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1 Introduction
The branch of mathematics that deals with the study of noninteger order derivatives and
integrals is called fractional calculus (FC). FC is almost 300 years old as the classical calcu-
lus. The interesting thing about this subject is that in contrast to the classical derivatives,
the fractional derivatives are not a point quantity. Indeed, the fractional derivative of a
function of order α at some point is a local property only for α being an integer. On the
other hand, when α is not an integer, the derivative does not only depend on the graph of
the function very close to the point but it also depends on some history.

FC has not been a famous applied field of interest among scientists and engineers in the
previous years. Thus, many researchers have not recognized the rich applications of FC
for a long period of time. In recent decades, however, it has been realized that the FC has
several potential applications in different areas of engineering and science such as propa-
gation, electrochemistry, finance, and bio engineering. In the literature, one can figure out
that there are many definitions of fractional derivatives. For instance, we refer here to the
most well-known types such as Caputo derivative, Liouville derivative, Hadamard deriva-
tive, Katugampola derivative, and many others. Consequently, this has led to several types
of fractional differential equations defined by different fractional operators [11, 22]. The
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best way to deal with such a variety of fractional operators is to accommodate generalized
forms of fractional operators that include other operators.

Researchers who are interested in this subject have introduced many generalizations
of fractional derivatives such as ψ-Hilfer fractional derivative, Hilfer–Katugampola frac-
tional derivative, and generalized proportional fractional derivative [1, 2, 12, 14–17, 23,
25–28]. In [1], Abdo and Panchal considered a general form of ψ-Hilfer fractional deriva-
tive with respect to another function of a fractional integro-differential equation. They
presented results on existence, uniqueness, and stability of the solutions. In [16], the au-
thors introduced a new generalized derivative involving exponential functions in their
kernels which, upon considering limiting cases, converges to classical derivatives. They
solved Cauchy linear fractional type problems within this derivative. In [17], however, the
author introduced Katugampola fractional derivative. Indeed, he presented a generalized
fractional derivative that generalizes the regular Hadamard and Riemann–Liouville frac-
tional derivatives. In [23], the authors considered a class of nonlinear fractional initial
value problems, and they proved the existence and uniqueness of solutions. Following this
trend, the existence of positive solutions of the regular fractional boundary value problems
(FBVPs) have been discussed in many papers such as [5, 6, 9, 10, 21, 31, 33–35]. For the
sake of completeness, we refer afterwards to some relevant papers that study the existence
of solutions in the frame of the classical Riemann–Liouville and Caputo derivatives. More
precisely, the authors in [8] considered the problem

⎧
⎨

⎩

Dα
0+z(x) + f (x, z(x)) = 0, 0 < x < 1, 1 < α ≤ 2,

z(0) = z(1) = 0,

where Dα
0+ is the Riemann–Liouville operator. They investigated the existence and mul-

tiplicity of positive solutions for the above problem. In [7], the same author proved the
existence and uniqueness of positive solutions for the same problem but under different
boundary conditions of the form

⎧
⎨

⎩

Dα
0+z(x) + f (x, z(x)) = 0, 0 < x < 1, 1 < α ≤ 2,

z(0) = 0 = βz(η) = z(1), 0 < βηα–1 < 1.

The existence and multiplicity of positive solutions of the following problem were dis-
cussed in [32]:

⎧
⎨

⎩

cDα
0+z(x) + f (x, z(x)) = 0, 0 < x < 1, 1 < α ≤ 2,

z(0) + z′(0) = 0, z(1) + z′(1) = 0,

where cDα
0+ is the Caputo operator. On the other hand, and to the best of our insight,

the existence of positive solutions of FBVPs within ϕ-Riemann–Liouville and ϕ-Caputo
operators has not been discussed so far.

The results of this paper are motivated by the recent work of Almeida in [3] who estab-
lished results for the existence and uniqueness of solutions of FBVP involving a general
form of fractional derivative. We shall consider a general form of the derivative, fractional
derivative of a function with respect to another function, that includes other definitions
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of operators for particular choice of a function. The new derivative herein generalizes
the classical definitions of derivatives in the sense that the Riemann–Liouville [30], the
Erdelyi–Kober [18, 29], and the Hadamard [20, 24] fractional derivatives are all recovered
by choosing particular forms of ϕ(t). Moreover, the results of this paper generalize the
work established in the papers [7, 8, 32].

In this paper, we discuss the existence and multiplicity of positive solutions of FBVPs de-
fined within ϕ-Riemann–Liouville and ϕ-Caputo operators. For our purpose, we convert
FBVPs into equivalent integral equations via constructing Green functions for the pro-
posed problems. The technique of fixed point theorems is employed to prove the main
results.

The FBVP under consideration has the form

Dα,ϕ
0+ z(x) + f

(
x, z(x)

)
= 0, x ∈ (0, 1), (1.1)

and is associated with two different boundary conditions

z(0) = 0, z(1) = 0, (1.2)

z(0) = 0, z(1) = βz(η), (1.3)

where 1 < α ≤ 2, 0 < (ϕ(1) – ϕ(0))α–1 – β(ϕ(η) – ϕ(0))α–1 < 1, and Dα,ϕ
0+ is the ϕ-Riemann–

Liouville fractional derivative.
Moreover, we study FBVP of the form

⎧
⎨

⎩

cDα,ϕ
0+ z(x) – f (x, z(x)) = 0, x ∈ (0, 1),

z(0) + z′(0) = 0, z(1) + z′(1) = 0,
(1.4)

where 1 < α ≤ 2, cDα,ϕ
0+ is the ϕ-Caputo fractional derivative.

Furthermore, the nonlinear f : [0, 1] × [0,∞) → [0,∞) is continuous and the function
ϕ : [0, 1] → [0, 1] is a strictly increasing function such that ϕ ∈ C2[0, 1], ϕ′(x) �= 0 for all
x ∈ [0, 1].

The paper is divided into four sections. Section 1 presents a descriptive introduction.
Section 2 states some essential definitions and lemmas that we utilize to prove the main
results. Section 3 is devoted to proving the main existence results for FBVP (1.1)–(1.2),
(1.1)–(1.3), and (1.4), respectively. Section 4 demonstrates illustrative examples that show
consistency to the main theorems.

2 Preliminaries
In this part of the paper, we assemble some essential definitions and fixed point theorems
that will be used throughout the remaining part of the paper. Besides, some auxiliary lem-
mas are proved prior to proceeding to the main results of this paper.

