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1. Introduction
Citrus is one of the major fruit crops in the world. However, 
its production is greatly affected by abiotic stresses i.e. 
salinity (Khalid et al., 2020, 2022); drought (Hussain et al., 
2018; Khalid et al., 2021a, 2021b); temperature (Shafqat et 
al., 2019, 2021), light (Oustric et al., 2018) and diseases i.e. 
Huanglongbing (Hussain et al., 2019; Nehela and Killiny, 
2020) and Phytophthora (Graham and Feichtenberger, 
2015). Phytophthora species adversely affect citrus growth 
and health, leading ultimately to significant quality and 
yield losses in commercial groves.

Phytophthora spp. is a pathogenic oomycete 
encountered in temperate, subtropical, and tropical 
climates on diverse hosts ranging from herbaceous plants 
such as tomato and tobacco to woody plants like citrus and 
eucalyptus. Phytophthora species pose serious threats to 
the economic viability of citrus via soil-borne infections. 
Severe crop losses have been reported in citrus groves in 

the Azores islands long before the Irish potato famine 
of 1845 and the discovery of the pathogen 31 years later. 
Since then, many Phytophthora epidemics have followed in 
France (1841), Italy (1855–1889), Australia (1860–1879), 
Spain (1871), United States (1875–1876), Greece (1869–

1880), Cuba (1906), Paraguay (1911), Brazil (1917), 
and Mexico (1920) (Savita and Nagpal, 2012). The 
development of grafting techniques and the use of sour 
orange as a rootstock, during the second half of the 20th 
century, slowed down the development of Phytophthora 
diseases but failed to eradicate (Laville, 1974).

Many Phytophthora species are associated with trunk 
gummosis and root rot symptoms, being P. citrophthora 
and P. nicotianae (syn. P. parasitica) the most destructive 
(Vernière et al., 2004). Disease outbreaks of these species 
have been widely reported in tropical and subtropical 
regions including Florida (Timmer et al., 1988), India 
(Uppal and Kamat, 1936), Spain (Alvarez et al., 2008, 2009), 
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and Morocco (Vanderweyen, 1974; Boudoudou et al., 
2015). P. boehmeriae, P. cactorum, P. cinnamon, P. citricola, 
P. dreschleri, P. hibernalis, P. megasperma, P. palmivora, 
and P. syringae have also been reported as pathogenic on 
citrus, but limited reports are available on the distribution 
of these species and their interactions with the hosts 
(Erwin and Ribeiro, 1996). In this review, we summarize 
the typical symptoms and epidemiology of these diseases, 
the genetic background of rootstock/scion tolerance, and 
the molecular aspects involved in Phytophthora virulence 
and citrus defense mechanisms.

2. Symptomatology
Phytophthora species colonize the soil, they attack all 
plant organs causing major economic risks throughout 
the vegetative cycle. In nurseries, Phytophthora causes 
damping-off and seed rot or preemergence rot. Yield 
losses in groves are mainly related to root rot, stem/
trunk gummosis, and fruit brown rot. In extreme cases 
(susceptible rootstocks), fibrous roots are severely 
damaged resulting in tree dieback (Figure 1).

Bark infection usually occurs near the soil level and 
appears at the crown or trunk as lesions that girdle the tree 
by developing a belt around the circumference and spread 
to secondary branches causing the dieback of trees (Savita 
and Nagpal, 2012), as reported previously in clementine 
cultivars (C. clementina Hort. Ex Tan.) and their hybrids 
(Alvarez et al., 2008, 2009). Cankers and gum exudations 
were visible on the aerial parts (scions), particularly on the 
major branches (Alvarez et al., 2008).

