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A B S T R A C T   

The modern era is a time to have cost-effective and energy-efficient technology. This demand has 
made nanotechnology the most effective field. The focus of this article is to increase the efficiency 
of engine oil (EO). The flow of EO-based Casson nanofluid containing Molybdenum disulfide 
(MoS2) nanoparticles is investigated with ramped wall conditions and thermal radiation. 
Analytical results are calculated via the Laplace transform. The impact of physical parameters on 
isothermal and ramped conditions is illustrated graphically and discussed in detail. The re-
searchers found that flow, mass, and energy can be controlled by using ramped conditions. The 
variation in concentration, temperature, and velocity is exponential for isothermal conditions and 
steady for ramped wall conditions. Finally, the results of Nusselt numbers, skin frictions, and 
Sherwood numbers on both walls of the channel for both isothermal and ramped conditions are 
graphically depicted and discussed. For higher values of time the results of ramped and 
isothermal wall conditions are identical. It is found that the nanoparticles of MoS2 enhance the 
lubrication and heat transport rates of EO.  

Nomenclature 

C̃(ỹ, t̃) Concentration (kg m-3) 

ũ(ỹ, t̃) Velocity (m s− 1) 
T̃(ỹ, t̃) Temperature (K) 

k Thermal conductivity (W m-1 K-1) 
g Gravitational acceleration (m s-2) 
D Mass diffusivity (m2 s− 1) 
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1. Introduction 

Non-Newtonian fluids are attracting researchers due to their applications in the industrial and technological sciences. Sugar so-
lutions, blood, clay coating, paints, drilling mud, certain oils, and synthetic lubricants are different types of non-Newtonian fluids. 
These fluids cannot be defined by the Navier-Stokes equations due to their complex mathematical formulation. Jeffrey, Burger, Casson, 
Carreau, Maxwell, Oldroyd-B, Seely, Bulky and Eyring-Powell fluids are modeled to classify various non-Newtonian fluids according to 
their characteristics. The model of Casson [1] fluid helped to understand the features of dying oil deferments of ink used for printing. 
Casson fluids are shear-thinning fluids [2] and have infinite viscosity at zero shear stress and zero viscosity at infinite shear stress. 
Human blood, soup, honey, tomato sauce, and jelly are different Casson fluids. 

For the last two decades, researchers have been investigating nanofluids due to their extraordinary characteristics. Conventional 
fluids like engine oil, water, ethylene glycol, sodium alginate, and kerosene oil have significant use in the application of heat transfer, 
but these reduce the rate of heat transport due to low thermal conductivities. The nanofluids are useful to save energy and reduce the 
temperature of the equipment [3–6]. For instance, the most common uses of nanofluids are as lubricants in the transportation of heavy 
machines, biomedical tools, heat exchangers, food processing, fuel cells, biomedicine, computer microchips, and coolants in auto-
mobiles [7,8]. Loganathan et al. [9] established the first analytical solution of convective nanofluid flow with radiation. The char-
acteristics of carbon nanotubes in a fluid affected by partial slip were investigated by Reddy et al. [10]. Archana et al. [11] studied the 
incompressible and compressed flow of Casson nanofluid, which is used as a lubricant, between two parallel plates. The constitutive 
equations are included in the mathematical formulation. Reddy et al. [12] explored magnetohydrodynamic flow, thermal conduction, 
and diffusion nanofluid flow over a stretched sheet. 

