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ABSTRACT 

AL-THANI, HAYA, A., Masters : June : 2017, Masters of Science in Computing 

Title: Detecting Market Manipulation in Stock Market Data 

Supervisor of Thesis: Dr. Sumaya A. Al-Maadeed. 

Anomaly Detection is an extensively researched problem that has diverse 

applications in many domains. Anomaly detection is the process of finding data points or 

patterns that do not conform to expected behavior within a dataset. Solutions to this 

problem have used techniques from disciplines such as statistics, machine learning, data 

mining, spectral theory and information theory. In the case of stock market data, the input 

is a non-linear complex time series that render statistical methods ineffective. The aim of 

this thesis, is to detect anomalies within the Standard and Poor and Qatar Stock Exchange 

using the behavior of similar time series. Many works on stock market manipulation focus 

on supervised learning techniques, which require labeled datasets. The labeling process 

requires substantial efforts. Anomalous behavior is also dynamic in nature. For those 

reasons, the development of an unsupervised market manipulation detection technique 

would be very interesting. The Contextual Anomaly Detector (CAD) is an unsupervised 

method that finds anomalies by looking at similarly behaving time series and uses them to 

predict expected values. When the predicted value is different from the actual value in the 

time series by a certain threshold, it is considered an anomaly. This thesis will look at the 

Contextual Anomaly Detector (CAD) and implement a different preprocessing step to 

improve recall and precision.  
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CHAPTER 1: INTRODUCTION 

 Anomaly detection is a vast problem that has been researched extensively due to its 

various application domains. Anomaly detection is the process of identifying data points 

or patterns in datasets that do not follow expected behavior. These points or patterns can 

be called anomalies or outliers. This problem has a wide range of applicable domains such 

as credit cards fraud detection, intrusion detection, healthcare or cyber-security. Anomaly 

detection is important because anomalies often reflect significant information in a lot of 

domains. For example, an anomaly found in an MRI image might indicate the presence of 

a tumor. Anomalies in a network’s traffic pattern can mean the computer has been hacked. 

These many useful applications have made anomaly detection an extensively studied field 

in statistics and computing. In this thesis, anomaly detection will be used to identify market 

manipulations in stock market data. 

 

1.1 Anomaly Detection Background 

 A simple approach to anomaly detection would be defining a range in the data that 

specify expected normal behavior. Any data point that is outside the normal region is 

therefore an anomaly. However, several factors make this simplistic approach very 

challenging: 

• Defining a range that includes every possible instance of normal behavior is a 

difficult, if not impossible task. Often times, what distinguishes normal and 

abnormal behavior is not so precise. This would make abnormal behavior close to 
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the boundary very hard to identify. 

• Modern malicious actions often evolve to replicate normal behavior. Anomalies 

resulting from these malicious actions are hard to identify. 

• Normal behavior also keeps changing. What is defined as normal behavior now 

might not be representative in the future.  

• Anomalies are defined differently for different applications. For example, in 

healthcare, any small deviation is significate, such as fluctuations in body 

temperature. While on the other hand, similar deviations in the stock market might 

be taken as normal. This makes applying one technique to multiple domains 

difficult. 

• The unavailability of labeled training data for anomaly detection is often a 

challenge. 

• Noise in the data is usually similar to actual anomalies. Distinguishing between the 

two is a challenge. 

 To address the above challenges researches explored solutions from a variety of 

disciplines. These concepts are taken from statistics, machine learning, data mining, 

spectral theories and information theories. The major factor affecting the selection of 

anomaly detection technique is the input data itself. The nature of the input data and how 

instances relate to each other determine the course of action to be taken. Data instances can 

be sequential data, spatial data or graphical data. In sequential data, the instances are 

ordered. Examples of these types of data are time-series data, genome data or protein 

sequences. Data instances in spatial data are related to their neighboring data, for example, 
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traffic data, geographical data or ecological data. When data is represented as vertices, they 

are considered graphical data. It is essential to grasp the nature of the data before defining 

what an anomaly is and how to identify it. 

 

1.2 Stock Market Manipulation Background 

 This thesis focuses on identifying possible fraudulent activities in stock market 

data. The stock market is a place where buyers and sellers can trade stocks or securities of 

publicly listed companies. A stock is a share of a company that represents ownership of a 

business. A security is proof of ownership of a stock, a bond or any other financial asset.  

Large companies trade their stocks through an exchange which brings buyers and sellers 

together in an organized manner. These exchanges exist in many major cities such as the 

NASDAQ stock exchange and the London stock exchange.  

 As of 2015, there are 60 stock exchanges world wide with a total market capital of 

69 trillion dollars.1 Regulating the fairness of these markets is a very challenging task. In 

2016 alone, the US Securities and Exchange Commission suspended securities trading of 

199 issuers to combat market manipulation and fraud threats to investors.2 Securities fraud 

is defined as deceptive practices in the trading of stocks or securities. Securities fraud is 

divided into: broker embezzlement, high yield investment fraud, late-day trading and 

market manipulation.  

                                                
 
1	http://money.visualcapitalist.com/all-of-the-worlds-stock-exchanges-by-size/ 
2 https://www.sec.gov/news/pressrelease/2016-212.html	
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 Market manipulation is a big concern for investors. Market manipulation is when 

the price of a security is artificially inflated or deflated by a group or individual in order to 

deceive investors and gain profit. A stock price can be manipulated by leaking misleading 

or incorrect information about a company, limiting the number of shares available to the 

public or changing trades, quotes or prices in order to create a false demand for a security.  

Monitoring these malicious actions is very important. A market should ensure integrity, 

transparency and stability for the benefit of all participants. That is why managing the risks 

involved with the stock market is such a significant task. A market that is free from all 

manipulation is crucial for nurturing a stable environment, not only for the benefit of the 

individuals and companies involved, but for the economic growth of the country itself.  

More formally, market manipulation can be defined as any interference with 

genuine supply and demand of a stock for an illegitimate or deceptive purpose. Market 

manipulation can come in three different types: information-based, trade-based or action-

based manipulation.  

Information-based manipulation happens when an individual or group persuades 

others that the price of a stock is not the actual or current price. The stock can be 

misleadingly presented as more valuable than what it actually is using false information. 

An example of this type of manipulation is “pump and dump” manipulation. “Pumping up” 

is when a seller talks up the value of a stock they are holding. Then the stock is “dumped” 

or sold into the market at an artificially high price. Another example is when a manipulator 

“shorts” the stock by spreading false information about the stock to buy it back at a lower 

price.  
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Trade-based manipulation is where a manipulator actually completes a transaction 

with the goal of influencing the stock price. This can be used to make the stock price more 

favorable for the manipulator. An example of this manipulation is when an oil trader buys 

all of the supplies of a certain type of oil and keeps them in order to push the price up. 

Another example is when a buyer and seller agrees to trade at an artificially high or low 

price. This will influence the price at which other trades occur. A “wash trade” is when a 

manipulator buys and sells the same stock to mislead other traders in thinking that the stock 

is more actively traded than what it really is. 