Damping-off occurs often in poorly managed nurseries 
following attacks by P. nicotianae, P. citrophthora, and P. 
palmivora. Typical symptoms of damping-off appear 
shortly after the penetration of the lower part of the stem 
by Phytophthora. The contamination may originate from 
seeds or soil particles. When the attacks occur early, 
they may cause seed rotting and impede emergence. 
Young, infected seedlings usually die within a few days, 
while others acquire resistance once the true leaves 
have appeared and the lower stem tissues have matured 
(Lamichhane et al., 2017). Root rot occurs when the graft 
union is close to the ground. Infected scions show lesions 
that may extend up to the graft union if the rootstock is 
resistant (Fawcett, 1913). If the rootstock is susceptible, rot 
symptoms can also be observed in the underground part 
(roots and crown). The infected bark exhibits small cracks 
yielding profuse gum exudation.

Symptoms of gummosis disappear under heavy 
rains but persist under dry conditions. They disintegrate 
slowly around the perimeter of the trunk and are often 
accompanied by leaf symptoms (pale color, yellowing of 
the veins). As soon as the infection stops, the lesions stop 

spreading and the damaged area of the bark is surrounded 
by callus tissue. Seedlings and young trees at nurseries, 
having small stem circumferences, die off quickly, while 
older trees are more tolerant. Although dieback may occur 
in orchards, infection of the trunk is often partial and is 
accompanied by leaf drop and twig dieback in extreme 
cases (Timmer and Menge, 1988; Timmer et al., 2003; 
Alvarez et al., 2008).

Cortical root rot is usually less common than trunk 
and foot gummosis but is more difficult to identify since 
anything that hinders root development is likely to cause 
identical symptoms. At first, the infection is localized at the 
temporary fibrous roots. The colonization of the cortical 
area of this type of roots by the pathogen shortens their 
lifespan. The cortex becomes soft, discolored, and exhibits 
water-soaked lesions. When the infection is severe, the 
cortex is destroyed leaving only the white fiber-shaped 
stele. At this stage, the regenerative power of the fibrous 
roots can no longer keep pace with degradation and the 
tree is unable to maintain adequate absorption of water and 
nutrients. In the aerial part, these effects result in leaf drop, 
twig dieback, and reduced growth and fruit production 
(Timmer and Menge, 1988; Timmer et al., 2003).

In the field, fruits in the lower part of the tree can be 
infected with the propagules of Phytophthora spp. following 
the splash of soil particles. At first, these fruits show a slight 
discoloration of the skin, then an extension of the necrosis 
which takes, depending on the variety, different shades of 
brown. The affected area widens and the tissues soften. 
Under humid conditions, Phytophthora’s white mycelium 
can grow on the fruit surface. The disease then spreads to 
other fruits of the tree if the temperature (24–28 °C) and 
humidity are favorable. Outbreaks of brown rot are more 
frequent in areas where rainfall coincides with the early 
fruit maturity stages (Timmer and Menge, 1988; Timmer 
et al., 2003). Although most infected fruits drop from the 
tree before harvest, some appear healthy and only develop 
symptoms after a few days of storage, causing important 
postharvest losses. Brown rot spreads quickly to the other 
fruits in the container and a very characteristic odor 
develops resulting from the decomposition of essential oils 
released by the action of the pathogen (Savita and Nagpal, 
2012).

Leaves are infrequently targeted by the pathogen as 
compared to fruits. However, when the climatic conditions 
are favorable, translucent spots like frost symptoms may 
appear on leaf blades. These spots become watery and 
blackish with time. The leaves fall early while still green 
(but spotted with black). Complete defoliation may occur 
on lower branches (Laville, 1974). Lemons are particularly 
known to be sensitive to leaf and fruit attacks (Graham 
and Timmer, 1992).
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3. Epidemiology
P. nicotianae produce and release a large number of 
zoospores, chlamydospores, and oospores (Meng et 
al., 2014). When conditions are favorable (30–32°C), 
zoospores encyst and germinate in the form of mycelia. 
Moderate water deficits (–5 to –70 kPa), nutrient depletion 
and light stimulate the production of sporangia from the 
mycelium, which may germinate directly or indirectly to 
produce zoospores (Englander et al., 2006). The interaction 
of soil infestation with P. nicotianae and root rot severity 
indicates that indirect germination is more crucial in the 
life cycle (Figure 2).

