
Khan Fixed Point Theory and Applications  (2018) 2018:8 
https://doi.org/10.1186/s13663-018-0633-4

R E S E A R C H Open Access

Iterative approximation of common
attractive points of further generalized hybrid
mappings
Safeer Hussain Khan*

Dedicated to Professor H.K. Xu for his contributions towards Fixed Point Theory.

*Correspondence:
safeerhussain5@yahoo.com;
safeer@qu.edu.qa
Department of Mathematics,
Statistics and Physics, Qatar
University, Doha, State of Qatar

Abstract
Our purpose in this paper is (i) to introduce the concept of further generalized hybrid
mappings, (ii) to introduce the concept of common attractive points (CAP), and (iii) to
write and use Picard-Mann iterative process for two mappings. We approximate
common attractive points of further generalized hybrid mappings by using iterative
process due to Khan (Fixed Point Theory Appl. 2013:69, 2013, https://doi.org/10.1186/
1687-1812-2013-69) generalized to the case of two mappings in Hilbert spaces
without closedness assumption. Our results are generalizations and improvements of
several results in the literature in different ways.
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1 Introduction and preliminaries
Let N denote the set of positive integers and R the set of real numbers. Let H be a real
Hilbert space and C be a nonempty subset of H . Let T be a mapping of C into H . Recall
that the set of fixed points of T is denoted and defined by F(T) = {z ∈ C : Tz = z}. Fixed
point problems are quite general, which covers many important problems, in particular,
variational inequalities, equilibrium problems, and convex optimization problems, for ex-
ample, see [2–4]. Takahashi and Takeuchi [5] introduced the concept of attractive points
in Hilbert spaces. They defined and denoted the set of attractive points as follows:

A(T) =
{

z ∈ H : ‖Tx – z‖ ≤ ‖x – z‖} for all x ∈ C.

From this definition, neither an attractive point is a fixed point nor conversely. How-
ever, for a relation between the two, see Lemmas 1 and 3. Basically this concept was intro-
duced to get rid of the hypothesis of closedness and convexity as used in a well-celebrated
Baillon’s nonlinear ergodic theorem in Hilbert spaces [6]. They also proved an existence
theorem for attractive points without convexity in Hilbert spaces. In these theorems, they
used the so-called generalized hybrid mappings (to be defined in the sequel) whose class
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is larger than the class of nonexpansive mappings used in Baillon’s theorem. Since we are
interested in the existence theorem, we state it as follows.

Theorem 1 (Takahashi and Takeuchi [5]) Let H be a Hilbert space and C be a nonempty
subset of H . Let T : C → C be a generalized hybrid mapping. Then T has an attractive
point if and only if ∃z ∈ C such that {Tnz : n = 0, 1, . . .} is bounded.

Obviously, the hypothesis does not require any closedness or convexity. Takahashi and
Takeuchi [5] also gave some properties of the attractive points as follows.

Lemma 1 Let H be a real Hilbert space, and let C be a nonempty closed convex subset of H .
Let T : C → C be a mapping. If A(T) �= ∅, then F(T) �= ∅.

Lemma 2 Let H be a real Hilbert space, and let C be a nonempty subset of H . Let T : C → H
be a mapping. Then A(T) is a closed and convex subset of H .

Later, the following was noted by Takahashi et al. [7] for quasi-non-expansive mappings.

Lemma 3 Let H be a real Hilbert space, and let C be a nonempty subset of H . Let T :
C → H be a quasi-nonexpansive mapping (that is, ‖Tx – z‖ ≤ ‖x – z‖, z ∈ F(T)). Then
A(T) ∩ C = F(T).

