
sensors

Article

A Secured Proxy-Based Data Sharing Module in IoT
Environments Using Blockchain

Kwame Opuni-Boachie Obour Agyekum 1,2, Qi Xia 1,2,*, Emmanuel Boateng Sifah 1,
Jianbin Gao 3 , Hu Xia 1, Xiaojiang Du 4 and Moshen Guizani 5

1 Center for Cyber Security, University of Electronic Science and Technology of China, Chengdu 611731,
China; obour539@yahoo.com (K.O.-B.O.A.); emmanuelsifah@yahoo.com (E.B.S.); xiahu@uestc.edu.cn (H.X.)

2 CETC Big Data Research Institute Co., Ltd., Guiyang 550008, China
3 School of Resources and Environment, Center for Digital Health, University of Electronic Science and

Technology of China, Chengdu 611731, China; gaojb@uestc.edu.cn
4 Department of Computer and Information Sciences, Temple University, Philadelphia, PA 19122, USA;

dxj@ieee.org
5 Department of College of Engineering, Qatar University, Doha, Qatar; mguizani@ieee.org
* Correspondence: xiaqi@uestc.edu.cn; Tel.: +86-139-8006-0339

Received: 30 January 2019; Accepted: 6 March 2019; Published: 11 March 2019
����������
�������

Abstract: Access and utilization of data are central to the cloud computing paradigm. With the advent
of the Internet of Things (IoT), the tendency of data sharing on the cloud has seen enormous growth.
With data sharing comes numerous security and privacy issues. In the process of ensuring data
confidentiality and fine-grained access control to data in the cloud, several studies have proposed
Attribute-Based Encryption (ABE) schemes, with Key Policy-ABE (KP-ABE) being the prominent one.
Recent works have however suggested that the confidentiality of data is violated through collusion
attacks between a revoked user and the cloud server. We present a secured and efficient Proxy
Re-Encryption (PRE) scheme that incorporates an Inner-Product Encryption (IPE) scheme in which
decryption of data is possible if the inner product of the private key, associated with a set of attributes
specified by the data owner, and the associated ciphertext is equal to zero (0). We utilize a blockchain
network whose processing node acts as the proxy server and performs re-encryption on the data.
In ensuring data confidentiality and preventing collusion attacks, the data are divided into two, with
one part stored on the blockchain network and the other part stored on the cloud. Our approach also
achieves fine-grained access control.

Keywords: Attribute-Based Encryption (ABE); blockchain; cyber-security; fine-grained access control;
Inner-Product Encryption (IPE); Internet of Things (IoT); proxy re-encryption

1. Introduction

It has been estimated that there will be an enormous growth in the number of devices that
will be connected to the internet by 2030 [1], and this will diminish the boundary between physical
and digital worlds [2]. Human populace is not the main driver for this growth, but rather it is as
a result of advances in wireless communication, embedded computing technologies, actuation and
sensing that allow devices in a cyber physical world to become connected entities. The Internet
of Things (IoT) is expected to fundamentally transform human daily activities, thereby outlining
human-to-machine (H2M), machine-to-machine (M2M) and human-to-human (H2H) interactions in
the connected world. Services provided by the IoT, which ensure safety, can be thought of as real
drivers towards a better world of connectivity, as expressed by the authors of [3]. A complex task is
the development of IoT systems and IoT services, which in particular is a crucial activity that requires

Sensors 2019, 19, 1235; doi:10.3390/s19051235 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0001-7014-6417
http://www.mdpi.com/1424-8220/19/5/1235?type=check_update&version=1
http://dx.doi.org/10.3390/s19051235
http://www.mdpi.com/journal/sensors


Sensors 2019, 19, 1235 2 of 20

an in-depth research effort. In that essence, Casadei et al. [3] presented an “Opportunistic IoT Service”
that extends the already existing IoT service models and considers some essential features for service
provisioning. The authors of [4] also developed a toolset that synthesizes and validates human motion
data aggregated from wearable computing devices, with the aim of enhancing the privacy of data
owners. The toolset is developed to alleviate some of the challenges in data collection from IoT devices,
and algorithm development. Their platform offers all the capabilities of existing datasets as well
as enables the synthesis of data streams for users, scenarios and activities of their preference. Their
proposal is cost effective and provides more extensive data for validation and system refinement.