Zoospores can travel short distances in water using 
their flagella or can be transported by rain or irrigation 
water. They are attracted to the elongation zone of the 

new roots by the nutrients in the exudates. Upon contact 
with the root, zoospores encyst, germinate and initiate 
infection at root tips (Khew and Zentmyer, 1974; Besoain 
et al., 1998). After penetration, the infection progresses 
into the cortex causing the entire root tissue to rot. The 
rotten cortex is thus degraded and Phytophthora produces 
thick-walled spores (chlamydospores) which can persist in 
the soil for long periods (Tsao and Ocana, 1969).

Chlamydospores are also produced during summer 
periods, when the soil is poorly aerated with high CO2 
concentration, under nutrient depletion, or at low 
temperatures. They help the oomycete survive for long 
periods on root debris until the return of favorable 
conditions when they germinate indirectly to produce 
sporangia which in turn release mobile zoospores, or 

Figure 1. Common symptoms caused by Phytophthora spp. on citrus (a) Dieback of a clementine tree ; (b) gummosis 
developing on the entire trunk circumference; (c) infected tissue visible under the bark ; (d) graft union between 
a susceptible rootstock and a resistant scion; (e and f) fibrous root rot; (g) leaf yellowing; (h and i) fruit brown rot.
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directly to produce the mycelium (Meng et al., 2014). Like 
sporangia, chlamydospores and oospores require water 
to germinate. Altering high and low temperatures may, 
however, be necessary for uniform germination (Timmer 
and Menge, 1988). Exposure to temperatures of 28–30 °C 
and the presence of soil extracts and/or citrus roots were 
reported to alleviate the dormancy of P. nicotianae

chlamydospores (Graham and Timmer, 1992).
Root rot and trunk/foot gummosis occur upon 

zoospores entering the trunk beyond the graft union. 
Moisture and the presence of natural injuries on the trunk 
are determining factors for the initiation of the infection. 
The lesions that develop on the trunk do not produce a 
secondary inoculum, however, in the case of leaf and fruit 
rot epidemics, secondary infections can be caused by an 
inoculum coming from the aerial parts of the tree and 
dispersed by wind or splashing rain. This type of infection 
is uncommon in P. nicotianae, known for nonproduction 
of aerial sporangia, but is often found in P. citrophthora 
and other species producing a heavy number of sporangia 
on the leaf and fruit surface (Graham and Timmer, 1992; 
Naqvi, 2000). The Phytophthora disease cycle can repeat 
itself upon attainment of favorable conditions with 
prevalent susceptible tissues.

4. Molecular basis of Citrus-Phytophthora interactions
The coevolution of Phytophthora spp. with its wide host 
range has generated diverse and complex plant-pathogen 
interactions regulated by various molecules and genes 
from both sides. To initiate infection, zoospores land 
on the host tissue encysts and produce an appressorium 
to penetrate the host surface. Once inside, the pathogen 
develops a network of apoplastic mycelium. During this 
biotrophic stage of the infection, Phytophthora species 

