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are bordered by piecewise smooth Jordan curves or are rectilinear slits. The presented
method is used also to compute the harmonic measure in multiply connected domains.
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1. Introduction

The conformal capacity of condensers is an important notion in geometric function theory [1–7] and in various
applications of electronics. However, the analytic forms of the capacity are known only for special types of condensers.
So, the use of numerical methods for computing the capacity is unavoidable in many applications. Indeed, numerical
computation of the capacity of condensers has been intensively studied in the literature, see e.g., [3,8–11]. The capacity of
condensers is one of the several ‘‘conformal invariants’’ which are powerful tools in complex analysis. Some of the other
important examples of conformal invariants are the harmonic measure, the logarithmic capacity, the extremal length, the
reduced extremal length, and the hyperbolic distance [1,4,7,12–14]. Numerical computing of such invariants has been
studied also in the literature, see e.g., [6,8,15–17].

The capacity of generalized condensers is another important example of conformal invariants [4,7,18–20]. In this paper,
we present a numerical method for computing the capacity of generalized condensers. We consider the case in which the
plates of the generalized condensers are bordered by piecewise smooth Jordan curves or are rectilinear slits. As far as
we know, the proposed method is the first numerical method for computing the numerical values of the capacity of the
generalized condensers. The boundary integral equation with the generalized Neumann kernel [21,22] plays a key role in
developing our method. The presented method can be used also to compute the harmonic measure in multiply connected
domains.

Let B be an open subset of C = C ∪ {∞}. If B ̸= C, we assume that B is either a bounded or an unbounded multiply
connected domain of connectivity ℓ ≥ 1 bordered by ℓ piecewise smooth Jordan curves with ∞ ∈ B whenever B is
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unbounded. If B = C, we define ℓ = 0. We consider generalized condensers of the form C = (B, E, δ) where E = {Ek}mk=1,
m ≥ 2, is a collection of nonempty closed pairwise disjoint sets Ek ⊂ B and δ = {δk}

m
k=1 is a collection of real numbers

containing at least two different numbers. The set G = B\∪m
k=1Ek is called the field of the condenser C , the sets Ek

are the plates of the condenser, and the numbers δk are the levels of the potential of the plates Ek, k = 1, 2, . . . ,m
[4, p. 12]. We assume that G is a finitely connected domain without isolated boundary points and that ∂G ∩

(
∪

m
k=1Ek

)
consists of m piecewise smooth Jordan curves. Then the conformal capacity of C , cap(C), is given by the Dirichlet integral
[4, p. 13, p. 305]

cap(C) =

∫∫
G
|∇u|2dxdy (1)

where u is the potential function of the condenser C , i.e., u is continuous in G, harmonic in G, and equal to δk on ∂Ek for
k = 1, 2, . . . ,m and satisfies ∂u/∂n = 0 on ∂B\∪m

k=1Ek where ∂u/∂n denotes the directional derivative of u along the
outward normal. If G is unbounded, we assume u is bounded at ∞.

The analytical description of the problem is given in Section 2 and it is based on the classical theory of integral
equations [23] and on the definition of the generalized capacity due to V. Dubinin [4]. In Section 3 we formulate the
computational problem as a Riemann–Hilbert problem and prove a preliminary analytical result. A boundary integral
method for solving the formulated Riemann–Hilbert problem is presented in Section 4. The method is based on the
boundary integral equation with the generalized Neumann kernel [21,22]. The main theoretical results are presented in
Section 5 and they deal with the unique solvability of algebraic linear systems related to the Riemann–Hilbert problem.
Also an outline of an algorithm for the numerical solution of the integral equation is given. In Section 6 we give a numerical
implementation of the algorithm. The code of a MATLAB implementation of the algorithm is given in Appendix. This
algorithm is tested in Section 7 in the case of capacity computation of condensers with piecewise smooth boundary curves
and results are compared, with good agreement of results, to earlier numerical results from [9]. In Section 8 we apply the
algorithm for the computation of the capacity of generalized condensers. In Section 9, we use the presented algorithm
with the help of conformal mappings to compute the capacity of rectilinear slit condensers. In the final Section 10 we
show that the same method also works for the computation of the harmonic measure.

2. The potential function

We assume that Ek = Gk where Gk is a simply connected domain bordered by a piecewise smooth Jordan curve Γk for
k = 1, 2, . . . ,m (condensers whose plates Ek are slits will be handled later with the help of conformal mappings). If B ̸= C,
we assume that the ℓ boundary components of B are piecewise smooth Jordan curves Γk for k = m+1,m+2, . . . ,m+ ℓ.
Then, the field of the condenser is the multiply connected domain G of connectivity m + ℓ bordered by

Γ = ∂G =

m+ℓ⋃
k=1

Γk,

where the orientation of the curves Γk is such that G is always on the left of Γk for k = 1, 2, . . . ,m + ℓ. For each
k = m + 1,m + 2, . . . ,m + ℓ, the simply connected domain on the right of Γk will be denoted by Gk. Thus, based on the
boundedness of the domains B and G, we have the following three cases:

1. The domain G is unbounded:
For this case, the domain B is also unbounded, since G ⊂ B, and all the simply connected domains G1,G2, . . . ,Gm+ℓ

are bounded. Here, we assume that ∞ ∈ G. See Fig. 1.
2. The domain B is bounded:

We assume that the external boundary component of B is Γm+ℓ. Hence, the simply connected domain Gm+ℓ on the
right of Γm+ℓ is unbounded with ∞ ∈ Gm+ℓ. For this case, the domain G is also bounded since G ⊂ B. Further, Γm+ℓ

is the external boundary component of G and encloses all the other curves Γ1, . . . , Γm+ℓ−1. See Fig. 2.
3. The domain B is unbounded and the domain G is bounded:

Since B is unbounded and G is bounded, then one of the curves Γ1, . . . , Γm must be the external boundary
component of G. We assume it is Γm. Hence the curve Γm enclose all the other curves Γ1, . . . , Γm−1, Γm+1, . . . , Γm+ℓ

and the simply connected domain Gm on the right of Γm is unbounded with ∞ ∈ Gm. See Fig. 3.

For the above three cases, we define the integers m′ and l′ by

m′
=

{
m − 1, if G is bounded and B is unbounded,

m, otherwise,
(2)

and

ℓ′
=

{
ℓ − 1, if G is bounded and B is bounded,

ℓ, otherwise.
(3)
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Fig. 1. An example of an unbounded multiply connected domain G for m = 4 and ℓ = 3 for Case I (both G and B are unbounded).

Fig. 2. An example of a bounded multiply connected domain G for m = 3 and ℓ = 3 for Case I (both G and B are bounded).

Fig. 3. An example of a bounded field of the condenser G for m = 3 and ℓ = 3 for case II (m′
= m − 1, ℓ′

= ℓ).

In particular, if G is unbounded, then B is unbounded, m′
= m, ℓ′

= ℓ, and hence m′
+ ℓ′

= m + ℓ. If G is bounded,
then either m′

= m − 1 or ℓ′
= ℓ − 1 and hence m′

+ ℓ′
= m + ℓ − 1. Further, m′

= m − 1 means that Γm is the external
boundary component of G. Similarly, ℓ′

= ℓ − 1 means that the external boundary component of G is Γm+ℓ. With these
definitions of m′ and ℓ′, the domains G1, . . . ,Gm′ and Gm+1, . . . ,Gm+ℓ′ are bounded simply connected domains.

The potential function u is then a solution of the Laplace equation ∆u = 0 with the mixed Dirichlet–Neumann boundary
condition

u(ζ ) = δk, ζ ∈ Γk, k = 1, 2, . . . ,m, (4a)
∂u
∂n

(ζ ) = 0, ζ ∈ Γk, k = m + 1,m + 2, . . . ,m + ℓ. (4b)
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Note that the boundary value problem (4) reduces to a Dirichlet problem for ℓ = 0. Note also that the problem (4) does
not reduce to a Neumann problem since m ≥ 2. The problem (4) has a unique solution u [24].

A more general form of such a mixed boundary value problem has been considered in [24] using a Cauchy integral
method and in [25,26] using the boundary integral equation with the generalized Neumann kernel. Due to the simple
forms of the boundary conditions in (4), the method presented in [25,26] will be further simplified in this paper to obtain
a simple, fast, and accurate method for computing the potential function u and the capacity cap(C) of the generalized
condenser C .

The harmonic function u is the real part of an analytic function F in G which is not necessarily single-valued. Assume
that αk is an auxiliary point in Gk for each k = 1, 2, . . . ,m′ and βk is an auxiliary point in Gm+k for each k = 1, 2, . . . , ℓ′.
Then the function F can be written as [13,23,27,28]

F (z) = g(z) −

m′∑
k=1

ak log(z − αk) −

ℓ′∑
k=1

bk log(z − βk) (5)

where g is a single-valued analytic function in G and a1, . . . , am′ , b1, . . . , bℓ′ are undetermined real constants such that
[23, §31]

ak =
1
2π

∫
Γk

∂u
∂n

ds, k = 1, 2, . . . ,m′, (6)

and

bk =
1
2π

∫
Γm+k

∂u
∂n

ds, k = 1, 2, . . . , ℓ′.

