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Abstract. This paper presents a fast boundary integral equation method with for computing
conformal mappings of multiply connected regions. We consider the canonical region consists
of the entire complex plane bounded by a finite straight slit on the line Im ω = 0 and finite
logarithmic spiral slits. Some numerical examples are given to show the effectiveness of the
proposed method.

1. Introduction

Conformal mapping is a special mapping that transform a region onto another region while
preserving the angle between curves in the sense of magnitude and direction. Because of this
unique characteristic, the idea of conformal mapping have been applied in several real life
problems as discussed in [1, 2]. By means of conformal maps, problem from a complicated
region can be transformed into some standardized region where it can be solved easily. Despite
its uniqueness, exact conformal maps are known for few cases only. For others, researchers have
to overcome this limitation using numerical approximation. Trefethen [3] has discussed several
method for computing the conformal maps based on expansion methods, iterative methods
and integral equation methods. Any simply connected region can be mapped to a unit disk.
Koebe [4] have listed thirty nine type of canonical regions for the multiply connected region. A
canonical region is known for a region that has simpler geometry and can be uniquely determined
by specifying the conformal moduli. From these thirty nine canonical region, Koebe [4] have
cataloged it into five categories. For the numerical computation of the conformal mapping
onto these categories, see [5, 6, 7, 8, 9, 10, 11]. Beside these thirty nine canonical regions,
circular region which is a region bounded by multiple circle is also another important canonical
region[12, 13].

In this paper, we present a numerical method for the conformal mapping that maps the
original region G onto the entire complex plane bounded with straight slit on the line Im ω = 0
and logarithmic spiral slits (see Fig. 1).



14th International Symposium on Geometric Function Theory and Applications

IOP Conf. Series: Journal of Physics: Conf. Series 1212 (2019) 012014

IOP Publishing

doi:10.1088/1742-6596/1212/1/012014

2

Figure 1: The canonical regions Ω1 (left) and Ω2 (right)

2. Auxiliary material

Let G be a bounded multiply connected region of connectivity m+ 1. The boundary G consists
of m+1 smooth Jordan curves Γj , j = 0, 1, 2, . . . , m, i.e., Γ = Γ0 ∪Γ1 ∪ · · ·∪Γm in the extended
complex plane. The orientation of Γ is such that G is always on the left of Γ. The curve Γj

is parameterized by 2π-periodic twice continuously differentiable complex function ηj(t) with
non-vanishing first derivative, i.e.,

η′j(t) =
dηj(t)

dt
6= 0, t ∈ Jj = [0, 2π] , j = 0, 1, . . . , m.

Let the total parameter domain J be the disjoint union of m + 1 intervals J0, J1, . . . , Jm. We
define a parameterization η of the whole boundary Γ on J by

η(t) =











η0(t), t ∈ J0 = [0, 2π] ,
...

ηm(t), t ∈ Jm = [0, 2π] .

(1)

We assume that Γ0 map onto the finite straight slit on the line Im ω = 0 while Γj, j = 1, 2, . . . , m
will be mapped onto the logarithmic spiral slits with prescribed angles θj , j = 1, 2, . . . , m. The
mapping function ω(z) will be determined by computing two unknown real functions on J, a
function S(t) and a piecewise constant real function R(t). Let H be the space of all real Hölder
continuous 2π-periodic functions and L be the subspace of H which contains the piecewise real
constant functions R(t). Let A1(t) and A2(t) be complex continuously differentiable 2π-periodic
functions for all t ∈ J. For p = 1, 2, the adjoint function Ãp of Ap is defined by [14]

A1(t) = ei(π/2−θ), A2(t) = e−i(π/2−θ), Ãp(t) =
η′(t)

Ap(t)
.

The generalized Neumann kernel Ñp(s, t) and the kernel M̃p(s, t) formed with Ãp are defined by

Ñp(s, t) =
1

π
Im

(

Ãp(s)

Ãp(t)

η′(t)

η(t)− η(s)

)

, M̃p(s, t) =
1

π
Re

(

Ãp(s)

Ãp(t)

η′(t)

η(t)− η(s)

)

.

Then,
Ñp(s, t) = −N ∗

p (s, t) and M̃p(s, t) = −M∗

p (s, t), (2)

where N ∗

p (s, t) = Np(t, s) is the adjoint kernel of the generalized Neumann kernel Np(s, t). We
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define the Fredholm integral operators N∗

p by

N∗

pυ(t) =

∫

J
N ∗

p (t, s)υ(s)ds, t ∈ J.

The eigenfunctions of N corresponding to the eigenvalue λ = −1 are
{

χ[1], χ[2], . . . , χ[m]
}

, where

χ[j](ξ) =

{

1, ξ ∈ Γj ,

0, otherwise,
j = 1, 2, . . . , m.

We also define an integral operator J by

Jµ(s) :=

∫

J

1

2π

m
∑

j=0

χ[j](s)χ[j](t)µ(t)dt. (3)

Let ϕ(t) be the derivative of the unknown function S(t) which shall be calculated by using the
following theorem given in [15].