Although these IoT platforms offer numerous opportunities and provide effective solutions for
cyber-security, there are several challenges associated with the IoT. Providing a secured data sharing
environment and also ensuring privacy, as the massive volumes of data generated by the IoT devices
(either single devices or entire systems) are very sensitive, are a few of these challenges. Data owners
tend to worry about how their data are used since the control is out of their hands. The security of
their data is the most prominent issue in cloud computing, and this affects the performance of this
paradigm [5,6]. Encrypting data before outsourcing them has promised to be a good way in mitigating
the security concerns [7]. When the data are encrypted, it becomes difficult to share the data with users
because the owner has to share the decryption key with those users, thereby granting access to the
data. Another problem that arises from the sharing of keys is user revocation, where there should
be denial of service for some users. What data owners usually do is invalidate the existing key by
performing a re-encryption over the whole set of data with a new key, and in turn re-distributing the
key to the (authorized) users. This action also becomes cumbersome and enormously involving when
there are huge amounts of data to outsource, and the owner does not keep a copy of the outsourced
data locally. Due to the generation and management of keys and ciphertexts, the provision of access
control on encrypted data also becomes a challenge.

Attribute-based encryption (ABE), an encryption scheme first proposed by Sahai and Waters [8],
achieves both access control and data security by granting different access rights to users based on their
attributes. One of its characteristics is the revocation of access rights to users. The use of attribute-based
encryption also aims at providing fine-grained access control, as it determines which user has access
rights to which kind of data. ABE is an ideal tool to realize complex access control policies: the data to
be accessed is associated with a set of attributes, and the privileges of the user are specified by a logical
expression over these attributes. Other studies [9,10] also propose methods to attain fine-grained
access control. Some fine-grained access control modules, as proposed by Yu et al. [11], however, place
a heavy burden on the cloud (although believed to be more powerful than the data owner). The cloud,
as a single point of service, is always expected to serve a greater number of users and therefore it
becomes imperative to have as minimal overhead as possible to the cloud. Cloud service providers
may also charge data owners on the amount of computations they may have to make. Therefore, the
lower the computation, the lesser the cost. To ensure effective data sharing and user revocation, a
system model employing Key Policy-Attribute Based Encryption (KP-ABE) and Proxy Re-Encryption
(PRE) is proposed in [11]. The proposed scheme is, however, vulnerable to collusion attacks using a
revoked user and the cloud server.

In this work, we incorporate the decentralized and consensus-driven blockchain technology
and its underlying cryptographic primitives, and proxy re-encryption mechanism based on ABE to
actualize the confidentiality of data. In this system, the data after re-encryption, which is done by
the blockchain’s processing node (a trusted proxy), are divided into two with one part stored on the
blockchain and the other part on the cloud server. Therefore, it becomes impractical for a revoked
user to obtain the data even after colluding with the honest, but curious cloud server. Furthermore, to
lessen the burden on the cloud server, computations on the data are performed by the blockchain’s
processing nodes. We therefore propose a proxy re-encryption scheme based on a well-established
ABE scheme proposed by Park [12].



Sensors 2019, 19, 1235 3 of 20

It’s true edge computing brings a better satisfaction to IoT devices. However, the storage of the
data is done on the cloud and not much processing is done by/on the cloud. All processes are executed
by the blockchain processing nodes, which have more computing power than the resource-constrained
IoT devices. Moreover, the protocol still works, be it on the cloud or at the edge, since the main
focus of this paper is on the security scheme. Due to constraints on resources by the IoT devices, the
implementation of the security model, which is part of the computations and processing, is done
by the blockchain network because it has enough processing power. Therefore, there are no specific
hardware/software requirements for the resource-constrained IoT devices.