Let l∞ be the Banach space of bounded sequences with supremum norm and (l∞)∗

be its dual space (set of all continuous linear functionals on l∞). It is well known that
there exists μ ∈ (l∞)∗ (that is, there exists a continuous linear functional on l∞) such that
‖μ‖ = μ(1) = 1 and μn(xn+1) = μn(xn) for each x = (x1, x2, x3, . . .) ∈ l∞. Such μ is called a
Banach limit. Sometimes μn(xn) is denoted by μ(x). It is also known that for a Banach
limit μ, lim infn→∞ xn ≤ μ(x) ≤ lim supn→∞ xn for each x = (x1, x2, x3, . . .) ∈ l∞. As a spe-
cial case, if limn→∞ xn exists and is a, then μ(x) = a too. This means the idea of a Banach
limit is an extension of the idea of usual limits. It is also a well-known result that for a
bounded sequence {xn} in a Hilbert space H , there exists unique u0 ∈ co{xn : n ∈ N} such
that μn〈xn, v〉 = 〈u0, v〉 for all v ∈ H .

Recall that for every closed convex subset C of a Hilbert space H , there exists a metric
projection PC : H → C. That is, for each x ∈ H , there is a unique element PCx ∈ C such
that ‖x – PCx‖ ≤ ‖x – y‖ for all y ∈ C. We also need the following lemma due to Takahashi
and Toyoda [8].

Lemma 4 Let K be a nonempty closed convex subset of a real Hilbert space H . Let PK :
H → K be the metric projection. Let {xn} be a sequence in H . If ‖xn+1 – k‖ ≤ ‖xn – k‖ for
any k ∈ K and n ∈N, then {PK xn} converges strongly to some k0 ∈ K .

Mathematicians started working on attractive points in various directions after the pub-
lication of Theorem 1, see, for example, [7, 9–16], and [17]. Let us start by recalling the
definitions and possible comparisons of different types of mappings. In the sequel, we
take the mapping T : C → H unless otherwise specified. T is called contractive if there
exists a real number α with 0 < α < 1 such that ‖Tx – Ty‖ ≤ α‖x – y‖ for all x, y ∈ C. T
is said to be nonexpansive if ‖Tx – Ty‖ ≤ ‖x – y‖ for all x, y ∈ C. T is said to be quasi-
nonexpansive if for p ∈ F(T), ‖Tx – p‖ ≤ ‖x – p‖ for all x ∈ C. T is called quasi-contractive
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(due to Berinde [18]) if there exist real numbers α with 0 < α < 1 and L ≥ 0 such that
‖Tx – Ty‖ ≤ α‖x – y‖ + L‖x – Tx‖ for all x, y ∈ C. Note that the class of quasi-contractive
mappings already contains contractions, Kannan, Chatterji and Zamfirescu operators (for
definitions, see [18]). Takahashi et al. [7] introduced a broader class of nonlinear mappings
which contains the class of contractive mappings and the class of generalized hybrid map-
pings. T is called normally generalized hybrid if there exist α,β ,γ , δ ∈R such that

α‖Tx – Ty‖2 + β‖x – Ty‖2 + γ ‖Tx – y‖2 + δ‖x – y‖2 ≤ 0 (1.1)

for all x, y ∈ C. A normally generalized hybrid mapping with a fixed point is quasi-
nonexpansive. Moreover, a normally generalized hybrid mapping with α = 1, β = γ = 0,
–1 < δ < 0 is a contractive mapping. However, this class does not contain the class of
quasi-contractive mappings due to Berinde [18]. Finally, we have also found another class
of mappings in [11] which was originally introduced by Kawasaki and Takahashi [13] and
called “widely more generalized hybrid” in a Hilbert space. T is called “widely more gen-
eralized hybrid” if there exist α,β ,γ , δ, ε,ς ,η ∈R such that

α‖Tx – Ty‖2 + β‖x – Ty‖2 + γ ‖Tx – y‖2 + δ‖x – y‖2

+ ε‖x – Tx‖2 + ς‖y – Ty‖2 + η
∥∥(x – Tx) – (y – Ty)

∥∥2 ≤ 0 (1.2)

for all x, y ∈ C. They noted that the class of widely more generalized hybrid mappings
contains the class of normally generalized hybrid mappings but not of quasi-nonexpansive
mappings generally even with having a fixed point.