To increase heat transport properties, a term called “hybrid nanofluid”, which is a novel form of nanofluid, has recently been used. 
Solar cells, power generation engines, cooling devices, naval structures, medical, defense, transportation, and micro-fluidics are a few 
examples of nanofluids. Reddy et al. [13] examined the hybrid nanofluid flow across a revolving disc. Kumar et al. [14] used hybrid 
nanofluids to investigate the sustainability of heat transport increases caused by major characteristics variations of nanofluids under 
the influence of thermal radiation. Reddy et al. [15] used the Koo and Kleinstreuer model to examine the Blasius and Rayleigh-Stokes 
flow of aluminium alloys across a semi-infinite heated plate in Darcy-Forchheimer porous space under the impact of nonlinear ra-
diation. Souayeh [16] established a mathematical model for dusty hybrid nanofluid flow and heat transmission across a stretched 
sheet. An incompressible two-dimensional flow of hybrid dusty nanofluid in a Darcy-Forchheimer medium on a stretched sheet was 
studied by Reddy et al. [17]. Kumar et al. [18] investigated the nature of a moving frame hydrodynamic hybrid nanofluid by applying 
solar radiation. 

The EO is used as a lubricant and has significant applications in the mechanical, chemical, and production industries. Meng et al. 
[19] investigated EO-silver nanofluid. Eswaraiah et al. [20] analyzed the results of the EO-graphene nanofluid. Aman et al. [21] 
calculated the analytical results of Maxwell nanofluid (MoS2-EO) flow. Arif et al. [22] discussed the applications of EO-based nano-
fluids. The use of nanoparticles of various shapes helps to improve the efficiency of lubricants. The nanoparticles of MoS2 are added to 
EO due to its robustness and low friction, which boost the lubricity and thermal conductivity of EO [23,24]. MoS2 is a black, silvery 
solid that appears as the mineral molybdenite and contains atoms of sulphur and molybdenum and is classified in the class of inorganic 

Gr Thermal Grashof number 
Pr Prandtl number 
cp Specific heat (J kg-1 K-1) 
Gm Mass Grashof number 
R Chemical reaction (s− 1) 
Sc Schmidt number 
Nu Nusselt number 
Sk Skin friction 
Sh Sherwood number 

Greek Symbols 
θ Dimensionless temperature 
μ Dynamic Viscosity (kg m− 1 s− 1) 
ρ Density (kg m− 3) 
βT Thermal expansion (K− 1) 
φ Nanoparticles volume fraction 
ν Kinematic viscosity (m2 s− 1) 
βC Mass volumetric (K− 1) 
γ Casson Parameter 

Subscript 
f Fluid 
nf Nanofluid 
s Solid particles  
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compounds. MoS2 is comparatively unaffected and nonreactive by dilute oxygen and acids. Zhang et al. [25] experimentally prepared 
stable MoS2 nanofluids. The major attraction of MoS2 for researchers is its applications, mainly in two-dimensional (2D) electronic 
machines like amplifiers, logic circuits, and field-effect transistors [26,27]. Researchers also investigated factors like volumetric 
expansion, thermal conductivity, and heat capacity [28–33]. 

The use of ramped wall conditions is very significant in different sections of modern science and technology. For example, ramped 
velocity helps to evaluate the functioning of blood vessels and the heart, to diagnose blood-vascular diseases, and to determine 
treatment and find prognosis involving treadmill ergometry [34]. Despite the practical propositions, not enough study is done with 
ramped conditions. Ramped conditions play a vital role in managing the flow, mass, and energy of the fluid. Ahmed and Dutta [35] 
introduce ramped velocity and temperature for Newtonian fluid flow on a vertical moving plate. Ali et al. [36], Seth et al. [37] and Kao 
[38], they studied the impact of ramped wall temperature on diverse physical phenomena of modern science and found the results. 
Seth et al. [39–41] discussed mass and heat transport under the effect of ramped heating. Chandran et al. [42] analyzed mixed 
convection flow with ramped heating. Arif et al. [43] examined the EO-based fractionalized Casson fluid containing nanoparticles of 
graphene oxide and MoS2 with ramped heating and ramped concentration. 