Action-based manipulation is when a manipulator uses actions other than trading 

to change the price of a stock. A classic example of this type of manipulation is the Harlem 

railway corner. In this case, the New York council passed a decree allowing the railway 

company to build a streetcar in certain areas of New York City. This increased the price of 

the stock greatly. Some of the council aimed to profit by selling this stock short and 

revoking the decree. This forces the price of the stock down by an action other than trading. 

Another example is when manipulators play with the value of their own company stocks. 

The managers of American Steel and Wire Company shorted their stock and then closed 

the company’s steel mills. After announcing the closure, the stock price fell. The managers 

then covered their shorts and reopened the mills causing the price to rise again. These two 

examples are just some of the ways manipulators can impact a prices through actions other 

than trading.  

 

1.3 Problem Definition 
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An example of an existing market manipulation approach is a top-down approach. 

This is done based on defined thresholds and patterns. Stock market data (such as price and 

volume) are monitored. By using a set of rules and red-flag triggers, possible fraudulent 

transactions are detected and further investigated. This method has its downfalls. It requires 

expert knowledge and would not be able to detect abnormal behavior from new and 

unknown manipulation schemes. This method does not adapt to the changing nature of the 

market and the exponentially growing amount of transactional data. Technology needs to 

evolve with this growth of data, and a better detection technique would make detecting 

manipulations much easier and efficient. Anomalies in stock market data are difficult to 

label as well. It is a long and tedious task and normal fluctuations in data might be 

mistakenly taken as anomalies. That is why finding a method that detects anomalies 

without the need to rely on labeled data is an interesting endeavor.   

In this thesis, market manipulation will be detected through local anomaly detection 

using the behavior of similar time series. Companies within the same sector act in a similar 

way. They are generally affected by the same factors such as commodity prices, political 

or economical change. This proportionality can be exploited to detect market manipulation. 

Manipulations in stock data are represented as anomalies, where legitimate trades are 

normal behavior. One company’s price can be related to that of similarly behaving 

companies to detect anomalies on a local level. Local anomalies are different from global 

anomalies. In local anomaly detection, a data point is considered anomalous with respect 

to its neighboring points. A local anomaly might not be considered anomalous when 

compared to all the other data points. Local anomaly detection is especially useful for non-
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homogenous datasets and datasets with ever changing underlying factors, such as financial 

data. 

 Stock market trends are an ever evolving phenomena. The movement of the market 

today is very different than what it was a few years ago. That is because the things that 

effect the market are always changing. This indicates that to detect an anomaly in a given 

company, looking at its far past trends might not yield the best results since the behavior 

of the company and market have changed. Instead, one should look at similar companies 

and their behavior. This method of anomaly detection evolves with the stock market trends. 

It can also distinguish between market manipulations and normal, but unexpected, stock 

market spikes. For example, looking at the events following the UK’s decision to leave the 

EU, the market crashed. If we are simply relying on a company’s history, this can appear 

as an anomaly in the company’s stock data because there was a sudden and sharp drop in 

price. However, this anomaly is not market manipulation, it is simply the markets reaction 

to a political situation. Using the proposed method, the company’s price will be related 

back to similar companies. So external events that are not market manipulation would 

affect all the companies, and would not be considered anomalies. Market manipulation 

caused by individuals that target a company will be identified because it targets that single 

company. 

 

1.4 Scope and Objectives 

 The aim of this thesis is to add on to the work of Golmohammadi et al. [1] who 

attempt to identify market manipulations using similar time series. Golmohammadi et al. 
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propose a prediction based Contextual Anomaly Detector (CAD). Their system starts by 

selecting a subset of time-series within the same sector of industry. Using this subset of 

time series, a centroid can be calculated by averaging all the time-series in this subset. The 

correlation between a given time-series and the centroid is then calculated, and a predicted 

value for that same time series is found. They define an anomaly as any point where the 

actual value deviates from the predicted value by more than a certain threshold. This 

method achieved an increase in recall when compared with random walk and k-nearest 

neighbor without compromising precision. 

 CAD provides the basis of an interesting solution to the problem. This thesis hopes 

to add onto this method by proposing a new method of preprocessing the data that can 

improve the method’s recall without sacrificing precision. By using the Simple Moving 

Averages (SMA) of the companies’ price changes, better recall can be achieved. This 

change in the way the data is preprocessed will be tested and compared with the original 

implementation of CAD and the k-means clustering algorithm.  

 The proposed solution will be tested by starting with clean manipulation free stock 

market data. Anomalies will then be inserted into clean data for the purpose of system 

evaluation. After that, the data will be preprocessed for normalization. This is where the 

new SMA step will be added. Then anomalies will be detected through the use of the 

centroid and the proposed prediction method. After that, the system will return possible 

manipulation instances for further inspection. Figure 1 shows an overview of this solution. 
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Figure 1: Solution Overview 

  

1.5 Achievements 

 The thesis’ goal is to improve the detection system’s recall without hurting 

precision and this has been achieved by introducing a new preprocessing step. Using SMA 

to preprocess the time series data was more successful at finding manipulations. After 

performing experiments on two stock exchanges, the S&P and the Qatar stock exchange, 

recall was shown to undergo an improvement. For example, the recall of the consumer 

staples weekly dataset changed from 34% to 95%. Precision also saw an increase from 

0.33% to 3.8%.  This shows that the inherent similarities between sector companies can be 

exploited to monitor manipulations in an unsupervised manner.    

 

1.6 Overview of Thesis 
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 The thesis is divided into six chapters. The first chapter introduces the problem and 

gives some background information. Chapter two reviews related work in the field of 

market and securities manipulation. It summarizes some techniques that have been used to 

detect manipulations in this field and in time series data. After that, chapter three gives a 

detailed look into the proposed solution. It starts by describing the data collection process, 

how data is preprocessed, anomaly detection method and finally how anomalies are 

inserted for evaluation. Chapter four describes the experiment setup. Chapter five gives the 

experiment results and interprets them. Finally, the conclusion and future work are 

presented in chapter six. 

  



	 	
	 	 	

11	
	

CHAPTER 2: RELATED WORK 

 Anomaly detection techniques can generally be divided into supervised and 

unsupervised detection. Both of these techniques have been used to detect market 

manipulation and fraud. In this chapter, these methods will be reviewed.  

 

2.1 Supervised Fraud Detection 

 Supervised anomaly detection requires the availability of labeled training data. 

These labelled instances are then used to build a predictive model that classifies normal 

and anomalous activities. New unlabeled data is compared through the built model to 

determine which class it belongs to. The problem with this methodology is that is it very 

difficult to obtain an accurate and representative labeled dataset. Another issue is that 

anomalous data points are much fewer in comparison to normal data points in the training 

datasets. This imbalance has to be addressed. 

 One such example of supervised learning used to detect market manipulation is the 

work of Ogut et al. [2] Market manipulation instances were labeled using cases published 

in the Capital Markets Board of Turkey. The aim of their research is to use two data mining 

techniques, Support Vector Machine (SVM) and Artificial Neural Networks (ANN) to 

build a predictive model and compare it with other statistical methods. Their experimental 

results show that SVM and ANN outperform the statistical techniques. 

