Selecting microorganisms 
from stressed ecosystems and their applications under stress 
conditions to alleviate the effects of abiotic stress on soils 
may increase the yield of soil vegetables under drought and 
salt stress conditions (Table 2). Similarly, Arbuscular mycor-
rhizal fungi (AMF) are also involved to mitigate the nega-
tive effects of drought and salinity on vegetable production 
(He and Huang 2013). Mycorrhizae have been reported to 
increase the absorptive surface area of   plants. In salt-stressed 
and water-deficient soils, nutrients absorbed by hyphae of 
mycorrhizae can promote plant growth and reproduction and 
reduce abiotic environmental stress (Baum et al. 2015). The 
tolerance of salt stress in tomatoes was increased by using 
arbuscular mycorrhizal fungi (Latef and Chaoxing 2011), 
grafting (He et al. 2009), and application of phytohormones 
(Szepesi 2008). Salinity imposes negative effect on AMF 
but, still some studies showed that AMF could help the plant 
to tolerate more stress by enhancing host-plant nutrition, 
maintaining  K+/Na+ ratio and better osmotic adjustment 
with improved photosynthesis, which together increase 
the plant tolerance against salinity (Baum et al. 2015). The 
inoculation of AMF in tomato (He and Huang 2013), pep-
per (Beltrano et al. 2013), and lettuce (Aroca et al. 2013) 
showed higher tolerance against salinity stress. Regarding 
the water deficit condition, the vegetables inoculated with 
AMF showed better tolerance by altering their physiology 

Table 2  Plant growth-promoting rhizobacteria mitigate drought and salt stress in different vegetables

Stress Crop PGPR Stress level References

Drought Cucumber Burkholderia cepacia 15% Polyethylene glycol for 10 days withholding Sang-Mo et al. (2014)
Promicromonospora sp.

Tomato Citrobacter freundii 45% and 35% field capacity Ullah et al. (2016)
Pepper Bacillus liheniformis Withholding water 15 days Lim and Kim (2013)
Tomato Bacillus subtilis 30% Field capacity Arkhipova et al. (2007)
Cabbage Bacillus megaterium 75%, 50% and 25% evaporated water Samancioglu et al. (2016)

Peanibacillus polymyxa
Salinity Lettuce Pseudomonas mendocina 2 and 4 g NaCl/Kg soil Kohler et al. (2009)

Eggplant Pseudomonas sp. 0.57, 1, 2, and 3 g NaCl/Kg soil Fu et al. (2010)
Cucumber Pseudomonas putida 50, 100 or 200 mM Gamalero et al. (2010)

Gigaspora rosea
Pepper Brevibacterium iodinum 100, 150 and 200 mM Siddikee et al. (2011)

Bacillus licheniformis
Zhihengliuela alba

Tomato Streptomyces sp. 180 mM Palaniyandi et al. (2014)
Cucumber Burkholderia cepacia 120 mM Sang-Mo et al. (2014)

Promicromonospora sp.
Okra Enterobacter sp. 25, 50, 75, and 100 mM Habib et al. (2016)
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and gene expressions (Baum et al. 2015). Lettuce plants with 
AMF exposed to drought stress condition showed tolerance 
by increasing abscisic acid concentration which helps main-
tain balance in water movement through roots to leaf transpi-
ration (Aroca et al. 2008). AMF also enhance the tolerance 
of pepper plants (Davies et al. 1992) by maintaining turgor 
pressure, leaf water potential and water content in leaves.

