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ABSTRACT 

The work shows that the sampling in a digital PD controller of a flexible 
system may cause instability, while the continuous PD control system is 
stable. A procedure is introduced to defme the stability regions analytically in 
the gain space. A closed form stability criterion is derived for a system 
consists of a single rigid mode and one flexible mode. The procedure is 
applied successfully also for the case of single rigid mode considering the 
computation time in addition to sampling period. A comparison with the 
literature shows that this procedure is straightforward, gives more accurate 
result and even corrects some stability regions published in the literature. A 
computer program is constructed using MA TLAB to determine the stability 
region for a system that consists of a single rigid mode and arbitrary number 
of flexible modes. This simulates many practical systems such as flexible 
robot arms, disk-drive servos and antenna systems. The results show that the 
stability regions can be approximated by a right triangle in the gain space. 
Analytical expressions are derived to defme such triangles. 

Keywords: Stability analysis, PD control, sampled-data systems, digital control, flexible 
systems. 

1. INTRODUCTION 

Stability analysis of feedback controlled flexible systems is increasingly 
attracting many researchers. A stability condition is derived for the attitude control 
of flexible spacecraft [ 1]. It is shown that if the PID controller is unconditionally 
stable, assuming the satellite to be rigid, then structural flexibility cannot 
destabilize it. PD control is proved to guarantee stability for flexible robot arms in 
[2]. A collocated PD control and non-collocated PD control for flexible arm are 
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investigated in [3]. It is shown that the first control makes the system stable while 
the other does not, when the system damping is excluded. A new strategy for 
stability analysis of a feedback controlled flexible arm without truncation is 
presented in [4]. The stability study of collocated PD control with tip acceleration 
feedback is conducted and verified experimentally. An independent joint PD 
control and modal feedback is used in [5] for vibration control of multi-link 
flexible robots. The asymptotic stability of the closed-loop system is proved via 
Lyapunov arguments. A control strategy that ensures the exponential stability of 
the tracking error in the workspace of a class of flexible robots is presented in [6]. 
Stability analysis for a fuzzy-logic control of flexible robots is presented in [7-9]. 

The studies mentioned above have commonly focused on continuous control 
systems. When control systems are implemented digitally, the sample-and-hold 
effect has to be taken into account. In practice it has been acknowledged that a 
system may become unstable when the feedback gains are high. It is shown in [10, 
11] that a stable high-gain continuous PD control systems, second- and first-order 
systems, may become unstable when implemented digitally. Stability criteria have 
been derived for second-order system in the following cases: zero computation 
time, one-sampling-period computation time and general computation time. The 
stability regions are determined numerically in the last two cases. 

In this work, it is shown that a collocated PD control of flexible system, which 
guarantees stability, may become unstable when implemented digitally even with 
small gains. The aim of this work is to define the stability region for such systems 
in a form suitable for design purposes. 

The paper is organized as follows. Section 2 describes the dynamic systems to be 
considered, and shows how a continuous, stable PD control applied to flexible 
system becomes unstable when the controller is implemented digitally. A method 
for establishing the stability regions for systems described by low order 
characteristic equations is introduced in section 3. The results of second order 
system are compared with the literature. In section 4, the equations describing the 
boundary of stability regions are derived for a system consists of single rigid mode 
and one flexible mode. A simplified method to define the stability region is also 
introduced. General procedures to establish the stability regions for a system, 
which consists of one rigid mode and arbitrary number of flexible modes, are 
introduced in section 5. An approximated method to define the stability regions for 
such systems is proposed. 
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2. COLLOCATED PD CONTROL OF FLEXIBLE SYSTEMS 

The flexible system under consideration consists of one rigid mode and 
arbitrary number of flexible modes. This simulates many practical systems like 
flexible robot arm, disk-drive servo and antenna servo system. The state equations 
for such systems are: 

:i = Ax+Bu (1) 
y=Cx 

where, 

0 1 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 bo 

0 0 0 0 0 0 0 0 

0 0 -0)2 
I 0 0 0 0 0 bl 

0 0 0 0 0 1 0 0 0 
A= 

-0)2 
B= 

0 0 0 0 2 0 0 0 b2 

0 0 0 0 0 0 0 1 0 

0 0 0 0 0 0 2 -mn 0 bn 

C=[b~ 0 bl 0 b2 0 bn ~] bo 0 bl 0 b2 0 

x is the modal coordinate vector, u is the control input, y is the vector of the 
displacement and velocity at a coordinate where the control input is applied, n is 
the number of flexible modes considered, ffii (i=1, .. n) are the frequencies of the 
flexible modes, b0 is the component of weighted rigid mode shape at a coordinate 
where the control input is applied and bi (i=1, ... n) are similar to b0 but for flexible 
modes. For a collocated PD control the control law is: 