Our purpose in this paper is (i) to introduce the concept of further generalized hybrid
mappings, (ii) to introduce the concept of common attractive points (CAP), and (iii) to
write and use Picard-Mann iterative process for two mappings. We approximate common
attractive points of further generalized hybrid mappings by using iterative process due to
Khan [1] generalized to the case of two mappings in Hilbert spaces without closedness
of C. First we introduce further generalized hybrid mappings as another generalization of
normally generalized hybrid mappings. T is called a further generalized mapping if there
exist α,β ,γ , δ, ε ∈R such that

α‖Tx – Ty‖2 + β‖x – Ty‖2 + γ ‖Tx – y‖2

+ δ‖x – y‖2 + ε‖x – Tx‖2 ≤ 0 (1.3)

for all x, y ∈ C. Obviously, this is a generalization of (1.1) when ε = 0. It is noteworthy that
it contains the class of quasi-nonexpansive mappings, quasi-contractive mappings due to
Berinde [18] and, in turn, contractive mappings, Kannan mappings, Chatterjea mappings,
Zamfirescu mappings. For definitions of these mappings, see, for example, [18]. To see
that (1.3) actually contains quasi-contractive mappings due to Berinde [18], choose α = 1,
β = γ = 0, δ ∈ (–1, 0), ε ∈ (–∞, 0] and then use a2 + b2 ≤ (a + b)2 for all nonnegative real
numbers a, b. Recall that quasi-contractive mappings due to Berinde [18] are not con-
tained in (1.1). Apparently, this seems a special case of “widely more generalized hybrid”
mappings (1.2) when ς = η = 0. However, our class not only constitutes a simple gener-
alization of (1.1) but also, as mentioned above, contains the class of quasi-nonexpansive
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mappings when it has a fixed point contrary to “widely more generalized hybrid” map-
pings (1.2). So the results obtained by our new mapping will not only be more general but
also simpler.

Now, we introduce the concept of common attractive points for two mappings S and T
denoted and defined as follows:

CAP(S, T) =
{

z ∈ H : max
(‖Sx – z‖,‖Tx – z‖) ≤ ‖x – z‖}

for all x ∈ C. Obviously, z ∈ CAP(S, T) means that z ∈ A(S) as well as z ∈ A(T). Note also
that CAP(S, T) = A(T) when S = T .

Recall that a Mann iterative process is as follows:

⎧
⎨

⎩
x1 = x ∈ C,

xn+1 = (1 – αn)xn + αnTxn, n ∈N.
(1.4)

Khan [1] introduced a new iterative process called Picard-Mann hybrid iterative process:

⎧
⎪⎪⎨

⎪⎪⎩

x1 = x ∈ C,

xn+1 = Tyn,

yn = (1 – αn)xn + αnTxn, n ∈N,

(1.5)

where {αn} is in (0, 1). It was proved to be independent but faster than all Picard, Mann,
and Ishikawa processes. Finally, we generalize it to the case of two mappings S and T as
follows:

⎧
⎪⎪⎨

⎪⎪⎩

x1 = x ∈ C,

xn+1 = Syn,

yn = (1 – αn)xn + αnTxn, n ∈N,

(1.6)

where {αn} is in (0, 1). This process reduces to Mann if S = I , the identity mapping and at
the same time deals with common attractive points.

In short, we approximate common attractive points of (1.3) through (1.6) in Hilbert
spaces without closedness of C. Our results are generalizations and improvements of sev-
eral results in the literature as mentioned later in this paper.

2 Main results
Let us first give some useful properties of CAP(S, T) on the lines similar to Lemmas 1, 2,
and 3. For the sake of simplicity, we take the same parameters α,β ,γ , δ, ε ∈ R for the two
further generalized hybrid mappings S, T as defined in (1.3).

Lemma 5 Let H be a real Hilbert space, and let C be a nonempty closed convex subset of H .
Let S, T : C → C be two mappings. If CAP(S, T) �= ∅, then F(S) ∩ F(T) �= ∅. In particular,
if z ∈ CAP(S, T), then PCz ∈ F(S) ∩ F(T).