The movement of machine parts produces additional heat owing to frictional forces in various operating systems, causing machine 
components to be unable to continue their functions and stop working before time. We have worked to develop the most significant 
qualities of lubricants for machines, such as EO, so that they can have a long service life and work for longer periods of time. Additives 
are critical components in oils and greases, as well as in the long-term performance of bearings and other machine components. 
Keeping these theories in mind, MoS2 nanoparticles are used in the current investigation. The rate of heat transfer will be enhanced 
without reducing the thickness of EO. As a consequence, the life of machineries such as bearings, automotive engines, and turbines will 
be extended, and they will operate more efficiently. In the above literature, most of the investigations are on ramped temperature, and 
in very few, ramped concentration is included. There is no evidence of the results of the Casson nanofluid flow with ramped velocity. 
Also, most of the studies are for the flow on a single plate. Here the motivation is to discuss the flow of EO-MoS2 Casson nanofluid in the 
channel with ramped wall conditions and thermal radiation. The particles of MoS2 are dispersed in EO to prepare a nanofluid. 
Analytical results are calculated via the Laplace transform. The influence of physical parameters on isothermal and ramped conditions 
is depicted graphically and explained. 

2. Mathematical model 

Consider an incompressible, unsteady flow of Casson nanofluid inside two infinite vertical parallel plates (walls) with ramped 
boundary conditions and thermal radiation. Nanoparticles of MoS2 are suspended in EO to have a nanofluid. 

At t* = 0 (y* = 0 andy* = l), the temperature, velocity, and concentration are uniform. At 0 < t* < t0*, the temperature, con-
centration, and velocity of left plate change temporarily to Tl

* + (T0
* − Tl

*)t*/t0*, Cl
* + (C0

* − Cl
*)t*/t0*, and u0t*/t0*, respectively. 

After y* = l, the system attains its initial position (see Fig. 1). We have made the following assumptions:  

• Nanofluid is considered optically thick. Therefore the Rosseland approximations can be considered for radiation effects.  
• The flow is being confined to y* > 0.
• For t* > 1, the ramped wall conditions changes to isothermal conditions.  
• Velocity, concentration, and temperature are functions of y* and t* only. 

Thermo-physical features of EO and MoS2 are assumed constant and shown in Table 1. 
The governing Eqs. are [43,44]: 

Fig. 1. Flow geometry.  

I. Siddique et al.                                                                                                                                                                                                        



Case Studies in Thermal Engineering 35 (2022) 102118

4

ρnf
∂u*(y*, t*)

∂t*
= μnf

(

1 +
1
γ

)
∂2u*(y*, t*)

∂y*2 + g(ρβC)nf (C
*(y*, t*) − Cl

*)

+g(ρβT)nf (T
*(y*, t*) − Tl

*),

(1)  

(
ρcp

)

nf
∂T*(y*, t*)

∂t*
= knf

∂2T*(y*, t*)
∂y*2 −

∂qr

∂y*, (2)  

∂C*(y*, t*)
∂t*

=Dnf
∂2C*(y*, t*)

∂y*2 , (3) 

with corresponding conditions are [45]: 

u*(y*, 0)= 0, T*(y*, 0) = Tl
*,C*(y*, 0) = Cl

*, 0 ≤ y* ≤ l, (4)  

u*(0, t*) =

⎧
⎪⎨

⎪⎩

u0
t*

t0
*, 0 < t* ≤ t0

*;

u0, t* > t0
*

,T*(0, t*) =

⎧
⎪⎨

⎪⎩

Tl
* + (T0

* − Tl
*)

t*

t0
*, 0 < t* ≤ t0

*;

T0
*, t* > t0

*

,

C*(0, t*) =

⎧
⎪⎨

⎪⎩

Cl
* + (C0

* − Cl
*)

t*

t0
*, 0 < t* ≤ t0

*;

C0
*, t* > t0

*

,

(5)  

u*(l, t*)= 0, T*(l, t*)=Tl
*,C*(l, t*)=Cl

*. (6) 

The characteristics of nanofluids are [46,47]: 

μnf

μf
=

1
(1 − φ)2.5,

ρnf

ρf
=φ

ρs

ρf
+(1 − φ),

(
ρcp

)

nf(
ρcp

)

f

=φ
(
ρcp

)

s(
ρcp

)

f

+ (1 − φ), (7)  