Hence, using (4b), we have bk = 0 for all k = 1, 2, . . . , ℓ′. Thus, the function F has the representation

F (z) = g(z) −

m′∑
k=1

ak log(z − αk). (7)

Since u is harmonic in the domain G, then by Green’s theorem (see [4, p. 4] and [13, p. 441]),∫
Γ

∂u
∂n

ds = 0,

which in view of (4b) implies that
m∑

k=1

∫
Γk

∂u
∂n

ds = 0. (8)

Recall that a1, . . . , am′ are given in (6). So, if m′
= m − 1, we define

am =
1
2π

∫
Γm

∂u
∂n

ds. (9)

Hence, it follows from (6), (8), and (9) that
m∑

k=1

ak =

m∑
k=1

1
2π

∫
Γk

∂u
∂n

ds = 0, (10)

which implies, in the case m′
= m − 1, that

am = −

m−1∑
k=1

ak. (11)

Using Green’s formula [4, p. 4], Eq. (1) can be written as

cap(C) =

∫
∂G

u
∂u
∂n

ds. (12)

Since ∂u/∂n = 0 on ∂B = ∪
ℓ
k=1Γm+k and u = δk on Γk for k = 1, 2, . . . ,m, then in view of (6) and (9), we have

cap(C) =

m∑
k=1

δk

∫
Γk

∂u
∂n

ds = 2π
m∑

k=1

δkak. (13)

Eq. (13) gives us a simple formula for computing the capacity of the generalized condenser C in terms of the levels δk of
the potential of the plates and the values of the constants ak for k = 1, 2, . . . ,m.
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In this paper, the boundary integral equation with the generalized Neumann kernel will be used to compute the
constants ak as well as the values of the function u(z) for z ∈ G. However, to use the integral equation, we will first
reformulate the above mixed boundary value problem as a Riemann–Hilbert problem as it will be described in the next
section. Solving the mixed boundary value problem by reducing it to a Riemann–Hilbert problem is a well known approach
and has been used by many researchers in the literature (see e.g., [25–29]).

3. The Riemann–Hilbert problem

For each k = 1, 2, . . . ,m + ℓ, the boundary component Γk is parametrized by a 2π-periodic complex function ηk(t),
t ∈ Jk := [0, 2π ]. The total parameter domain J is the disjoint union of the m + ℓ intervals J1, . . . , Jm+ℓ,

J =

m+ℓ⨆
k=1

Jk =

m+ℓ⋃
k=1

{(t, k) : t ∈ Jk}.

The elements of J are ordered pairs (t, k) where k is an auxiliary index indicating which of the intervals contains the point
t [21]. A parametrization of the whole boundary Γ is then defined by

η(t, k) = ηk(t), t ∈ Jk, k = 1, 2, . . . ,m + ℓ. (14)

For a given t , the value of an auxiliary index k such that t ∈ Jk will be always clear from the context. So we replace the
pair (t, k) on the left-hand side of (14) by t in the same way as in [21]. Thus, the function η in (14) is written as

η(t) =

⎧⎪⎪⎨⎪⎪⎩
η1(t), t ∈ J1,
η2(t), t ∈ J2,

...

ηm+ℓ(t), t ∈ Jm+ℓ.

(15)

The parametrization is compatible with the orientation of each boundary component described in Section 2.
Since u = δk is known on the boundary components Γk for k = 1, 2, . . . ,m and since u = Re F , then the boundary

values of the function F satisfy

Re [F (η(t))] = δk, η(t) ∈ Γk, k = 1, 2, . . . ,m. (16)

On the boundaries ∂B = ∪
ℓ
k=1Γm+k, the potential function u satisfies the boundary condition ∂u/∂n = 0 where n is the

outward normal vector on ∂B. Let T be the unit tangent vector on ∂B. Then, for η(t) ∈ ∂B,

n(η(t)) = −iT(η(t)) = −i
η′(t)
|η′(t)|

= eiν(η(t)) (17)

where ν(η(t)) is the angle between the positive real axis and the normal vector n(η(t)). Using the Cauchy–Riemann
equations, the derivative of the analytic function F is then F ′(z) =

∂u(z)
∂x − i ∂u(z)

∂y . Thus,

∂u
∂n

= ∇u · n = cos(ν)
∂u
∂x

+ sin(ν)
∂u
∂y

= Re
[
eiν

(
∂u
∂x

− i
∂u
∂y

)]
= Re

[
−iη′(t)
|η′(t)|

F ′(η(t))
]

(18)

which, in view of (4b), implies that

Re
[
−iη′(t)F ′(η(t))

]
= 0, η(t) ∈ Γm+k, k = 1, 2, . . . , ℓ.

Integrating with respect to the parameter t yields

Re [−iF (η(t))] = νk, η(t) ∈ Γm+k, k = 1, 2, . . . , ℓ, (19)

where ν1, ν2, . . . , νℓ are real constants of integration. Thus, by (16) and (19), the boundary values of the function F satisfy
the boundary condition

Re
[
e−iθ (t)F (η(t))

]
= δ(t) + ν(t)

where

θ (t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, t ∈ J1,
...

0, t ∈ Jm,

π/2, t ∈ Jm+1,

...

π/2, t ∈ Jm+ℓ,

δ(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δ1, t ∈ J1,
...

δm, t ∈ Jm,

0, t ∈ Jm+1,

...

0, t ∈ Jm+ℓ,

ν(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, t ∈ J1,
...

0, t ∈ Jm,

ν1, t ∈ Jm+1,

...

νℓ, t ∈ Jm+ℓ,

(20)
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i.e., θ (t) = 0 and ν(t) = 0 for ℓ = 0. Then, it follows from (7) that the single-valued analytic function g satisfies the
boundary condition

Re
[
e−iθ (t)g(η(t))

]
= δ(t) + ν(t) +

m′∑
k=1

akRe
[
e−iθ (t) log(η(t) − αk)

]
. (21)

Lemma 1. The functions γk, for k = 1, . . . ,m′, defined on J by

γk(t) =

⎧⎨⎩Re
[
e−iθ (t) log(η(t) − αk)

]
, if ℓ′

= ℓ,

Re
[
e−iθ (t) log

η(t) − αk

η(t) − α

]
, if ℓ′

= ℓ − 1,
(22)

are periodic for t ∈ Jj, j = 1, 2, . . . ,m + ℓ. For both cases, we have

m′∑
k=1

akγk(t) =

m′∑
k=1

akRe
[
e−iθ (t) log(η(t) − αk)

]
. (23)

Proof. Since θ (t) = 0 when t ∈ Jj for each j = 1, 2, . . . ,m, then the functions γk(t) in (22) are periodic for t ∈ Jj for each
j = 1, 2, . . . ,m.

When t ∈ Jj for each j = m + 1,m + 2, . . . ,m + ℓ, we have the following two cases:
(a) ℓ′

= ℓ. For this case, Γm+ℓ is not the external boundary component of G. Recall that, for each k = 1, 2, . . . ,m′, αk is in
the interior of the curve Γk. Thus, none of the auxiliary points α1, . . . , αm′ is interior to any of the curves Γm+1, . . . , Γm+ℓ.
Hence, the winding number of the function z−αk is always zero along each boundary component Γm+k for k = 1, 2, . . . , ℓ.
Thus, we can always choose a branch cut of the logarithm function such that the functions γk(t) given by the first formula
in (22) are periodic for t ∈ Jj for each j = m + 1,m + 2, . . . ,m + ℓ.

(b) ℓ′
= ℓ − 1. For this case, Γm+ℓ is the external boundary component of G. Hence, none of the auxiliary points

α, α1, . . . , αm′ is interior to any of the curves Γm+1, . . . , Γm+ℓ−1. However, all the auxiliary points α, α1, . . . , αm′ are
interior to the curve Γm+ℓ. Thus, the winding number of the function z−αk

z−α
is always zero along each boundary component

Γm+k for k = 1, 2, . . . , ℓ. Hence, we can choose a branch cut of the logarithm function such that the functions γk(t) given
by the second formula in (22) are periodic for t ∈ Jj for each j = m+ 1,m+ 2, . . . ,m+ ℓ. For this case, we need to prove
also that Eq. (23) holds for the functions γk(t) defined by the second formula in (22). Since Γm+ℓ is the external boundary
component of G, we have m′

= m, and by (10), we have
∑m′

k=1 ak = 0. Thus,

m′∑
k=1

akγk(t) =

m′∑
k=1

akRe
[
e−iθ (t) log

η(t) − αk

η(t) − α

]

= Re
[
e−iθ (t) log(η(t) − α)

] m′∑
k=1

ak +

m′∑
k=1

akRe
[
e−iθ (t) log

η(t) − αk

η(t) − α

]

=

m′∑
k=1

akRe
[
e−iθ (t) log(η(t) − α) + e−iθ (t) log

η(t) − αk

η(t) − α

]

=

m′∑
k=1

akRe
[
e−iθ (t) log(η(t) − αk)

]
,

and hence (23) holds for the functions γk(t) defined by the second formula in (22). □

Taking into account (23), we rewrite the boundary condition (21) as

Re
[
e−iθ (t)g(η(t))

]
= δ(t) + ν(t) +

m′∑
k=1

akγk(t) (24)

where the functions γk are defined by (22). Since we are interested in computing only u = Re F , we can assume that
g(∞) = c is real for unbounded G and g(α) = c is real for bounded G. We introduce an auxiliary function f defined in G
by

f (z) =

{
g(z) − c, if G is unbounded,

(g(z) − c)/(z − α), if G is bounded.
(25)
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Then f is a single-valued analytic function in G with f (∞) = 0 for unbounded G. Let A(t) be the complex-valued function
defined by [21]

A(t) =

{
e−iθ (t), if G is unbounded,
e−iθ (t)(η(t) − α), if G is bounded.

(26)

Hence the boundary condition (24) implies that the function f is a solution of the following Riemann–Hilbert problem

Re [A(t)f (η(t))] = −c cos θ (t) + δ(t) + ν(t) +

m′∑
k=1

akγk(t). (27)

Observe that solving the Riemann–Hilbert problem (27) requires finding the unknown analytic functions f as well as
the unknown real constants a1, . . . , am, c, ν1, . . . , νℓ on the right-hand side of (27).

4. The generalized Neumann kernel

The generalized Neumann kernel N(s, t) is defined for (s, t) ∈ J × J by [22]

N(s, t) =
1
π
Im

(
A(s)
A(t)

η̇(t)
η(t) − η(s)

)
.

Closely related to the kernel N is the following kernel M(s, t) defined for (s, t) ∈ J × J by [22]

M(s, t) =
1
π
Re

(
A(s)
A(t)

η̇(t)
η(t) − η(s)

)
.

The kernel N is continuous and the kernel M is singular where the singular part of M involves the cotangent function [22].
Let H denote the space of all real-valued Hölder continuous functions on the boundary Γ . In this paper, for simplicity,

if φ is a real-valued function defined on the boundary Γ , then we write φ(η(t)) as φ(t). Further, we say that a function
h ∈ H is piecewise constant if for each k = 1, . . . ,m + ℓ there is a real number ck such that

h(t) = ck for t ∈ Jk.

