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Abstract: Four lipid-rich microalgal species from the Red Sea belonging to three different 

genera (Nannochloris, Picochlorum and Desmochloris), previously isolated as novel biodiesel 

feedstocks, were bioprospected for high-value, bioactive molecules. Methanol extracts 
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were thus prepared from freeze-dried biomass and screened for different biological 

activities. Nannochloris sp. SBL1 and Desmochloris sp. SBL3 had the highest radical 

scavenging activity against 1,1-diphenyl-2-picrylhydrazyl, and the best copper and iron 

chelating activities. All species had potent butyrylcholinesterase inhibitory activity (>50%) 

and mildly inhibited tyrosinase. Picochlorum sp. SBL2 and Nannochloris sp. SBL4 extracts 

significantly reduced the viability of tumoral (HepG2 and HeLa) cells with lower toxicity 

against the non-tumoral murine stromal (S17) cells. Nannochloris sp. SBL1 significantly 

reduced the viability of Leishmania infantum down to 62% (250 µg/mL). Picochlorum sp. 

SBL2 had the highest total phenolic content, the major phenolic compounds identified 

being salicylic, coumaric and gallic acids. Neoxanthin, violaxanthin, zeaxanthin, lutein and 

β-carotene were identified in the extracts of all strains, while canthaxanthin was only 

identified in Picochlorum sp. SBL2. Taken together, these results strongly suggest that the 

microalgae included in this work could be used as sources of added-value products that 

could be used to upgrade the final biomass value. 

Keywords: antioxidants; bioprospection; BuChE inhibitors; carotenoids; microalgae; 

oxidative stress; phenolics 

 

1. Introduction 

Microalgae are found in almost all environments (both aquatic and terrestrial), and it has been 

suggested that their number may be as high as 50,000 species [1]. This biodiversity and distribution 

has provided a wide array of biochemicals, some of them enabling microalgae to thrive in niche and 

extreme habitats [2], while displaying several important bioactivities. Microalgae are thus considered 

as a promising feedstock for the extraction of secondary metabolites for successful commercial 

applications (e.g., Martek and BASF/Betatene Ltd.). Several secondary metabolites identified in 

microalgae have high commercial value and include carotenoids (e.g., astaxanthin, lutein and  

β-carotene) and long chain polyunsaturated fatty acids (PUFA), such as eicosapentaenoic (EPA) and 

docosahexaenoic (DHA) acids [3]. The main advantage of microalgae as sources of novel bioactive 

molecules is their vast biodiversity. Moreover, microalgae are usually fast-growing unicellular 

organisms that can be cultivated in large-scale systems (e.g., open ponds and photobioreactors), 

allowing a continuous supply of large quantities of biomass and of desired molecules [4]. Lastly, bulk 

microalgal biomass or fractions thereof can be used in nutraceutical applications, simultaneously 

upgrading the total biomass value and limiting the costs associated with the isolation of  

specific compounds [5]. 

The interest in microalgae as novel sources of high-value chemicals and/or other products has 

recently increased due to the efforts of using these organisms as renewable biofuel feedstock [3].  

In fact, microalgal biomass is currently considered as one of the most promising feedstocks for  

the large-scale production of biofuels [6]. However, it has been proposed that commercial biofuel 

production can only be economically feasible if high-value components of the algal biomass are 
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exploited as co-products, together with the use of the triacylglycerols for the production of biodiesel in 

a biorefinery setting [6–8]. 

In a previous work, Pereira et al. [9] identified and isolated four microalgal strains from 

environmental water samples collected off Al-Lith in the Red Sea (west coast of Saudi Arabia) by 

fluorescent-activated cell sorting (FACS). The selected isolates were identified by ribosomal DNA 

sequencing and classified as chlorophytes belonging to three different genera, namely Picochlorum, 

Nannochloris and Desmochloris. All strains had inner cell lipid contents ranging from 20% to 25% of 

the biomass dry weight (DW), with fatty acid profiles appropriate for biodiesel production [9]. In this 

work, a bioprospection for commercially-relevant metabolites with the biomass of the aforementioned 

microalgae was performed. These include pigments and secondary metabolites with valuable biological 

activities (e.g., free radical scavenging, metal chelating and cholinesterase inhibitory activities, as  

well as cytotoxicity towards human tumoral cell lines and Leishmania parasites), which can have  

a wide application in the food, feed and pharmaceutical industries. To the authors’ knowledge, the 

biological activities here described have never been reported in Nannochloris, Picochlorum and 

Desmochloris microalgae. 

2. Results and Discussion 

2.1. Antioxidant Activity 

Free radicals, more specifically reactive oxygen species (ROS) and reactive nitrogen species (RNS), 

have both beneficial and deleterious roles in the human body. When present at very low 

concentrations, they may act as a second messenger in some of the signal transduction pathways [10]. 