(2) 

Where kp and kct are the proportional and derivative gains, Yt and Yz are the 
component of vector y and y1ct is the desired position. It is shown [3, 4] that the 
continuous system described above is always stable for kp>O and kct>O. To illustrate 

255 



Fanni and AI-Salem 

our point of the effect of digitizing the controller action, we will consider a system 
of four flexible modes has the following parameters: ro1=20, ro2=60, ro3=IIO, 
ro4=220, bo=l, bl=4, b2=3, b3=2, b4=0.5, kp=20, ~=0.1 and Y1d=O. The simulation of 
the system is carried out through construction of SIMULINK-models within the 
environment of the MATLAB-software [12]. The time response of the system is 
shown in Fig. 1. The response shows that the system is stable. When the PD 
control is applied digitally with zero-order hold and sampling period of 0.01, the 
time response indicates instability as shown in Fig. 2. 
These results indicate that, even with small gains, the system becomes unstable. 

3. REFINEMENT OF STABILITY CRITERIA FOR SECOND 
ORDER SYSTEMS 

Considering a second order system described by: 

(3) 

Stability criteria for digital PD control is derived in [10, 11]. For zero computation 
time and sampling period, T, the characteristic equation is obtained as: 

where, 

Using root locus and some geometrical relations, the following stability criterion is 
given in [10]. 

a<2, P<2a (5) 

In the case of one-sampling-period computation time, the characteristic equation is 
obtained as: 
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Fig. 1. Time response of a continuous PD control 
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Fig. 2. Time response of a digital PD control 
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Using root locus and numerical analysis, the boundary of the stability region is 
found by numerical solution of the characteristic equation (6) for ~ under the 
following condition: 

IAI =1, O<a<l (7) 

For a general computation time '1:', the characteristic equation is obtained as: 

where, 
r r=­
T 

A nomograph describing the stability region for various y's is obtained by 
numerical solution of the characteristic equation (8) under the conditions 1"-1=1. 
Through setting ~=0 in equation (8), the critical value of a as a function of y for 
~~o+ is given by the following equations: 

a== {1-}r 
. r 

for o:::::: r:::::: 0.25 
(9) 

for o.25 < r:::::: 1 

Thus, the boundaries of the stability regions are defined numerically for the last 
two cases in [10]. For design purposes, it may be better to define these boundaries 
by analytical expressions. 

In [13], stability conditions of low order polynomials, up to the fifth order, are 
presented. These conditions are simplification of the Jury test [14]. The 
polynomials can be expressed as: 

Ref. [13] states that, the critical stability constraints that determine the boundary of 
the stability region in the coefficient space are given by the first condition of the 
Jury test: 

f(l) > 0 and (11) 
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and the last condition in the Jury test which is given below after simplifications for 
n=2,3,4 respectively. 

a0 -a2 > 0 
2 2 a3 - a0 < a3a1 - a0a2 

(12) 

(13) 
32 2 2 2 2 2 2 3 0 a4 + a4a2 a0 +a3a1a0 -a4 a0 -a2a0 -a4 a1 -a4 a0 -a4 a2 -a3 a0 +a0 +a4 a3a1 > 

(14) 
In this work, it is found that the critical stability constraints could also be obtained 
from the first, the last and the second last conditions of Routh-Hurwitz method 
using bilinear transformation. 

The general procedure to define the stability region in the gain space and hence the 
stability criteria, in a closed form, are introduced here as follows: 

a) Arrange the system characteristic equation using independent dimensionless 
terms to reduce the parameters of the system. The gains should be included in 
two dimensionless terms at most. These terms are called gain parameters. The 
other terms are called system parameters. 

b) Apply the critical stability constraints to the characteristic equation after 
replacing the '<' and '>' symbols by '=' symbol. 

c) Arrange the terms in the resulted equations to form polynomials of one 
gain-parameter like ~ for example. 

d) Solve the resulted polynomials analytically if possible. 
e) Make plots of the solutions for various system parameters, and make simple 

checks for points inside the intersected areas to discard the uncritical solutions. 
f) Find the intersections between the critical solutions to define their 

applicable ranges. 
g) Use the equations for the critical solutions and the intersections to express 

the stability criteria in closed form. 