Such a function will be denoted by

h(t) = (c1, . . . , cm+ℓ), t ∈ J.

The integral operators with the kernels N(s, t) and M(s, t) are defined on H by

(Nφ)(s) =

∫
J
N(s, t)φ(t) dt, s ∈ J, (28)

(Mφ)(s) =

∫
J
M(s, t)φ(t) dt, s ∈ J. (29)

The identity operator on H will be denoted by I.
For a given function γ ∈ H , by a solution of the Riemann–Hilbert problem

Re [A(t)f (η(t))] = γ (t), (30)

we mean a function f analytic in G with f (∞) = 0 for unbounded G, continuous on the closure G, such that the boundary
values of f satisfy on Γ the boundary condition (30). The solvability of the Riemann–Hilbert problem (30) depends on
the index of the function A [27,28,30,31]. The index κj of the function A on the curve Γj is defined as the change of the
argument of A along the curve Γj divided by 2π , i.e.,

κj =
1
2π

∆ arg(A)|Γj , j = 1, 2, . . . ,m + ℓ.

The index κ of the function A on the whole boundary curve Γ is the sum κ =
∑m+ℓ

j=1 κj.
For the function A defined in (26), if G is unbounded, the index of the function A is given by

κj = 0 for j = 1, 2, . . . ,m + ℓ,

and hence κ = 0. When G is bounded, then the external boundary component of G is either Γm or Γm+ℓ. Define m̂ = m
if the external boundary component of G is Γm and m̂ = m + ℓ if the external boundary component of G is Γm+ℓ. Then,
the index of the function A in (26) is given by

κm̂ = 1, κj = 0 if j ̸= m̂ for j = 1, 2, . . . ,m + ℓ,

and thus κ = 1. Hence, it follows from [22, Theorem 9] and [32, Theorem 4] that the Riemann–Hilbert problem (30) is
not necessarily solvable. However, if the problem is solvable, then its solution is unique.
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For bounded G, although the function A defined in (26) above is slightly different from the function A defined in
[33, Eq. (13)], both functions have the same index. Similarly, for unbounded G, the function A in (26) has the same index
as the function A given in [32, Eq. (62)]. Hence, the following two theorems can be proved for bounded G using the same
approach used in [33] and for unbounded G using the same approach used in [32].

Theorem 1. For a given function γ ∈ H, there exists a unique piecewise constant function h = (c1, . . . , cm+ℓ) such that the
Riemann–Hilbert problem

Re [A(t)f (η(t))] = γ (t) + h(t) (31)

is solvable and has a unique solution.

Proof. For bounded G, the proof is similar to the proof of Lemma 1 and Eq. (26) in [33].
For unbounded G, the proof is similar to the proof of Corollary 2, Eq. 64 and Eq. 67 in [32].
The uniqueness of the solution follows from [22, Theorem 9] for bounded G and from [32, Theorem 4] for unboun-

ded G. □

The above theorem states that a unique piecewise constant function h = (c1, . . . , cm+ℓ) always exists such that adding
this function h to the right-hand side of the problem (30) makes the problem solvable. This means modifying the right-
hand side of the Riemann–Hilbert problem (30) by adding a suitable constant cj to the values of the function γ for each
of the boundary component Γj for j = 1, 2, . . . ,m + ℓ. The real constants c1, . . . , cm+ℓ are undetermined and need to be
determined alongside the solution of the Riemann–Hilbert problem. This is analogous to the case of the modified Dirichlet
problem as in [23, p. 150, Eq. (1)], [27, p. 327, Eq. (36.2)] and [28, p. 164, Eq. (60.2)].

We can conclude from Theorem 1 that for each of the functions γk given by (22), there exists a unique piecewise
constant function hk such that the Riemann–Hilbert problem

Re [A(t)fk(η(t))] = γk(t) + hk(t) (32)

is solvable, k = 1, 2, . . . ,m′. A method for computing the unknown function hk as well as the boundary values of the
solution fk of the Riemann–Hilbert problem (32) is given in the following theorem (see also [34, Theorem 1]).

Theorem 2. For each k = 1, 2, . . . ,m′, let the function γk be given by (22). Then, there exists a unique real-valued function
µk ∈ H and a unique piecewise constant real-valued function hk = (h1,k, h2,k, . . . , hm+ℓ,k) such that

A(t)fk(η(t)) = γk(t) + hk(t) + iµk(t), t ∈ J, (33)

are boundary values of an analytic function fk in G with f (∞) = 0 for unbounded G. The function µk is the unique solution of
the integral equation

(I − N)µk = −Mγk (34)

and the function hk is given by

hk = [Mµk − (I − N)γk]/2. (35)

Proof. For bounded G, the proof is similar to the proof of Theorem 2 and Eq. (26) in [33].
For unbounded G, the proof is similar to the proof of Theorem 9 in [32]. □

The following lemma is needed to prove Theorems 3 and 4.

Lemma 2. If f is an analytic function in G with f (∞) = 0 for unbounded G such that its boundary values satisfy the boundary
condition

Re [A(t)f (η(t))] = γ (t) (36)

for a piecewise constant real-valued function γ (t) = (c1, c2, . . . , cm+ℓ), then f is the zero function and c1 = c2 = · · · =

cm+ℓ = 0.

Proof. By Theorem 1, a unique piecewise constant real-valued function h(t) = (c1, c2, . . . , cm+ℓ) exists such that the
Riemann–Hilbert problem

Re [A(t)f (η(t))] = γ (t) + h(t)

is uniquely solvable. By the uniqueness of the piecewise constant function h and since the function γ is a piecewise
constant function, the function h must be given by h(t) = −γ (t) since the problem

Re [A(t)f (η(t))] = γ (t) + h(t) = 0

will be solvable and has the zero solution f (z) = 0. Thus, γ is the zero function and hence c1 = c2 = · · · = cm+ℓ = 0. □
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5. The numerical method

In this section, we shall use Theorem 2 to present a method for computing the real constants a1, . . . , am and hence
computing cap(C) through (13). Recall from (2) that either m′

= m or m′
= m−1. These two cases of m′ will be considered

separately in the following two subsections.

5.1. Case I: m′
= m

This case includes the following two subcases:

1. Both G and B are unbounded (see Fig. 1). For this subcase, we have m′
= m ≥ 2, ℓ′

= ℓ ≥ 0 (where B = C for
ℓ = 0), A is given by the first formula in (26), and the functions γk for k = 1, 2, . . . ,m are given by the first formula
in (22).

2. Both G and B are bounded (see Fig. 2). For this subcase, we have m′
= m ≥ 2, ℓ′

= ℓ − 1 ≥ 0, Γm+ℓ is the external
boundary component of G, A is given by the second formula in (26), and the functions γk for k = 1, 2, . . . ,m are
given by the second formula in (22).

For these two subcases, all the simply connected domains G1, . . . ,Gm are bounded (see Figures 1 and 2). In Fig. 1 and 2,
and in all figures throughout the paper, the boundaries of the domain B are the ‘‘dash-dotted’’ curves and the boundaries
of the plates of the condenser are the ‘‘solid’’ curves.

The following theorem provides us with a method for computing the unknown real constants a1, . . . , am. The theorem
will be proved using an approach similar to the approach used in proving Theorems 4.2 and 4.3 in [35],

Theorem 3. For each k = 1, 2, . . . ,m, let the function γk be defined by (22), µk be the unique solution of the integral
equation (34), and the piecewise constant function hk = (h1,k, h2,k, . . . , hm+ℓ,k) be given by (35). Then, the boundary values of
the function f in (27) are given by

A(t)f (η(t)) =

m∑
k=1

ak[γk(t) + hk(t) + iµk(t)] (37)

and the m + ℓ + 1 unknown real constants a1, . . . , am, c, ν1, . . . , νℓ are the components of the unique solution vector of the
linear system⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h1,1 · · · h1,m 1
...

. . .
...

... Ohm,1 · · · hm,m 1
hm+1,1 · · · hm+1,m 0 −1 O

...
. . .

...
...

. . .

hm+ℓ,1 · · · hm+ℓ,m 0 O −1
1 · · · 1 0 0 · · · 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1
...

am
c
ν1
...

νℓ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

δ1
...

δm
0
...

0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (38)

Proof. Suppose that f is the analytic function in G with f (∞) = 0 for unbounded G and satisfies the boundary
condition (27). Suppose also that f̂ is defined in G by

f̂ (z) =

m∑
k=1

akfk(z) (39)

where fk are as in Theorem 2 and the constants a1, . . . , am satisfy the condition (10). Then f̂ is analytic in G with f (∞) = 0
for unbounded G and the boundary values of f̂ satisfy

Re
[
A(t)f̂ (η(t))

]
=

m∑
k=1

akγk(t) +

m∑
k=1

akhk(t). (40)

Then the function Ψ defined by Ψ (z) = f̂ (z) − f (z) is analytic in G with Ψ (∞) = 0 for unbounded G. Since m′
= m, it

follows from (27) and (40) that

Re [A(t)Ψ (η(t))] =

m∑
k=1

akhk(t) + c cos θ (t) − δ(t) − ν(t). (41)

The right-hand side is a piecewise constant function, and then Lemma 2 implies that Ψ is the zero function and hence
f (z) = f̂ (z). Thus, (37) follows from (33) and (39). Further, since Ψ is the zero function, the right-hand side of (41) is also
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the zero function and hence
m∑

k=1

akhk + c cos θ (t) − ν(t) = δ(t). (42)

Since, in view of (20), cos θ (t) = 1 for t ∈ Jk for k = 1, 2, . . . ,m and cos θ (t) = 0 for t ∈ Jk for k = m+1,m+2, . . . ,m+ℓ,
then (42) and (10) imply that the real constants a1, . . . , am, c, ν1, . . . , νℓ are the components of a solution vector of the
linear system (38).