However, when the production of ROS and/or RNS overcomes the antioxidant defenses of the 

organism, oxidative stress may occur, which is implicated in the pathogenesis of several chronic 

diseases. The use of antioxidants can thus prevent and/or reduce the severity of those oxidative  

stress-related diseases, such as cancer, diabetes, cardiovascular disorders and neurological  

ailments [11–15]. ROS are constantly produced in the brain by excitatory amino acids and 

neurotransmitters and can lead to oxidative stress with the associated damage to glial and neuronal 

cells [16]. In this context, the use of antioxidants to prevent cerebral oxidative stress and neuronal loss 

has gained increasing importance due to their capacity to neutralize free radicals [13,16]. 

In this study, methanol extracts were prepared from dried biomass of four microalgae strains and 

evaluated for radical scavenging activity (RSA) on the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical. 

All species had moderate or high RSA, and the highest values were observed in Nannochloris sp. 

SBL1 and Desmochloris sp. SBL3 with RSA values of 60% and 61%, respectively, at a concentration 

of 10 mg/mL (Figure 1). Butylated hydroxytoluene (BHT; positive control) had an RSA of 88% at a 

concentration of 1 mg/mL. These results suggest that those species may be sources of compounds with 

anti-radical properties. Generally, extracts had a higher ability to chelate Fe2+ than Cu2+ (Figure 1), 

similar to previous findings in other microalgae [17], such as N. oculata. Regarding iron chelation, the 

highest activity was obtained with Desmochloris sp. SBL3 (81%) followed by Nannochloris sp. SBL1 

(70%) at a concentration of 10 mg/mL (Figure 1). Those species were also able to chelate copper, with 

values of 61% and 45% at a concentration of 10 mg/mL (Figure 1). Iron may promote the deposition of 
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β-amyloid plaques, which is one of the hallmarks of the progression of Alzheimer’s disease (AD). 

Moreover, the accumulation of both Fe2+ and Cu2+ increase the production of ROS through the 

promotion of the Haber–Weiss/Fenton reaction, which may be responsible for the increase in global 

oxidative stress parameters observed in AD patients [15,18]. Thus, the use of Fe2+ and Cu2+ chelators is 

a valuable strategy in the management of oxidative stress-related neurological disorders [15]. The 

importance of novel metal chelators is highlighted by the side effects caused by current chelation 

therapies, which may cause allergic reactions, as well as ophthalmological, auditory and bone toxicity, 

most probably caused by their lack of specificity or “over-chelation” [19]. Our results suggest that the 

extract showing higher selectivity for iron corresponds to that of Picochlorum sp. SBL2. Lower 

selectivity between iron and copper chelation is apparent for the Desmochloris sp. SBL3 (Figure 1). 

Interestingly, a recent report on metal chelators suggests that compounds with lower sequestration 

capacity, but higher specificity may be more promising candidates for novel therapeutic leads. 

Selective chelators with lower binding activity may be able not only to remove the metal from  

disease-causing “sinks”, but also to more readily release the metal in other cellular compartments 

where they are needed [20]. Such mechanism could be a way forward to reduce the adverse effects of 

known metal chelators. 

 

Figure 1. Radical scavenging activity (RSA) on the free radical 1,1-diphenyl-2-picrylhydrazyl 

(DPPH) and iron and copper chelating activities of methanol extracts of four strains 

belonging to the Nannochloris (SBL1 and SBL4), Picochlorum (SBL2) and Desmochloris 

(SBL3) genera. Solid and error bars represent the average and standard deviation values, 

respectively (n = 6). Butylated hydroxytoluene (BHT; positive control) had an RSA of 

88% at 1 mg/mL. Ethylenediamine tetraacetic acid (EDTA; positive control) had a metal 

chelating activity of 76% (copper) and 96% (iron) at a concentration of 1 mg/mL. 

2.2. Acetylcholinesterase, Butyrylcholinesterase and Tyrosinase Inhibitory Activity 

AD is characterized by the loss of cholinergic neurons in the forebrain and by a progressive decline 

in the levels of acetylcholine (ACh) due to hydrolytic reactions catalyzed by acetylcholinesterase 

(AChE) and butyrylcholinesterase (BuChE) [21]. Thus, research has focused on the identification  

of cholinergic inhibitors (ChEIs) able to increase the activity of surviving cholinergic neurons in 

patients with AD. This is the case of the drugs currently used as therapeutics in AD, specifically 
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galantamine/Razadyne®, Janssen, an AChE inhibitor, and rivastigmine/Exelon®, Novartis, a compound 

with a dual effect on AChE and BuChE. 

In this work, the inhibitory activity (%) towards AChE and BuChE was classified as potent (>50%), 

moderate (30%–50%), low (<30%) or nil (<5%) [22]. According to this classification, extracts had low 

and nil inhibitory potential on AChE, but displayed potent activity towards BuChE. The opposite was 

observed in other microalgae, namely Botryococcus braunii and Nannochloropsis oculata [23], where 

a high AChE inhibition was observed, but no relevant BuChE inhibitory activity was detected. The 

highest BuChE inhibitory effect was obtained with Picochlorum sp. SBL2 at the highest concentration 

tested (10 mg/mL, 69.3% of inhibition; Table 1). Although some of the functions of BuChE are common 

to AChE (i.e., to catalyze ACh hydrolysis), the exact role of the former enzyme is still unclear [24]. 