Proof Let z ∈ CAP(S, T). Then z ∈ A(S) and z ∈ A(T) (and of course z ∈ H). Thus there
is a unique element u = PCz ∈ C such that ‖u – z‖ ≤ ‖y – z‖ for all y ∈ C. Now Tu ∈ C
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implies ‖u – z‖ ≤ ‖Tu – z‖. On the other hand, z ∈ A(T), therefore ‖Ty – z‖ ≤ ‖y – z‖ for
all y ∈ C and, in particular, ‖Tu – z‖ ≤ ‖u – z‖. Thus ‖Tu – z‖ ≤ ‖u – z‖ ≤ ‖Tu – z‖ and
hence u ∈ F(T). Similarly, u ∈ F(S) and so F(S) ∩ F(T) �= ∅ and u = PCz ∈ F(S) ∩ F(T). �

Lemma 6 Let H be a real Hilbert space, and let C be a nonempty subset of H . Let S, T :
C → C be two mappings. Then CAP(S, T) is a closed and convex subset of H .

Proof Since the intersection of two closed sets is closed and that of two convex sets is
convex, the proof follows on the lines similar to Lemma 2.3 of [5]. �

Lemma 7 Let H be a real Hilbert space, and let C be a nonempty subset of H . Let S, T :
C → H be two quasi-nonexpansive mappings. Then CAP(S, T) ∩ C = F(S) ∩ F(T).

Proof Let z ∈ CAP(S, T) ∩ C. Then, by definition, max(‖Sx – z‖,‖Tx – z‖ ≤ ‖x – z‖) for all
x ∈ C. In particular, choosing x = z ∈ C, we obtain max(‖Sz – z‖,‖Tz – z‖) ≤ 0. That is, z ∈
F(S) ∩ F(T). Conversely, since z ∈ F(S) ∩ F(T) and S, T : C → H are quasi-nonexpansive
mappings, we have ‖Sx – z‖ ≤ ‖x – z‖,‖Tx – z‖ ≤ ‖x – z‖ for all x ∈ C. This implies that
max(‖Sx – z‖,‖Tx – z‖) ≤ ‖x – z‖ for all x ∈ C. Clearly, z ∈ C. Hence z ∈ CAP(S, T) ∩ C.
This completes the proof. �

Our next result is an existence theorem on common attractive points of two further
generalized hybrid mappings (1.3) without any use of closedness and convexity. This result
is followed by some important remarks on comparing it with some results in the current
literature.

Theorem 2 Let H be a real Hilbert space, and let C be a nonempty subset of H . Let S, T :
C → C be two further generalized hybrid mappings as defined in (1.3) which satisfy α + β +
γ + δ ≥ 0, ε ≥ 0 and either α + β > 0 or α + γ > 0. Then CAP(S, T) �= ∅ if and only if there
exists z ∈ C such that both {Snz, n = 0, 1, 2, . . .} and {Tnz, n = 0, 1, 2, . . .} are bounded.

Proof Suppose that CAP(S, T) �= ∅ and z ∈ CAP(S, T). Then, by definition, max(‖Sx –
z‖,‖Tx – z‖) ≤ ‖x – z‖ for all x ∈ C. This means that ‖Sn+1x – z‖ ≤ ‖Snx – z‖ and
‖Tn+1x – z‖ ≤ ‖Tnx – z‖ for all x ∈ C and n ∈ N. That is, both {Snz, n = 0, 1, 2, . . .} and
{Tnz, n = 0, 1, 2, . . .} are bounded.