To show that the linear system (38) has a unique solution, let [a1, . . . , am, c, ν1, . . . , νℓ]
T be a solution to the homo-

geneous linear system obtained by assuming that the right-hand side of (38) is the zero vector. Then, the homogeneous
system implies that

m∑
k=1

akhk + c cos θ (t) − ν(t) = 0,
m∑

k=1

ak = 0. (43)

Assume that the functions fk are as in Theorem 2 and f̂ is defined by (39). Hence, in view of (40), the boundary values of
the function f̂ satisfy

Re
[
A(t)f̂ (η(t))

]
=

m∑
k=1

akγk(t) + ν(t) − c cos θ (t). (44)

Then, we define a function F̂ in G by

F̂ (z) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(z − α)f̂ (z) −

m∑
k=1

ak log(z − αk), if G is bounded,

f̂ (z) −

m∑
k=1

ak log(z − αk), if G is unbounded,
(45)

For unbounded G, the function F̂ (z) can be written as

F̂ (z) = f̂ (z) −

m∑
k=1

ak[log z + log(1 − αk/z)] = f̂ (z) − log z
m∑

k=1

ak −

m∑
k=1

ak log(1 − αk/z).

Since f̂ (∞) = 0 and
∑m

k=1 ak = 0, we have F̂ (∞) = 0. Thus, the function F̂ (z) is analytic in G for both cases of bounded
and unbounded G but it is not necessarily single valued. In view of (26), the boundary values of the function F̂ satisfy

Re
[
e−iθ (t)F̂ (η(t))

]
= Re

[
A(t)f̂ (η(t))

]
−

m∑
k=1

akRe
[
e−iθ (t) log(η(t) − αk)

]
.

Then by (23) and (44), we have

Re
[
e−iθ (t)F̂ (η(t))

]
= ν(t) − c cos θ (t),

which, in view of (20), implies that

Re
[
F̂ (η(t))

]
= −c for η(t) ∈ Γk, k = 1, 2, . . . ,m, (46a)

and

Im
[
F̂ (η(t))

]
= νk for η(t) ∈ Γk, k = m + 1,m + 2, . . . ,m + ℓ. (46b)

Differentiating both sides of (46b) with respect to the parameter t , we obtain

Im
[
η′(t)F̂ ′(η(t))

]
= 0 for η(t) ∈ Γk, k = m + 1,m + 2, . . . ,m + ℓ. (47)

Let the real function u be defined for z ∈ G ∪ ∂G by

u(z) = Re F̂ (z).

Then u is harmonic in G. In view of (18), we have

∂u
∂n

= Re
[

−iη′(t)
|η′(t)|

F̂ ′(η(t))
]

=
1

|η′(t)|
Im

[
η′(t)F̂ ′(η(t))

]
. (48)
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Thus, by (46a), (47), and (48), the boundary values of u satisfy the mixed-boundary condition

u(ζ ) = −c, ζ ∈ Γk, k = 1, 2, . . . ,m,

∂u
∂n

(ζ ) = 0, ζ ∈ Γk, k = m + 1,m + 2, . . . ,m + ℓ.

Since the above mixed boundary value problem has a unique solution, it is clear that the unique solution is the constant
function u(z) = −c for all z ∈ G ∪ ∂G. Thus the real part of F̂ is constant for z ∈ G, and hence, by the Cauchy–Riemann
equations, F̂ is constant in G, say equal to C . This implies that F̂ (z) = 0 for all z ∈ G when G is unbounded since F̂ (∞) = 0.
Then, for all z ∈ G, it follows from (45) that

m∑
k=1

ak log(z − αk) =

{
−C + (z − α)f̂ (z), if G is bounded,

f̂ (z), if G is unbounded,

which implies that a1 = a2 = · · · = am = 0 since the functions on the right-hand side are single-valued and the function
on the left-hand side is multi-valued. Thus, for bounded G, we have (z − α)f̂ (z) = C for all z ∈ G. By substituting z = α,
we find C = 0 and hence F̂ (z) = 0 for all z ∈ G∪ ∂G. Thus for both cases of bounded and unbounded G, we have F (z) = 0
for all z ∈ G ∪ ∂G. Hence, it follows from (46) that c = 0 and ν1 = ν2 = · · · = νℓ = 0. Thus, the homogeneous linear
system has only the trivial solution [a1, . . . , am, c, ν1, . . . , νℓ]

T
= 0, and hence the matrix of the linear system (38) is

non-singular. □

5.2. Case II: m′
= m − 1

For this case, G is a bounded multiply connected domain of connectivity m + ℓ with m ≥ 2 and B is an unbounded
multiply connected domain of connectivity ℓ′

= ℓ ≥ 0 (where B = C for ℓ = 0). Here, the simply connected domains
G1, . . . ,Gm−1 are bounded, the simply connected domain Gm is unbounded, and Γm is the external boundary component
of G (see Fig. 3). Further, A is given by the second formula in (26) and the functions γk for k = 1, 2, . . . ,m − 1 are given
by the first formula in (22). For this case, the values of the unknown real constants a1, . . . , am−1, c, ν1, . . . , νℓ can be
computed as in the following theorem. Then am is computed through (11).

Theorem 4. For each k = 1, 2, . . . ,m−1, let the function γk be defined by (22), let µk be the unique solution of the integral
equation (34), and let the piecewise constant function hk = (h1,k, h2,k, . . . , hm+ℓ,k) be given by (35). Then, the boundary values
of the function f in (27) are given by

A(t)f (η(t)) =

m−1∑
k=1

ak[γk(t) + hk(t) + iµk(t)] (49)

and the m + ℓ unknown real constants a1, . . . , am−1, c, ν1, . . . , νℓ are the unique solution of the linear system⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

h1,1 · · · h1,m−1 1
...

. . .
...

... Ohm,1 · · · hm,m−1 1
hm+1,1 · · · hm+1,m−1 0 −1 O

...
. . .

...
...

. . .

hm+ℓ,1 · · · hm+ℓ,m−1 0 O −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1
...

am−1
c
ν1
...

νℓ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

δ1
...

δm
0
...

0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (50)

Proof. The theorem can be proved by the same argument as in the proof of Theorem 3. □

5.3. Computing the capacity cap(C) and the potential function u

By solving the integral equations (34) and then solving the linear system (38) (or (50)), we obtain the real constants
a1, . . . , am. Then, we can compute the capacity cap(C) from (13). We can also compute the boundary values of the auxiliary
analytic function f (z) through (37) or (49). Then the values of f (z) at interior points z ∈ G can be computed by Cauchy’s
integral formula. Since u(z) = Re [F (z)], it follows from (7) and (25) that the function u(z) is given for z ∈ G by

u(z) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
c + Re [(z − α)f (z)] −

m′∑
k=1

ak log |z − αk|, if G is bounded,

c + Re [f (z)] −

m′∑
k=1

ak log |z − αk|, if G is unbounded,

(51)
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As it was pointed out in [15], the actual values of the auxiliary points α and αj for j = 1, 2, . . . ,m′ are not important.
Although the right-hand side of (51) involves these auxiliary points, several numerical experiments indicate that the
values of the function u do not depend on the values of these auxiliary points as long as these points are sufficiently far
away from the boundary of G.

5.4. Outline of the algorithm

The method presented in this section for computing the capacity cap(C) and the potential function u can be summarized
in the following algorithm. Steps 10–12 are needed only if it is required to compute the values of the potential function.

Algorithm 1. (Computing the capacity cap(C) and the potential function u).

1. Parametrize the boundary components Γj by ηj(t), t ∈ [0, 2π ], for j = 1, 2, . . . ,m + ℓ, where Γj for j = 1, 2, . . . ,m
are the boundaries of the plates Ej of the condenser and Γj for j = m+1,m+2, . . . ,m are the boundary components
of the domain B.

2. If G is bounded and B is unbounded, then we define m′
= m − 1 and ℓ′

= ℓ. For this case, the plates E1, . . . , Em−1
are bounded, the plate Em is unbounded and Γm is the external boundary component of G.

3. If both domains B and G are bounded, then we define m′
= m and ℓ′

= ℓ − 1. For this case, the plates E1, . . . , Em
are bounded and Γm+ℓ is the external boundary component of G.

4. If both domains B and G are unbounded, then we define m′
= m and ℓ′

= ℓ. For this case, the plates E1, . . . , Em are
bounded.

5. Define the functions A by (26).
6. Define the functions γk for k = 1, 2, . . . ,m′ by (22).
7. For k = 1, 2, . . . ,m′, compute the function µk by solving the integral equation (34) and compute the function hk

through (35).
8. Compute the m+ ℓ + 1 real constants a1, . . . , am, c, ν1, . . . , νℓ by solving one of the linear systems (38) or (50). For

m′
= m − 1, am is computed through (11).

9. Compute the capacity cap(C) from (13).
10. Compute the boundary values of the analytic function f through (37) or (49).
11. Compute the values of f (z) for z ∈ G by the Cauchy integral formula.
12. Compute the values of the potential function u by (51).

6. Numerical implementation of the algorithm

The main steps in the Algorithm 1 are steps 7 and 8. In step 7, it is required to solve the integral equations with the
generalized Neumann kernel (34) for m′ different right-hand sides. The integral equation (34) has been used before in
several publications, see e.g., [21,25,26,35–37]. So, we omit the details here about its numerical solution and refer the
reader to [21] where a detailed numerical method for solving the integral equation (34) is presented. More importantly,
an easy to use MATLAB function fbie for solving the integral equation (34) has been presented in [21]. Thus, in step
7 in Algorithm 1, the m′ functions µk in (34) will be computed using the MATLAB function fbie. The function fbie
computes also them′ piecewise constant functions hk in (35). In the function fbie, the integral equation (34) is discretized
by the Nyström method [38] with the trapezoidal rule [39,40]. The size of the obtained linear system is usually large.
So, in the function fbie, the linear system is solved iteratively using the MATLAB function gmres. The matrix–vector
multiplication in gmres is computed in a fast and efficient way using the MATLAB function zfmm2dpart from the toolbox
FMMLIB2D [41].