However, there is evidence that some cholinergic neurons contain BuChE instead of AChE [25], and 

thus, the increase of the cholinergic function through the inhibition of BuChE may be of clinical value. 

Our results suggest that the microalgae under study contain compounds that can inhibit BuChE, which 

could be used in combination with AChE inhibitors (Table 1) [26]. Indeed, clinical studies with the 

dual ChEI, rivastigmine, support a role for the central inhibition of BuChE in addition to AChE in AD 

therapy [27]. Noteworthy is the fact that BuChE inhibition was evident with the lowest concentration 

tested and that increasing a concentration applied was not followed by an increase of the inhibitory 

activity. A possible explanation for this may be related to the balance between inhibitors and activators 

of BuChE, which can be present in crude extracts [28]. Hence, upon increasing a concentration of the 

extracts, both types of compounds will equally increase, resulting in an unaltered inhibitory effect. 

The extracts were also evaluated for their inhibitory potential against tyrosinase (TYRO), a 

multifunctional copper-containing enzyme that plays a pivotal role in melanin biosynthesis [29]. TYRO is 

also involved in neuromelanin formation in the human brain and, due to its oxidase activity, can 

potentially accelerate the induction of catecholamine quinone derivatives, contributing to dopamine 

neurotoxicity and to neurodegeneration associated with Parkinson’s disease (PD) [29]. In this sense, 

TYRO inhibitors have become an attractive target for the treatment of PD. Except for Nannochloris sp. 

SBL4, which imposed no inhibitory effect on TYRO, all strains had moderate activity on this enzyme, 

at 10 mg/mL (Table 1), which indicates the presence of compounds in those species with potential 

interest for PD therapeutics [29]. 

Table 1. Acetylcholinesterase (AChE), butyrylcholinesterase (BuChE) and tyrosinase (TYRO) 

inhibitory activity (%) of methanol extracts of four strains belonging to the Nannochloris 

(SBL1 and SBL4), Picochlorum (SBL2) and Desmochloris (SBL3) genera. Values are 

represented as the mean and standard deviation (n = 6). 

 AChE BuChE TYRO 
Species/Standard 1 mg/mL 10 mg/mL 1 mg/mL 10 mg/mL 1 mg/mL 10 mg/mL

SBL1 na 17.1 ± 5.7 52.0 ± 8.4 58.0 ± 7.4 22.7 ± 4.6 44.8 ± 5.1 
SBL2 na 21.2 ± 8.1 66.1 ± 3.4 69.3 ± 2.5 32.6 ± 7.3 39.5 ± 5.4 
SBL3 na na 55.2 ± 6.5 60.4 ± 5.2 15.0 ± 5.2 40.1 ± 3.5 
SBL4 na na 59.0 ± 8.2 41.2 ± 12.0 10.6 ± 4.1 na 

Galantamine * 93.2 ± 0.5 nt 80.3 ± 0.7 nt - - 
Arbutin * - - - - 78.3 ± 0.1 nt 

* Positive control; nt, not tested; na, no activity. 
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2.3. In Vitro Cytotoxic Activity 

According to the World Health Organization (WHO), cancer is responsible for about 13%  

(~7.6 million) of fatalities worldwide, being the second most common cause of death from disease 

after myocardial infarction. The current available antitumoral drugs generally display undesirable 

effects, making the search for more effective and safer drugs necessary. The algal extracts under study 

were thus tested against two human tumoral cell lines, namely: HepG2 (hepatocellular carcinoma) and 

HeLa (cervical carcinoma). Samples were applied for 72 h at a concentration of 125 µg/mL, and cell 

viability was assessed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) 

colorimetric assay [30]. To evaluate selectivity, samples were applied to a murine non-tumoral cell line 

(S17, stromal cells). None of the extracts were cytotoxic to non-tumoral cells and displayed different 

degrees of toxicity towards tumoral cell lines (Figure 2). Nannochloris sp. SBL1 and Desmochloris sp. 

SBL3 did not reduce significantly the viability of any of the cell lines tested, suggesting a nontoxic 

nature for the compounds present in the extract of those species. Extracts from Picochlorum sp. SBL2 

and Nannochloris sp. SBL4 significantly reduced the viability of both HepG2 and HeLa cells, with 

lower toxicity against non-tumoral S17 cells. However, Nannochloris sp. SBL4 extracts showed the 

highest selectivity index (SI), suggesting that this strain contains molecules with interesting antitumoral 

properties that may act selectively on cancer cells. Although microalgae have long been recognized as 

sources of important biomolecules with potential medical uses [31], there have been few reports on 

their cytotoxicity against human tumoral cells [32,33]. 