To carry out the above procedure, it is recommended to use the symbolic toolbox 
and plotting capability of the MATLAB [12]. The following remarks are stated for 
the above procedures: 

1) It seems a little bit tricky to notice that, although the stability criteria are 
derived from the critical stability constraints, these constraints are not 
sufficient to check for system stability. The critical constraints may define 
several regions. Some of them are stable while the others are not. The benefit 
of the uncritical constraints (the other stability conditions) is to discard the 
unstable regions rather than to define stable ones. 
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2) It seems that similar results could be obtained by applying the above 
procedures to the whole stability conditions instead of the critical ones. In 
general, this is not true. The solutions of some conditions could almost be so 
coincided that the plotting cannot define which one bounds the stability region. 
In some cases, even the comparison between coincided solutions using 
numerical values can result in wrong conclusion due to round off error as it is 
noticed in the case of single-rigid/single-flexible mode system discussed in the 
next section. In addition, The large number of the solutions with many system 
parameters make the process so complicated that, a clear conclusion may not 
be reached. 

3) It is noticed that, some critical solutions define stability regions only for certain 
ranges of system parameters. For the remained ranges of system parameters, 
other critical solutions become active (see the third case below). This indicates 
the importance of making many plots that scan the ranges of parameters, 
similar to root-locus method where different loci are obtained for different 
parameters to study the system. 

Applying the procedure for the case of zero computation time (that is applying 
constraints (11,12) for equation (4)), results in the same stability criteria (5) with 
the additional conditions (a > 0, ~ > 0). Thus, the stability region is a right triangle 
in the gain space as given in [I 0]. The described procedure is easier and 
straightforward approach than that of [1 0,11]. 

Applying the above procedure on the second case [10] of the one-sampling-period 
computation time yields the solutions plotted in Fig. 3. By simple check, the 
stability region could be defined as the area bounded by solution 3, S3, and solution 
1, St. (the horizontal axis). It is exactly the same as given in [10]. The intersections 
between solution 1 and solution 3 occurs at a = 0, a = 1. Thus the stability criteria 
could be expressed here analytically in a closed form that is more suitable for 
design purposes as: 

0<a<1 

0 < p < 2a+..J9-8a -3 
(15) 

Applying the above procedure for the case of a general computation time, the 
resulted stability criteria is obtained as: 

l 
2 

0<a::::::--
1-2y 

for 0:::::; r:::::; 0.25 ~ 2 2 + 4 -8 2 

--<a< r r 
1-2y 2y 2 -2y +1 
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for 0.25 < r ~ 1 
1 

~ O<a<- , 0<f3<g(a,y) (16) 
r 

where for y ;f 0.5, 

and for y = 0.5, 

( ) 
4a(a-2) 

ga,y =----
-8+a 

The stability regions are plotted for various y's in Fig. 4. A comparison between 
this plot and the nomograph published in [10] shows one difference. Instead ofthe 
inclined lines in Fig. 4, vertical lines are presented in the nomograph of [10]. A 
check using the roots of the characteristic equation (8) indicates the correctness of 
the plot in Fig. 4 against the nomograph in [10]. So, the boundaries of the stability 
regions are not expressed in analytical forms only but they are also defined in more 
accurate way. 

4. SINGLE-RIGID/SINGLE-FLEXIBLE MODE SYSTEM 

The state equations for single-rigid/single-flexible mode system can be obtained 
from ( 1) by setting n= 1. The discretized model for this system with zero-order hold 
(ZOH) can be derived as: 

x· (k + 1) = Adx· (k) + Bdu * (k) 

y· (k) =ex· (k) 
(17) 

where, C is the same as in continuous system, equations ( 1 ), for n= 1 and, 

1 T 0 0 T 2b0 12 
0 1 0 0 Tb0 Ad= 
0 0 cos(w1T) sin( w, T) I w1 

Bd = 
- b1 ( cos(w1T) -1) I w1

2 

0 0 - w1 sin( w1 T) cos(w1T) b1 sin( w, T) I w1 

For PD control with zero computation time, 

(18) 
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Fig. 3. Stability region for one-sampling-period computation time 
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Fig. 4. Stability regions for various computation times 
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Substitution of equation (18) into equation (17) leads to 
T 2b2k 