For step 8 in Algorithm 1, in view of (38) and (50), the size of the matrix of the linear system is (m+ℓ+1)×(m+ℓ+1)
if m′

= m and (m + ℓ) × (m + ℓ) if m′
= m − 1. Thus, the size of the linear system is usually quite small and hence we

solve it using MATLAB ‘‘backslash’’ operator.
The condition number of the matrix of the linear system in step 7 in Algorithm 1 is bounded and mostly independent

of the size of the matrix [21,42]. For the condition number of the matrix of the linear system in step 8, Table 1 presents the
condition number of the matrix for the examples presented in Section 7–10. The numerical results presented in Table 1,
and other numerical results not reported here, show that the matrix of the linear system in step 8 is well conditioned
but its condition number depends on the size of the matrix.

For domains with smooth boundaries, we use the trapezoidal rule with equidistant nodes. We discretize each interval
Jk = [0, 2π ], for k = 1, 2, . . . ,m + ℓ, by n equidistant nodes s1, . . . , sn where

sk = (k − 1)
2π
n

, k = 1, . . . , n, (52)

and n is an even integer. We write s = [s1, . . . , sn]. Then, we discretize the parameter domain J by the m+ ℓ copies of s,

t = [s, s, . . . , s]T . (53)
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Table 1
The condition number of the matrix of the linear system in step 8 in Algorithm 1 for the examples in Sections 7–10.
Section m m′ ℓ Size of the matrix Condition number

7.1 (a = 2, r = 0.5) 2 2 0 3 × 3 2.15
7.2 (a = 0.2, b = 0.7) 3 2 0 3 × 3 3.58
7.3 16 16 0 17 × 17 13.56

256 256 0 257 × 257 208.45
7.4 17 16 0 17 × 17 14.21

257 256 0 257 × 257 225.75
8.1 (bounded, r = 0.5) 2 2 4 7 × 7 3.3589

(unbounded, r = 0.5) 2 2 4 7 × 7 28.669
8.2 5 4 0 5 × 5 10.65
8.3 2 1 72 74 × 74 221.12

2 1 584 586 × 586 1405.60
2 1 4680 4682 × 4682 8967.90

9.1 (a = −0.5, b = 0.5, c = 2) 3 3 0 4 × 4 1.72
9.2 (a = −0.5, b = 0.5, c = 2, 2 2 1 4 × 4 8.33

B = C\[a, b])
(a = −0.5, b = 0.5, c = 2, 2 2 1 4 × 4 6.73
B = C\[a + i, b + i])

9.3 16 16 0 17 × 17 38.91
256 256 0 257 × 257 600.02

9.4 4 3 0 4 × 4 6.97
10.1 2 1 0 2 × 2 2.41
10.2 4 3 0 4 × 4 8.84
10.3 16 16 0 17 × 17 9.31

256 256 0 257 × 257 150.38
1024 1024 0 1025 × 1025 601.84

This leads to the discretizations

η(t) = [η1(s), η2(s), . . . , ηm+ℓ(s)]T , η′(t), A(t), γk(t), k = 1, 2, . . . ,m′. (54)

In MATLAB, these discretized functions are stored in the vectors et, etp, A, gamk, respectively. Then the discretizations
vectors muk and hk of the functions µk and hk in (34) and (35) are computed by calling

[muk,hk] = fbie(et,etp,A,gamk,n,iprec,restart,tol,maxit).

In the numerical experiments in the next sections, we choose iprec = 5 (the tolerance of the FMM is 0.5 × 10−15),
restart=[ ] (GMRES is used without restart), tol=1e-14 (the tolerance of the GMRES method is 10−14), and maxit=100
(the maximum number of GMRES iterations is 100). The values hj,k are then computed by taking arithmetic means:

hj,k =
1
n

jn∑
i=1+(j−1)n

hk(ti), j = 1, 2, . . . ,m + ℓ, k = 1, 2, . . . ,m′.

These values are used to build the linear system (38) or (50). Thus, the computational cost of the overall method for
computing the capacity cap(C) is O(m′(m + ℓ)n ln n) operations for step (7) and O((m + ℓ)3) operations for step (8).

For fast and accurate computing of the Cauchy integral formula in step (11), we use the MATLAB function fcau
from [21]. The function fcau is based on using the MATLAB function zfmm2dpart in [41]. Using the function fcau,
the Cauchy integral formula can be computed at p interior points in O(p + (m + ℓ)n) operations.

For domains with corners (excluding cusps), the trapezoidal rule with equidistant nodes yields only poor convergence
and hence the trapezoidal rule with a graded mesh will be used [43]. Equivalently, we can remove the discontinuity of the
derivatives of the solution of the integral equation at the corner points by choosing an appropriate one-to-one function
σ : J → J . Then we parametrize the boundary Γ by η(t) = η̂(σ (t)) where η̂ is any parametrization function of the
boundary Γ (see [15,43] for more details, the above function σ is denoted by δ in [15]).

The proposed method can be implemented in MATLAB as in the function capgc.m in Appendix. All the computer codes
of our computations are available in the internet link: https://github.com/mmsnasser/gc.

In this paper, computations were performed in MATLAB R2017a on an ASUS Laptop with Intel(R) Core(TM) i7-8750H
CPU @2.20 GHz, 2208 Mhz, 6 Core(s), 12 Logical Processor(s), and 16GB RAM. The computation times presented in this
paper were measured with the MATLAB tic toc commands.

7. Numerical examples - classical condensers

In this section, we shall consider several numerical examples of condensers with ℓ = 0 and {δk}
m
k=1 containing exactly

two different numbers which are 1 and 0 (see [4, p. 6] and [44, p. 202]). We shall call such condensers as classical
condensers. Some of these examples either have known capacity or have been considered in the literature. So, we can
compare the obtained results with the exact capacity or with known capacity computed by other researchers.

https://github.com/mmsnasser/gc
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Fig. 4. The field of the condenser and the level curves of the function u for Section 7.1 (left) and the relative errors in the computed values (right).

7.1. Two circles

In this example, we consider the generalized condenser C = (B, E, δ) with B = C (and hence ℓ = 0), E = {E1, E2} (and
hence m = 2), and δ = {0, 1}. The plates of the condenser are given by Ek = Gk, k = 1, 2, where G1 = {z : |z| < 1} and
G2 = {z : |z − a| < r} for r > 0 and a real number a with a > 1 + r . So, for this example, the generalized condenser
reduces to a classical condenser, ℓ′

= ℓ = 0, and m′
= m = 2. Thus, the field of the condenser, G is the doubly connected

domain in the exterior of the two circles Γ1 = {z : |z| = 1} and Γ2 = {z : |z − a| = r} (see Fig. 4 (left) for a = 2 and
r = 0.5). The exact value of the conformal capacity is given by cap(G) = 2π/log(1/q) where q is obtained by solving the
following equation [14]

(1 + q)2

q
=

(1 + a − r)(a + r − 1)
r

.

We use the method presented in Section 6 with n = 210 to compute approximate values for the capacity for a = 2
and for several values of r between 0.01 and 0.99. The relative errors for the computed values for this case are presented
in Fig. 4(right). The level curves of the function u for a = 2 and r = 0.5 are shown in Fig. 4 (left).

7.2. Square with two triangles

In this example, we consider the generalized condenser C = (B, E, δ) with B = C, E = {E1, E2, E3} where Ek = Gk,
k = 1, 2, 3, and δ = {1, 1, 0}. Here, G1 is the interior of the triangles with the vertices ia, −(b−a)/

√
3+ ib, (b−a)/

√
3+ ib,

G2 is the interior of the triangles with the vertices −ia, (b − a)/
√
3 − ib, −(b − a)/

√
3 − ib, and G3 is the exterior of the

square with the vertices 1+ i, −1+ i, −1− i, 1− i. So, ℓ′
= ℓ = 0, m = 3, m′

= 2, and the generalized condenser reduces
to a classical condenser. The field of the condenser, G, is then the bounded multiply connected domain in the exterior of
the two triangles and in the interior of the square (see Fig. 5).

This example has been considered in [9, Example 7] for several values of a and b. We use the presented method with
n = 3×213 to compute the capacity for the same values of a and b used in [9]. The obtained results as well as the results
presented in [9] are shown in Table 2. The level curves of the function u for a = 0.2 and b = 0.7 are shown in Fig. 5.

7.3. Cantor dust

Cantor dust is a generalization of the classical Cantor middle third set to dimension two. Let I0 = [0, 1] and recursively
define

Ik =
1
3
Ik−1 ∪

(
1
3
Ik−1 +

2
3

)
, k ≥ 1.

This means that Ik is constructed by ‘‘removing’’ the middle one third of each interval Ik−1. For k = 0, 1, 2, . . ., the closed
set Ik consists of 2k closed intervals. Then, we define the closed sets Sk as

Sk = Ik × Ik, k ≥ 0,

where Sk consists of 4k closed square regions, say E1, E2, . . . , E4k (see Fig. 6 for k = 1 (left) and k = 2 (right)). Then the
Cantor dust is defined as

S =

∞⋂
k=1

Sk.
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Fig. 5. The field of the condenser and the level curves of the function u for the condenser in Section 7.2.

Fig. 6. The level curves of the function u for the condenser in Section 7.3 for k = 1 (left) and k = 2 (right).

Table 2
The approximate values of the capacity cap(C) for Section 7.2.
a b Our method Betsakos et al. [9]

0.1 0.3 3.93241437137267 3.9324143
0.2 0.4 4.41198623240832 4.4119861
0.2 0.7 9.49308124679268 9.4930811
0.3 0.8 12.1180118821912 12.1180117
0.3 0.9 21.6586490491066 21.6586487

For k = 0, 1, 2, . . ., we consider the generalized condensers Ck = (B, E, δ) with B = C and E = {E1, E2, . . . , E4k}, i.e., we
have 4k plates. For the levels of the potential function δ = {δj}

4k
j=1, we assume δj = 0 for half of the plates (the plates

below the line y = 0.5) and δj = 1 for the other half (the plates above the line y = 0.5). Thus, ℓ = 0, m′
= m = 4k, and

the generalized condenser reduces to a classical condenser. The field of the condenser, G, is then the unbounded multiply
connected domain in the exterior of the closed sets Sk (see Fig. 6).