 

Figure 2. Effect of the application of methanol extracts of four strains belonging to the 

Nannochloris (SBL1 and SBL4), Picochlorum (SBL2) and Desmochloris (SBL3) genera, 

applied at a concentration of 125 µg/mL for 72 h, on the viability of human hepatocarcinoma 

(HepG2), cervical carcinoma (HeLa) and non-tumoral murine stromal (S17) cell lines, in 

comparison to a control without extract (DMSO, 0.5%, v/v). Bars and lines correspond, 

respectively, to cell viability and selectivity. * Significant differences (p < 0.001) compared 

with the control (n = 6). Half maximal inhibitory concentrations for etoposide used as a 

positive control were 1.9, 4.2 and 10 µg/mL for HepG2, HeLa and S17 cells, respectively. 
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2.4. In Vitro Antileishmanial Activity 

Leishmania infantum is the causative agent of canine leishmaniasis and both cutaneous and visceral 

forms of human leishmaniasis in the Mediterranean region [34]. The disease is endemic in all 22 countries 

of this area, where it is considered as a serious public health and veterinary problems [35]. In the 

Iberian Peninsula, the infection by L. infantum in humans is mainly related to immunosuppressive 

diseases, especially HIV co-infection [36,37]. Cases that are not the result of co-infection occur mostly 

in children. At present, there are no effective human or canine vaccines, and chemotherapy is the only 

means of controlling leishmaniases. However, currently applied drugs have high costs, depend on 

long-term administration and display high toxicity and reduced efficacy due to increasing parasite 

resistance [38,39]. Hence, the search for novel, safe, non-toxic and cost-effective drugs that can be used 

alone or in combination therapies to antileishmanial therapy and/or immunoprophylaxis is urgent [38–41]. 

In this work, samples were applied to L. infantum promastigotes at a concentration of 250 μg/mL 

for 48 h, and cell viability was determined by the MTT assay (Figure 3). Nannochloris sp. SBL1 was 

able to significantly reduce promastigotes viability down to 62%, as compared with untreated cells. 

Parasites treated with amphotericin B as the standard drug exhibited a viability of 47% at a concentration 

of 0.23 μg/mL (Figure 3). Marine organisms are recognized as a source of novel products and as  

a promising alternative to antileishmanial therapy and control [39,42]. However, there were no reports 

until now on the antileishmanial potential of microalgae. Assays are now being performed to ascertain 

the in vitro toxicity of this strain on intracellular amastigotes of L. infantum. 

 

Figure 3. Effect of the application of methanol extracts of four strains belonging to the 

Nannochloris (SBL1 and SBL4), Picochlorum (SBL2) and Desmochloris (SBL3) genera at 

a concentration of 250 µg/mL for 48 h on the viability of Leishmania infantum promastigotes 

expressed as percentage (%), in comparison to a control (DMSO, 0.5%, v/v). Amphotericin 

B was used as the positive control. * Significant differences (p < 0.01) compared with the 

control (promastigotes treated with 0.5% DMSO, dashed line; n = 6). 
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2.5. Extraction Yield and Phytochemical Analysis 

The polarity and the nature of the solvents used in the extraction process define the extraction yield 

and the composition of the obtained extracts and, thus, their biological activity [43]. In this work, the 

dried biomass was extracted with methanol. Since it is known that this solvent has affinity for a broad 

diversity of bioactive compounds, namely phenolic compounds [44] and carotenoids, this approach 

already allowed the extraction of bioactive compounds from different species of microalgae [17]. The 

extraction yields were as follows: Nannochloris sp. SBL1, 29.9%; Picochlorum sp. SBL2, 32.2%; 

Desmochloris sp. SBL3, 33.9%; and Nannochloris sp. SBL4, 40.7%. 

In spite of being considered as important sources of bioactive compounds, data on the phenolic 

content of microalgae is scarce [17,23,31–33,45,46], and to the best of our knowledge, there are no 

reports on the phenolic composition of Nannochloris, Picochlorum and Desmochloris microalgae.  

The accurate quantification of different phenolic structural groups remains difficult [47]. 

Spectrophotometric (colorimetric) techniques are widely used and are convenient when dealing with 

several samples of unknown composition [48]. The highest total phenolic content (TPC) was obtained 

in Picochlorum sp. SBL2 (114 mg gallic acid equivalents (GAE)/g DW), followed by Nannochloris sp. 

SBL4 (83.3 mg GAE/g DW) and Desmochloris sp. SBL3 (59.3 mg GAE/g DW). Those values are 

higher than those reported for methanol extracts of other species of microalgae, namely Tetraselmis 

chuii, Nannochloropsis oculata, Chlorella minutissima and Rhodomonas salina [17]. Only 

Nannochloris sp. SBL1 had a low content of phenolic compounds (5.8 mg GAE/g DW). Samples were 

further analyzed by reverse-phase HPLC, and three phenolic acids (gallic, coumaric and salicylic 

acids) were identified in Nannochloris, Picochlorum and Desmochloris microalgae samples (Table 2). 