 Diaz et al. [3] also constructed a labeled dataset using manipulation case studies 

from the US Securities and Exchange Commission during 2009. Their work detected 
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intraday price manipulation by using financial variables and ratios along with textual 

sources. They applied tree generating learning methods, QUEST, C5.0 and C&RT. 

 Golmohammadi et al. [4] used the data supplied in the works of Diaz et al. [3] and 

expanded on it to explore different classifiers for market manipulation detection. They 

applied the following classification methods: CART, inference trees, C5.0, random forest, 

naïve bayes, neural networks, SVM and k-nearest neighbor. Their experimental results 

show Naïve Bayes outperforms all other classifiers achieving an F2 measure of 53%. 

 

2.2 Unsupervised Fraud Detection   

 Unsupervised anomaly detection does not require any labelled data, and is thus the 

most widely applicable. This technique assumes that normal data points are much more 

frequent than anomalies. This is the more flexible technique when compared to supervised 

methods.  

2.2.1 Regression 

Many economic models intend to forecast stock market trends and detect 

manipulations through linear regression, auto-regression moving average (ARMA), 

autoregressive integrated moving average (ARIMA), and other such models [5]–[7]. 

However, these statistical models can only handle linear data. They do not handle highly 

noisy, irregular, non-linear data such as stock market data. These approaches often fail to 

predict the market and manipulations properly. 

Yang et al. [8] used logistic regression models to detect market manipulation in 
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the Shanghai and Shenzhen market. Market characteristics are analyzed using primary 

component analysis to increased the model’s forecasting performance. The model proved 

better than linear regression models with a higher success rate for prediction.   

2.2.2 Rule Induction 

 Rule induction is a data mining technique that has been used to detect fraud in the 

stock market. This method draws similarities to existing regulatory rules that are used to 

monitor the market, this makes it very popular among auditors and securities market 

investigators. In Jungwon et al [9], a fraud detection method is implemented using rule 

induction. First, they randomly generate rules using the association rules algorithm Apriori. 

Then, they apply these rules to a dataset containing only legitimate transactions. Any rule 

that matches the data is then disregarded. Then, the remaining rules are used to monitor 

new transaction data in the system. Any rule that detects an anomaly is replicated by adding 

a small random mutation. All successful rules are retained for anomaly detection.   

 Associative rules were also used to detect manipulations in intraday trades in the 

Thai bond market in the work of Mongkolnavin et al. [10] Price variations and investor 

behavior were intergrated to analyze red-flag signals in real time. A single trade transaction 

involves the trader ID, and the transaction order, where the last transaction is assigned zero, 

the second to last is assigned one and so-on. The system detects possible manipulations if 

an association between trader ID and transaction order is found. In normal cases, no 

association should be present. Trading time should be random. If a high association is 

present, then that trader is a suspected manipulator.  

2.2.3 Hidden Markov Model 
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  Hidden Markov Model (HMM) assumes that the underlying process of the time 

series is a hidden markovian process. The time series training data is used to build an HMM 

that assigns anomaly scores to the test time series. It is used in anomaly detection in 

intrusions detection systems as in the work of Jecheva [11].  This method assumes that 

there is a hidden markovian process that generates the normal time series.   

HMM is customized for market manipulation detection in the work of Cao et al. 

[12] A traditional retraining mechanism is applied to automatically track the changes in the 

statistical properties of the time series. The proposed Adaptive Hidden Markov Model with 

Anomaly States (AHMMAS) was tested on US and UK market data. Its performance out 

did the k-nearest neighbors algorithm, gaussian mixture models and one-class support 

vector machines. 

2.2.4 Visualization 

 Instead of looking at stock market data as independent data points, it is also 

interesting to consider the relationship between sellers and buyers. Using these 

relationships, a social network can be composed where nodes represent entities or objects 

and edges can be dependencies or relationships. Blume et al. [13] combined Social 

Network Analysis (SNA) and interactive visualization to identify fraudulent accounts in an 

exchange. They defined indicators of fraud based on textual descriptions of fraud cases to 

identify these accounts. Using SNA can identify circular trading which is when an account 

is consistently buying and selling the same volume of stock. It can also flag when an 

account buys low and sells high. SNA has many useful algorithms that are applicable to 

stock data for the sake of fraud detection.  
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 Financial investigators and regulators are always referring to charts and figures 

when monitoring the market. Visually delivering complex information and patterns within 

the data is of great interest. Huang et al. [14] deliver a visual analytic framework for stock 

market security. It consists of two parts, the first handles visual surveillance of market 

performance through the use of a 3D treemap. Each cell in the 3D visual represents a 

security, the size represents volume and the color indicates whether a change is an increase 

(green) or decrease (red). The treemap provides a tool for real-time data visualization. The 

trading data is compared to a set of parameters and an alert is flagged when the data is out 

of that range. The second part visualizes trading networks for SNA and monitoring broker’s 

activities. Nodes represents traders, the directed edges represent the flow and weight of 

trades. To identify suspicious trades, a database of past malicious trading patterns is 

referenced. 

2.2.5 Anomaly Detection 

  Anomaly or outlier detection techniques look for data that appear inconsistent with 

most of the data observations. Ferdousi et al. [15] applied such a technique to transactional 

data to find outliers. They used Peer Group Analysis (PGA) on three months of Bangladesh 

stock market data. The data consists of statistical variables such as mean and variance along 

with buy and sell orders. The objective of PGA is to categorize target objects into peer 

groups. This is decided by looking for the peer group that is made up of the most similar 

objects to the target object. After a certain timeframe, five weeks in the experiment, a 

centroid is found for each peer group. After that, the distance of each group member to the 

centroid is calculated using t-statistics. Objects that are significantly far from their peer 
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centroid are then flagged as outliers. Traders associated with that object are then put under 

suspicion of fraud since they behaved differently than their peers.  

 Vlachos et al. [16] employ burst event detection for correlating surprising volume 

trading events in the New York stock exchange. Bursts are identified in the data based on 

a variable threshold using the skewed nature of financial data. The bursts are then indexed 

for efficient access using Containment Encoded Intervals (CEIs). Correlated bursts are 

identified by performing overlap operations on the indexed burst regions. This method can 

be used to identify fraud in real-time due to the proposed indexing technique. This approach 

was tested using historical trading data before and after the events of 9/11 with results 

showing the method is superior to B+ tree.  

 Golmohammadi et al. [1] expanded on their previous work in this field by 

introducing an unsupervised approach for market manipulation. The authors developed a 

prediction based Contextual Anomaly Detector (CAD). This method exploits the fact that 

stocks within the same sector behaving and react similarly. The proposed method works 

for complex time series that do not follow a deterministic model such as stock markets. 

First, they take a subset of time-series in a given sector based on a window size. Then, a 

centroid is calculated by taking the mean of the data points in the time-series subset at 

every time point. This centroid represents the expected behavior of the subset. The centroid 

along with the Pearson correlation of the time series with the centroid is used to get a 

predicted value of a stock within the subset. This predicted value is compared with the 

actual value of the stock using the Euclidean distance to get an anomaly score. If the 

anomaly score is greater than a certain threshold (the standard deviation of the series is 
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used), then this point is an anomaly.  The method improves recall from 7% to 33% when 

compared with k-nearest neighbor and random walk without compromising precision.   