Theorem 1 Let υ, ϕ, ψ, φ ∈ H , f(z) be analytic in G g(z) be analytic in G− with g(∞) = 0
such that the boundary values of the functions f and g are given by

Ãp(t)f(η(t)) + Ãp(t)g(η(t)) = υ + iϕ, (4)

where the integral J is a given function defined as

Jϕ = h̃ = (h̃1, . . . , h̃m). (5)

Let also the boundary values of the function g satisfy

Ãp(t)g(η(t)) = ψ + iφ. (6)

Then the function ϕ is the unique solution of the integral equation

(I + N∗

p + J)ϕ = M∗υ + 2φ+ h̃. (7)

For j = 0, 1, . . . , m, the functions Sj(t) can be written as a summation of ϕ and νj,

Sj(t) =

∫

ϕ(t)dt+ νj = ρj(t) + νj , t ∈ Jj, (8)

where νj are undetermined real constants and shall be calculated by Theorem 2[15]. The
derivative of the the unknown function S(t) i.e. ϕ(t) is 2π-periodic. Thus, the function ϕ(t) can
be represented by a Fourier series

ϕ(t) = a
[j]
0 +

∞
∑

k=1

a
[j]
k cos kt+

∞
∑

k=1

b
[j]
k sinkt, t ∈ Jj . (9)

Hence the functions ρk(t) can be calculated by the Fourier series representation

ρj(t) = a
[j]
0 t+

∞
∑

k=1

a
[j]
k

k
sin kt−

∞
∑

k=1

b
[j]
k

k
cos kt, t ∈ Jj. (10)
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Theorem 2 Let γ, µ ∈ H and h, ν ∈ L such that

Apf = γ + h+ i[µ+ ν] (11)

are boundary values of a function f(z) analytic in G. Then the functions h = (h0, h1, . . . , hm)
and ν = (ν0, ν1, . . . , νm) have each element given by

h =
m
∑

k=0

(

γ, ϑ[k]
)

χ[k], (12)

ν =

m
∑

k=0

(

µ, ϑ[k]
)

χ[k], (13)

where ϑ[k] is the unique solution of the integral equation

(I + N∗

p + J)ϑ[k] = −χ[k], k = 1, 2, . . . , m. (14)

By obtaining ρ(t) and ν(t), we can have S(t) by (8).

3. Computing the mapping function

Let the function Φ be defined by

Φ(z) =
1

2

(

z − α

1 − αz
+

1 − αz

z − α

)

+ d, d =

{

0, Ω1,

1, Ω2.

Let also the two functions g1(z) and g2(z) be defined by:

g1(z) =

{

Φ(z), t ∈ J0,

1, t ∈ Jj, j = 1, 2, . . . , m,
g2(z) =

{

1, t ∈ J0,

Φ(z), t ∈ Jj, j = 1, 2, . . . , m.

Then the boundary values of the mapping function ω(η(t)) satisfy

ei(π/2−θj) log

(

ω(η(t))

g1

)

= −Rj + iS(t). (15)

where Rj = 0, R1, · · · , Rm and θj = 0, θ1, θ2, . . . , θm. The mapping function w = ω(z) can be
written as

ω(z) = Φ(z)e(z−α)f(z)+ih0 (16)

where f(z) is an analytic function in G, h0 is undetermined real constant.
Then the boundary values of the function f(z) satisfies

A1(t)f(η(t)) = [h(t) − γ(t)] + i[ρ(t)− µ̂(t) + ν(t)] (17)

where

h(t) =h0 cos θ(t) − R(t), (18)

ν(t) = ν̂(t) − h0 sin θ(t), (19)

γ(t) + iµ(t) = ei(π/2−θ) log g2. (20)



14th International Symposium on Geometric Function Theory and Applications

IOP Conf. Series: Journal of Physics: Conf. Series 1212 (2019) 012014

IOP Publishing

doi:10.1088/1742-6596/1212/1/012014

5

By differentiating (17) with respect to t, we have

Ã2(t)F (η(t)) + Ã2G(η(t)) = iϕ(t),

where

F (η(t)) = (η(t)−α)f(η(t))+(η(t)−α)2f ′(η(t)),
G(η(t)) = (η(t)− α)

g′2(η(t))

g2(η(t))
.

From Theorem 1, we have the following

(I + N∗

2 + J)ϕ(t)(t) = 2Im(Ã2G(η(t))).

The mapping function can be calculated from (16)

ω(η(t)) = g1(η(t))e
e−i(π/2−θj)(−Rj+iS(t)). (21)

4. Numerical examples

We consider two examples which are region with five connectivity and region with thirteen
connectivity. The integral equations are discretized by Nyström method with the trapezoidal
rule to obtain a system of linear algebraic equations. The resulting system is solved by a fast
convergent iterative method as described in [16]. The test regions and their resulting canonical
regions are presented in the Fig. 2 and Fig. 3.
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Figure 2: The original image G and its image Ω1 (center) Ω2 (right) for Example 1.
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