The approximate value of the capacity for k = 1, 2, 3, 4, 5 are shown in Table 3 and the level curves of the function
u for k = 1, 2 are shown in Fig. 6. For each k, the method requires solving m′

= 4k integral equations. The CPU time
presented in Table 3 shows that the method can be used to compute the capacity cap(Ck) in reasonable time even when
m′ becomes large. The presented method is used with n = 29.
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Table 3
The approximate values of the capacity cap(Ck) for Section 7.3.
k m = 4k cap(Ck) Time (sec)

1 4 4.652547172280 0.96
2 16 4.562140107251 7.33
3 64 4.531267950053 87.23
4 256 4.519885740453 1312.67
5 1024 4.515629401820 19880.56

Table 4
The approximate values of the capacity cap(Ck) for Section 7.4.
k m′

= 4k cap(Ck) Time (sec)

0 1 11.953050425798967 0.18
1 4 11.598538784854115 1.39
2 16 11.460679479701366 9.49
3 64 11.408998221761493 94.22
4 256 11.389646177509054 1235.45
5 1024 11.382387009959178 19160.17

Fig. 7. The level curves of the function u for the condenser in Section 7.4 for k = 1 (left) and k = 2 (right).

7.4. Cantor dust in a circle

In this example, we consider the generalized condensers Ck = (B, E, δ) with B = C, E = {E1, E2, . . . , E4k , E4k+1}

where E1, E2, . . . , E4k are as in Section 7.3 and E4k+1 = {z ∈ C : |z − (0.5 + 0.5i)| ≥ 1}. For the levels of the
potential function, we assume δ = {0, 0, . . . , 0, 1}, i.e., the boundary values of the potential function u are 1 on the
circle |z − (0.5 + 0.5i)| = 1 and 0 on the boundary of Sk, k = 0, 1, 2, . . .. Thus, ℓ′

= ℓ = 0, m′
= m − 1 = 4k, and

the generalized condenser reduces to a classical condenser. The field of the condenser, G, is then the bounded multiply
connected domain in the exterior of the closed sets Sk and in the interior of the circle |z − (0.5 + 0.5i)| = 1 (see Fig. 7).

The approximate value of the capacity for k = 0, 1, . . . , 5 are shown in Table 4 and the level curves of the function u
for k = 1, 2 are shown in Fig. 7. As in the previous example, the presented method is used with n = 29.

8. Numerical examples - generalized condensers

In this section, we shall consider several numerical examples of generalized condensers. For such a case, we have either
ℓ ̸= 0 or ℓ = 0 with {δk}

m
k=1 containing at least three different numbers.

8.1. Six circles

In this example, we assume that E = {E1, E2} where E1 and E2 are as in Section 7.1 with a = 2, i.e., E1 = G1 with
G1 = {z : |z| < 1}, and E2 = G2 with G2 = {z : |z − 2| < r} where 0 < r < 1 (and hence m′

= m = 2). We consider the
generalized condenser C = (B, E, δ) where δ = {0, δ2} with a non-zero real number δ2 for two cases of the domain B.
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Fig. 8. The field of the condenser and the level curves of the function u for B = BI (left) and B = BII (center); and the approximate values of the
capacity for δ2 = 1 (right).

Table 5
The approximate values of the capacity cap(C) for Section 8.1.
δ2 B = BI B = BII B = C

0.15 0.070116283201223 0.064979770350752 0.084657798864524
0.30 0.280465132804894 0.259919081403007 0.338631195458096
0.45 0.631046548811011 0.584817933156765 0.761920189780715
0.60 1.121860531219576 1.039676325612028 1.354524781832383
0.15 1.752907080030588 1.624494258768793 2.116444971613098
0.90 2.524186195244046 2.339271732627063 3.047680759122861

First, we assume that B is the bounded multiply connected domain

B = BI = {z : |z| < 3, |z + 2| > 0.9, |z ∓ 2i| > 0.9}.

Hence ℓ = 4 and ℓ′
= 3. The field of the condenser, G, is then the bounded multiply connected domain of connectivity

6 exterior to the circles Γ1 = {z : |z| = 1}, Γ2 = {z : |z − 2| = r}, Γ2 = {z : |z − 2| = r}, L1,2 = {z : |z ∓ 2i| = 0.9},
L3 = {z : |z + 2| = 0.9}, and interior to the circle L4 = {z : |z| = 3} (see Fig. 8 (left) for r = 0.5).

Second, we assume that B is the unbounded multiply connected domain

B = BII = {z : |z − 6| > 3, |z + 2| > 0.9, |z − (1 ± 3i)| > 2}.

and hence ℓ′
= ℓ = 4. Thus, G is the unbounded multiply connected domain of connectivity 6 exterior to the circles

Γ1 = {z : |z| = 1}, Γ2 = {z : |z − 2| = r}, L1,2 = {z : |z − (1 ± 3i)| = 2}, L3 = {z : |z + 2| = 0.9}, and
L4 = {z : |z − 6| = 3} (see Fig. 8 (center) for r = 0.5).

As in Section 7.1, we use the presented method with n = 210. The approximate values of the capacity computed for
r = 0.5 and for several values of δ2 are presented in Table 5. The level curves of the function u for r = 0.5 and δ2 = 1
are shown in Fig. 8 (left, center). Fig. 8 (right) shows the approximate values of the capacity computed for δ2 = 1 and
for several values of r between 0.01 and 0.99. We see from Table 5 and Fig. 8 (right) that the capacity of the condenser
C = (B, E, δ) for B = BI and B = BII is less than the capacity for B = C (Section 7.1).

8.2. Five circles

In this example, we consider the generalized condenser C = (B, E, δ) with B = C, E = {E1, . . . , E5}, and δ =

{1, 2, 3, 4, 0}. The plates of the condenser are given by Ek = Gk, k = 1, . . . ,m, where G1,3 = {z : |z ∓ 2| < 1},
G2,4 = {z : |z ∓ 2i| < r}, and G5 = {z : |z| > 4}. So, ℓ′

= ℓ = 0, m = 5, and m′
= 4. The field of the condenser,

G, is then the bounded multiply connected domain in the exterior of the four circles Γ1,3 = {z : |z ∓ 2| = 1} and
Γ2,4 = {z : |z ∓ 2i| = 1}; and in the interior of the circle Γ5 = {z : |z| = 4} (see Fig. 9).

The approximate values of the capacity obtained with several values of n are shown in Table 6. Fig. 9 shows the level
curves of the function u obtained with n = 210.

8.3. Sierpinski carpet

The Sierpinski carpet is another generalization of the Cantor set to dimension two. The construction of the Sierpinski
carpet begins with a square S0. The square S0 is subdivided into 9 congruent subsquares in a 3-by-3 grid, and the central
subsquare is removed to obtain S1. Then, we subdivide each of the 8 remaining solid squares into 9 congruent squares
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Table 6
The approximate values of the capacity
cap(C) for Section 8.2.
n cap(C)

25 140.5271930046695
26 140.5271935663499
27 140.5271935663502
28 140.5271935663485
29 140.5271935663483
210 140.5271935663559

Fig. 9. The field of the condenser and the level curves of the function u for the condenser in Section 8.2.

and remove the center square from each to obtain S2. The same procedure is then applied recursively to obtain S3, S4, . . . ,
where

S0 ⊃ S1 ⊃ S2 ⊃ S3 ⊃ S4 ⊃ · · · ,

(see Fig. 10 for S2 (left) and S3 (right)). Then the Sierpinski carpet is defined as

S =

∞⋂
k=0

Sk.

For k = 0, 1, 2, . . ., the domain Ŝk = Sk\∂Sk is a multiply connected domain of connectivity 1 +
∑k

j=0 8
j. The domain

Ŝk has 1 +
∑k

j=0 8
j boundary components which all are squares. We will distinguish here two of these squares, namely,

the external square which will be called Γ2 and internal square which was removed from S0 to obtain S1 and it will
be called Γ1. The other −1 +

∑k
j=0 8

j squares are in the domain between Γ1 and Γ2. Let B be the multiply connected
domain obtained by removing these −1 +

∑k
j=0 8

j squares and the domains interior to these squares from the extended
complex place Ĉ. Let also E1 = G1 where G1 is the domain interior to Γ1 and E2 = G2 where G2 is the domain exterior
to Γ2. In this example, we consider the generalized condensers Ck = (B, E, δ) with E = {E1, E2} and δ = {0, 1}. Thus,
ℓ′

= ℓ = −1+
∑k

j=0 8
j, m = 2, and m′

= 1. The field of the condenser, G, is then the bounded multiply connected domain
Ŝ (see Fig. 10).

The approximate values of the capacity for k = 0, 1, 2, 3, 4 are shown in Table 7 and the level curves of the function
u for k = 2, 3 are shown in Fig. 10. The presented method is used with n = 210. For this example, we have m′

= 1 and
hence we need to solve only one integral equation to compute cap(Ck) for each k. The presented method can be used to
compute the capacity even when the number of squares is very high. For example, to compute cap(Ck) for k = 5, the
connectivity of the domain G is 4682 and hence, for n = 210, the size of the linear system obtained by discretization the
integral equation is 4794368 by 4794368. Although the size of the system is very high, the presented method requires
only 400 seconds to compute the capacity.

9. Condensers with slit plates

The method presented above can be used to compute the capacity of only condensers bordered by smooth or piecewise
smooth boundaries. Since the Dirichlet integral is conformally invariant, the capacities for the cases for which the plates
of the condenser are rectilinear slits can be computed with the help of conformal mappings as in the following examples.
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Table 7
The approximate values of the capacity cap(Ck) for Section 8.3.
k m + ℓ cap(Ck) CPU time (sec)

1 2 6.215546324111108 0.25
2 10 5.088779139415422 0.64
3 74 4.076130615454810 3.00
4 586 3.258035364401146 29.69
5 4682 2.600902059654094 399.97

Fig. 10. The level curves of the function u for the condenser in Section 8.3 for k = 2 (left) and k = 3 (right).