1--0_p 
2 

-Tb5kp 

x"(k+ J) = bob,(cos(mn-1)kP 
m,2 

b0b1 sin(m,T)kP 

T- T2bgkd 
2 

1-Tb~kd 

b0h.( cos( m.T) -1 )kd 

a{ 
b0b1 sin(m,T)kd 

The characteristic equation of the system can be reduced to: 

_ T2b0qkd 

2 
-Tb0qkd 

sin(m.T) b1
2kAcos(m.T)-1) x"(k) --+ -'--''-'---~---"-----'-

~ ~2 

q2 sin( ~T)kd 
cos(~T) 

(19) 

A-4 +(-2(1+cos(e
1
))+ r1 sin(e1)a + r1~ (1-cos(e

1
))+ fJ +a)A-3 + 

e1 e1 2 

( 
rfJ( ) 3r sin(e )a fJ) 2 4 cos( e1 ) - 2a cos( e1) - ~ 1 - cos( e1 ) - a + 2 - 1 1 

- fJ cos( e1 ) +- A, + 
~ ~ 2 

(20) 

By setting b=b0 
2

, the definition of a and ~ is the same as those for the second order 
system [10]. Note that, this formulation of the characteristic equation satisfies 
requirement (i) of the procedure presented in the previous section. From practical 
point of view, the sampling rate should be selected more than twice as fast as the 
resonance [15]. This means that 2n/T>2ro1 and consequently e1< n. 

Applying the procedures of the previous section to this fourth-order polynomial of 
equation (20), the stability criterion can be derived as: 

where, 

el *2m, i = 0,1,2, ..... 

0 <a< amax (riel) 

0 < p < h(rpepa) 
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hn =e1a
2
r1

2
(-e1s

2 
+2s+2sc2 +ce1s

2 -4sc)+e1a
2r1(2e1 -e~s+ce12s+2e1 c 2 -4ce

1
) 

+e1ar1 ( -2e1 +2ce1
2 s + 2c 3e1 -6e1c

2 -e1
2 s +6ce1 -c 2e1

2 s) +e
1
ar

1 
(c-1)(2c- 2 +se

1
) 

/22 22222 2 22 22 2 2 2 222 -y- ce1 +a e1 - ae1 + ace1 +e1 c +e1 - r1tZYce1 + r1a se1 + r
1
rue

1 
+r

1 
a s , 

Using the above expressions, the stability regions are plotted for various system 
parameters, r1 and eh as shown in Figs. 5, 6. 
The plots show that the stability regions are almost right triangles in the gain space 
similar to the case of a second order system with zero computation time. Although 
the hypotenuses in these plots are not exact straight lines as indicted by the 
equation ~=h(rheh a) of (21), where h is a nonlinear function of a as shown 
previously, they can be very well approximated by straight lines. Fig. 5 shows that, 
the range of a increases as r1 decreases. As a limit, when r1-0, Umax-2 which 
corresponds to the range of second order system (single rigid mode) as shown 
previously (equation (5)). The inclination of hypotenuse is slightly affected by the 
changes of r1. But Fig. 6 indicates great influence of hypotenuse inclination by the 
change of eJ. As e1 decreases from 1t to 0, the inclination increases from 0 to 2. The 
limit value of the inclination is 2, which equals the corresponding value for single 
rigid mode (see equation (5)). 

It is desired to approximate the function, ~=h(ri.eh a), by a straight line,~= e(rhei) 
a. In doing so, the stability region is defined by only two parameters, Umax and the 
line inclination, e. This helps in the design process especially in some method such 
that given in [16] which needs these two parameters Umax and e. The proposed 
straight line is defined as a line passing through the origin and through the mid 
point of the curve, h, (the horizontal coordinate of the mid point is Urna)2). The line 
inclination, e, can now be found as: 

(}( ) _ (}n (ei' ri) (22) eP r1 - ---"-~---'-

(}d (ep rl) 
where, 
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(}n = -e17j(-3e1 -c3e1 -2s+3c2e1 +ce1 -6sc2 +8sc)-el.fM(2-2c-e1s)-