To summarize, our proxy re-encryption satisfies fine-grained access control in that users have
access right to different sets of data, which is made possible by the ABE scheme. Our scheme is also
collusion resistant as the cloud server and/or the proxy and the (revoked) user cannot collude to access
data. This is made possible because the blockchain network is a decentralized system and all processes
(transactions) are monitored by every participant on the network, and also recorded and stored into
blocks. Furthermore, there is an appreciable level of trust between the data owner and the users due to
the utilization of blockchain, as it ensures a trustworthy environment among participants involved.
The proxy is uni-directional, as it transforms a ciphertext C into a ciphertext C′ in only one direction,
but not in the reverse transform.

The remainder of this paper is organized as follows. In Section 2, related works on the
cryptographic primitives, IoT and blockchain are reviewed. In Section 3, we introduce the notations to
be used in this paper, while the system model is formulated in Section 4. Our proposed scheme and
its security model are presented in Sections 5 and 6, respectively. Implementation and performance
analysis are presented in Section 7, while Section 8 provides a set of discussions. Section 9 concludes
the paper.

2. Related Works

The secured sharing of data among several users via a cloud service provider is extensively
researched in [13–15]. Mambo and Okamoto’s [16] novel PRE scheme has been adopted as the
technique to achieve this, and it was further extended by Blaze et al. [17] by basing their findings on the
El-Gamal cryptosystem [18]. In their work, a proxy can transform a message encrypted under Alice’s
key into an encryption of the same message under Bob’s key because it utilizes a re-encryption key.
While effective data sharing can be achieved by these schemes by meeting some security requirements
and properties, there is no enforcement of fine-grained access control on the shared data.

Attribute-based proxy encryption techniques [19–22] have therefore been adopted to enforce this.
Both the ciphertext and the private key of the user are associated with an attribute set in the ABE
scheme, and decryption is possible when there is a match between the set of attributes for both the
private key and the ciphertext [8,23,24]. These approaches, nevertheless, help only in the adversary
not obtaining any information about the encrypted message. Katz et al. [25] therefore presented an
attribute hiding scheme for a class of predicates. This was known as Inner-Product Encryption (IPE),
and it preserves the confidentiality of the attributes associated with the ciphertext. Following that,
a hierarchical IPE scheme that uses an n-dimensional vector space in bilinear maps of prime order
was proposed by Okamoto et al. [26], and the full security under the standard model was achieved.
Park [12] therefore presented an IPE scheme that supports an attribute hiding property, and also is
secure against Decisional Bilinear Diffie–Hellman (D-BDH) and decisional linear assumptions.

Du et al. [27] presented an efficient and scalable key management scheme for heterogeneous
sensor networks. Their scheme utilizes the fact that there is a lower communication and computational
cost when a sensor only communicates with a small portion of its neighbors. An Elliptic Curve
Cryptographic (ECC) scheme is used to further improve key management, as it also reduces sensor
storage requirement and energy consumption while achieving better security. Xiao et al. [28]
surveyed the various techniques utilized in the key management for Wireless Sensor Networks
(WSNs). Their survey paper looks at both the advantages and disadvantages of the various techniques.



Sensors 2019, 19, 1235 4 of 20

It is realized that no key distribution technique is ideal to all the scenarios where the sensor networks
are deployed, and therefore the technique being employed should meet the requirements of both
the application in question and the resources of the individual sensor networks. The authors
of [29] presented an effective key management scheme for heterogeneous sensor networks, which
is quite similar to the work in [27]. Their work portrays how efficient the performance of their
scheme is, and that it significantly achieves a better security than existing sensor network key
management schemes. Du et al. in [30] presented the security issues in WSNs. Quite similar to
the aforementioned sensor-related papers, they investigated schemes that achieve better security and
also lower computational cost for the sensor networks.