The phenolic composition varied as a function of the strain analyzed, and Picochlorum sp. SBL2 had 

the highest sum of phenolic compounds (1.1 mg/g extract, DW), followed by Nannochloris sp. SBL4 

(0.21 mg/g extract, DW), Nannochloris sp. SBL1 (0.12 mg/g extract, DW) and Desmochloris sp. SBL3 

(0.07 mg/g extract, DW). Salicylic acid was the main phenolic detected in Picochlorum sp. (0.64 mg/g 

extract, DW) and at a lower level in Nannochloris sp. SBL4 (0.14 mg/g extract, DW). Coumaric acid 

was the only phenolic acid common to all strains and was detected in similar concentrations in 

Nannochloris (0.06 mg/g extract, DW) and Desmochloris strains (0.07 mg/g extract, DW). 

Biophenolics are considered to be the most common secondary metabolites in photosynthetic 

organisms. These compounds are potent antioxidants due to their capacity to scavenge singlet oxygen 

and free radicals by donating hydrogen from the phenolic hydroxyl groups. This results in a stable end 

product that does not initiate or propagate lipid oxidation [49]. Such antioxidant ability confers 

phenolics an important role in the prevention of oxidative stress-related diseases, such as cancer and 

neurological disorders. However, the phenolic content of microalgae is lower than the levels reported 

for terrestrial plants [50]. One must keep in mind that, similarly to what was observed for other bioactive 

molecules, such as carotenoids, the phenolic levels in algal biomass can be increased through the 

modification of the growing conditions [51,52]. 

Microalgae are known producers of different carotenoids displaying potent antioxidant and  

anti-carcinogenic activities [53]. Therefore, the carotenoid composition of all extracts was determined 

by HPLC and is shown in Table 2. Neoxanthin (0.02–1.45 mg/g extract DW), violaxanthin  

(0.05–0.44 mg/g extract DW), lutein (0.19–1.29 mg/g extract DW), zeaxanthin (0.10–0.54 mg/g 
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extract DW) and β-carotene (0.52–1.19 mg/g extract DW) were detected in all strains. Canthaxanthin 

was only detected in Picochlorum sp. SBL2 (1.15 mg/g extract DW). The pigment composition of 

Picochlorum sp. SBL2 extract is similar to that reported in a previous work [54], except for the presence 

of canthaxanthin. In fact, the strain of Picochlorum sp. studied by de la Vega and co-workers [54] was 

suggested by the authors as a promising feedstock for the exploitation of carotenoids and biodiesel 

production. Both Nannochloris strains had similar carotenoid composition. However, Nannochloris sp. 

SBL1 had a higher concentration of carotenoids than those detected in SBL4. Except for zeaxanthin, 

the identified pigments in Nannochloris strains were previously observed in Nannochloris atomus [55]. 

To the authors’ knowledge, the pigment composition of Desmochloris has never been reported 

previously. Regarding the total amount of carotenoids, Picochlorum sp. had the highest amounts  

(3.55 mg/g extract DW), followed by Nannochloris SBL1 (3.07 mg/g extract DW) and Desmochloris 

SBL3 (1.74 mg/g extract DW), whereas Nannochloris sp. SBL4 had the lowest content (1.62 mg/g 

extract DW). 

Table 2. HPLC analysis of phenolic and carotenoid compounds (mg/g extract DW) of 

methanol extracts of four strains belonging to the Nannochloris (SBL1 and SBL4), 

Picochlorum (SBL2) and Desmochloris (SBL3) genera. 

Compound SBL1 SBL2 SBL3 SBL4 

Gallic acid 0.06 0.11 nd nd 
Coumaric acid 0.06 0.35 0.07 0.07 
Salicylic acid nd 0.64 nd 0.14 
Total phenolics 0.12 1.1 0.07 0.21 
Neoxanthin 0.02 1.45 0.11 0.06 
Violaxanthin 0.16 0.44 0.05 0.15 
Lutein 1.29 0.89 0.60 0.19 
Zeaxanthin 0.51 0.54 0.48 0.10 
Canthaxanthin nd 1.15 nd nd 
β-carotene 1.08 0.52 0.61 1.19 
Total carotenoids 3.07 3.55 1.74 1.62 

nd, not detected. 

Although a direct relationship could not be established between either the phenolics or pigment 

composition and the RSA observed for the extracts, synergistic effects between different pigments are 

known to increase the RSA towards the DPPH radical [56]. In addition, interactions with or between 

phenolic compounds cannot be ruled out. Nonetheless, our results reveal that all strains of microalgae 

tested can be exploited as feedstocks for the production of carotenoids with high commercial value for 

different applications. There is increasing market demand for carotenoids with an estimated annual 

growth rate of 2.3% and a global market that can reach $1.4 billion by 2018 [57]. Carotenoids, such as 

lutein, have a wide applicability in nutritional and pharmaceutical/biomedical industries, because of 

their antioxidant and anti-carcinogenic properties [31], prevention of cognitive impairment [58], eye 

supplements formulation [54] and food and feed additives for the pigmentation industry [53]. 