(ρβT)nf

(ρβT)f
=φ

(ρβT)s

(ρβT)f
+ (1 − φ),

(ρβC)nf

(ρβC)f
= φ

(ρβC)s

(ρβC)f
+ (1 − φ), (8)  

Dnf

Df
=(1 − φ), knf = kf

[
2kf + ks − 2φ

(
kf − ks

)]

[
2kf + ks + φ

(
kf − ks

)] . (9) 

Non-dimensional variables, functions, and parameters are 

u =
u*

u0
, t =

t*

t0
*, t0

* =
l2

vf
, y =

y*

l
, θ =

T* − Tl
*

T0
* − Tl

*,C =
C* − Cl

*

C0
* − Cl

*, α1 =
ρf

ρnf (1 − φ)2.5

(

1 +
1
γ

)

,

α2 = Gr
(βT)nf

(βT)f
,α3 = Gm

(βC)nf

(βC)f
,α4 =

1
Pr

(
knf

kf
+ Nr

) (
ρcp

)

f(
ρcp

)

nf

, α5 =
1 − φ

Sc
,

Gm =
g(βC)f (C0 − Cl)d2

U0vf
,Gr =

g(βT)f (T0 − Tl)d2

U0vf
, Pr =

(
ρcp

)

f vf

kf
, Sc =

vf

Df
.

(10) 

By substituting Eq. (10) to Eqs. (1)–(6), we get 

∂u(y, t)
∂t

= α1
∂2u(y, t)

∂y2 + α2θ(y, t) + α3C(y, t), (11)  

∂θ(y, t)
∂t

= α4
∂2θ(y, t)

∂y2 , (12)  

Table 1 
Thermo-physical properties of EO and MoS2 [43].  

Material ρ k β× 10− 5 cp 

Engine oil (EO) 884 0.144 70 1910 
MoS2 5600 904.4 2.8424 397.21  
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∂C(y, t)
∂t

= α5
∂2C(y, t)

∂y2 . (13)  

u(y, 0)= θ(y, 0) = C(y, 0) = 0; 0 ≤ y ≤ 1, (14)  

u(0, t) = θ(0, t)=C(0, t)=
{

t, 0 < t ≤ 1;
1, t > 1 =H(t)t − H(t − 1)(t − 1), (15)  

u(1, t) = θ(1, t) = C(1, t) = 0. (16)  

3. Solution of the problem 

Applying Laplace transform to Eqs. 11–13,(15), (16) and using(14), we obtain 

α1
∂2u(y, τ)

∂y2 − τu(y, τ)= − α2θ(y, τ) − α3C(y, τ), (17)  

α4
∂2θ(y, τ)

∂y2 − τθ(y, τ)= 0, (18)  

α5
∂2C(y, τ)

∂y2 − qC(y, τ)= 0, (19)  

and 

u(0, τ)= θ(0, τ)=C(0, τ)= τ− 2(1 − e− τ), u(1, τ)= θ(1, τ)=C(1, τ)= 0. (20) 

The solution of Eqs. 17–19 subject to Eq. (20), gives 

u(y, τ) = (1 − e− τ)

⎡

⎢
⎢
⎣

(
1
τ +

α2α4

(α1 − α4)τ2 +
α3α5

(α1 − α5)τ2

) sinh
[
(1 − y)

̅̅̅̅̅τ
α1

√ ]

τ sinh
[ ̅̅̅̅̅τ

α1

√ ]

−
α2α4

(α1 − α4)τ2

sinh
[
(1 − y)

̅̅̅̅̅τ
α4

√ ]

τ sinh
[ ̅̅̅̅̅τ

α4

√ ] −
α3α5

(α1 − α5)τ2

sinh
[
(1 − y)

̅̅̅̅̅τ
α5

√ ]

τ sinh
[ ̅̅̅̅̅τ

α5

√ ]

⎤

⎥
⎥
⎦,

(21)  