 

2.3 Discussion  

 By reviewing the related work, a history of the field was established. Prediction 

methods that rely on linear regression were not the best at solving this problem due to the 

stock markets complex nature. That is why the work that forecasts prices of a company 

using similar time series is interesting. The method is a recent contribution that can be 

further investigated.  
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CHAPTER 3: METHODOLOGY 

 In this approach, the behavior of similar time-series is used to detected anomalies. 

If a company deviates far from how it is expected to behave given similar companies, an 

anomaly or market manipulation could be present. Before presenting how this is achieved, 

we must fully understand the data and prove if there is a similarity between companies 

within one sector. After that, we will tackle how the data is preprocessed and anomalies 

are identified. Lastly, this chapter will detail how anomalies are inserted for the purpose of 

evaluation.  

 

3.1 Data Collection 

 The method is tested against two dataset collections. The first is the same data used 

in the works of Golmohammadi et al. [1]. The second is data from the Qatar Stock Market 

(QSM). All sets of data contain the time aspect as the first attribute, in both daily and 

weekly increments. The other attributes are the companies’ names, with the closing price 

of that day or week.  

 The data used in [1] are divided into different industry sectors of the S&P 500 index. 

The S&P 500 is an American stock market index made up of the largest 500 company 

stocks listed on the NYSE or NASDAQ indices. It is one of the most followed indices and 

is considered one of the best representations of the US stock market. These are widely 

assumed to be manipulation free since they are highly liquid and closely monitored by 

regulatory organizations. 
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 The second set of datasets have been extracted using the Bloomberg API.3 The data 

belonging to Qatari companies are divided into sectors similar to the S&P 500 datasets.  

 

3.2 Correlation Study 

 To determine whether the assumption that companies in the same sector behave 

similarly, a correlation study was conducted. This was done by calculating the correlation 

coefficient. In finance and investment, the correlation coefficient is a measure that 

represents whether two variables move in the same way. The values of the coefficient range 

from 1 to -1. A correlation of -1 means we have a perfect negative correlation, where the 

variables are inversely proportional. While a value of 1 is a perfect positive correlation, 

where variables are proportional. It can be calculated using the following formula: 

 𝜌"# =
%&'()*,),)
.*.,

 (1) 

where: 𝜌"# is the Pearson product-moment correlation, 𝑐𝑜𝑣 𝑟", 𝑟#  is the covariance of the 

two series 𝑟" and 𝑟# under investigation, 𝜎"is the standard deviation of series 𝑟", and 𝜎#	is 

the standard deviation of series 𝑟#. The covariance measures how the two series change 

together, however, the magnitude is unbounded and difficult to interpret. Dividing the 

covariance by the product of the two standard deviations normalizes the value of the 

statistic. This makes it easier to interpret. 

 This statistic is useful in many financial applications. It can help determine how 

                                                
 
3	Bloomberg API, https://www.bloomberglabs.com/api/	
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well a mutual fund is doing compared to a certain benchmark, or to determine how two 

funds relate to each other. By adding a negatively correlated fund to their portfolio, 

investors can diversify their gains. Because this measure is so widely used by the financial 

world, it is what was used to determine whether time series in the same sector truly behave 

similarly. 

Table 1 contains a sample of the correlation matrix of the S&P consumer staples 

dataset. The correlation coefficient between the companies is close to one. This confirms 

the similarity between them and this proportionality can be used to monitor any possible 

manipulation. 

Table 1. S&P Consumer Staples Correlation Matrix 

Company Walmart Walgreen Coca Cola Colgate-Palm General Mills 

Walmart - 0.95 0.89 0.96 0.94 

Walgreen 0.95 - 0.86 0.93 0.91 

Coca Cola 0.89 0.86 - 0.90 0.90 

Colgate-Palm 0.96 0.93 0.90 - 0.98 

General Mills 0.94 0.91 0.90 0.98 - 

  

The S&P index is made up of large well-established companies. Most sectors are 

made up of highly correlated companies. The only sector that does not follow this 

assumption is the Information Technology sector. Table 2 contains a sample of the IT 

sector correlations. This sector contains a more varied selection of companies such as 

Apple, Cisco and Visa. This variation yielded a much less correlated collection of 
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companies. 

 

Table 2. S&P IT Correlation Matrix 

Company APPLE GOOGLE 
'A' INTEL FACEBOOK 

CLASS A 
CISCO 
SYSTEMS VISA 'A' 

APPLE  0.80 0.32 -0.05 0.20 0.76 
GOOGLE 'A' 0.80  0.35 0.86 0.28 0.96 
INTEL 0.32 0.35  0.41 0.92 0.61 
FACEBOOK 
CLASS A -0.05 0.86 0.41  0.42 0.84 

CISCO 
SYSTEMS 0.20 0.28 0.92 0.42  0.26 

VISA 'A' 0.76 0.96 0.61 0.84 0.26  
 

 Most sectors in the S&P exchange are well-established and thus contain highly 

correlated companies. However, does this correlation between sector companies hold for a 

newer and younger market such as the QSM. A similar study was conducted and it appears 

that QSM sectors are much less correlated. Some companies are almost completely 

uncorrelated. Table 3 shows the correlation matrix of some of the companies in the 

consumer goods and services sector in the QSM. This is because the QSM is made up of 

relatively younger companies. Their trends differ from one another due to their immaturity 

and other differences. 
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Table 3. QSM Consumer Goods and Services Correlation Matrix 

Company ZAD 
Holding 

Q.German 
Medical 

Salam 
International Medicare Qatar 

Cinema 

ZAD Holding  0.58 0.59 0.93 -0.07 

Q.German 
Medical 0.58  0.57 0.58 0.22 

Salam 
International 0.59 0.57  0.60 0.44 

Medicare 0.93 0.58 0.60  0.04 

Qatar Cinema -0.07 0.22 0.44 0.04  

 

3.3 Preprocessing 

 The times series data should be normalized before detecting the anomalies. This 

step is crucial as it is with many machine learning and statistical methods. The data contains 

closing prices of stocks which is the most important feature when monitoring the market 

for manipulation. However, this leaves a wide range of prices in the dataset. The actual 

price of the stock when related to other companies is not of interest here. What is important 

is how this company’s price changes in relation to other companies. Similar companies 

undergo similar price changes even if their prices are very different. 

 The proposed preprocessing step in [1] is to use the price percentage change. This 

is done using the following formula: 

 𝐶ℎ8 =
(9:;9:<=)
9:<=

 (2) 

where 𝐶ℎ8 represents the change at time t, 𝑃8 is the price of the stock at time t, and 𝑃8;?is 

the price at t-1. This normalizes the data and scales the stock prices. Every row is dependent 

on the row before, however, it does not contain any information reflecting the history of 
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the stock beyond that. 