produce haustoria which contribute not only to nutrition 
but also to virulence through the secretion of proteins 
known as effectors (Evangelisti et al., 2017). These proteins 
suppress the immunity of the host and reprogram its 
physiology in favor of the infection through a process 
known as effector-triggered susceptibility (ETS). Upon 
the recognition of the effectors, host plants can activate 
their defense system through a process known as effector-
triggered immunity (ETI). Using specialized receptors, 
plants may also recognize small molecular motifs specific 
to the pathogen, called pathogen-associated molecular 
patterns (PAMPs), and activate another layer of a defense 
mechanism known as PAMP-triggered immunity (PTI). 
Both ETI and PTI can lead to a hypersensitive response 
(Dalio et al., 2017a).
4.1. Effector-triggered susceptibility
The application of high-throughput sequencing 
technologies has allowed the identification of several 
classes of effector proteins secreted by Phytophthora species 
during their interactions with their respective hosts. These 
are conserved amongst many strains and are responsible 
for a substantial contribution to virulence (Dangl et al., 
2013). Apoplastic effectors, such as elicitins (proteins 
with low molecular weight sharing PAMP features), 
are secreted into the apoplast of infected plants and are 
known to induce hypersensitive reactions (Khatib et al., 
2004; Oßwald et al., 2014), while cytoplasmic effectors are 
secreted inside plant cells where they act as suppressors 
of cellular plant defense mechanisms. These include the 
widely studied RxLR protein family and Crinkler effectors 
(CRN).

Apoplastic effectors are known to counteract plant 
defenses through the inhibition of enzyme activity (Rose 
et al., 2002). To date, many of them have been associated 

Figure 2. Life cycle of Phytophthora nicotianae.
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with physiological disorders in citrus, including the 
elicitin ParA1, the necrosis and ethylene-inducing peptide 
(NEP1- like protein), the necrosis-inducing Phytophthora 
protein 1 (NPP1), and the cellulose-binding elicitor and 
lectin activity (CBEL) effectors. Elicitins and elicitin-like 
proteins have been found to be organized as multigene in 
several citrus-pathogenic Phytophthora species including P. 
nicotianae, P. citrophthora, and P. citricola. (Kamoun et al., 
1993, 1994). Boava et al. (2011) reported an upregulation of 
elicitins in citrus at late stages of infection, which indicates 
their involvement in the late necrosis of the tissues of 
susceptible varieties.

From a pathological point of view, RxLR is probably 
the most important effector of Phytophthora pathogenesis, 
since they carry a conserved amino acid motif on their 
N-terminal structure which facilitates their intrusion into 
plant cells. Using a bioinformatics approach, Dalio et al. 
(2017b) have identified 172 candidate RxLR effectors in the 
isolate IAC01_95 of P. nicotianae that was collected from 
different hosts including citrus. Five of these effectors were 
upregulated in vitro and in planta conditions, and three 
of them were found to enhance ETS (effector-triggered 
susceptibility) and suppress PCD (programmed cell death) 
reactions induced by the INF-1 elicitin in the model plant 
Nicotiana benthamiana, thus confirming their contribution 
to the pathogen virulence.

Crinkler proteins (CRN) form another group of 
cytoplasmic effectors that present a highly conserved 
N-terminal amino acid domain (Haas et al., 2009). They 
are produced by most Phytophthora species, including P. 
nicotianae (Tyler et al., 2006; Haas et al., 2009). However, 
the CRN effectors involved in Phytophthora-citrus 
interactions have yet to be functionally characterized. 
Putative apoplastic and cytoplasmic effectors that have 
been extensively studied in model plants and that might 
contribute to pathogenicity in citrus are presented in the 
Table.
4.2. Effector-triggered immunity
Research has identified several key players in the plant 
immunity system that are activated in response to 
oomycete attacks, although the underlying mechanisms 
remain poorly understood and the current knowledge is 
mainly focused on the aboveground part of the plant. These 
defense mechanisms include (i) activation of resistance 
genes (Kamoun et al., 1993; Boava et al., 2011; Zhu et al., 
2012), (ii) subcellular arrangements of the infected cell, 
and remodeling of the cytoskeleton (Takemoto et al., 2003; 
Takemoto and Hardham, 2004; Hardham, 2007), and (iii) 
accumulation of endocytic vesicles around the haustoria 
and secretion of antimicrobial compounds such as phenolic 
compounds, defensins, protease inhibitors, hydrolytic 
enzymes, ROS, and phytoalexins, into the extrahaustorial 
matrix (Lipka et al., 2005; An et al., 2006; Kwon et al., 2008).