Fig. 11. The domains G (left) and Ĝ (right) for the condenser in Section 9.1.

9.1. Three slits: classical condenser

In this example, we consider the generalized condenser C = (B, E, δ) with B = C, E = {E1, E2, E3} where E1 = [−c, −1],
E2 = [a, b], and E3 = [1, c], −1 < a < b < 1 < c . For the levels of the potential of the plates, we consider two cases:
δ = {1, 1, 0} and δ = {0, 1, 0}. So, ℓ = 0, m = 3, and the generalized condenser reduces to a classical condenser. This
example has been considered in [9, Example 6] for several values of a and b.

Here, the field of the generalized condenser, G, is the unbounded triply connected domain in the exterior of the three
slits E1, E2, and E3 (see Fig. 11). Hence, the domain G for this generalized condenser is not bordered by Jordan curves.
So, the method presented above is not directly applicable to such a domain G. Thus, to compute the capacity of this
condenser, we first map this domain onto a domain Ĝ bordered by smooth Jordan curves so that our method can be used.
An iterative numerical method for computing such a domain Ĝ has been presented recently in [37]. Using this iterative
method, a conformally equivalent domain Ĝ bordered by ellipses can be obtained as in Fig. 11 (right). For details on the
iterative method for computing the domain G, we refer the reader to [37].

Since the Dirichlet integral is conformally invariant, the capacity for the new domain Ĝ is the same as the capacity
for the original domain G. For the new domain Ĝ, we use the presented method with n = 211 for several values of the
constants a, b, and c (for the same values used in [9]). The level curves of the function u for a = −0.5, b = 0.5, and c = 2
are shown in Fig. 12. The obtained approximate values of the capacity as well as the results presented in [9] are shown
in Table 8.
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Table 8
The approximate values of the capacity cap(C) for Section 9.1.
a b c Case I Case II

Our method Betsakos et al. [9] Our method Betsakos et al. [9]

−0.9 0 2 1.708669509849820 1.7086693 3.453772340126319 3.4537720
−0.5 0.5 2 2.095326566730911 2.0953263 2.941023714396430 2.9410234
−0.9 0.9 2 3.067636432954407 3.0676361 5.187751867577839 5.1877511
0 0.9 2 3.033274793073555 3.0332745 3.453772340126327 3.4537719
−0.5 0.5 3 2.412575260903909 2.4125750 3.048687933334055 3.0486876
−0.7 0.2 3 2.131839309436634 2.1318391 3.017210220380872 3.0172100
0.5 0.8 3 2.807123923176794 2.8071236 2.312108724455613 2.3121085

Fig. 12. The level curves of the function u for the condenser in Section 9.1 for Case I (left) and Case II (right).

Fig. 13. The level curves of the function u for the condenser in Section 9.2 for B = C\[a, b] (left) and B = C\[a + i, b + i] (right).

9.2. Three slits: generalized condenser

In this example, we consider the generalized condenser C = (B, E, δ) with B = C\[a, b], E = {E1, E2} where
E1 = [−c, −1], E2 = [1, c], and δ = {0, 1}, −1 < a < b < 1 < c. So, here we have ℓ = 1, m = 2. The domain G
of condenser here is the same as in Section 9.1 and the Dirichlet boundary condition on the middle slit is replaced with
the Neumann condition. Thus, as in Section 9.1, we compute first a conformally equivalent domain Ĝ bordered by smooth
Jordan curves. Then, for the domain Ĝ, we use the presented method with n = 211 for the same values of the constants
a, b, and c used in Section 9.1. The obtained results are presented in Fig. 13 (left) and in Table 9.

We see from Table 9 that the middle segment [a, b] on the real axis has no effect on the value of the capacity for this
case. However, this will not be the case if we move the middle segment away from the real axis. To show that, we keep E
and δ the same as above and we change the domain B to B = C\[a+ i, b+ i], i.e., we move the middle segment vertically
by unity. Then, the values of the capacity depends on a and b (see the fifth column in Table 9). The level curves of the
potential function are presented in Fig. 13 (right).

9.3. Cantor set

In Section 7.3, we consider the Cantor dust which a generalization of the classical Cantor middle third set to dimension
two. The boundaries of the closed sets Sk in Section 7.3 were piecewise smooth Jordan curves so the method presented
in Section 6 is directly applicable to the problem considered in Section 7.3. In this example, we consider the classical
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Table 9
The approximate values of the capacity cap(C) for Section 9.2.
a b c B = C\[a, b] B = C\[a + i, b + i]

−0.9 0 2 1.279261571170975 1.276631670192704
−0.5 0.5 2 1.279261571170975 1.278826082326995
−0.9 0.9 2 1.279261571170975 1.274579061435374
0 0.9 2 1.279261571170975 1.276631670192704
−0.5 0.5 3 1.563401922696102 1.563011913331686
−0.7 0.2 3 1.563401922696101 1.562502672069208
0.5 0.8 3 1.563401922696093 1.562906600728627

Table 10
The approximate values of the capacity cap(Ck) for Section 9.3.
k m = 2k cap(Ck) Time (sec)

1 2 1.563401922696121 0.22
2 4 1.521894262663735 0.70
3 8 1.498986233451143 2.17
4 16 1.487078427246902 6.84
5 32 1.480987379910617 23.20
6 64 1.477880583227881 91.26
7 128 1.476295519723391 371.64
8 256 1.475486275937497 1405.52
9 512 1.475072901005890 6158.92

Fig. 14. The level curves of the function u for the condenser in Section 9.3 for k = 2 (left) and k = 3 (right).

Cantor middle third set and in this case the domain G is bordered by slits and hence the presented method is not directly
applicable. However, the presented method can be used with the help of conformal mappings as explained in Section 9.1.

Let Ik, k = 0, 1, 2, . . ., be as defined in Section 7.3. Then, the classical Cantor middle third set is defined as

I =

∞⋂
k=1

Ik.

For k = 0, 1, 2, . . ., the closed set Ik consists of 2k closed intervals E1, E2, . . . , E2k (see Fig. 14 for k = 2 (left) and k = 3
(right)). We consider the generalized condensers Ck = (B, E, δ) with B = C and E = {E1, E2, . . . , E2k}. For the levels of the
potential function δ = {δj}

4k
j=1, we assume δj = 0 for half of the plates (the plates on the left of the line x = 0.5) and δj = 1

for the other half (the plates on the right of the line x = 0.5). Thus, ℓ = 0, m′
= m = 2k, and the generalized condenser

reduces to a classical condenser. The field of the condenser, G, is then the unbounded multiply connected domain in the
exterior of the closed sets Ek (see Fig. 14).

The approximate values of the capacity for k = 1, 2, . . . , 9 are shown in Table 10 and the level curves of the function
u for k = 2, 3 are shown in Fig. 14. For each k, we need first to use the iterative method presented in [37] to compute a
domain Ĝ bordered by smooth Jordan curves which is conformally equivalent to the domain G. Then, we use the presented
method for the new domain Ĝ and the method requires solving m = 2k integral equations. The total CPU time for the
two steps for each k is presented in Table 10. The presented numerical results were obtained with n = 210.

9.4. A rectangle with three slits: classical condenser

Two different analytical–numerical methods were applied in [8] for computing accurately the capacities of a wide
family of symmetric condensers with complex geometry. In this example, to confirm the effectiveness and the accuracy
of our proposed method, we consider the condenser A in [8, Fig. 4].

Let C = (B, E, δ) be the generalized condenser with B = C, E = {E1, E2, E3, E4}, and δ = {1, 1, 1, 1, 0}. The plates
of the condenser are: E1 = [x1, x2], E2 = [x3, x4], E3 = [x5, x6], and E4 = G4 where G4 is the exterior of the square
with the vertices 11 + Li, Li, −Li, 11 − Li. This example has been considered in [8, Fig. 4, Table 5] for several values of
x1, . . . , x6, L. We consider here the same values of x1, . . . , x6, L as shown in Table 11. For this example, ℓ′

= ℓ = 0,
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Fig. 15. The domains G (left) and Ĝ (right) for the condenser in Section 9.4 for the values of x1, . . . , x6, L given in Table 11 (Case I).

Fig. 16. The level curves of the function u for the condenser in Section 9.4 for the values of x1, . . . , x6, L given in Table 11: Case I (left) and Case
III (right).

Table 11
The approximate values of the capacity cap(C) for Section 9.4.
Case x1 x2 x3 x4 x5 x6 L Our method Bezrodnykh et al. [8]

I 1 3 4 5 6 9 2 9.720791206171137 9.72079120617096926
II 2 2.5 4.5 5 6 10.5 1 15.896403373409031 15.8964033734093744
III 0.5 5 7.5 8 10 10.5 1 16.570834992135438 16.5708349921371510
IV 1 1.5 2 8 10 10.5 3 9.077677435192859 9.0776774351927967
V 2 2.5 7.5 8 9 10.9 1 12.164276512644497 12.1642765126444534
VI 3 5 6 8 9 10 5 5.595178899111738 5.59517889911177450

m = 4, m′
= 3, and the generalized condenser reduces to a classical condenser. The field of the condenser, G, is then the

bounded quadruply connected domain in the exterior of the three slits E1, E2, E3, and in the interior of the rectangle with
the vertices 11 + Li, Li, −Li, 11 − Li (see Fig. 15 (left)).

As the domain G for this condenser is not bordered by Jordan curves, the proposed method is not directly applicable.
Thus, as in the previous three examples, to compute the capacity of this condenser, we will find a conformally equivalent
quadruply connected domain Ĝ bordered by piecewise smooth Jordan curves so that our method can be used. First, as
illustrated in Section 9.1, the iterative numerical method presented in [37] will be used to find a preimage domain in
the exterior of three ellipses and a conformal mapping from this preimage domain onto the unbounded domain in the
exterior of the three slits. Then, we use the inverse conformal mapping to map the rectangle onto a piecewise smooth
Jordan curve enclosing the three ellipses. Thus, we obtain a conformally equivalent domain Ĝ in the interior of a piecewise
smooth Jordan curve and in the exterior of three ellipses (see Fig. 15 (right)). For the new domain Ĝ, we use the presented
method with n = 211 for several values of x1, . . . , x6, L (we use the same values used in [8, Table 5]). The level curves
of the function u for Cases I and III in Table 11 are shown in Fig. 16. The obtained approximate values of the capacity as
well as the results presented in [8] are shown in Table 11 which illustrates that the results obtained using our method
agreed with the results presented in [8].