 Changing how the data is preprocessed can improve the results. The data can be 

normalized while still reflecting the history of the stock price movement. This thesis 

proposes the use of simple moving average (SMA) instead. SMA can be calculated using 

the following formula: 

 𝑆𝑀𝐴8 =
(CD:ECD:<=ECD:<FE⋯ECDH)

I
 (3) 

where 𝑆𝑀𝐴8 is the simple moving average at t, 𝐶ℎ8 is the price change of the stock at time 

t, 𝐶ℎ8;?is the price change at t-1, 𝐶ℎJis the initial price change at the first instance in the 

dataset, and n is the number of instances from the start of the dataset to instance t. This 

formula normalizes and scales the data while still maintaining information regarding the 

stocks history. This new prepressing step improves recall greatly. The two method will be 

tested against one another in chapter 4. 

 

3.4 Anomaly Detection 

 Normally, anomaly detection involves comparing a new sample with a given set of 

normal samples. By measuring these two against one another, an anomaly score is assigned 

to the new sample. High scoring samples would then be labeled as anomalies. In a field as 

complicated as finance, distinguishing between normal and abnormal behavior is not so 

black and white.  

Using supervised learning for fraud detection in stock market has yielded good 

results. However, obtaining an accurately labeled dataset is difficult and impractical. 

Labeling such datasets involve going through litigation cases and taking these observations 
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as anomalies. The rest of the data would be then labeled as normal. The other way is to 

generate a synthetic dataset. However, learning from synthetic data might not be very 

reflective of how manipulations are in real life.  

 Developing an unsupervised detection method for market manipulation eliminates 

the costs of manually labelling data. A solution is presented in the Contextual Anomaly 

Detection (CAD) method [1]. The CAD system proposes detecting manipulation through 

prediction. Unlike other prediction based systems, this does not assume the series is 

following a deterministic model. Instead of relying on the series historical data for 

prediction, the behavior of similar series is used to predict the series next value. 

 Golmohammadi et al. develop CAD to take a set of time series from one sector and 

a window size. It first takes a subset of time series based on the window size. Then, a 

centroid is calculated by taking the mean of the time series at every time instance t. This 

centroid is a representative of the expected behavior of this subset. Figure 2 illustrates how 

the centroid of the S&P energy sector would look like given a set of company time series. 

This centroid is used along with a feature of each time series to get a predicted value for 

that time series.  
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Figure 2. Centroid Time Series of Stocks in S&P 500 Energy Sector  

 

 In more detailed terms, the system would start with a subset of similar time series 

{𝑋L|	𝑖 ∈ 1,2, … , 𝑑 } . After that a centroid is found by taking the average of the time 

series values at each time t. The centroid series is represented as {𝐶|	𝑖 ∈ 1,2, … , 𝑛 }, 

where n is the last day or week in the time series. The predicted value of a time series 𝑋L 

at time t is then calculated as: 

 𝑥L8 = 	 𝑥L8;? ∗ 𝑐𝑜𝑟(𝑋L, 𝐶) (4) 

where 𝑥L8;? is the value of series 𝑋L at t-1  and 𝑐𝑜𝑟(𝑋L, 𝐶) is the Pearson correlation of 𝑋L 

and the centroid C. This correlation is used because since the centroid is a representative 

of how the collection of series moves, its correlation with a certain time series can help 

predict its value. The predicted value 𝑥L8 is then compared with the actual value of 𝑋L at 

time t by using the Euclidean distance: 
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 𝜖 = 	 𝑥L8 −	𝑥8 ZF 	 (5) 

𝜖 is the anomaly score that is then compared to the standard deviation of the company under 

investigation. If the anomaly score is greater than the standard deviation, 𝑥8 is an anomaly.  

 The proposed CAD system uses the percentage change value to represent the time 

series in the data. Using this method, the value of 𝑥8;? is used to get the prediction of the 

next value in the series.  However, these values are only representative of the value right 

before it, since they are calculated by comparing two consecutive rows. They do not 

contain any information relevant to the history of the data. That is why the new method of 

preprocessing is proposed. Through using the SMAt, we are using a more meaningful value 

that holds some information regarding the change pattern of the company.  

CAD is a local anomaly detection method, it works by taking window size that is 

used to get a subset of companies in a sector and by using certain periods of data (for 

example, a year or two).  

 

3.5 Anomaly Insertion 

 For the purpose of evaluation, synthesized anomalies will be inserted into the 

datasets. The datasets used are regarded as manipulation free, because the S&P is made up 

of heavily regulated companies. They are also some of the largest companies in the US and 

highly liquid. Highly liquid companies have buyers and sellers trading at all times so its 

very difficult for one party to affect the stock price or take control. This makes this dataset 

ideal for testing forecasting or fraud detection and has been used in many research studies 

[1], [2], [17], [18].  
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 In a collection of normal stock behavior, manipulation would represent itself as an 

anomaly or outlier. Market manipulation can appear as any abnormal jump or drop in a 

company’s price, these outliers would represent possible manipulations. By using a well-

known definition of outliers, manipulation cases will be added to the manipulation-free 

data for evaluation. For the sake of comparison, the same injection method used in the work 

of Golmohammadi et al. is applied. They adopted Turkey’s method for time series that do 

not follow a normal distribution [19]. In a normal distribution, an outlier is defined as an 

instance that is three standard deviations away from the mean. However, in distributions 

with skewness outliers should be defined differently. Turkey’s method defines outliers 

according to the following formula: 

 𝑂 𝑥L8 = 	
	𝜇 + (𝑄_ + 3 ∗ 𝐼𝑄𝑅 	𝑖𝑓	𝛾 > 𝜖, 𝑢𝑝𝑝𝑒𝑟𝑏𝑜𝑢𝑛𝑑	
𝜇 − (𝑄? − 3 ∗ 𝐼𝑄𝑅 	𝑖𝑓	𝛾 > 𝜖, 𝑙𝑜𝑤𝑒𝑟𝑏𝑜𝑢𝑛𝑑

𝜇 ± 3𝜎	𝑖𝑓	𝛾 = 0,													𝑖𝑓	𝑛𝑜𝑟𝑚𝑎𝑙	𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛
 (6) 

𝑂 𝑥L8  is the outlier specific for the time series 𝑋L, 𝑄?	is the 25th percentile (1st quartile), 𝑄_ 

is the 75th percentile (3rd quartile), 𝐼𝑄𝑅 is the inter-quartile range (𝑄_ −	𝑄?), 𝛾 is the 

skewness,  𝜇 is the mean and 𝜎 is the standard deviation. With series with skewed 

distributions, the first step in defining an outlier is finding the statistical center of the range. 

This is done with the use of the 1st and 3rd quartiles. A quartile is a division of the data into 

four sectors based on the data values in the series. The skewness of the series is found 

using: 

 𝛾 = 	 rs
rF

s
F
 (7) 

𝜇Z and 𝜇_ are the second and third central moments or moments about the mean.  

It is important to note that outliers are defined according the the time series itself 
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independent from the other series in the dataset. The detection method is also unrelated to 

the synthetic outliers. Supervised methods would learn from the training data so using 

synthetic outliers in those circumstances would highly affect the end result. In this system 

they are merely used for the purpose of evaluation.  