θ(y, τ)= (1 − e− τ)

sinh
[
(1 − y)

̅̅̅̅
τ

α4

√ ]

τ2 sinh
[ ̅̅̅̅

τ
α4

√ ] . (22)  

C(y, τ)= (1 − e− τ)

sinh
[
(1 − y)

̅̅̅̅
τ

α5

√ ]

τ2 sinh
[ ̅̅̅̅

τ
α5

√ ] . (23) 

The inverse Laplace transform of Eqs. 21–23, gives 

u(y, t) = u0(y, t) − H(t − 1)u0(y, t − 1), (24)  

θ(y, t) =
∑∞

n=0

∫t

0

f (y, α4, τ)dτ − H(t − 1)
∑∞

n=0

∫t

0

f (y,α4, τ − 1)dτ, (25)  

C(y, t)=
∑∞

n=0

∫t

0

f (y, α5, τ)dτ − H(t − 1)
∑∞

n=0

∫t

0

f (y, α5, τ − 1)dτ, (26)  

where 
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u0(y, t)=
∑∞

n=0

∫t

0

(

1+
α2α4τ

(α1 − α4)
+

α3α5τ
(α1 − α5)

)

f (y, α1, t − τ)dτ

−
α2α4

(α1 − α4)

∑∞

n=0

∫t

0

(t − τ)f (y, α4, τ)dτ − α3α5

(α1 − α5)

∑∞

n=0

∫t

0

(t − τ)f (y, α5, τ)dτ,

(27)  

and 

F(y, αk, q)=
sinh

(
(1− y)̅̅̅̅αk
√

̅̅̅q√
)

q sinh
(

1̅̅̅̅αk
√

̅̅̅q√
)=

∑∞

n=0

[
e
−
(2n+y)̅̅̅

αk
√

̅̅q√

q
−

e
−
(2n+2− y)̅̅̅

αk
√

̅̅q√

q

]

, k= 1, 4, 5. (28)  

f (y, αk, t) = erfc
(

2n + y
2

̅̅̅̅̅̅αkt
√

)

− erfc
(

2n + 2 − y
2

̅̅̅̅̅̅αkt
√

)

, k= 1, 4, 5. (29)  

4. Nusselt numbers, skin friction, and Sherwood numbers 

The Nusselt numbers, skin frictions, and Sherwood numbers on both walls of the channel can express as [43,48]. 

Nu0,1 = −
knf

kf

∂θ(y, t)
∂y

⃒
⃒
⃒
⃒

y=0,1
. (30)  

Sk0,1 = −
μnf

μf

(

1 +
1
γ

)
∂u(y, t)

∂y

⃒
⃒
⃒
⃒

y=0,1
. (31)  

Sh0,1 = −
Dnf

Df

∂C(y, t)
∂y

⃒
⃒
⃒
⃒

y=0,1
. (32)  

5. Graphical results and discussions 

The flow of EO-MoS2 nanofluid is analyzed graphically in the section. Figs. 2–4 show the impacts of variation of physical pa-
rameters volume fraction (φ), Casson parameter (γ), Schmidt number (Sc), Prandtl number (Pr) and Grashof numbers (Gr and Gm) on 
non-dimensional velocity, concentration, and temperature fields. Furthermore, the figures also show the comparison of results for both 
ramped and isothermal conditions. The results of ramped boundary conditions are applicable for time 0 < t < 1, isothermal conditions 
are suitable for time t > 1. The results show that the variations with ramped conditions are steady compare to isothermal conditions, 
which are exponential. For higher values of time (t> 1) the results of ramped and isothermal wall conditions are identical. 

Figs. 2(a), 3(a) and 4(a) show how φ affects concentration, energy, and momentum profiles. The concentration and velocity profiles 
are decreasing due to the thickness caused by the higher density of MoS2 particles, the temperature of the nanofluid rises due to the 
superior thermal conductivity of MoS2. Fig. 2(b) illustrates that the concentration decreases by increasing Sc. 