Definition 2.1 ([4]) Let z : [a, b] → R be an integrable function and ϕ : [a, b] → R be
an increasing function such that, for all x ∈ [a, b], ϕ′(x) �= 0. The ϕ-Riemann–Liouville
fractional integral of a function z is defined as follows:

Iα,ϕ
a+ z(x) =

1
Γ (α)

∫ x

a
ϕ′(ν)

(
ϕ(x) – ϕ(ν)

)α–1z(ν) dν. (2.1)
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Definition 2.2 ([4]) The ϕ-Riemann–Liouville fractional derivative of order α, with n =
[α] + 1, of a function z corresponding to ϕ-Riemann–Liouville fractional integral (2.1) is
defined as follows:

Dα,ϕ
a+ z(x) =

1
Γ (n – α)

(
1

ϕ′(x)
d

dx

)n ∫ x

a
ϕ′(ν)

(
ϕ(x) – ϕ(ν)

)n–α–1z(ν) dν.

Definition 2.3 ([4]) The ϕ-Caputo fractional derivative of order α, with n = [α] + 1, is
defined as

cDα,ϕ
a+ z(x) = Dα,ϕ

a+

[

z(x) –
n–1∑

k=0

z[k]
ϕ (a)
k!

(
ϕ(x) – ϕ(a)

)k
]

,

where z ∈ C
n–1[a, b].

In what follows, we convert the FBVPs into integral equations via Green functions.

Lemma 2.4 Let f ∈ C[0, 1] and 1 < α ≤ 2. Then the FBVP

⎧
⎨

⎩

Dα,ϕ
a+ z(x) + f (x) = 0, x ∈ (0, 1),

z(0) = 0, z(1) = 0,
(2.2)

is equivalent to

z(x) =
∫ 1

0
G(x,ν)ϕ′(ν)f (ν) dν,

where

G(x,ν) =
Υ (x)
Γ (α)

⎧
⎪⎪⎨

⎪⎪⎩

(ϕ(1) – ϕ(ν))α–1 – 1
Υ (x) (ϕ(x) – ϕ(ν))α–1,

0 ≤ ν ≤ x ≤ 1,

(ϕ(1) – ϕ(ν))α–1, 0 ≤ x ≤ ν ≤ 1,

(2.3)

with K(x) = ϕ(x) – ϕ(0) and Υ (x) = (K (x))α–1

(K (1))α–1 .

Proof The general solution of FBVP (2.2) is given by

z(x) = c1
(
ϕ(x) – ϕ(0)

)α–1 + c2
(
ϕ(x) – ϕ(0)

)α–2 – Iα,ϕ
0+ f (x),

i.e.,

z(x) = c1
(
K(x)

)α–1 + c2
(
K(x)

)α–2 – Iα,ϕ
0+ f (x).
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By using the given conditions z(0) = z(1) = 0, we obtain

z(x) =
Υ (x)
Γ (α)

∫ 1

0
ϕ′(ν)

(
ϕ(1) – ϕ(ν)

)α–1f (ν) dν

–
1

Γ (α)

∫ x

0
ϕ′(ν)

(
ϕ(x) – ϕ(ν)

)α–1f (ν) dν

=
∫ 1

0
G(x,ν)ϕ′(ν)f (ν) dν,

where G is defined as in equation (2.3). �

Lemma 2.5 The following conditions are satisfied by the Green function G defined by equa-
tion (2.3):

(i) G(x,ν) > 0 for all x,ν ∈ (0, 1),
(ii) For ν ∈ (0, 1), there exists a positive function γ such that

min
x∈[1/4,3/4]

G(x,ν) ≥ γ (ν) max
x∈[0,1]

G(x,ν).

Proof We prove (i): Since ϕ is a strictly increasing function, we have ϕ(1) > ϕ(ν) whenever
ν < 1. So one can easily conclude from equation (2.3) that, for 0 ≤ x ≤ ν ≤ 1, G(x,ν) > 0.
And for 0 ≤ ν ≤ x ≤ 1, we consider

ϕ(1) – ϕ(x) > 0.

Multiplying both sides by (ϕ(ν) – ϕ(0)) > 0, we have

(
ϕ(1) – ϕ(x)

)(
ϕ(ν) – ϕ(0)

)
> 0,

which implies

ϕ(1)ϕ(ν) + ϕ(0)ϕ(x) > ϕ(1)ϕ(0) + ϕ(ν)ϕ(x).

Multiplying both sides of the above inequality by –1, we get

–ϕ(1)ϕ(0) – ϕ(ν)ϕ(x) > –ϕ(1)ϕ(ν) – ϕ(0)ϕ(x).

Adding ϕ(1)ϕ(x) + ϕ(0)ϕ(ν) to both sides, we obtain

(
ϕ(x) – ϕ(0)

)(
ϕ(1) – ϕ(ν)

)
>

(
ϕ(x) – ϕ(ν)

)(
ϕ(1) – ϕ(0)

)
.

Raising both sides to the power (α – 1) and then dividing by (ϕ(x) – ϕ(0))α–1, we get

(
ϕ(1) – ϕ(ν)

)α–1 –
(ϕ(1) – ϕ(0))α–1

(ϕ(x) – ϕ(0))α–1

(
ϕ(x) – ϕ(ν)

)α–1 > 0.

Hence G(x,ν) > 0 for x,ν ∈ (0, 1).
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We prove (ii): Let us denote K(x) = ϕ(x) – ϕ(0), Υ (x) = ( K (x)
K (1) )α–1. Note that

g1(x,ν) =
Υ (x)
Γ (α)

(
ϕ(1) – ϕ(ν)

)α–1 –
1

Γ (α)
(
ϕ(x) – ϕ(ν)

)α–1

≤ (ϕ(1) – ϕ(ν))α–1

(K(1))α–1Γ (α)
, 0 ≤ ν ≤ x ≤ 1,

and

g2(x,ν) =
Υ (x)
Γ (α)

(
ϕ(1) – ϕ(ν)

)α–1

≤ (ϕ(1) – ϕ(ν))α–1

(K(1))α–1Γ (α)
, 0 ≤ x ≤ ν ≤ 1.

Thus, we have

max
x∈[0,1]

G(x,ν) ≤ (ϕ(1) – ϕ(ν))α–1

(K(1))α–1Γ (α)
.

Observing that G(x,ν) is a decreasing function for ν ≤ x, and it is an increasing function
for x ≤ ν , we deduce that

min
x∈[1/4,3/4]

G(x,ν) =

⎧
⎨

⎩

g1(3/4,ν), ν ∈ (0, k],

g2(1/4,ν), ν ∈ [k, 1),

where 1/4 < k < 3/4 is a unique solution of the equation

[

Υ

(
3
4

)
(
ϕ(1) – ϕ(ν)

)
]α–1

–
(

ϕ

(
3
4

)

– ϕ(ν)
)α–1

=
[

Υ

(
1
4

)
(
ϕ(1) – ϕ(ν)

)
]α–1

.