These commercially-relevant metabolites (e.g., carotenoids and phenolics) can be key to the 

development and sustainability of a future microalgae-based biorefinery venture, coupling the exploitation 
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of lipids for biodiesel and/or edible oils purposes with the co-production of fine and/or bulk  

chemicals with high commercial value for other biotechnological applications [59]. For example,  

carotenoid-containing streams coming from biomass down-processing, but unused for biodiesel 

production, could upgrade the total value of the feedstock and enable the future deployment of 

biorefineries for growing and processing microalgal strains already adapted to the conditions found in 

the Red Sea. Although these strains contain high-added value compounds, for the setup of a 

biorefinery, an effective downstream procedure enabling the separation of the oil/lipids from these 

streams, in laboratory and industrial settings, needs to be developed. Moreover, the development of a 

microalgae biorefinery must take into account the market size for these high-added value compounds. 

When lipids are used for the production of biofuels, the co-production of high value metabolites may 

saturate the market currently available for these niche products [60]. To overcome market-size limitations, 

extracted lipids found in the biomass can be diverted to applications other than biofuel production, 

including nutritional (food and feed), pharmaceutical and cosmetic industries. Alternatively, if biofuels 

must be produced for strategic reasons concerning fuel security, the generated co-products may be 

diversified, and novel emerging markets can be explored [60–62]. Some examples of possible emerging 

markets are active food packaging and organic aquaculture feed, which present increasing demands for 

components containing antioxidants, stabilizers and coloring agents from biological sources [63,64]. 

3. Experimental Section 

3.1. Chemicals 

All chemicals used in the experiments were of analytical grade. AChE (EC.3.1.1.7) from electric 

eel, BuChE (EC.232.579.2) from equine serum, acetylthiocholine iodide (ATChI), butyrylthiocholine 

iodide (BTChI), 5,5-dithiobis-(2-nitrobenzoic acid (DTNB), galantamine, gallic acid, Tween 40, 

pyrocatechol violet, DPPH and all commercial standards for HPLC were purchased from Sigma 

(Steinheim, Germany). Ethylenediamine tetraacetic acid (EDTA) and sodium carbonate (Na2CO3) 

were acquired from Fluka (Steinheim, Germany). Merck (Darmstadt, Germany) supplied ferrozine, 

copper sulfate pentahydrate and Folin-Ciocalteu (F-C), while methanol was obtained from Fischer 

Scientific (Loughborough, UK). Additional reagents and solvents were purchased from VWR 

International (Leuven, Belgium). 

3.2. Microalgae Culture 

Microalgae strains, namely Nannochloris sp. SBL1, Picochlorum sp. SBL2, Desmochloris sp. 

SBL3 and Nannochloris sp. SBL4 were previously isolated by Pereira et al. [9]. Biomass was cultured 

in agar plates (1.5% agar) and further grown on liquid medium in 80-mL test tubes using Guillard’s 

F/2 medium and enriched seawater, as described in Pereira et al. [65]. Cultures were grown for 12 days 

at 23 °C, at a photon flux density of 100 μmol·m−2·s−1 with a 24-h light photoperiod. Upon culturing, 

biomass was harvested by centrifugation (5000× g, 5 min) and freeze-dried until the extraction procedure. 
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3.3. Extraction 

Dried microalgae biomass was mixed with methanol (1:40, w/v) and the cells disrupted using  

an IKA T10B Ultra-Turrax disperser for 2 min, on ice. Extractions were performed overnight at room 

temperature (RT, 20 °C) under continuous stirring. The supernatants were recovered from extracted 

biomass by centrifugation (10,000× g, 10 min), filtered (Whatman No. 4 filter) and dried on a rotary 

evaporator (45 °C) under vacuum. Dried extracts were resuspended in methanol to a final concentration 

of 20 mg/mL and stored at −20 °C. 

3.4. Antioxidant Activity 

3.4.1. RSA on DPPH Radical 

RSA on the DPPH free radical was evaluated according to the method of Brand-Williams adapted 

to a 96-well microplate scale [66]. The absorbance was measured at 515 nm in a microplate reader, and 

the RSA was expressed as percent inhibition, relative to a negative control, containing methanol in 

place of the sample. Butylated hydroxytoluene (BHT, 1 mg/mL) was used as a positive control. 