 

3.6 Discussion 

 The methodology behind CAD takes advantage of the correlation between sector 

companies to find anomalies. Stock market data has very different prices across different 

companies. Finding a suitable normalization method is essential. Using SMA to normalize 

data gives a more representative value for the time series. This will be tested with the 

proposed anomaly insertion method in the following chapters.  
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CHAPTER 4: EXPERIMENT SETUP 

 To fairly compare CAD with SMA, the experiment setup should try to replicate the 

original experiment closely. The data of the sector companies will be tested in both daily 

and weekly increments and a variety of experiments will be conducted. The following 

chapter will detail these experiments and how the system will be evaluated.  

 

4.1 Data 

 As was mentioned in chapter 3, two data collection are used to evaluate the system. 

The S&P dataset is divided into five sectors: consumer staples, consumer discretionary, 

energy, finance and technology. Each sector contains the time series of some of the largest 

US companies in its respective sectors. These datasets are considered manipulation free 

with no anomalies.  

The second dataset is related to local Qatari companies. They are also divided into 

sectors: finance, consumer goods and services, industrial and insurance. The method will 

be tested on the new Qatar dataset to see whether the CAD system will be effective with a 

much smaller and younger market. The Qatari stock markets is made up of only 43 

companies as opposed to the 500 in the S&P index. Only four of the largest sectors of the 

QSM will be studied because the rest are too small and only contain four or less companies. 

Table 4 details the sizes of the datasets. They will be used in both daily and weekly 

increments.  
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Table 4. Dataset Used for Experiments  

S&P 500 

Sectors 
Number of 
Companies 
(time series) 

Number of weekly 
instances 

Number of daily 
instances 

Consumer Staples 40 64,000+ 323,000+ 
Consumer 
Discretionary 85 111,000+ 558,000+ 

Energy 44 64,000+ 315,000+ 
Financial 83 117,000+ 587,000+ 
Information 
Technology 66 80,000+ 395,000+ 

Qatar Stock Exchange 
Financial               13              700+    5,000+ 
Consumer Goods 
& Services                9              700+    5,000+ 

Industrial                8              700+    5,000+ 
Insurance                5              700+    5,000+ 

 

 

4.2 Baseline 

 The aim of this thesis is to evaluate the new preprocessing step against the one used 

in the original CAD system. The following experiments will be designed to replicate the 

one in the original work as much as possible to ensure a fair comparison. CAD was tested 

using multiple window sizes (15, 20, 24) on the five sectors in both daily and weekly 

increments.  

 

4.3 Experiments 

 The experiments were set up to replicate the original CAD experiments. The same 
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window sizes are used (15, 20, 24) over multiple periods of time (one, two and four years). 

The percentage of outliers injected into the datasets was equal to 0.1% of the total number 

of data points in the sets. This is set low to reflect how manipulations would present 

themselves in real life. This will be used with the original preprocessing step and the new 

preprocessing step to compare their performances. After that, the percentage of anomalies 

will be increased to test its effect on the system’s performance.  

 Another well know unsupervised learning method will be tested. K-means 

clustering is a widely used clustering algorithm and is very efficient with respect to 

execution time. This method aims to partition the observations into k clusters in a way 

where each observation belongs to the cluster with the nearest mean. It starts by first 

defining k centroids, one for each cluster. The centroids should be placed well, since 

different starts could result in different results. The usual practice is to place the k centroids 

as far away from each other. Then each data point is assigned to the nearest centroid. When 

all the points are distributed, new k centroids are calculated as bar centers of the clusters. 

The data are again redistributed according to these new centroids. This is repeated until the 

reassignments cause no change. Centroid based cluster methods have shown to be better 

than density based clustering methods for financial data. [20] This method will attempt to 

cluster the stock data into two clusters, abnormal and normal, and its performance will be 

measured.  

 

4.4 Evaluation metrics 

To evaluate the system, the measures recall, precision and F-measure will be used. 
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Recall is the fraction of manipulations that are retrieved by the system, and precision is the 

fraction of actual manipulations in the retrieved data. Manipulations in such regulated 

environments are not very frequent, however, missing any manipulation could cost 

companies a lot of money. In these circumstances, the cost of misclassification is not equal. 

That is why the aim of the experiments is to achieve high recall. A false negative can cause 

companies much more than a false positive. Although, avoiding false positives is very 

desired, it is not the focus of the work. The aim is to improve recall while not sacrificing 

precision. For that reason, a higher value of β for F-measure is used to give more priority 

for recall than precision. 

 

4.5 Discussion 

 These experiments are designed to effectively evaluate the new preprocessing step 

against the original system. They are also intended to replicate how market manipulation 

will be handled in a real world scenario. Anomaly percentage is set low to mimic how 

uncommon these manipulations are. Recall, precision and F-measure will reflect system 

performance and give a sense of how well the system is at detecting these manipulations. 
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CHAPTER 5: RESULTS 

 In this chapter the experiment results are presented. First, the CAD will be 

compared with CAD-SMA that has the new preprocessing implementation. These will also 

be compared with the results of the unsupervised clustering method, simple k-means. After 

that, the effects of varying the amount of anomalies in the data will be studied. Finally, the 

method will be implemented to detect anomalies in the QSM data.  

 

5.1 Comparison of Algorithms 

After running the experiments, the new preprocessing step proved to improve recall 

significantly. Table 5 shows the performance of CAD as it was proposed in the original 

work, compared with CAD with the SMA preprocessing step and the simple k-means 

clustering algorithm for the weekly S&P data (Table A.1 in the Appendix shows the 

complete comparison of both weekly and daily data). The bellow performance was 

achieved using a window size of 15 and with 0.1% anomalies. The results are 

representative of all window sizes (15, 20, 24), since the methods return very close 

measures regardless. These measures are also stable regarding the number of time 

instances. The method was tested with periods of 4 years, 2 years and 1 year.  
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Table 5. Comparison of CAD, CAD–SMA and Simple K-means Applied on Weekly S&P 
Data  

S&P 500      

Dataset Algorithm Recall 
(%) 

Precision 
(%) 

F2 
(%) 

F4 
(%) 

Consumer Staples 
Weekly 

CAD 34.7 0.33 1.59 4.86 
CAD - SMA 95.05 4.7 19.62 44.61 
Simple K-means 40.01 3.8 13.77 25.64 

Consumer 
Discretionary Weekly 

CAD 34.15 0.33 1.6 4.88 
CAD - SMA 88.03 1.5 7.02 20.04 
Simple K-means 40.7 3.6 13.30 25.34 

Energy Weekly 
CAD 34.49 0.33 1.58 4.83 
CAD - SMA 86.7 7.4 27.58 53.18 
Simple K-means 40.2 1.5 6.53 15.97 

Financial Weekly 
CAD 35.47 0.34 1.65 5.05 
CAD - SMA 97.23 2.9 12.95 33.37 
Simple K-means 40.74 3.62 13.35 25.41 

IT Weekly 
CAD 33.69 0.34 1.63 4.98 
CAD - SMA 96.41 6.92 26.88 54.76 
Simple K-means 18.32 0.83 3.51 8.18 

 

 

The results show that the new preprocessing step improved both recall and 

precision as compared with the other two algorithms. Recall is what is more important in 

a problem such as market manipulation detection. Almost all anomalies were retrieved, 

however, precision is very low. It is slightly better than CAD precision, but still there is a 

great chance of improvement. F2 and F4 measures are used to give recall a higher weight 

in the harmonic mean. This is because the cost of false negatives and false positives are not 

equal. False positives are undesirable, but missing manipulation can be very expensive for 
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companies.  