Then the conclusion follows by setting

γ (ν) =

⎧
⎨

⎩

(K (3/4))α–1(ϕ(1)–ϕ(ν))α–1–(ϕ(3/4)–ϕ(ν))α–1(K (1))α–1

(ϕ(1)–ϕ(ν))α–1 , ν ∈ (0, k],

(K(1/4))α–1, ν ∈ [k, 1). �

For the sake of convenience, we denote

K(x) = ϕ(x) – ϕ(0), μ :=
[
K(1)

]α–1 – β
[
K(η)

]α–1.

Lemma 2.6 Let f ∈ C[0, 1] and 1 < α ≤ 2, 0 < μ < 1. Then the FBVP

⎧
⎨

⎩

Dα,ϕ
a+ z(x) + f (x) = 0, x ∈ (0, 1),

z(0) = 0, z(1) = βz(η),
(2.4)

has a solution

z(x) =
∫ 1

0
H(x,ν)ϕ′(ν)f (ν) dν,
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where

H(x,ν) =
(
μΓ (α)

)–1
Π (x) (2.5)

with

Π (x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[K(x)(ϕ(1) – ϕ(ν))]α–1 – β[K(x)(ϕ(η) – ϕ(ν))]α–1 – μ(ϕ(x) – ϕ(ν))α–1,

0 ≤ ν ≤ x ≤ 1,ν ≤ η,

[K(x)(ϕ(1) – ϕ(ν))]α–1 – μ(ϕ(x) – ϕ(ν))α–1, 0 < η ≤ ν ≤ x ≤ 1,

[K(x)(ϕ(1) – ϕ(ν))]α–1 – β[K(x)(ϕ(η) – ϕ(ν))]α–1,

0 ≤ x ≤ ν ≤ η < 1,

[K(x)(ϕ(1) – ϕ(ν))]α–1, 0 ≤ x ≤ ν ≤ 1,η ≤ ν.

Lemma 2.7 The function H defined by (2.5) satisfies H(x,ν) > 0 for x,ν ∈ (0, 1).

Proof For 0 ≤ ν ≤ x ≤ 1, ν ≤ η, we let K(x) = ϕ(x) – ϕ(0), Π (x) = K (ν)
K (x) , and

h(x,ν) =
[
K(x)

(
ϕ(1) – ϕ(ν)

)]α–1 – β
[
K(x)

(
ϕ(η) – ϕ(ν)

)]α–1 – μ
(
ϕ(x) – ϕ(ν)

)α–1.

Then we have

h(x,ν) =
[
K(x)

(
ϕ(1) – ϕ(ν)

)]α–1 – β
[
K(x)

(
ϕ(η) – ϕ(ν)

)]α–1 – μ
(
ϕ(x) – ϕ(ν)

)α–1,

h(x,ν) =
(
K(x)

)α–1[(
ϕ(1) – ϕ(ν)

)α–1 – β
(
ϕ(η) – ϕ(ν)

)α–1 – μ
(
1 – Π (x)

)α–1].

Consider

h(x) =
[(

ϕ(1) – ϕ(ν)
)α–1 – β

(
ϕ(η) – ϕ(ν)

)α–1 – μ
(
1 – Π (x)

)α–1].

Thus, we obtain

h′(x) = –(α – 1)μ
(
1 – Π (x)

)α–2 (K(ν))ϕ′(x)
(K(x))2 < 0,

which implies that h(x) is a decreasing function for 0 ≤ ν ≤ x ≤ 1, ν ≤ η. Moreover, we
note that, for x ∈ (0, 1), we have

h(1) =
[(

ϕ(1) – ϕ(ν)
)α–1 – β

(
ϕ(η) – ϕ(ν)

)α–1 – μ
(
1 – Π (1)

)α–1]

=
[
–β

(
ϕ(η) – ϕ(ν)

)α–1 + β
(
K(η)

)α–1(1 – Π (1)
)α–1].

By adding and subtracting ϕ(0) in the first term of the above equation, we get

h(1) = β
(
K(η)

)α–1[(1 – Π (1)
)α–1 –

(
1 – Π (η)

)α–1] > 0.

Hence, h(x,ν) > 0 for 0 ≤ ν ≤ x ≤ 1, ν ≤ η.
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For η ≤ ν ≤ x, we let

h(x,ν) =
(
K(x)

)α–1(
ϕ(1) – ϕ(ν)

)α–1 –
[(

K(1)
)α–1 – β

(
K(η)

)α–1](
ϕ(x) – ϕ(ν)

)α–1.

It follows that

h(x,ν) >
(
K(x)

)α–1(
ϕ(1) – ϕ(ν)

)α–1 –
(
K(1)

)α–1(
ϕ(x) – ϕ(ν)

)α–1.

Adding and subtracting ϕ(0), we have

h(x,ν) =
(
K(x)

)α–1(
ϕ(1) – ϕ(0) + ϕ(0) – ϕ(ν)

)α–1

–
(
K(1)

)α–1(
ϕ(x) – ϕ(0) + ϕ(0) – ϕ(ν)

)α–1.

Therefore, we obtain

h(x,ν) =
[
K(1)K(x)

]α–1[(1 – Π (1)
)α–1 –

(
1 – Π (x)

)α–1] > 0.

For x ≤ ν ≤ η, we let

h(x,ν) =
(
K(x)

)α–1(
ϕ(1) – ϕ(ν)

)α–1 – β
(
K(x)

)α–1(
ϕ(η) – ϕ(ν)

)α–1

=
(
K(x)

)α–1[(
ϕ(1) – ϕ(ν)

)α–1 – β
(
ϕ(η) – ϕ(ν)

)α–1]

=
(
K(x)

)α–1[(
ϕ(1) – ϕ(ν)

)α–1(1 – Π (1)
)α–1

– β
(
ϕ(η) – ϕ(ν)

)α–1(1 – Π (η)
)α–1].

Since μ > 0, we obtain

h(x,ν) >
(
K(x)

)α–1
μ

(
1 – Π (η)

)α–1 > 0.

Clearly, for 0 ≤ x ≤ ν ≤ 1, η ≤ ν , h(x,ν) > 0.
Hence H(x,ν) > 0 for x,ν ∈ (0, 1). �

Lemma 2.8 Let f ∈ C[a, b] and 1 < α ≤ 2, then the FBVP
⎧
⎨

⎩

cDα,ϕ
0+ z(x) – f (x) = 0, x ∈ (0, 1),

z(0) + z′(0) = 0, z(1) + z′(1) = 0,

has a solution z(x) =
∫ 1

0 W (x,ν)ϕ′(ν)f (ν) dν , where

W (x,ν) =
(
Γ (α – 1)

[
ϕ(1) – ϕ(0) + ϕ′(1) – ϕ′(0)

])–1P(x), (2.6)

where

P(x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(ϕ′(0) + ϕ(0) – ϕ(x))[(ϕ(1) – ϕ(ν))α–2 + 1
α–1 (ϕ(1) – ϕ(ν))α–1]

+ (ϕ(1)–ϕ(0))+(ϕ′(1)–ϕ′(0))
α–1 (ϕ(x) – ϕ(ν))α–1, 0 ≤ ν ≤ x ≤ 1,

(ϕ′(0) + ϕ(0) – ϕ(x))[(ϕ(1) – ϕ(ν))α–2 + 1
α–1 (ϕ(1) – ϕ(ν))α–1],

0 ≤ x ≤ ν ≤ 1.
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Lemma 2.9 Let ϕ(x) ≤ ϕ(0) +ϕ′(0), then the function W defined by (2.6) satisfies W (x,ν) >
0 for all x,ν ∈ (0, 1). Besides, there exists a positive function υ ∈ (0, 1) such that

min
x∈[1/4,3/4]

W (x,ν) ≥ υ(ν)M(ν), ν ∈ (0, 1),

and

max
x∈[0,1]

W (x,ν) ≤ M(ν).