Conversely, suppose that there exists z ∈ C such that {Snz, n = 0, 1, 2, . . .} as well as
{Tnz, n = 0, 1, 2, . . .} is bounded. Suppose that max(‖Sx – z‖,‖Tx – z‖) = ‖Tx – z‖. After
doing long calculations on the lines similar to Theorem 8 of [11], we find that there ex-
ists p ∈ H such that ‖Tx – p‖2 ≤ ‖x – p‖2. This means that p ∈ A(T). However, by our
supposition on maximum, we get ‖Sx – p‖2 ≤ ‖x – p‖2. Thus CAP(S, T) �= ∅. In case,
max(‖Sx – z‖,‖Tx – z‖) = ‖Sx – z‖, we can get the result by interchanging the roles of
S and T . �

This theorem constitutes a generalization of Theorem 3.1 of [7] and the results gener-
alized therein when S = T and ε = 0. Clearly this theorem handles existence of common
attractive points, so it is independent of Theorem 8 of [11]. But a special case of our result
when S = T can be obtained from Theorem 8 of [11] by choosing ς = η = 0. However, even
in this special case, it is more general in the sense that our class of mappings is simpler
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and always covers the class of quasi-nonexpansive mappings as opposed to Theorem 8 of
[11]. The same holds for all the results of [11].

Let us now come to one of our main targets of proving a weak convergence theorem in
Hilbert spaces without needing closedness of C.

Theorem 3 Let H be a real Hilbert space, and let C be a nonempty convex subset of H . Let
S, T : C → C be two further generalized hybrid mappings as defined in (1.3) which satisfy
α +β +γ +δ ≥ 0, ε ≥ 0 and either α +β > 0 or α +γ > 0. Let CAP(S, T) �= ∅. If {xn} is defined
by (1.6), where {αn} is a sequence in (0, 1) with lim infαn(1 – αn) > 0, then {xn} converges
weakly to a point q ∈ CAP(S, T). Moreover, q = limn→∞ Pxn, where P is a projection of H
onto CAP(S, T).

Proof Let z ∈ CAP(S, T). Then, by (1.6),

‖yn – z‖2 =
∥∥(1 – αn)xn + αnTxn – z

∥∥2

≤ (1 – αn)‖xn – z‖2 + αn‖Txn – z‖2

≤ (1 – αn)‖xn – z‖2 + αn‖xn – z‖2

= ‖xn – z‖2,

and so

‖xn+1 – z‖2 = ‖Syn – z‖2

≤ ‖yn – z‖2

≤ ‖xn – z‖2.

Thus

‖xn+1 – z‖2 ≤ ‖xn – z‖2 (2.1)

for all n ∈N. Thus limn→∞ ‖xn – z‖2 exists and so {xn} must be bounded.
Since H is a Hilbert space, so

‖xn+1 – z‖2 = ‖Syn – z‖2

≤ ‖yn – z‖2

=
∥∥(1 – αn)xn + αnTxn – z

∥∥2

= (1 – αn)‖xn – z‖2 + αn‖Txn – z‖2

– αn(1 – αn)‖Txn – xn‖2

≤ (1 – αn)‖xn – z‖2 + αn‖xn – z‖2

– αn(1 – αn)‖Txn – xn‖2

= ‖xn – z‖2 – αn(1 – αn)‖Txn – xn‖2.
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This implies that

αn(1 – αn)‖Txn – xn‖2 ≤ ‖xn – z‖2 – ‖xn+1 – z‖2.

Now, using the condition lim infαn(1–αn) > 0 and the above proved fact that limn→∞ ‖xn –
z‖2 exists, we have

lim
n→∞‖Txn – xn‖ = 0.

We have also proved in the above lines that {xn} is a bounded sequence, therefore we
have its subsequence {xnj} such that xnj ⇀ q ∈ C. Since T : C → C is a further generalized
mapping, therefore for any y ∈ C, we get

α‖Txnj – Ty‖2 + β‖xnj – Ty‖2 + γ ‖Txnj – y‖2

+ δ‖xnj – y‖2 + ε‖xnj – Txnj‖2 ≤ 0,

and so

α
(‖Txnj – xnj‖2 + ‖xnj – Ty‖2 + 2〈Txnj – xnj , xnj – Ty〉)

+ β‖xnj – Ty‖2 + γ ‖Txnj – y‖2

+ δ‖xnj – y‖2 + ε‖xnj – Txnj‖2 ≤ 0.