When using SMA, the value at t-1 carries more information regarding the historical 

movement of the time series. So when predicting the value of the time series at t, a more 

accurate prediction is calculated and it produces better recall and precision measures. 

However, by using SMA as the normalization method, the anomalous value gets 

propagated into the following data in the series. In the original preprocessing method, the 

anomalous entry is only reflected in the one entry and affect the value immediately after it. 

The anomalous jump in price is no longer carried into the other series entries. SMA 

averages the changes over time so it carries the anomaly over into the subsequent entries. 

This should explain the low precision value. More normal entries are labeled as abnormal 

because of how the anomalies effect is still carried in the data from one row to the other.  

A solution to this problem would be to calculate the SMA of an entry for over a 

certain number of rows. For example, calculate the SMA at t for the change percentage 

from (t-10) to t. This way the effect of the anomaly will fade over the next ten rows. This 

can be combined with an anomaly threshold. An anomaly threshold can be the effect radius 

of an anomaly. When an anomaly is detected, the threshold can define the number of rows 

where the anomalies effect might still be present. Another solution would be to use the 

Exponential Moving Average (EMA) is a type moving average where more weight is 

assigned to the latest data. This will also dilute the effects of the anomaly over time. 

 The simple k-means clustering algorithm achieved better recall and precision than 

the CAD algorithm in almost all the sectors. The one sector that hasn’t performed as well 

was the information technology sector (IT). This could be because it is in its nature a more 
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erratic sector. IT companies in the S&P are very varied and range from telecommunication 

companies such as Broadcom Ltd to the gaming company Activsion Blizzard Inc. Table 2 

in the correlation study showed a sample of how less correlated this sector is compared 

with the other sectors. Clustering the data in this sector did not yield the same results as 

with other sectors. K-means clustering works best with data that can be spherically 

clustered. Centroid based clustering such as k-means preform better than density based 

clustering, however, it does not handle non-global data such as financial data as well as 

other data [20]. This might be most apparent in a diverse sector such as IT. 

 

5.2 Varying Anomaly Percentage 

The experiments in Table 5 were applied to a dataset with 0.1% anomalies insertion. 

Table 6 shows how CAD-SMA behaves with increasing the number of anomalies. The 

percentage of anomalies inserted will be varied on the consumer discretionary weekly 

dataset. 

 

Table 6. CAD-SMA on Consumer Discretionary Weekly with Varied Anomaly 
Percentage 

Anomaly percentage Recall Precision F2 F4 

0.10% 95.05 4.7 19.62 44.61 
5% 68.66 73.27 69.54 44.61 
10% 54.64 77.86 58.11 68.92 
25% 42.44 84.5 47.13 55.62 
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As the number of anomalies increase, the recall decreases. On the other hand, 

precision is improving. CAD relies on the assumption that series are highly correlated, and 

thus one series’ behavior can be used to predict another. However, as the number of 

anomalies increase the recall decrease. This could be because as more anomalous values 

are inserted into the series, the less their behavior as a collective group is correlated. These 

new entries will cause the series to deviate from their expected behavior and make them 

less similar or correlated. This might be why the method is less effective with higher 

anomaly percentages.  

 

5.3 Detecting Anomalies on QSM Dataset 

Figure 3 shows the recall and F4-measure of CAD, CAD-SMA and simple K-means 

on the weekly QSM sectors. Best Recall is achieved by using CAD-SMA. Using this 

algorithm, average recall is high and most anomalies are retrieved. On the other hand, F4 

measure is lower than those of the S&P sectors using all algorithms. That is because 

precision of these methods on Qatari data were lower than that of S&P (full measures for 

both weekly and daily sets are in table A.2 in the Appendix). 
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Figure 3: Comparison of Recall and F4 measure using CAD, CAD-SMA and K-Means 
on weekly QSM data  

 
The low precision could be due to the size of the QSM. This market is much smaller 

in size than the S&P. The companies in QSM are also much younger. Young companies 

tend to behave very differently than older, well-established companies. This causes some 

of companies in each sector to be less correlated than the S&P sector. These factors could 

be attributed to why the method is less effective with the QSM dataset. 

5.4 Discussion 

These experiments provide valuable insights into the strengths and weaknesses of 
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these methodologies. By analyzing these results, we can conclude when this method is best 

used and the areas that can benefit from further innovation. The precision of this method 

is not as good as it should be. The manipulations are detected but many other normal 

behaviors are falsely reported as well. This can be further improved in order to improve 

the detection system.    
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CHAPTER 6: CONCLUSION 

 Unsupervised anomaly detection is a fascinating field that has a lot yet to be 

discovered.  Stock market manipulation detection is a unique subset in this field. Stock 

market time series has many important properties that need to be taken into consideration 

when tackling this problem. Instead of using regression models or other pre-existing 

forecasting models, one can look at similar time series.  The behavior of similar time series 

in market sectors can be used to monitor a company that can fall victim to manipulation. 

 

6.1 Summary 

Through using the prediction-based anomaly detector CAD, market manipulations 

were detected. A centroid was found by averaging the collection of similar time series. 

Then anomalies are found by using the correlation of the centroid with time series. Before 

that, the prices in the stock data need to be scaled and normalized.  

When dealing with market data, normalization is crucial for best results. Actual 

stock prices are not as interesting as the stock price changes. The CAD algorithm suggested 

the use of percentage change from one price to the other. However, using the simple 

moving average of the percentage change has proven more meaningful. That is because it 

is more reflective of the history of the time series. This improved recall, however, precision 

was still low. 

 

6.2 Future Work 
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 The detection method had very low values for precision. A solution to this would 

be to restrict the SMA calculation for a certain number of rows. This will make the effect 

of the anomaly fade over a certain number of row. If this is used along with a threshold for 

the anomaly effect, this could improve precision. Another solution would be to use the 

Exponential Moving Average (EMA). This give a higher weight to more recent changes in 

the prices. Using this will also lessen the effect of the anomaly after a certain number of 

rows. There’s still room for innovation in this method to improve precision. Unsupervised 

anomaly detection is a challenging field, but its applications are very rewarding.  
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APPENDIX A: TABLES 

Table A.1. Complete Results of S&P Datasets with CAD, CAD-SAM, and Simple K-
means 

S&P 500           

Dataset Algorithm Recall 
(%) 

Precision 
(%) 

F2 
(%) 

F4 
(%) 

Consumer Staples 
Weekly 

CAD 34.7 0.33 1.59 4.86 
CAD - SMA 95.05 4.7 19.62 44.61 
Simple K-means 40.01 3.8 13.77 25.64 

Consumer 
Discretionary Weekly 

CAD 34.15 0.33 1.6 4.88 
CAD - SMA 88.03 1.5 7.02 20.04 
Simple K-means 40.7 3.6 13.30 25.34 

Energy Weekly 
CAD 34.49 0.33 1.58 4.83 
CAD - SMA 86.7 7.4 27.58 53.18 
Simple K-means 40.2 1.5 6.53 15.97 