Proof Under the assumption ϕ(x) ≤ ϕ(0) + ϕ′(0), it is clear that W (x,ν) > 0 for all x,ν ∈
(0, 1).

Further assume that

W1(x,ν) =
(
ϕ′(0) + ϕ(0) – ϕ(x)

)
[
(
ϕ(1) – ϕ(ν)

)α–2 +
1

α – 1
(
ϕ(1) – ϕ(ν)

)α–1
]

+
(ϕ(1) – ϕ(0)) + (ϕ′(1) – ϕ′(0))

α – 1
(
ϕ(x) – ϕ(ν)

)α–1, 0 ≤ ν ≤ x ≤ 1,

and

W2(x,ν) =
(
ϕ′(0) + ϕ(0) – ϕ(x)

)
[
(
ϕ(1) – ϕ(ν)

)α–2

+
1

α – 1
(
ϕ(1) – ϕ(ν)

)α–1
]

, 0 ≤ x ≤ ν ≤ 1.

Since W1(x,ν) is continuous for all x ∈ [1/4, 3/4], we have

W1(x,ν) ≥ (
ϕ′(0) + ϕ(0) – ϕ(3/4)

)
[
(
ϕ(1) – ϕ(ν)

)α–2 +
1

α – 1
(
ϕ(1) – ϕ(ν)

)α–1
]

and

max
x∈[0,1]

W1(x,ν) ≤ (
ϕ(1) + ϕ′(1)

)
[
(
ϕ(1) – ϕ(ν)

)α–2 +
2

α – 1
(
(
ϕ(1) – ϕ(ν)

)α–1
]

.

For some ν ∈ (0, 1), W2(x,ν) is a decreasing function with respect to x. So, we obtain

min
x∈[1/4,3/4]

W2(x,ν) = W2(3/4,ν) and max
x∈[0,1]

W2(x,ν) = W2(0,ν),

and

W2(0,ν) <
(
ϕ(1) + ϕ′(1)

)
[
(
ϕ(1) – ϕ(ν)

)α–2 +
2

α – 1
(
(
ϕ(1) – ϕ(ν)

)α–1
]

.

Hence, for ν ∈ [0, 1), we have minx∈[1/4,3/4] W (x,ν) ≥ m(ν), where

m(ν) =
(
ϕ′(0) + ϕ(0) – ϕ(3/4)

)
[
(
ϕ(1) – ϕ(ν)

)α–2 +
1

α – 1
(
ϕ(1) – ϕ(ν)

)α–1
]

,
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maxx∈[0,1] W (x,ν) ≤ M(ν), where

M(ν) =
(
ϕ(1) + ϕ′(1)

)
[
(
ϕ(1) – ϕ(ν)

)α–2 +
2

α – 1
(
(
ϕ(1) – ϕ(ν)

)α–1
]

.

The conclusion follows by setting υ(ν) = m(ν)
M(ν)

υ(ν) =
ϕ′(0) + ϕ(0) – ϕ(3/4)

ϕ′(1) + ϕ(1)
(α – 1)(ϕ(1) – ϕ(ν))α–2 + (ϕ(1) – ϕ(ν))α–1

(α – 1)(ϕ(1) – ϕ(ν))α–2 + 2(ϕ(1) – ϕ(ν))α–1 , ν ∈ (0, 1).

�

Definition 2.10 Let P be a cone of a real Banach space B and θ : P → [0,∞) be a contin-
uous map such that

θ
(
λz + (1 – λ)w

) ≥ λθ (z) + (1 – λ)θ (w)

for all z, w ∈ P and 0 ≤ λ ≤ 1. Then θ is said to be a nonnegative continuous concave
functional on P.

We shall rely on the following fixed point theorems to prove the main results.

Lemma 2.11 ([13]) Let B be a Banach space, P ⊂ B be a cone. Let Ω1, Ω2 be open balls
in B with 0 ∈ Ω1, with Ω1 ⊂ Ω2. Also, assume that F : P ∩ (Ω2 \ Ω1) → P is a completely
continuous operator such that, either

(i) ‖Fz‖ ≤ ‖z‖ for u ∈ P ∩ ∂Ω1 and ‖Fz‖ ≥ ‖z‖, z ∈ P ∩ ∂Ω2, or
(ii) ‖Fz‖ ≥ ‖z‖ for z ∈ P ∩ ∂Ω1 and ‖Fz‖ ≤ ‖z‖, z ∈ P ∩ ∂Ω2.

Then F has at least one fixed point in P ∩ (Ω2 \ Ω1).

Lemma 2.12 ([19]) Suppose that B is a real Banach space, P ⊂ B is a cone, Pc = {z ∈ P :
‖z‖ ≤ c}. Let θ be a nonnegative continuous concave functional on P such that θ (z) ≤ ‖z‖ for
all z ∈ Pc, and P(θ , b, d) = {z ∈ P : b ≤ θ (z),‖z‖ ≤ d}. Assume that F : Pc → Pc is completely
continuous and there exist constants 0 < a < b < d ≤ c such that

(H1) {z ∈ P(θ , b, d) : θ (Fz) > b} �= φ and θ (Pz) > b for z ∈ P(θ , b, d);
(H2) ‖Fz‖ < a for z ≤ a;
(H3) θ (Fz) > b for z ∈ P(θ , b, c) with ‖Fz‖ > d.

Then F has at least three fixed points z1, z2, and z3 with ‖z1‖ < a, b < θ (z2), a < ‖z3‖ with
θ (z3) < b.

3 Existence results
The following section is devoted to stating and proving the existence results for problems
(1.1)–(1.2), (1.1)–(1.3), and (1.4).