2 2 2 23 22 e1 s - e1 cs - c e1 + e1 c s + 2ce1 ), 

(}d = r1 (4c 2
- 4c3 + 6se1 + 2sc2e1 + 4c- 4- 8sce1 ) + 2c3e1

2
- 2e1

2c + e1
3 s + sce1

3
, 

Where c and s have the same definitions as in relation (21 ). Note that both Umax and 
e are functions of the system parameters, r1 and e~, only. In order to discover how 
good the curve, h, is approximated by this straight line in the range (0-Umax), A 
percentage deviation, D, is introduced. Dis defined as the root-mean-square of the 
error between the curve and the line, divided by the mean value of the curve, and 
multiplied by one hundred. D is calculated for different system parameters that 
scan their practical ranges. The results are shown in Fig. 7. A horizontal 
logarithmic scale is selected to represent the results in a clear way. The results 
show that, the deviation becomes high in small ranges of the parameters (high e1 

and small r1). Practically speaking, the approximation becomes good for r1> 1 and 
any value of e1 or for e1 < 1t /2 and any value of r1• 

5. SINGLE-RIGID/MULTIPLE-FLEXIBLE MODE SYSTEM 

Beginning with the state equations (I) and using symbolic tools of MA TLAB­
Software, one can obtain the discretized model of single-rigid/multiple-flexible 
mode system with zero-order hold (ZOH), as well as its characteristic equation. 
Comparing the characteristic equations for systems having 1,2,3 and 4 flexible 
modes show that the characteristic equations for single-rigid/multiple-flexible 
mode systems can be expressed in terms of the following dimensionless 
parameters: 

i = 1, ..... n 

Applying the first condition of Jury test, equation (11), on the characteristic 
equations for n=1,2,3,4 and comparing the results, yields after lengthy and 
complicated reduction the following general conditions for arbitrary number of 
flexible modes: 

n 

PTI(l-cos(e1))>0 
i~l 

(or fJ > 0, ei -:f. 27rk, i = l, ... n, k = 0,1,2, .... ) 

(23) 
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Fig. 5. Stability regions for different values of r1-parameter 
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Fig. 7. Percentage deviation from linearity for different system parameters 
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a < --------'-i--"=1'-----------
n n 2r n 

TJ(l+cos(eJ)+ I-' sin(e;) TJ(l+cos(e1 )) 
i=I i=I e; J=IJ"i 

(24) 

Since the flexible system of n> I has characteristic equations of order higher than 5, 
the stability criteria method used in previous section can not be applied. The 
application of full Jury test or Routh-Hurwitz method to these flexible systems 
exceeds the limitations of symbolic tools of MA TLAB-Software. 

The stability regions for these systems are obtained here using numerical technique 
described in the flowchart shown in Fig. (8). 

Where N is the number of points on one boundary of the stability region. The 
calculation of A begins with replacement of rob b0, and bi by ei. 1, and ri 
respectively in equation (1) where i=1,2, ... n, and replacement ofkp, and~ with~ 
and a respectively in equation (2). Then MATLAB-functions are used to convert 
the continuous system to discretized system with T= 1. The conversion is similar to 
the previous case of single-rigid/single-flexible mode system but applied here 
numerically rather than symbolically. The discretized system can be expressed as: 

. - . 
X (k+l) =Ax (k) (25) 

Relations (23) and (24) are used in this program to limit the search space. 
However, it is expected that these relations define the boundaries of the stability 
region after replacement "<" and ">" with "=" as will be shown later on. This 
expectation arises during the study of stability region of single-rigid/double­
flexible mode system using full Routh-Hurwitz method and symbolic tools of 
MA TLAB-Software. It is found that two boundaries of the stability region for 
various system parameters are expressed using relations (23) and (24) as in single­
rigid/single-flexible mode system. 

Figures (9-12) show stability regions for different number of flexible modes as 
well as for various system parameters. 
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Fig. 8. Flowchart for determination of stability regions for arbitrary 
number of flexible modes 
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Fig. 10. Stability region for n = 5 
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Fig. 12. Stability region for n = 10 
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The initial analysis of these figures, as well as others not shown here, indicate that, 
the stability region of such systems consists of three boundaries that approximate 
right triangle as in single-rigid/single-flexible mode system. The two perpendicular 
sides could be described by relations (23) and (24). The third one could be 
approximated by a line whose inclination could be approximated as a weighted 
average of the inclinations of the corresponding lines for single-rigid/single­
flexible mode systems as follow: 

(26) 

i=l 

Where en and 9ct are defined as in equation (22) after replacing "1" by "i". 

In order to examine such proposal, the program described above is executed for 
representative large-number of cases, in which the system parameters are set 
randomly. 