Financial Weekly 
CAD 35.47 0.34 1.65 5.05 
CAD - SMA 97.23 2.9 12.95 33.37 
Simple K-means 40.74 3.62 13.35 25.41 

IT Weekly 
CAD 33.69 0.34 1.63 4.98 
CAD - SMA 96.41 6.92 26.88 54.76 
Simple K-means 18.32 0.83 3.51 8.18 

Consumer Staples 
Daily 

CAD 32.11 0.3 1.43 4.39 
CAD - SMA 96.52 1.03 4.94 14.96 
Simple K-means 38.46 1.52 6.56 15.83 

Consumer 
Discretionary Daily 

CAD 34.91 0.34 1.65 5.03 
CAD - SMA 93.88 1.03 4.93 14.90 
Simple K-means 42.85 1.5 6.58 16.35 

Energy Daily 
CAD 32.42 0.32 1.54 4.7 
CAD - SMA 94.61 0.91 4.38 13.41 
Simple K-means 50 1.49 6.66 17.15 

Financial Daily CAD 33.96 0.31 1.5 4.61 
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CAD - SMA 99.57 0.99 4.76 14.52 
Simple K-means 42.85  0.74 3.06 6.88 

IT Daily 
CAD 32.58 0.31 1.5 4.6 
CAD - SMA 96.42 1.06 5.08 15.32 
Simple K-means 14.28 1.32 5.88 15.03 
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Table A.2. Complete Results of CAD, CAD-SMA and Simple K-means Applied to QSM 
Sectors 

Qatar Stock Exchange       

Dataset Algorithm Recall 
(%) 

Precision 
(%) 

F2 
(%) 

F4 
(%) 

Financial Weekly 
CAD 26.4 7.3 17.33 7.56 
CAD-SMA 92.8 0.57 2.78 8.82 
Simple K-means 40 1.08 4.87 1.13 

Consumer Goods & 
Services Weekly 

CAD 28 7.68 18.31 7.95 
CAD-SMA 98.01 0.5 2.45 7.86 
Simple K-means 33.33 0.42 2.00 0.44 

Industrial Weekly 
CAD 28 4.83 14.29 5.03 
CAD-SMA 98.67 0.71 3.45 10.82 
Simple K-means 33.33 0.44 2.09 0.46 

Insurance Weekly 
CAD 32.67 4.96 15.43 5.17 
CAD-SMA 98.6 0.8 3.87 12.04 
Simple K-means 33.33 0.59 2.75 0.62 

Financial Daily 
CAD 16.49 1.84 6.36 1.92 
CAD-SMA 96 1.21 5.76 17.12 
Simple K-means 18.18 0.42 1.92 0.44 

Consumer Goods & 
Services Daily 

CAD 18.86 2.79 8.76 2.91 
CAD-SMA 94 1.12 5.35 15.99 
Simple K-means 28.57 0.51 2.38 0.53 

Industrial Daily 
CAD 20.13 1.17 4.75 1.22 
CAD-SMA 94.67 1.02 4.89 14.79 
Simple K-means 25 0.23 1.11 0.24 

Insurance Daily 
CAD 32 2.12 8.38 2.22 
CAD-SMA 99 1.1 5.27 15.88 
Simple K-means 16.67 0.33 1.53 0.35 
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APPENDIX B: DATASET SAMPLES 

Dataset B.1. Sample of Weekly Stock Prices of S&P Information Technology Sector 

Name APPLE MICROSOFT INTERNATIONAL 
BUS.MCHS. ORACLE GOOGLE 

'A' 
Code @AAPL @MSFT U:IBM U:ORCL @GOOGL 
5/6/14 594.4099 39.06 190.03 41.01 522.5698 
4/29/14 592.3298 40.51 195.11 40.11 536.3298 
4/22/14 531.699 39.99 192.15 40.46 545.5 
4/15/14 517.9597 39.75 197.02 39.73 548.7 
4/8/14 523.4399 39.82 193.29 40.24 557.5098 
4/1/14 541.6499 41.42 194.5 41.49 567.9954 
3/25/14 544.99 40.34 195.04 38.4 579.9219 
3/18/14 531.3999 39.55 186.81 38.84 606.2175 
3/11/14 536.0898 38.02 186.76 38.9 600.5769 
3/4/14 531.24 38.41 186.44 39.41 608.0442 
2/25/14 522.0598 37.54 183.23 38.25 610.5918 
2/18/14 545.99 37.42 183.19 37.97 606.0273 
2/11/14 535.96 37.175 179.7 37.84 595.6672 
2/4/14 508.7898 36.35 172.84 35.96 569.6321 
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Dataset B.2. Sample of Weekly Stock Prices of S&P Information Technology Sector with 
Change Percentage Preprocessing 

Name APPLE MICROSOFT INTERNATIONAL 
BUS.MCHS. ORACLE GOOGLE 

'A' 
Code @AAPL @MSFT U:IBM U:ORCL @GOOGL 
5/6/14 0% -4% -3% 2% -3% 
4/29/14 11% 1% 2% -1% -2% 
4/22/14 3% 1% -2% 2% -1% 
4/15/14 -1% 0% 2% -1% -2% 
4/8/14 -3% -4% -1% -3% -2% 
4/1/14 -1% 3% 0% 8% -2% 
3/25/14 3% 2% 4% -1% -4% 
3/18/14 -1% 4% 0% 0% 1% 
3/11/14 1% -1% 0% -1% -1% 
3/4/14 2% 2% 2% 3% 0% 
2/25/14 -4% 0% 0% 1% 1% 
2/18/14 2% 1% 2% 0% 2% 
2/11/14 5% 2% 4% 5% 5% 
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Dataset B.3. Sample of Weekly Stock Prices of S&P Information Technology Sector with 
SMA Preprocessing 

Name APPLE MICROSOFT INTERNATIONAL 
BUS.MCHS. ORACLE GOOGLE 

'A' 
Code @AAPL @MSFT U:IBM U:ORCL @GOOGL 
5/6/14 1.2% 0.5% 0.7% 1.0% -0.6% 
4/29/14 1.3% 0.9% 1.0% 0.9% -0.4% 
4/22/14 0.4% 0.8% 0.9% 1.0% -0.4% 
4/15/14 0.2% 0.9% 1.3% 1.0% -0.3% 
4/8/14 0.3% 1.0% 1.2% 1.2% -0.2% 
4/1/14 0.7% 1.5% 1.4% 1.7% 0.0% 
3/25/14 0.9% 1.4% 1.6% 0.8% 0.2% 
3/18/14 0.6% 1.3% 1.2% 1.1% 0.9% 
3/11/14 0.9% 0.8% 1.3% 1.4% 0.9% 
3/4/14 0.9% 1.1% 1.6% 1.9% 1.3% 
2/25/14 0.7% 0.8% 1.5% 1.6% 1.8% 
2/18/14 2.4% 1.0% 2.0% 1.9% 2.1% 
2/11/14 2.7% 1.1% 2.0% 2.6% 2.3% 
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APPENDIX C: CODE SAMPLES 

Code C.1. Anomaly Detection Code Sample (Using R) 
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Code C.2. Anomaly Insertion Code Sample (Using R) 

 
 