Let E = C[0, 1] be a Banach space equipped with the norm ‖z‖ = maxx∈[0,1] |z(x)|, and let
P, R ⊂ E defined by

P =
{

z ∈ E : z(x) ≥ 0
}

and R =
{

z ∈ E : z(x) ≥ υ(ν)‖z‖}

be the cones, where υ(ν) is defined later.
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Lemma 3.1 Let the operator T : P → E be defined by

Tz(x) =
∫ 1

0
G(x,ν)ϕ′(ν)f

(
ν, z(ν)

)
dν,

then T : P → P is a completely continuous operator.

Proof Because of nonnegativity and continuity of G(x,ν) and f (ν, z(ν)), the operator T :
P → P is continuous. Further assume that Ω ⊂ P is bounded, and for all z ∈ Ω , there exists
a constant r1 > 0 such that ‖z‖ ≤ r1. Let L = maxx∈[0,1],z∈[0,r1] |f (x, z)| + 1, then for z ∈ Ω , we
have

∣
∣Tz(x)

∣
∣ ≤ max

x∈[0,1]

∫ 1

0
G(x,ν)ϕ′(ν)f

(
ν, z(ν)

)
dν

≤ L
∫ 1

0

(ϕ(1) – ϕ(ν))α–1

(ϕ(1) – ϕ(0))α–1 ϕ′(ν) dν

=
L(ϕ(1) – ϕ(0))

α
.

For each z ∈ Ω , x1, x2 ∈ [0, 1], x1 < x2, we have

∣
∣Tz(x2) – Tz(x1)

∣
∣ =

∫ 1

0

∣
∣G(x2,ν) – G(x1,ν)

∣
∣ϕ′(ν)f

(
ν, z(ν)

)
dν.

Consider S = |G(x2,ν) – G(x1,ν)|,

S =
∣
∣
∣
∣

(ϕ(1) – ϕ(ν))α–1

(ϕ(1) – ϕ(0))α–1Γ (α)
[(

ϕ(x2) – ϕ(0)
)α–1 –

(
ϕ(x1) – ϕ(0)

)α–1]

+
1

Γ (α)
[(

ϕ(x1) – ϕ(ν)
)α–1 –

(
ϕ(x2) – ϕ(ν)

)α–1]
∣
∣
∣
∣.

By applying the mean value theorem, we obtain

∣
∣G(x2,ν) – G(x1,ν)

∣
∣ = |x2 – x1|

[
(ϕ(1) – ϕ(ν))α–1

(ϕ(1) – ϕ(0))α–1Γ (α)
h′(ξ ) +

1
Γ (α)

g ′(η)
]

.

Therefore, as x1 → x2, |Tz(x2) – Tz(x1)| → 0. Hence by the Arzela–Ascoli theorem, T :
P → P is completely continuous. �

Lemma 3.2 Let the operator F : P → P be defined by

Fz(x) =
∫ 1

0
H(x,ν)ϕ′(ν)f

(
ν, z(ν)

)
dν.

Then F : P → P is completely continuous.

Proof Since f , G, and ϕ′ are nonnegative and continuous, the operator F : P → P is con-
tinuous. We also assume that Ω̃ ⊂ P is bounded, that is, for all z ∈ Ω̃ , ‖z‖ ≤ r2, for some
r2 > 0, a positive constant.
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Let δ = maxx∈[0,1],z∈[0,r2] |f (x, z)| + 1, then for z ∈ Ω̃ ,

|Fu| ≤
∣
∣
∣
∣

∫ 1

0
H(x,ν)ϕ′(ν)f

(
ν, z(ν)

)
dν

∣
∣
∣
∣

≤ ςδ

∫ 1

0

(
ϕ(1) – ϕ(ν)

)α–1
ϕ′(ν) dν =

ςδ(ϕ(1))α

α
,

where ς := (ϕ(1)–ϕ(0))α–1

(ϕ(1)–ϕ(0))α–1–b(ϕ(η)–ϕ(0))α–1Γ (α) . By applying the mean value theorem, we can show
that, for x1, x2 ∈ [0, 1], x1 < x2, |H(x2,ν) – H(x1,ν)| → 0 as x1 → x2. Thus, by the Arzela–
Ascoli theorem, F : P → P is completely continuous. �

Lemma 3.3 Let the operator Q : R → R be defined by

Qz(x) =
∫ 1

0
W (x,ν)ϕ′(ν)f

(
ν, z(ν)

)
dν.

Then Q : R → R is completely continuous.

The proof of the above statement is straightforward and hence is omitted.
In the sequel, we make use of the following notations:

N =
(∫ 3/4

1/4
γ (ν)

(ϕ(1) – ϕ(ν))α–1

(ϕ(1) – ϕ(0))α–1Γ (α)
ϕ′(ν) dν

)–1

,

M =
Γ (α + 1)

(ϕ(1) – ϕ(0))
.

Theorem 3.4 Assume that f (x, z) ≥ 0 is a continuous function on [0, 1] × [0,∞). Let ρ2 >
ρ1 > 0 be two positive constants so that

(A1) f (x, z) ≤ Mρ2 for (x, z) ∈ [0, 1] × [0,ρ2];
(A2) f (x, z) ≥ Nρ1 for (x, z) ∈ [1/4, 3/4] × [0,ρ1].

Then there exists at least one positive solution (say z0) of FBVP (1.1)–(1.2) such that ρ1 ≤
‖z0‖ ≤ ρ2.

Proof By Lemma 3.1, we have T : P → P is completely continuous. Let Ω1 = {z ∈ P : ‖u‖ <
ρ1}. For z ∈ ∂Ω1, we have 0 ≤ z(x) ≤ ρ1 for all x ∈ [0, 1] such that assumption (A2) holds.
For x ∈ [1/4, 3/4], we find that

Tz(x) =
∫ 1

0
G(x,ν)ϕ′(ν)f

(
ν, z(ν)

)
dν

≥ Nρ1

∫ 3/4

1/4
γ (ν)

(ϕ(1) – ϕ(ν))α–1

(ϕ(1) – ϕ(0))α–1Γ (α)
ϕ′(ν) dν = ρ1.

Thus, for z ∈ ∂Ω1, we have

‖Tz‖ ≥ ‖z‖.
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On the other hand, let Ω2 = {z ∈ P : ‖z‖ < ρ2}. For z ∈ ∂Ω2, we have that 0 ≤ z(x) ≤ ρ2

for all x ∈ [0, 1] such that assumption (A1) holds. For x ∈ [0, 1], we find that

∥
∥Tz(x)

∥
∥ = max

x∈[0,1]

∫ 1

0
G(x,ν)ϕ′(ν)f

(
ν, z(ν)

)
dν

≤ Mρ2

∫ 1

0

(ϕ(1) – ϕ(ν))α–1

(ϕ(1) – ϕ(0))α–1Γ (α)
ϕ′(ν) dν

= Mρ2
(ϕ(1) – ϕ(0))

Γ (α + 1)
= ρ2 = ‖u‖.