Plant growth regulators

Plant growth regulators (PGRs) are used in vegetables to 
improve plant health and yield in stress conditions. It was 
reported by Grand View Research that by 2025 the PGR 
market is expected to grow about 4.14 billion USD (GVR 
2018). They can enhance plant growth and productivity, 
interact with several plant processes in response to stress, 
and increase the accumulation of antioxidant compounds 
that reduce plant susceptibility to stress. The application 
of gibberellic acid increases the relative water content and 
antioxidant defence mechanism of basil plants to tolerate 
drought stress conditions (Kiapour et al. 2015). Synthetic 
PGRs, i.e., melatonin (Ibrahim et al. 2020), salicylic acid 
(Chakma et al. 2021b) and strignolactones (Visentin et al. 
2016) also showed improved tolerance in tomato plants and 
enhanced the fruit quality under water deficit condition. 
Similarly, strignolactones in tomato (Liu et al. 2022a, b), 
lettuce (Aroca et al. 2013), cucumber (Zhang et al. 2022a, 
b) and melatonin in cucumber (Zhang et al. 2020) and egg-
plant (Sofy et al. 2021) induced tolerance against salt stress 
environments. Natural or plant based PGRs also play vital 
role in tolerance mechanisms of vegetables against abiotic 
stresses. Foliar application of moringa leaf extract on pump-
kin showed sustainable growth, maintained photosynthetic 
pigment, increase in proline and sugar content under water 
deficit conditions (Abd El-Mageed et al. 2017). Similarly, 
application of liquorice root extract increases the nutrient 
uptakes, vegetative growth, biochemical attributes, and yield 
in peppers (Desoky et al. 2019) and beans (Rady et al. 2019).

Nanoparticles

Nanotechnology is now widely used in many fields, such 
as pharmaceutical, engineering, agriculture, etc. It has an 
enormous potential in the agriculture sector and provides 
a green and important alternative for crop management. 
Many studies showed that the use of nanoparticles as foliar, 
soil, and priming enhances the crop performance in biotic 
and abiotic stress conditions (Aqeel et al. 2021; Alabdallah 
and Alzahrani 2020) observed that foliar application of zinc 
oxide nanoparticles enhanced crop growth and production 
of okra seedlings under saline conditions. Similarly, zinc, 
boron, silicon, and zeolite nanoparticles enhanced potato 
plant growth in salt-affected soils (Mahmoud et al. 2019). 

Cucumbers also showed resistance in a saline environment 
by inducing early stimulation of defence responses (antioxi-
dative enzymes) when treated with cerium oxide nanoparti-
cles (Chen et al. 2022) and manganese oxide nanoparticles 
(Lu et al. 2020). Nanoparticles also mitigate the drought 
stress in different vegetables. The cucumber (Ghani et al. 
2022), tomato (El-Zohri et al. 2021) and eggplant (Semida 
et al. 2021) plants showed tolerance against drought stress 
when treated with zin oxide nanoparticles by enhancing their 
antioxidative enzymes and osmolytes accumulation. Alab-
dallah et al. (2021) also reported that silver nanoparticles 
enhanced the proline accumulation and upregulated the anti-
oxidant enzymes in eggplant under water deficit conditions.

Conclusion and future perspectives

Climate change causes different biotic and abiotic stress fac-
tors which affect crop production. Among various abiotic 
factors, drought and salinity are the major factors that hinder 
vegetable production around the world. Droughts and salin-
ity stresses affect the vegetable plant health which ultimately 
leads to the reduced yield. When vegetables are exposed to 
drought and salt stress conditions, they respond by activating 
specific genes and particular mechanisms (e.g. antioxidant 
defence mechanism) which enable tolerance against these 
stresses. To enhance their tolerance, different strategies 
can be adopted, including proper cultural practices, prim-
ing, grafting, and the use of PGPR, nanotechnology, and 
omics. Omics alone or together with other cutting-edge 
biotechnological technologies have revolutionized vegeta-
ble breeding by accelerating the identification of candidate 
genes, and non-coding RNAs, such as lncRNAs, miRNAs, 
and circRNAs for high yield, quality and stress response. 
However, limited research work has been conducted on key 
genes and some non-coding RNAs in regulating to drought 
and salt stress tolerance in vegetables. More research on key 
genes and some non-coding RNAs action under drought and 
salt stress in vegetables can therefore provide additional 
resources and tools for developing drought- and salt-tol-
erant vegetables. Genetic transformation has successfully 
improved vegetable varieties; however, public approval of 
GMOs using recombinant DNA hamper the genetically 
engineered vegetable crops in many countries. This issue 
may be solved in the near future with the development and 
application of CRISPR/Cas systems in vegetable breeding 
programs. To date there are very few drought and salt toler-
ance vegetable cultivars. The expansion of such cultivars 
should not focus on only yield attributes of vegetables but 
also those attributes which are directly affected by drought 
and salt stresses during plant growth and development. To 
manage the salt and drought stress is a complex matter that 
involves approaches of breeding, genetic engineering of salt 
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and drought resistance cultivars, smart cultural practices and 
the use of mitigators for sustainable agriculture.
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