Making use of Banach limit μ, we get

(α + β)μn‖xnj – Ty‖2 + (γ + δ)μn‖xnj – y‖2 ≤ 0.

This yields that

(α + β)μn
[‖xnj – y‖2 + ‖y – Ty‖2 + 2〈xnj – y, y – Ty〉]

+ (γ + δ)μn‖xnj – y‖2 ≤ 0.

Thus

(α + β + γ + δ)μn‖xnj – y‖2

+ (α + β)‖y – Ty‖2 + 2(α + β)μn〈xnj – y, y – Ty〉 ≤ 0.

But α + β + γ + δ ≥ 0, therefore

(α + β)‖y – Ty‖2 + 2(α + β)μn〈xnj – y, y – Ty〉 ≤ 0.

Since xnj ⇀ q, therefore

(α + β)‖y – Ty‖2 + 2(α + β)〈q – y, y – Ty〉 ≤ 0.
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Since H is a Hilbert space, so using

2〈u – v, p – w〉 = ‖u – w‖2 + ‖v – p‖2 – ‖u – p‖2 – ‖v – w‖2 (2.2)

in the above inequality, we have

(α + β)‖y – Ty‖2

+ (α + β)
[‖q – Ty‖2 + ‖y – y‖2 – ‖q – y‖2 – ‖y – Ty‖2] ≤ 0.

This implies that (α + β)[‖q – Ty‖2 – ‖q – y‖2] ≤ 0. Since (α + β) > 0,‖q – Ty‖2 – ‖q –
y‖2 ≤ 0. Similarly, we get ‖q – Sy‖2 – ‖q – y‖2 ≤ 0 and hence q ∈ CAP(S, T). Next we prove
that xn ⇀ q by proving that any two subsequences of {xn} converge weakly to the same
limit q. Let xnj ⇀ q1 and xnk ⇀ q2. By what we have just proved, q1 and q2 belong to
CAP(S, T), and from the initial steps of this proof we conclude that limn→∞(‖xn – q1‖2 –
‖xn – q2‖2) exists, call it 
. Now, using (2.2) again, 2〈xn, q2 – q1〉 = ‖xn – q1‖2 +‖q2‖2 –‖xn –
q2‖2 – ‖q1‖2. This yields ‖xn – q1‖2 – ‖xn – q2‖2 = 2〈xn, q2 – q1〉 – ‖q2‖2 + ‖q1‖2. Thus

‖xnj – q1‖2 – ‖xnj – q2‖2 = 2〈xnj , q2 – q1〉 – ‖q2‖2 + ‖q1‖2 and

‖xnk – q1‖2 – ‖xnk – q2‖2 = 2〈xnk , q2 – q1〉 – ‖q2‖2 + ‖q1‖2.

Now, taking weak limit on the above two equations and making use of xnj ⇀ q1 and
xnk ⇀ q, we get


 = 2〈q1, q2 – q1〉 – ‖q2‖2 + ‖q1‖2,


 = 2〈q2, q2 – q1〉 – ‖q2‖2 + ‖q1‖2.

Subtracting we get 2〈q1 – q2, q2 – q1〉 = 0 and hence q1 = q2. In turn, xn ⇀ q ∈ CAP(S, T).
Finally, we show that q = limn→∞ Pxn, where P is the projection of H onto CAP(S, T).

Now from (2.1) it follows that ‖xn+1 – z‖ ≤ ‖xn – z‖ for all z ∈ CAP(S, T) and n ∈ N.
Since CAP(S, T) is closed and convex by Lemma 6, applying Lemma 4, limn→∞ Pxn = p
for some p ∈ CAP(S, T). It is well known for projections that 〈xn – Pxn, Pxn – z〉 ≥ 0 for all
z ∈ CAP(S, T) and n ∈ N. Therefore, 〈q – p, p – z〉 ≥ 0 for all z ∈ CAP(S, T) and, in partic-
ular, 〈q – p, p – q〉 ≥ 0. Hence, q = p = limn→∞ Pxn. �

Although the following is a corollary to the above theorem, it is a new result in itself.
As already mentioned, the iterative process (1.5) is independent but faster than several
iterative processes, therefore this corollary has its own standing.