Hence by (ii) of Lemma 2.11, it follows that problem (1.1)–(1.2) has a positive solution
with ρ1 ≤ ‖z0‖ ≤ ρ2. �

Theorem 3.5 Let f (x, z) be continuous and a, b, c be positive constants with a < b < c such
that the following assumptions hold:

(C1) for (x, z) ∈ [0, 1] × [0, a], f (x, z) < Ma;
(C2) for (x, z) ∈ [1/4, 3/4] × [b, c], f (x, z) ≥ Nb;
(C3) for (x, z) ∈ [0, 1] × [0, c], f (x, z) ≤ Mc.

Then there exist at least three positive solutions z1, z2, z3 of FBVP (1.1)–(1.2), with

max
x∈[0,1]

∣
∣z1(x)

∣
∣ < a, b < min

x∈[1/4,3/4]

∣
∣z2(x)

∣
∣ < max

x∈[0,1]

∣
∣z2(x)

∣
∣ ≤ c,

a < max
x∈[0,1]

∣
∣z3(x)

∣
∣ ≤ c, min

x∈[1/4,3/4]

∣
∣z3(x)

∣
∣ < b.

Proof For z ∈ Pc and ‖z‖ ≤ c, let assumption (C3) hold. Then we have

‖Tz‖ = max
x∈[0,1]

∣
∣
∣
∣

∫ 1

0
G(x,ν)ϕ′(ν)f

(
ν, z(ν)

)
dν

∣
∣
∣
∣

≤ Mc
∫ 1

0

(ϕ(1) – ϕ(ν))α–1

(ϕ(1) – ϕ(0))α–1Γ (α)
ϕ′(ν) dν

= Mc
(ϕ(1) – ϕ(0))

Γ (α + 1)
= c.

Therefore, T : Pc → Pc. Similarly, we can show that, for z ∈ Pa, condition (H2) of
Lemma 2.12 is fulfilled.

To check condition (H1) of Lemma 2.12, let z(x) = b+c
2 , x ∈ [0, 1]. Clearly θ (z) = θ ( b+c

2 ) > b,
as z(x) = b+c

2 ∈ P(θ , b, c). Therefore, {z ∈ P(θ , b, c) : θ (z) > b} �= φ. Thus, if z ∈ P(θ , b, c), then
for x ∈ [1/4, 3/4], b ≤ z(x) ≤ c. Moreover, from assumption (C2), we have f (x, z(x)) ≥ Nb
for x ∈ [1/4, 3/4]. Thus, for all z ∈ P(θ , b, c), we have

θ (Tz) = min
x∈[1/4,3/4]

∣
∣(Tz)(x)

∣
∣ > Nb

∫ 3/4

1/4
γ (ν)

(ϕ(1) – ϕ(ν))α–1

(ϕ(1) – ϕ(0))α–1Γ (α)
ϕ′(ν) dν = b.

Thus condition (H1) of Lemma 2.12 is satisfied.
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Hence there exist at least three positive solutions z1, z2, z3 of problem (1.1), (1.2) with

max
x∈[0,1]

∣
∣z1(x)

∣
∣ < a, b < min

x∈[1/4,3/4]

∣
∣z2(x)

∣
∣ < max

x∈[0,1]

∣
∣z2(x)

∣
∣ ≤ c,

a < max
x∈[0,1]

∣
∣z3(x)

∣
∣ ≤ c, min

x∈[1/4,3/4]

∣
∣z3(x)

∣
∣ < b. �

Now, we prove the existence result for problem (1.1)–(1.3).

Theorem 3.6 Let f (x, z) satisfy the condition

∣
∣f (x, z) – f (x, w)

∣
∣ < γ̃ (x)|z – w|, for x ∈ [0, 1], z, w ∈ [0,∞). (3.1)

If

∫ 1

0

(
ϕ(ν) – ϕ(0)

)α–1(
ϕ(1) – ϕ(ν)

)α–1
ϕ′(ν)γ̃ (ν) dν < Γ (α)μ, (3.2)

then there exists a unique positive solution of FBVP (1.1)–(1.3).

Proof We want to prove that the operator Fn is a contraction for sufficiently large n. For
z, w ∈ P, we have

∣
∣(Fz – Fw)(x)

∣
∣ =

∫ 1

0
H(x,ν)ϕ′(ν)

∣
∣f

(
ν, z(ν)

)
– f

(
ν, w(ν)

)∣
∣dν

<
‖z – w‖(ϕ(x) – ϕ(0))α–1

Γ (α)μ

∫ 1

0

(
ϕ(1) – ϕ(ν)

)α–1
ϕ′(ν)γ̃ (ν) dν

=
L‖z – w‖(ϕ(x) – ϕ(0))α–1

Γ (α)μ
,

where L =
∫ 1

0 (ϕ(1)–ϕ(ν))α–1ϕ′(ν)γ̃ (ν) dν . Consequently, if we set K =
∫ 1

0 (ϕ(ν)–ϕ(0))α–1 ×
(ϕ(1) – ϕ(ν))α–1ϕ′(ν)γ̃ (ν) dν , then

∣
∣
(
F2z – F2w

)
(x)

∣
∣ =

∫ 1

0
H(x,ν)ϕ′(ν)

∣
∣f

(
ν, (Fz)(ν)

)
– f

(
ν, (Fw)(ν)

)∣
∣dν

<
L‖z – w‖(ϕ(x) – ϕ(0))α–1

(Γ (α)μ)2 K

=
LK‖z – w‖(ϕ(x) – ϕ(0))α–1

(Γ (α)μ)2 ,

and by induction, we obtain

∣
∣
(
Fnz – Fnw

)
(x)

∣
∣ ≤ LKn–1‖z – w‖(ϕ(x) – ϕ(0))α–1

(Γ (α)μ)n .

Using condition (3.2) and letting LKn–1

(Γ (α)μ)n < 1
2 for sufficiently large n, we have

∥
∥Fnz – Fnw

∥
∥ ≤ 1

2
‖z – w‖.

This completes the proof. �
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Next we prove the existence results for FBVP (1.4). To complete this, we assume a par-
ticular form for f . That is,

(P1) Let f (x, z) = κf1(x)f2(z), where κ is a positive constant. Besides, assume

f0 = lim
z→0

f2(z)
z

, f∞ = lim
z→∞

f2(z)
z

.

Theorem 3.7 Suppose that (P1) holds.
(P2) If f0 = 0, f∞ = ∞, then FBVP (1.4) possesses a positive solution for all κ positive.
(P3) If f0 = ∞, f∞ = 0, then FBVP (1.4) possesses a positive solution for all κ positive.