Studies on model plants have particularly highlighted 
the orchestrating role of R-genes and endogenous 
phytohormones in signaling pathways leading to the 
production of these antimicrobial compounds (Verma 
et al., 2016). For instance, A. thaliana mutant lines with 
compromised salicylic acid, jasmonic acid, and ethylene 
signaling pathways have shown increased susceptibility to P. 
nicotianae (Attard et al., 2010). By studying transcriptional 
changes in N. benthamiana upon root infection with 
P. palmivora, Evangelisti et al. (2017) identified a gene 
encoding a secreted peptide precursor with potential 
damage-associated molecular pattern (DAMP) motifs 
whose promoter was specifically activated at root tip 
infection sites. In citrus, resistance to P. nicotianae has 
been attributed to the recognition of the pathogen 
effectors by TIR-NBS-LRR RPS4 and another R- gene of 
the same class, and the subsequent deployment of plant 
defense mechanisms (Boava et al., 2011). Nevertheless, 
defense strategies may vary depending on the rootstock. 
For instance, when infected with P. nicotianae, Citrus 
sunki (susceptible rootstock) activates its main defense 
signaling pathways that result in hypersensitive response 
and necrosis, although later succumbing to infection, 
while Poncirus trifoliata (resistant rootstock) presents a 
nonhost type of resistance instead, in which the plant relies 
on preformed biochemical and anatomical barriers rather 
than R- gene-based recognition of the pathogen effectors 
or ETI (Dalio et al., 2018).

5. Management of Phytophthora diseases
Preventive fungicides such as fosetyl-Al, phosphorous 
acid, metalaxyl and mancozeb are widely used to reduce 
Phytophthora inoculum below damage thresholds until 
trees are large enough to tolerate the pathogen (Farih et 
al., 1981; Afek and Sztejnberg, 1989; Sandler et al., 1989; 
Matheron and Porchas, 2002; Chi et al., 2020), but they 
are expensive and pose significant health and safety issues. 
Recently, greenhouse studies have confirmed the efficacy 
of new compounds in controlling citrus root rot (Hao et 
al., 2019). These include fluopicolide and oxathiapiprolin, 
which are federal and fully registered, respectively, and 
ethaboxam and mandipropamid, which are still in the 
registration process. Other commercial formulations that 
utilize peracetic acid and hydrogen peroxide as active 
ingredients have also proven effective at preventing 
Phytophthora infections in greenhouse experiments 
(Gurung et al., 2020). The injection of chlorine in 
microirrigation systems and the exposure of contaminated 
seeds to hot water (49 °C) for 4 to 10 min have also helped 
to clear early infections and prevent damping off (Savita 
and Nagpal, 2012). If cultural controls are inadequate to 
control foot rot it may be necessary to use chemical control 
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on young trees at the initial stages of grove establishment. 
The use of postplant fungicides that contain metalaxyl 
phosphite during the early stages of a grove’s development 
decreases the disease incident.

The incidence of root rot and trunk gummosis in the 
field can be reduced by cultural practices such as annual 
examination of roots and removal of dead or infected 
trees, grafting at maximum height, avoiding trunk injuries, 
and the implementation of irrigation practices that 
minimize the contact of the trunk with water. However, 
since Phytophthora diseases are mainly transmitted by the 
soil, the use of resistant or tolerant rootstocks remains the 
most effective and sustainable prevention approach. The 
resistance is mainly encountered in cultivars of P. trifoliata, 
C. medica, C. macrophylla, C. jambhiri, C. grandis, and C. 
macroptera, thus representing useful genetic resources 
for citrus breeding programs (Hutchison, 1985). In the 
most tolerant rootstocks, the rate of root regeneration 
exceeds the pathogen’s ability to infect root tissue, which 
compensates for the damage suffered. On the other hand, 
apart from some slight differences between oranges and 
lemons, all citrus species are susceptible to fruit brown rot, 
either in the field or during postharvest storage.