3.4.2. Metal Chelating Activity on Iron and Copper Ions 

Iron chelating activity was determined by measuring the formation of the Fe2+-ferrozine complex 

according to Megías et al. [67], with some modifications. The change in color was measured in a 

microplate reader at 562 nm. Copper chelating activity was determined using pyrocatechol violet (PV), 

as described by Megías et al. [67]. The change in color of the solution was measured at 632 nm. The 

synthetic metal chelator EDTA was used as a positive control at the concentration of 1 mg/mL for  

both metals. 

3.5. AChE and BuChE Inhibitory Activity 

AChE and BuChE inhibitory activities were measured by the Ellman method [68] as described by 

Orhan et al. [69]. Briefly, 20 µL of each extract (1 and 10 mg/mL) were mixed with 140 µL of 0.1 mM 

sodium phosphate buffer (pH 8.0) and 20 µL of AChE or BuChE solution (0.28 U/mL) in 96-well 

microplates and incubated at RT for 15 min. The reaction was initiated by adding 10 µL of ATChI or 

BTChI (4 mg/mL) together with 20 µL of DTNB (1.2 mg/mL). The hydrolysis of ATChI or BTChI 

was monitored by the formation of the yellow 5-thio-2-nitrobenzoate anion as a result of the reaction 

of DTNB with thiocholines catalyzed by the enzyme, at 412 nm, using a microplate reader. Results 

were expressed as AChE and BuChE percentage inhibition relative to a negative control, containing 

methanol in place of the sample. Galantamine was used as the positive control (1 mg/mL). 

3.6. TYRO Inhibitory Activity 

The inhibitory activity against TYRO was determined by the method reported by Nerya et al. [70] 

with modifications, using L-tyrosine as the substrate. Samples (70 µL at the concentrations of 1, 5 and  

10 mg/mL) were mixed in 96-well microplates with 30 µL of TYRO (333 Units/mL in phosphate 

buffer, pH 6.5) and incubated for 5 min. Then, 110 µL of substrate (L-tyrosine, 2 mM in water) were 
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added to each well and further incubated for 30 min at RT. The optical densities of the wells were read 

at 492 nm. Results were expressed as TYRO percentage inhibition relative to a negative control, 

containing methanol in place of the sample. Arbutin was used as the positive control at the concentration 

of 1 mg/mL. 

3.7. In Vitro Cytotoxic Activity 

HepG2, HeLa and S17 cells were kindly provided by the Centre for Biomedical Research (CBMR), 

University of Algarve. The HepG2 cell line was maintained in RPMI-1640 culture media supplemented 

with glucose (1000 mg/mL), 10% heat-inactivated fetal bovine serum (FBS), L-glutamine (2 mM), 

penicillin (50 U/mL) and streptomycin (50 µg/mL). S17 and HeLa cells were grown in DMEM culture 

media supplemented with glucose (1000 mg/mL), 10% FBS, L-glutamine (2 mM), penicillin (50 U/mL) 

and streptomycin (50 µg/mL). Both lines were grown at 37 °C and 5.0% CO2 in a humidified atmosphere. 

Exponentially-growing cells were seeded at a density of 5 × 103 cells/well on 96-well plates and 

incubated for 24 h at 37 °C in 5.0% CO2. Then, the extracts (100 µL) were applied at a concentration  

of 125 µg mL for 72 h. Positive control cells were treated with etoposide at the same concentration and 

incubation period as the extracts, while negative control cells were treated with DMSO at the highest 

concentration used in test wells (0.5%, v/v). The MTT assay [30] was used to assess the effect of the 

extracts on mitochondrial metabolic activity, as an indicator of cell viability. Results were expressed in 

terms of cell viability (%). 

3.8. In Vitro Antileishmanial Activity 

Promastigote forms of L. infantum (MHOM/PT/88/IMT-151) were provided by the Medical 

Parasitology Unit of the Institute of Hygiene and Tropical Medicine (New University of Lisbon, 

Portugal) and maintained in RPMI-1640 medium supplemented with 10% heat-inactivated FBS,  

L-glutamine (2 mM), penicillin (50 U/L) and streptomycin (0.05 mg/L), at 24 °C in tissue flasks.  

For the determination of the antileishmanial activity, L. infantum promastigotes (1 × 107 parasites/mL) 

were incubated in 96-well plates with the extracts at the concentration of 250 μg/mL, for 48 h. Positive 

control parasites were treated with amphotericin B at a concentration of 0.23 μg/mL and during the 

same incubation period as the extracts, while negative control cells were treated with DMSO at the 

highest concentration used in test wells (0.5% v/v). The MTT assay [30] was used to assess the effect 

of the extracts on parasites viability. After incubation, 20 μL of MTT (5 mg/mL in PBS) were added to 

each well, and plates were re-incubated for 2 h, at 37 °C. Then, plates were centrifuged (15 min, 4 °C, 

1479× g), the supernatants discarded and 150 μL of DMSO added to each well in order to dissolve the 

formazan crystals. Absorbance was measured at 590 nm, and results were expressed in terms of  

cell viability (%). 