Proof From Lemma 3.3, we have that the operator Q : R → R is completely continuous.
Let Ω̃ρ = {z ∈ R : ‖z‖ < ρ}, then the operator Q : Ω̃ρ → R defined as

Qz(x) = κ

∫ 1

0
W (x,ν)ϕ′(ν)f1(ν)f2

(
z(ν)

)
dν

is completely continuous. The hypothesis f0 = 0 implies, for ε < (κ
∫ 1

0 M(ν)ϕ′(ν)f1(ν) dν)–1,
that there exists ρ1 > 0 such that f2(z) < ε|z|, whenever |z| < ρ1. Let Ω̃ρ1 = {z ∈ R : ‖z‖ < ρ1},
then for z ∈ R ∩ ∂Ω̃ρ1 , we have

∣
∣Qz(x)

∣
∣ ≤ εκ

∫ 1

0
M(ν)ϕ′(ν)f1(ν)

∣
∣z(ν)

∣
∣dν

< ρ1εκ

∫ 1

0
M(ν)ϕ′(ν)f1(ν) dν < ρ1.

Thus, we have ‖Qz‖ ≤ ‖z‖. Furthermore, as f∞ = ∞, there exists M∗ > 0 such that
f2(z) > N |z|, whenever |z| > M∗, where N > (κ

∫ 3/4
1/4 υ2(ν)M(ν)f1(ν)ϕ′(ν) dν)–1. Choose ρ2 >

{ρ1, M∗
υ(ν) }, and let Ω̃ρ2 = {z ∈ R : ‖z‖ < ρ2}. Then, for z ∈ R ∩ ∂Ω̃ρ2 , we have z(x) > M∗ for

x ∈ [1/4, 3/4]. We have

Qz(x) ≥ κ

∫ 3/4

1/4
W (x,ν)f1(ν)f2

(
z(ν)

)
ϕ′(ν) dν

≥ κN
∫ 3/4

1/4
υ2(ν)M(ν)f1(ν)

∥
∥z(ν)

∥
∥ϕ′(ν) dν > ‖z‖.

Thus, for z ∈ R∩∂Ω̃ρ2 , we have ‖Qz‖ ≥ ‖z‖. Hence, by (i) of Lemma 2.11, Q has at least one
fixed point u ∈ R ∩ (Ω̃ρ2 /Ω̃ρ1 ), and Lemma 2.8 implies u ∈ R ∩ (Ω̃ρ2 /Ω̃ρ1 ) is the positive
solution of FBVP (1.4).

The assumption f0 = ∞ implies that there exists ρ1 > 0 such that f2(z) > N |z|, whenever
|z| < ρ1 for N > (κ

∫ 3/4
1/4 υ2(ν)M(ν)f1(ν)ϕ′(ν) dν)–1. Let Ω̃ρ1 = {z ∈ R : ‖z‖ < ρ1}. Thus, for

z ∈ R ∩ ∂Ω̃ρ1 , we have

Qz(x) ≥ κ

∫ 3/4

1/4
W (x,ν)f1(ν)f2

(
z(ν)

)
ϕ′(ν) dν

≥ κN
∫ 3/4

1/4
υ2(ν)M(ν)f1(ν)

∥
∥z(ν)

∥
∥ϕ′(ν) dν > ‖z‖.

Thus, for z ∈ R ∩ ∂Ω̃ρ1 , we have ‖Qz‖ ≥ ‖z‖.
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The hypothesis f∞ = 0 implies that there exists M∗ > 0 such that f2(z) < ε|u| for |u| > M∗,
ε ∈ (2κ

∫ 1
0 M(ν)f1(ν)ϕ′(ν) dν)–1. Therefore, f2(z) ≤ ε|z| + L∗ for z ∈ [0,∞), where L∗ =

max0≤z≤M∗ f2(z)+1. Let Ω̃ρ2 = {z ∈ R : ‖z‖ < ρ2}, where ρ2 > {ρ1, 2κL∗ ∫ 1
0 M(ν)f1(ν)ϕ′(ν) dν},

then for z ∈ R ∩ ∂Ω̃ρ2 , we have

∣
∣Qz(x)

∣
∣ ≤ κε

∫ 1

0
M(ν)f1(ν)

∣
∣z(ν)

∣
∣ϕ′(ν) dν + κL∗

∫ 1

0
M(ν)f1(ν)ϕ′(ν) dν

≤ ρ2κε

∫ 1

0
M(ν)f1(ν)ϕ′(ν) dν + κL∗

∫ 1

0
M(ν)f1(ν)ϕ′(ν) dν

≤ ρ2

2
+

ρ2

2
= ρ2.

Therefore, we have ‖Qz‖ ≤ ‖z‖, for z ∈ R ∩ ∂Ω̃ρ2 . Thus, by (ii) of Lemma 2.11, Q has at
least one fixed point z ∈ R ∩ (Ω̃ρ2 /Ω̃ρ1 ), and Lemma 2.8 implies that z ∈ R ∩ (Ω̃ρ2 /Ω̃ρ1 ) is
a positive solution of FBVP (1.4). �

Theorem 3.8 Let condition (P1) hold. If f0 = 0 or f∞ = 0, then there exists κ0 > 0 such that,
for all κ > κ0, FBVP (1.4) has a positive solution.

Proof For ρ > 0, define Rρ = {z ∈ R : ‖z‖ < ρ}. Then the operator Q : Rρ → R is completely
continuous. If we fix ρ1 > 0, define κ0 = ρ1(mρ1

∫ 3/4
1/4 υ(ν)M(ν)f1(ν)ϕ′(ν) dν)–1 and Ω̃ρ1 =

{z ∈ R : ‖z‖ < ρ1}, where mρ1 = minυρ1≤z≤ρ1 f2(z). From condition (P1), mρ1>0, then for z ∈
R ∩ ∂Ω̃ρ1 , we have

min
x∈[1/4,3/4]

Qz(x) ≥ κ

∫ 3/4

1/4
υ(ν)M(ν)f1(ν)f2

(
z(ν)

)
ϕ′(ν) dν

> κ0mρ1

∫ 3/4

1/4
υ(ν)M(ν)f1(ν)ϕ′(ν) dν

= ρ1 = ‖z‖,

thus,

‖Qz‖ > ‖z‖ for z ∈ R ∩ ∂Ω̃ρ1 ,κ > κ0.