Phytophthora resistance/tolerance is a common target 
of citrus breeding programs worldwide. The first sexual 
hybridization programs began at the end of the 19th 
following destructive Phytophthora epidemics and resulted 
in the creation of many intergeneric hybrids combining 
characteristics of commercial citrus rootstock varieties 
and wide relatives. These include Carrizo, Troyer, and C35 
citranges (C. sinensis × P. trifoliata), citrumelos (C. paradisi 
× P. trifoliata), citremons (C. lemon

× P. trifoliata), citradia (C. aurantium × P. trifoliata), 
citrumquat (Fortunella spp. × P. trifoliata) and Eremoradia 
(Eremocitrus glauca × C. aurantium) (Cimen and Yesiloglu, 
2016). Recently, two citrandarins resistant to P. nicotianae, 
namely US-852 and US-812, were obtained from crosses 
between C. reticulata and P. trifoliata and are already in use 
by growers in the US (Albrecht et al., 2012).

The effectiveness of pollination programs is limited by 
the strong heterozygosity and apomixis that characterize 
citrus species (Aleza et al., 2012). Thus, many recent 
works have focused on the integration of biotechnological 
approaches such as protoplast fusion. However, the 
agronomic performance of cybrid rootstocks depends 
largely on the choice of parental combinations. Tolerance 
to Phytophthora root rot has mainly been reported in 
cybrids from Cleopatra mandarin

+ sour orange, sweet orange var. Caipira + volkamer 
lemon and sweet orange var. Caipira + Rangpur lime 
(Mourão Filho et al., 2008). Using a 23-kDa PR-5 protein 
isolated from tomato, Fagoaga et al. (2001) succeed to 
produce a transgenic orange line (Citrus sinensis L. Obs. 

Cv. Pineapple) that showed high tolerance to P. citrophthora 
following a detached bark assay. However, apart from a 
few successful examples, genetic transformation protocols 
still lack efficiency and depend largely on species and/or 
cultivars (Ballester et al., 2007). The quantitative aspect of 
productivity parameters and the low regeneration potential 
of commercial cultivars represent major limitations for the 
adoption of such technology (Peña and Navarro, 2012).

The universal use of molecular markers and high-
throughput screening techniques has provided a better 
understanding of the genetic basis of citrus resistance 
to Phytophthora. Several QTLs associated to resistance 
traits have been identified, which yielded high-resolution 
genetic association maps and paved the way for marker-
assisted selection as a future approach for developing 
Phytophthora-resistant rootstocks (Siviero et al., 2006; 
Lima et al., 2018) (Figure 3).

6. Biochemical mode of resistance
Salicylic acid (SA) is a phytohormone that not only 
regulates many important physiological functions of the 
plant but also plays a vital role in the activation of defense 
responses. The phenylalanine ammonia-lyase (PAL) 
pathway is involved in SA biosynthesis and results in 
high-level production of this plant hormone (Glazebrook 
2001). SA defense activity is majorly governed by NPR1 
protein while its interaction with TGA and WRKY gene 
(transcription factor) results in the activation of systemic 
acquired resistance (SAR), which is a comprehensive 
immune response that provides durable resistance and 
induces resistance (R) genes (Vlot et al., 2009; Dempsey 
et al., 2011; Diaz-Puentes, 2012). Thus, PR genes confer 
greater resistance (Vlot et al. 2009) in addition to being 
involved in lignin and suberin synthesis. Moreover, 
following the infection, tissue lignification is initiated in 
the plant by the peroxidase (POX) enzyme that offers a 
physical barrier against pathogens by incrementing lignin 
polymerization (Resende et al., 2003).