In all case, it is found that two boundaries of the stability region are described 
using relations (23) and (24) without any exceptions. For examination of relation 
(24), similar program to the above described one is used, in which a is determined 
for equally spaced set of~. Some ofthe distributions ofthe percentage deviation of 
the third boundary-inclination (after being linearly interpolated) from that 
described by equation (26) are plotted in Figs. (13-16) for systems of different 
number of flexible modes. These figures indicate that the approximation of the 
third boundary is quite well. The ~verage percentage deviation is found to be about 
2.5%, while the maximum percentage deviation is about 10%. These values are 
important to assign suitable safety factor when applying the proposed expression. It 
is to be mentioned that other expressions than equation (26) are suggested and 
tested. They give less accurate result than the proposed equation (26). Figures (17-
20) show stability regions for the proposed expressions against the stability regions 
obtained numerical by the above-described program. The parameters in these 
figures are the same as those of Figs. (9-12). The figures indicate clearly the 
validity of the proposed expressions. 
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Fig. 15. Deviation distribution for n=8 
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Fig. 16. Deviation distribution for n=IO 
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Fig. 17. Proposed expressions against numerical values for n = 3 
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Fig. 18. Proposed expressions against numerical values for n = 5 
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Although the exact boundaries of the stability regions for single-rigid/multiple­
flexible mode systems are obtained numerically in this section, the procedure 
described in section 3 to define the stability region analytically has great influence 
on the outcomes of this section. On one hand, relations (23, 24), that obtained 
through partial application of the procedure, limit the search space of the numerical 
method used to define the stability region (see Fig. 8). On the other hand, the 
derivation of equation (26), that used to define the stability region approximately in 
this section, is based on equation (22). The derivation of equation (22) is based on 
relation (21 ). Finally, relation (21) is obtained through direct application of the 
procedure. 

It is suggested to use the approximated expressions (equations (22, 26)) in the 
iterative design process. Then the final design can be checked using exact 
expression (21) in the case of single-rigid/single-flexible mode system or the 
computer program (Fig. 8) in the case of single-rigid/multiple-flexible mode 
system. 
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Fig. 19. Proposed expressions against numerical values for n = 7 
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Fig. 20. Proposed expressions against numerical values for 

n= 10 

6. CONCLUSION 

The work introduces a procedure to define the stability regions in the gain space to 
determine the stability criteria for digitally controlled systems using analytical 
expressions. This is accomplished by means of the critical stability constraints of 
Jury test and the capability of MA TLAB-Software. The procedures are applied 
successfully for second order system controlled digitally by PD algorithm. The 
results obtained for the case of general computing time (Fig. 4) show some 
deviations from those obtained numerically in the literature [10]. A direct check 
shows that the results represented here are the correct ones. The procedure is then 
applied to digital PD control system that has one rigid mode and one flexible mode. 
The obtained closed form stability criteria, relation (21 ), show that the stability 
region is almost a right triangle in the gain space. The two perpendicular sides of 
the proposed triangle coincide exactly with two boundaries of the stability region. 
These two sides can be determined using analytical expressions (P=O, a=Umax(rt.ei), 
see relation (21 )). The third side approximates very well the third boundary and can 
be determined using equation (22). In the case of single-rigid/multiple-flexible 
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mode system, the proposed procedures can not be applied since the critical stability 
constraints of Jury test are defined for systems having low order characteristic 
equations (less than 6). A computer program is constructed that can determine 
accurately the stability region for a digital PD control system that has single rigid 
mode and arbitrary number of flexible modes using a numerical method. Such 
system has practical importance. It simulates flexible robot arm as an example. 
Similar to the previous case, the obtained stability region is almost right triangle in 
the gain space. Closed form expressions are derived, that limit the gains for 
arbitrary number of flexible modes and various system parameters through the 
application of the first condition of Jury test, relations (23-24). It is found that the 
two perpendicular sides of the proposed triangle coincide exactly with two 
boundaries of the stability region and can be determined using relations (23-24) 
(P=O, a.=a.limib see Fig. 8). The third side approximates the third boundary very 
well. This is proved statistically. The third side can be determined using equation 
(26). Thus the stability regions for digitally controlled flexible systems are found 
by two methods. The first one gives the exact boundaries of the stability regions 
(relations (21) and Fig. 8). The second one gives approximate boundaries. The first 
one is suitable for checking of the final design, while the second one is suitable for 
iterative design process. 
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