Corollary 1 Let H , C, T and α, β , γ , δ, ε be as in Theorem 3. Let A(T) �= ∅. If {xn} is defined
by the iterative process (1.5), where {αn} is a sequence in (0, 1) with lim infαn(1 – αn) > 0,
then {xn} converges weakly to a point q ∈ A(T). Moreover, q = limn→∞ Pxn, where P is the
projection of H onto A(T).

Proof Choose S = T in the above theorem. �
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Corollary 2 Let H , C, T and α, β , γ , δ, ε be as in Theorem 3. Let A(T) �= ∅. If {xn} is defined
by Mann iterative process (1.4), where {αn} is a sequence in (0, 1) with lim infαn(1 – αn) > 0,
then {xn} converges weakly to a point q ∈ A(T). Moreover, q = limn→∞ Pxn, where P is the
projection of H onto A(T).

Proof Choose S = I in the above theorem. �

Remarks In view of Lemma 2, in Theorem 3, instead of assuming CAP(S, T) �= ∅, we could
have assumed that there exists z ∈ C such that both {Snz, n = 0, 1, 2, . . .} and {Tnz, n =
0, 1, 2, . . .} are bounded. Similar remark applies to Corollaries 1 and 2.

Now we give some remarks on how our above results are generalizations and improve-
ments of the results in the existing literature.

Remarks
(1) Theorem 5.1 of [7] can now be obtained by choosing either S = I , ε = 0 in

Theorem 3 or ε = 0 in Corollary 2.
(2) Corollary 2 can be viewed as an improvement and extension of Theorem 8 of [11] in

the sense that (i) our class of mappings is simpler and (ii) it contains the class of
quasi nonexpansive mappings as opposed to [11]. Corollary 1 not only keeps this
sense but also gives faster convergence (see [1]).

(3) Corollary 1 (leave alone our Theorem 3) generalizes Corollary 4.3 of Zheng [17] in
two ways: we do not need closedness of C and the class of our mappings is much
more general than that of [17].

(4) Of course, all corresponding results generalized in [7] and [11] are part and parcel of
the above remarks.

If, in addition, we use the closedness of C in Theorem 3, then we have the following:

Theorem 4 Let H be a real Hilbert space, and let C be a nonempty closed convex subset
of H . Let S, T : C → C be two further generalized hybrid mappings, as defined in (1.3),
which satisfy α + β + γ + δ ≥ 0, ε ≥ 0 and either α + β > 0 or α + γ > 0. Let CAP(S, T) �= ∅.
If {xn} is defined by (1.6), where {αn} is a sequence in (0, 1) with lim infαn(1 – αn) > 0, then
{xn} converges weakly to a point PCq ∈ F(S) ∩ F(T), where q ∈ H and PC : H → C is the
metric projection.

Proof By Theorem 3, q ∈ CAP(S, T). Now, using Lemma 5, PCq ∈ F(S) ∩ F(T) as desired.
�

3 Conclusions
In this paper, we have introduced the concepts of further generalized hybrid mappings
and common attractive points (CAP). We have given some basic properties of common
attractive points and have compared them with common fixed points. Further, we have
shown that our newly introduced class of mappings contains many important classes and
is better than some apparently looking more general mappings in the literature. We have
given an existence theorem on common attractive points. Then, using a two-mapping
variant of Picard-Mann iterative process, we have approximated the common attractive
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points of further generalized hybrid mappings in Hilbert spaces without closedness on its
subsets. Our results also show a contrast of common attractive points with common fixed
points. Our results can open the door for further research activity in the field for other
mappings, other iterative processes, or other ambient spaces.
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