P. trifoliata and C. sunki grafted onto Citrus limonia 
Osb. rootstock was evaluated for response to P. nicotianae 
infection along with other PR-related genes and lipoxygenase 
(LOX) responsible for plant defense (Boava et al., 2011). The 
results exhibited that peroxidase and lipoxygenase levels were 
higher in resistant rootstocks at the later stage of infection in 
comparison with susceptible rootstocks. These genes can be 
used as candidate genes for the breeding of citrus resistance 
against P. nicotianae. In addition, LOX gene was also found 
responsible to produce jasmonic acid (JA) and reactive 
oxygen species (ROS) along with induction of hypersensitive 
response (HR) (Pieterse et al., 2009; Lyons et al., 2013).

Based on the changes in gene expression profiles during 
the interaction between pathogens and citrus, a molecular 
model exhibiting triplicate resistance mechanisms can be 
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Figure 4. Proposed molecular model of the plant defense mechanisms in the Phytophthora-citrus interaction. I. Effectors interact with 
R proteins encoded by SA genes, triggering the interaction with NPR1 protein which activates the accumulation of salicylic acid (SA), 
causing a change in the redox potential of the cell. II. Other effectors interact with R proteins encoded by RPS4 and LEA5, which are 
responsive to the accumulation of abscisic acid (ABA), which also causes a change in the redox potential of the cell. III. PAL, CAD2 and 
POX are enzymes involved in the synthesis which are precursors of lignin and suberin which results in cell wall reinforcement.

Figure 3. Summary of molecular interactions between Phytophthora pathogens and citrus hosts. The pathogen acquires nutrients from 
host cells through the haustoria and secretes apoplastic and cytoplasmic effectors into the apoplast through the appressoria. Apoplastic 
effectors (△) inhibit enzyme activity in the apoplast, while cytoplasmic effectors (Ο), including RxLR and Crinkler (CRN), translocate 
into the cells using the host’s machinery where they interfere with cell immunity responses. Upon recognition of PAMPs (□) or apoplastic 
effectors, host cells activate their defense systems leading to programmed cell death (PCD). R-genes, phytohormones, PAMP receptors, 
and effector-specific receptors all contribute to host and nonhost resistance of citrus against Phytophthora infections.
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established. Following the attack, pathogenic oomycetes 
release effector molecules that interact with resistant R protein 
and trigger NPR1 signaling, thus activating the accumulation 
of SA to produce a defense response. The SA alters the redox 
potential of cells in the cytoplasm and induces the expression 
of pathogenicity-related genes i.e. PR1, PR2, and PR5 known 
for encoding cell wall and membrane degrading enzymes. 
At the same time, other effectors are also recognized by 
cytoplasmic R proteins i.e. LEA5 and RPS4 which respond 
against ABA accumulation and generate defense responses 
through changes in cellular redox potential. Like other 
proteins, PAL, 2 cinnamyl alcohol dehydrogenase (CAD2) 
and acne activate lignin synthesis precursors of phenolic 
compounds and suberin, leading to an important final stage 
of the defense reaction dependent on acne (Figure 4).

7. Conclusion
Several species of Phytophthora are known to cause soil-
borne diseases that pose serious threats to citrus plantations 
around the world. High-throughput sequencing technologies 

unveiled several classes of effector proteins secreted by 
Phytophthora sp. responsible for causing disease. On 
the other hand, the identification of genes responsible 
for governing the defense system in this plant-pathogen 
interaction has revealed the gene expression profiles of 
different phenotypes either susceptible or resistant and 
their variant hybrids in response to disease. Thus, while 
developing the new management strategies, knowledge of 
resistance mechanisms controlling molecular interactions 
between citrus and pathogens will be worthful. So far, the 
use of disease-resistant rootstocks remains one of the most 
effective and sustainable methods to prevent Phytophthora 
diseases while reducing the use of harmful chemicals. The 
upcoming molecular technologies and high-throughput 
biochemical analyzes will provide more in-depth details on 
Phytophthora-citrus interactions, thus providing a better 
understanding of the pathosystem and unraveling more 
precise options for breeding schemes oriented towards the 
control of Phytophthora diseases in citrus.
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