Fig. 2. Variation of concentration when.Sc = 3.3,φ = 0.04.
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Fig. 3(b) illustrates that the viscosity of the nanofluid rises for greater values of Pr which reduces the temperature. Fig. 3(c) 
demonstrates that the increase in temperature at higher thermal radiation. Fig. 4(b) and (c) show the influence of buoyancy forces (Gr 
and Gm) on velocity. The rise in these forces increases the flow of the nanofluid. The influence of γ on the velocity profile is seen in 
Fig. 4(d). For increasing values of γ, the velocity increases exponentially for the isothermal conditions and steadily for the ramped 
conditions. With ramped and isothermal conditions, flow, energy, and concentration are compared. It has been proven that ramped 
velocity, concentration, and temperature are less than those obtained under isothermal circumstances. As a result, the ramped wall 
conditions are more suitable. 

Fig. 5 depicts the rate of heat transport on both walls of the channel with isothermal and ramped conditions. An exponential rise is 
found in heat transfer by increasing. φ.

Fig. 6 demonstrates the fluctuation of skin frictions on both walls of the channel with isothermal and ramped conditions. An in-
crease in skin friction is noticed by increasing. φ.

Fig. 7 illustrates the rate of mass transport on both walls of the channel with isothermal and ramped conditions. The rate of mass 
transfer increases by increasing. φ.

Fig. 8 illustrates the comparison of present results with existing results of Kashif et al. [45]. It is concluded that in the absence of 
chemical reactions (K,R), heat generation (Q), thermal radiation (Nr), and Casson Parameter (γ → ∞) the results are identical. 

6. Conclusions 

Analytical results are calculated via the Laplace transform. The influence of physical parameters on isothermal and ramped con-
ditions is illustrated graphically and discussed in detail. The researchers found that flow, mass, and energy can be controlled by using 

Fig. 3. Variation of temperature when.φ = 0.04, Pr = 100,Nr = 2.5.
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Fig. 4. Variation of velocity when.φ = 0.04,Gr = 4.5,Pr = 100, Sc = 1.3, γ = 0.5,Gm = 5.2,Nr = 2.5.

Fig. 5. Effects of φ on Nusselt numbers when.Pr = 100,Nr = 2.5.
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ramped conditions. The variation in concentration, temperature, and velocity is exponential for isothermal boundary conditions and 
steady for ramped conditions. Finally, the results of Nusselt numbers on both walls (y = 0 and y = 1) of the channel for both ramped 
conditions and isothermal conditions are graphically depicted and discussed. MoS2 nanoparticles enhance the lubrication and heat 
transport rates of EO. An integral transform (Laplace) is used to calculate the results. A nanofluid is prepared by adding nanoparticles 
of MoS2 to EO. The noteworthy outcomes for velocity, concentration, temperature, and Nusselt numbers for both ramped and 
isothermal conditions are graphically highlighted and explained in depth. 

The following are the most important outcomes of this research:  

• Isothermal boundary conditions have higher concentrations, speeds, and temperatures than ramped boundary conditions.  
• Ramped conditions reduce the Casson parameter’s effect.  
• With ramped wall conditions, variations in concentration, velocity, and temperature fields can be controlled.  
• For increasing values of γ, Gr, Gm, the velocity field rises, while for increasing values of φ, the velocity field decreases.  
• As Pr grows, the temperature drops, and as φ rises, the temperature increases.  
• As Sc increases, the concentration of the ramped wall decreases.  
• The Nusselt numbers skin frictions rise with the rise of φ.  
• The Sherwood numbers decrease with the increase of φ.  
• For higher values of t the results of ramped and isothermal wall conditions are identical. 

Fig. 6. Effects of φ on skin frictions when.Gr = 4.5,Pr = 100, Sc = 1.3, γ = 0.5,Gm = 5.2,Nr = 2.5.

Fig. 7. Effects of φ on Sherwood numbers when.Sc = 3.3.
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