3.9. TPC 

The TPC of the extracts was determined by the F-C assay according to Velioglu et al. [71]. The 

extracts (5 µL at the concentration of 10 mg/mL) were mixed with 10-fold diluted F-C reagent in 

distilled water (100 µL) and incubated at RT for 5 min. Then, 100 µL of sodium carbonate (Na2CO3, 
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75 g/L, w/v) were added; samples were incubated for 90 min at RT, and the absorbance was measured  

at 725 nm, on a microplate reader. Results were expressed as GAE using a calibration curve of gallic 

acid standard solutions, in milligrams per gram of extract (mg GAE/g DW). 

3.10. HPLC Analysis 

3.10.1. Analysis of Phenolic Compounds 

The extracts at the concentration of 10 mg/mL in ultrapure water were analyzed by HPLC-DAD 

(Agilent 1100 Series LC system, Boeblingen, Germany) formed by the following modules: vacuum 

degasser (G1322A), quaternary pump (G1311A), autosampler (G1313A), thermostated column 

compartment (G1316A) and a diode array detector (G1315B). Data acquisition and instrumental 

control were performed by the software LC3D ChemStation (Version Rev.A.10.02(1757), Agilent 

Technologies, Boeblingen, Germany). Analyses were performed on a Mediterranea Sea18 column,  

15 × 0.21 cm, 5-µm particle size (Teknokroma, Barcelona, Spain). The mobile phase consisted of a 

mixture of methanol (Solvent A) and 2.5% acetic acid aqueous solution with the following gradient:  

0–5 min: 10% A, 5–10 min: 10%–30% A, 10–40 min: 30%–90% A, 40–45 min: 90% A, 45–55 min: 

90%–10% A and 55–60 min: 10% A, using a flow of 0.5 mL/min. The injection volume was 20 μL 

with a draw speed of 200 μL/min. The detector was set at 210, 280 (used for quantification), 320 and 

350 nm. For chemical identification, the retention parameters of each assay were compared with the 

standard controls and the peak purity with the UV-visible spectral reference data. The levels of the 

different compounds were extrapolated from calibration standard curves. Commercial standards (gallic 

acid, p-hydroxybenzoic acid, catechin, vanillic acid, caffeic acid, syringic acid, epigallocatechin 

gallate, coumaric acid, salicylic acid, ferulic acid, rosmarinic acid, 4-hydroxybenzaldehyde, apigenin, 

BHT, chlorogenic acid, epicatechin, epigallocatechin, flavone, gentisic acid, m-hydroxybenzoic acid, 

oleanolic acid, quercetin, resveratrol, rutin hydrate, trans-cinnamic acid and uvaol) were prepared in 

methanol (10,000 mg/L) and diluted with ultrapure water in the desired concentration. 

3.10.2. Analysis of Pigment Composition 

All methanolic extracts were injected at the concentration of 10 mg/mL with an injection volume  

of 20 μL. Carotenoids were analyzed with a Knauer smartline 5000 HPLC equipped with a Knauer 

Smartline pump 1000 and Knauer UV detector 2600. The HPLC was performed using Luna 5u C18 

100A (5 µm, 250 × 4.6 mm). The mobile phase consisted of acetonitrile (ACN) and ethyl acetate (EA) 

with the following gradient: 0–15 min: 100% ACN, 15–35 min: 50%–50% ACN, 35–45 min:  

100% ACN, using a flow of 1 mL/min. The identification of compounds was achieved by comparing 

the retention time and the UV spectra with those of pure commercial standards. Quantification was 

performed using calibration curves prepared for each of the pigments analyzed (fucoxanthin, lutein, 

violaxanthin, neoxanthin zeaxanthin astaxanthin, canthaxanthin, chlorophyll a, lycopene and β-carotene). 

3.11. Statistical Analysis 

Results were expressed as the mean ± standard deviation, and experiments were conducted at least 

in triplicate. Significant differences were assessed by analysis of variance (ANOVA) or the Duncan’s 
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new multiple range test when the parametricity of data did not prevail. SPSS statistical package for 

Windows (Release 15.0, SPSS Inc., Chicago, IL, USA) was used. 

4. Conclusions 

Our results indicate that biomass from the microalgae Nannochloris sp., Picochlorum sp. and 

Desmochloris sp. isolated from the Red Sea not only have fatty acid methyl ester profiles considered as 

ideal for biodiesel production [9], but also contain molecules with relevant bioactivities, including 

antioxidant, inhibition of BuChE and TYRO, cytotoxic and antileishmanial activities. Moreover, 

chemical characterization of the extracts of all strains revealed the presence of different phenolic and 

carotenoid compounds, some of which have high market value. Taken as a whole, these results suggest 

that the biomass of these microalgae is promising as feedstocks for supplying high-value compounds 

to the biomedical/pharmaceutical and food/feed industries. Future research will focus on the 

development of a suitable downstream procedure for the coupled extraction of lipids and target  

co-products studied in the present report. 
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