10. Harmonic measure

Assume that the multiply connected domain G is as described in Section 2 with ℓ = 0, i.e., G is a multiply connected
domain of connectivity m bordered by Γ = ∪

m
k=1Γk where Γm is the external boundary component if G is bounded. In

this section, we shall use the method described above to compute the ‘‘harmonic measure’’ for the multiply connected
domain G.

For a fixed j, j = 1, 2, . . . ,m, let u be the harmonic function in G that satisfy the boundary condition

u(ζ ) =

{
1, ζ ∈ Γj,

0, ζ ∈ Γk, k ̸= j, k = 1, 2, . . . ,m,
(55)
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Fig. 17. The level curves of the absolute error in the computed values of the harmonic measures ωG,Γ1 (z) (left) and ωG,Γ2 (z) (right) for Section 10.1.

where u is assumed to be bounded at ∞ for unbounded G. Then the function u is called the harmonic measure of Γj with
respect to G and will be denoted by ωG,Γj [13,45–47]. From the Maximum Principle for harmonic functions [47, p. 77]
it follows that 0 < ωG,Γj (z) < 1 for z ∈ G. The harmonic measure ωG,Γj (z) is invariant under conformal maps. If Φ is a
conformal mapping from the domain G onto Φ(G), then [2,13]

ωG,Γj (z) = ωΦ(G),Φ(Γj)(Φ(z))

for all z ∈ G, j = 1, 2, . . . ,m.
The boundary condition (55) is a special case of the boundary condition (4) (here, ℓ = 0 so we will not have the

normal derivative boundary condition). Thus, the algorithm presented in Section 5.4 can be used to compute the harmonic
measure ωG,Γj (z) for z ∈ G, j = 1, 2, . . . ,m. In fact, by the definition of the function δ in Section 9.1, the level curves
presented in Fig. 12 (right) are the level curves of the harmonic measure ωG,Γ2 (z) for the triply connected domain G in
the exterior of the three slits Γ1 (the left slit), Γ2 (the middle slit), and Γ3 (the right slit). The level curves presented in
Fig. 12 (left) are the level curves of the sum of the harmonic measures ωG,Γ1 (z) + ωG,Γ2 (z).

Below we consider three more examples.

10.1. Annulus

Let G by the annulus G = {z ∈ C : q < |z| < 1}. Then the exact harmonic measures of the inner circle
Γ1 = {z ∈ C : |z| = q} and the outer circle Γ2 = {z ∈ C : |z| = 1} with respect to G are given by

ωG,Γ1 (z) =
log |z|
log q

, ωG,Γ2 (z) = 1 −
log |z|
log q

, z ∈ G.

We use the method presented in Section 6 with n = 210 to compute approximate values of the harmonic measures
ωG,Γ1 (z) and ωG,Γ2 (z) for z ∈ G. The absolute error in the computed values is shown in Fig. 17.

10.2. Two disks and two polygons

We consider the multiply connected domain G of connectivity 4 in the exterior of the curves Γ1, Γ2, Γ3 and in the
interior of the curve Γ4. Here, Γ1 is the circle |z − 0.5| = 0.25, Γ2 is the circle |z + 0.5| = 0.25, Γ3 is the polygon with
the vertices 0.5− 0.5i, 0.5− 0.8i, −0.5− 0.8i, −0.5− 0.5i, and Γ4 is the polygon with the vertices 1, i, −1, −1− i, 1− i.
We use the method presented in Section 6 with n = 5 × 28 to compute approximate values of the harmonic measures
ωG,Γ1 (z), ωG,Γ2 (z), ωG,Γ3 (z) and ωG,Γ4 (z) for z ∈ G. The level curves of the computed harmonic measures are shown in
Fig. 18.

10.3. Cantor set

In this example, we compare our method with Trefethen’s method [48] for solving the Laplace problem using series.
For the definition of the Cantor middle third set, we use here the same definition employed in [48, § 5] which is equivalent
to the definition given in Section 9.3. Let I0 = [−1.5, 1.5] and recursively define

Ik =

(
1
3
Ik−1 − 1

)
∪

(
1
3
Ik−1 + 1

)
, k ≥ 1.

Then, as in Section 9.3, the closed set Ik consists of 2k closed intervals for each k = 0, 1, 2, . . ..
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Fig. 18. The level curves of the computed harmonic measures ωG,Γ1 (z) (top, left), ωG,Γ2 (z) (top, right), ωG,Γ3 (z) (bottom, left), and ωG,Γ4 (z) (bottom,
right) for Section 10.2.

Let G be the unbounded multiply connected domain of connectivity m = 2k in the exterior of Ik. As in [48], we assume
that Î is the union of the m/2 slits that are close to the origin from both sides (the slits between −1 and 1 in Fig. 19). Then,
we consider the harmonic measure ωG,Î (z), i.e., the harmonic function which equals 1 on the m/2 slits Î and equals zero
in the remaining slits. Since the harmonic measure is conformally invariant, the method presented in Section 6 combined
with conformal mappings can be used to compute ωG,Î (z) as explained in Sections 9.1 and 9.3. The level curves of the
computed harmonic measure ωG,Î (z) obtained with n = 512 (the number of nodes in the discretization of each boundary
component) for k = 2, 4, 6, 8 are shown in Fig. 19.

The real number ωG,Î (0) is known as the harmonic measure of Î with respect to the basepoint z = 0 [49]. The real
constant ωG,Î (0) can be computed using the MATLAB function cantor in [48]. Table 12 presents the values of ωG,Î (0) for
several values of k obtained with the function cantor. These results are obtained by choosing the number of expansion
terms and sample points in cantor to be 4. Note that, the numbers presented in the last two lines of Page 9 in [48]
represent the harmonic measures of only half of the slits in Î with respect to the basepoint z = 0, namely the slits on the
positive real axis. Due to the symmetry of the domain, the harmonic measures of Î with respect to the basepoint z = 0
are obtained by doubling the values in [48].

For comparison with the method presented in [48], we compute ωG,Î (0) using our presented method with n = 16 and
n = 32. The obtained numerical results are presented in Table 12. This table illustrated that there is a good agreement
between the results obtained using MATLAB function cantor from [48] and our results even for values of n as small as
n = 16. Further, the numerical results obtained with n = 16 and n = 32 are almost identical which indicates that using
n = 16 is enough to compute ωG,Î (0) to a good accuracy.
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Fig. 19. The level curves of the computed harmonic measures ωG,Î (z) for k = 2 (top, left), k = 4 (top, right), k = 6 (bottom, left), and k = 8 (bottom,
right) for Section 10.3.

Table 12
The approximate values of ωG,Î (0).

k m = 2k Our method (n = 16) Our method (n = 32) Trefethen [48]

2 4 0.73555153998519 0.735551539985189 0.735551540112459
3 8 0.729929583133879 0.729929583133878 0.729929583038891
4 16 0.727024871160416 0.727024871160416 0.727024871113871
5 32 0.725545991954976 0.725545991954976 0.72554599193114
6 64 0.724793400281699 0.724793400281699 0.724793400269526
7 128 0.724409827677884 0.724409827677885 0.724409827671667
8 256 0.724214086601555 0.724214086601554 0.724214086598381
9 512 0.724114119558644 0.724114119558644 0.724114119557021
10 1024 0.724063042631302 0.724063042631301 0.724063042630471
11 2048 0.724036939209317 0.724036939209316 0.724036939208896
12 4096 0.724023597064085 0.724023597064085 0.724023597063866

Appendix. The MATLAB function capgc

function [cap , uz] = capgc(et,etp,alphav,deltav,m,mp,ell,alpha,z)

ellp = ell ; ellp(abs(alpha)<inf & mp==m)=ell-1;

n=length(et)/(m+ell); tht=zeros(size(et)); tht(m*n+1:end)=pi/2;

if mp==m & ellp==ell

A=exp(-i.*tht);

else

A=exp(-i.*tht).*(et-alpha);

end

for k=1:mp

for j=1:m+ell

jv = 1+(j-1)*n:j*n;

if (ellp==ell)

gamk{k}(jv,1)=real(exp(-i.*tht(jv)).*clog(et(jv)-alphav(k)));

else

gamk{k}(jv,1)=real(exp(-i.*tht(jv)).*...

clog((et(jv)-alphav(k))./(et(jv)-alpha)));

end

end

[mu{k},h{k}]=fbie(et,etp,A,gamk{k},n,5,[],1e-14,100);

for j=1:m+ell

hjk(j,k)=mean(h{k}(1+(j-1)*n:j*n));

end
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end

mat=hjk; mat(1:m,mp+1)=1; mat(m+1:m+ell,mp+1)=0;

mat(1:m,mp+2:mp+ell+1)=0; mat(m+1:m+ell,mp+2:mp+ell+1)=-eye(ell);

rhs(1:m,1)=deltav; rhs(m+1:m+ell,1)=0;

if mp==m

mat(m+ell+1,1:m)=1; mat(m+ell+1,m+1:m+ell+1)=0; rhs(m+ell+1,1)=0;

end

x=mat\rhs; a=x(1:mp,1); c=x(mp+1);

if mp==m-1

a(m,1)=-sum(a);

end

cap = (2*pi)*sum(deltav(:).*a(:));

if nargin==9

fet = zeros(size(et)); uz=zeros(size(z));

for k=1:mp

fet = fet+a(k).*(gamk{k}+h{k}+i.*mu{k})./A;

uz=uz-a(k)*log(abs(z-alphav(k)));

end

if abs(alpha)<inf

fz=fcau(et,etp,fet,z);

uz=uz+c+real((z-alpha).*fz);

else

fz=fcau(et,etp,fet,z,n,0);

uz=uz+c+real(fz);

end

end

end
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