Now if f0 = 0, then for ε ∈ (0, (κ
∫ 1

0 M(ν)ϕ′(ν)f1(ν) dν)–1), there exists ρ̃2 > 0 such that f2(z) <
ε|z|, whenever |z| < ρ̃2. Let Ω̃ρ2 = {z ∈ R : ‖z‖ < ρ2}, ρ2 < {ρ1, ρ̃2}, then for z ∈ R ∩ ∂Ω̃ρ2 , we
have

∣
∣Qz(x)

∣
∣ ≤ εκ

∫ 1

0
M(ν)ϕ′(ν)f1(ν)

∣
∣z(ν)

∣
∣dν

< ρ2εκ

∫ 1

0
M(ν)ϕ′(ν)f1(ν) dν < ρ2,

thus, we have ‖Qz‖ ≤ ‖z‖. The assumption f∞ = 0 implies that there exists M∗ > 0 such
that f2(z) < ε|z| for |z| > M∗, ε ∈ (0, (2κ

∫ 1
0 M(ν)f1(ν)ϕ′(ν) dν)–1). Therefore, f2(z) ≤ ε|z|+ L∗

for u ∈ [0,∞), where L∗ = max0≤z≤M∗ f2(z) + 1. Let Ω̃ρ3 = {z ∈ R : ‖z‖ < ρ3}, where ρ3 >
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{ρ1, 2κL∗ ∫ 1
0 M(ν)f1(ν)ϕ′(ν) dν}, then for z ∈ R ∩ ∂Ω̃ρ3 , we have

∣
∣Qz(x)

∣
∣ ≤ κε

∫ 1

0
M(ν)f1(ν)

∣
∣z(ν)

∣
∣ϕ′(ν) dν + κL∗

∫ 1

0
M(ν)f1(ν)ϕ′(ν) dν

≤ ρ3κε

∫ 1

0
M(ν)f1(ν)ϕ′(ν) dν + κL∗

∫ 1

0
M(ν)f1(ν)ϕ′(ν) dν

≤ ρ3

2
+

ρ3

2
= ρ3,

thus, we have ‖Qz‖ ≤ ‖z‖ for z ∈ R ∩ ∂Ω̃ρ3 . Hence, by Lemma 2.11, Q has a fixed point z ∈
R ∩ (Ω̃ρ2 /Ω̃ρ1 ), or z ∈ R ∩ (Ω̃ρ3 /Ω̃ρ1 ), according to f0 = 0 or f∞ = 0, respectively. Therefore,
for κ > κ0, there exists a positive solution of FBVP (1.4). �

Similarly one can state and prove the following theorems.

Theorem 3.9 Let condition (P1) hold. If f0 = f∞ = ∞, then there exists κ0 > 0 such that, for
all 0 < κ < κ0, FBVP (1.4) has two positive solutions.

Theorem 3.10 Let condition (P1) hold. If f0 = f∞ = 0, then there exists λ0 > 0 such that, for
all λ > λ0, FBVP (1.4) has two positive solutions.

4 Illustrative examples
Corresponding to the proposed problems, we provide the following examples that demon-
strate consistency to the main theorems.

Example 4.1 Consider the FBVP

⎧
⎨

⎩

D
3
2 , ex

3
0+ z(x) + (1 + x2)ex cos2(z(x)) = 0, x ∈ (0, 1),

z(0) = 0, z(1) = 0,
(4.1)

where α = 3
2 , ϕ(x) = ex

3 , ρ1 = 0.1, ρ2 = 1.6, and f (x, z(x)) = (1 + x2)ex cos2(z(x)). It follows that

f
(
x, z(x)

) ≤ (
1 + x2)ex ≈ 5.436 ≤ Mρ2 ≈ 5.584,

where M = Γ (α+1)
(ϕ(1)–ϕ(0)) ≈ 3.49, and

f
(
x, z(x)

) ≥ (
1 + x2)ex(0.999) ≈ 2.718 ≥ Nρ1 ≈ 0.6884,

where

N =
(∫ 3

4

1
4

γ (ν)
(ϕ(1) – ϕ(ν))α–1

(ϕ(1) – ϕ(0))α–1Γ (α)
ϕ′(ν) dν

)–1

≈ 6.844 for γ

(
3
4

)

≈ 0.61.

Hence all the conditions of Theorem 3.4 are satisfied. Therefore, FBVP (4.1) has at least
one positive solution satisfying 0.1 ≤ ‖z0‖ ≤ 1.6.



Seemab et al. Boundary Value Problems        (2019) 2019:186 Page 18 of 20

Example 4.2 Consider the FBVP

⎧
⎨

⎩

D
3
2 , (x2+1)

2
0+ z(x) + x

2 (1 + z2) = 0, x ∈ (0, 1),

z(0) = 0, z(1) = 1
2 z( 1

2 ),
(4.2)

where α = 3
2 , β = η = 1

2 , f (x, z(x)) = x
2 (1 + z2), ϕ(x) = (x2+1)

2 . Then we have

∣
∣f

(
x, z(x)

)
– f

(
x, w(x)

)∣
∣ =

x
2
∣
∣z2 – w2∣∣ ≤ x

2
|z + w|.

Furthermore, we get

∫ 1

0

(
ϕ(ν) – ϕ(0)

)α–1(
ϕ(1) – ϕ(ν)

)α–1
ϕ′(ν)γ̃ (ν) dν =

1
4

∫ 1

0

(
1 – ν2)1/2

ν3 dν = 0.033

and

μ =
(
ϕ(1) – ϕ(0)

)α–1 – β
(
ϕ(η) – ϕ(0)

)α–1 =
3
4

√
1
2

≈ 0.53.

Hence all the conditions of Theorem 3.6 are satisfied. Therefore there exists a unique pos-
itive solution of FBVP (4.2).

Example 4.3 Consider the following FBVP:

⎧
⎨

⎩

cD
3
2 ,sin(x)
0+ z(x) – κe–x u3(x)

1+z2(x) = 0, x ∈ (0, 1),

z(0) + z′(0) = 0, z(1) + z′(1) = 0,
(4.3)

where α = 3
2 , ρ1 = 1, f (x, z(x)) = κe–x u3(x)

1+z2(x) , and ϕ(x) = sin(x). It is clear that

f
(
x, z(x)

)
= κf1(x)f2

(
z(x)

)
,

where f1(x) = e–x and f2(z(x)) = z3(x)
1+z2(x) . By simple computations, we conclude that

υ

(
3
4

)

=
ϕ′(0) + ϕ(0) – ϕ( 3

4 )
ϕ′(1) + ϕ(1)

(α – 1)(ϕ(1) – ϕ( 3
4 ))α–2 + (ϕ(1) – ϕ( 3

4 ))α–1

(α – 1)(ϕ(1) – ϕ( 3
4 ))α–2 + 2(ϕ(1) – ϕ( 3

4 ))α–1

≈ 0.780955 < 1,

mρ1 = min
0.781≤z≤1

z3(x)
1 + z2 ≈ 0.25,

and

κ0 = ρ1

(

mρ1

∫ 3
4

1
4

υ(ν)M(ν)f1(ν)ϕ′(ν) dν

)–1

≈
(

1.1715
∫ 3

4

1
4

e–ν cos(ν) dν

)–1

≈ 3.1716.
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Moreover, f0 = limz→0
f2(z(x))

z = 0. Hence all the conditions of Theorem 3.8 are satisfied.
Therefore, FBVP (4.3) has a positive solution.
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