Blockchain technology offers a suitable platform that can be used for numerous applications
in medical care. Improving the security in medical data sharing and automating the delivery of
health-related notifications are the massive potentials of this technology, and they are compatible with
the Health Insurance Portability and Accountability Act (HIPAA) [31]. Several authors have provided
blockchain health-related applications [32–35]. The authors of [32] determined the current challenges
of Electronic Medical Record (EMR) systems and the potential they have in providing solutions to
security challenges and interoperability, with the use of blockchain technology. Focus has been on the
application of blockchain to Electronic Health Records (EHRs) to facilitate interoperability. Medrec,
a prototype released by MIT, expresses a practical way of sharing healthcare data between EHRs and
blockchain [33]. A secure and scalable access control system for confidential information sharing on
blockchain was also presented by the authors of [34]. Their results portray the effectiveness of their
system in instances where traditional methods of access control failed. Yue et al. designed a concept
for an application that presents patients with the opportunity to grant access to information about
their health records to designated individuals [35]. The authors of [36] proposed a novel protocol that
achieves patient privacy preservation by applying the concept of blockchain in an eHealth platform.

A possible efficient data sharing platform among interested parties and the preservation of privacy
are a just few of the opportunities blockchain technology offers. For blockchain to reach its maximum
potential, it is essential to tackle one of the most important problems facing this technology: data
access control. This work therefore places more emphasis on providing a secured data access control in
a data sharing environment. A blockchain processing node acts as a proxy and performs re-encryption
on data that are given to a secondary user. Our system preserves data confidentiality and integrity,
and avoids collusion attacks. Fine-grained access control is also achieved.

3. Preliminaries

We introduce some of the notations that will be utilized throughout this paper in this section.

3.1. Bilinear Maps

Our protocol is based on bilinear maps [37]. Let G and GT be two multiplicative cyclic groups
that have a prime order p, and g be a generator of G. A bilinear map e : G× G → GT has the following
properties:

1. Bilinear: For all a, b ∈ Zp, g, h ∈ G, then e(ga, hb) = e(g, h)ab can be computed efficiently.
2. The map is non-degenerate. That is, if g generates G and h also generates G, then e(g, h) generates

GT . In addition, e(g, h) 6= 1. The map does not send all pairs in G× G to the identity in GT .
3. It is computable; there exists an efficient algorithm to compute the map e(g, h) for any g, h ∈ G.

Note that e(, ) is symmetric since e(ga, hb) = e(g, h)ab = e(gb, ha).

3.2. Inner-Product Encryption (IPE)

The Inner Product Encryption (IPE) scheme, as proposed in [12], is an attribute-based encryption
technique in which both ciphertext(s) and private (secret) key(s) are associated with vectors. Access to
and decryption of an encrypted data can only be possible if and only if the inner product of the private



Sensors 2019, 19, 1235 5 of 20

key, which is related to vector −→v , and the ciphertext, also related to vector −→x , is 0. That is, for the two
vectors, (−→v · −→x ) = ∑n

i=1 xi · vi mod p = 0. Let ∑ be a set of attributes peculiar to particular encrypted
data that involves vector −→v and has a dimension of n. Denote F as representing a predicate class that
involves an inner product over vectors, i.e., F = f−→x |

−→x ∈ ∑ such that f−→x (
−→v ) = 1 iff (−→x · −→v ) = 0.

Two n-dimensional vectors, −→x = (x1, ..., xn) and −→v = (v1, ..., vn), all belonging to the set of attributes,
∑, are, respectively, utilized in the encryption and key decryption phases.

We incorporate the rationale behind a proxy’s re-encryption key (RE key) into this work by using
the IPE scheme to transform a ciphertext associated with a vector into a new ciphertext associated with
another vector but encrypts the same message (m ∈ M). We ensure that there is no revealing of the
information about the encrypted data.

3.3. Attribute Based Encryption (ABE)

There are two main classifications of ABE schemes, namely Ciphertext Policy-Attribute Based
Encryption (CP-ABE) [23] and Key Policy-Attribute Based Encryption (KP-ABE) [38]. In this paper,
we make use of KP-ABE, as the data are encrypted by a set of attributes and the private keys of the
users are associated with the access structure of KP-ABE. Thus, if the attribute of the encrypted data
satisfies the access structure of the user’s private key, decryption of the ciphertext can occur.

3.4. Proxy Re-Encryption (PRE)

The notion of “atomic proxy cryptography” is the basis for proxy re-encryption, which was first
introduced by Mambo and Okamoto [16]. This scheme basically makes use of a semi-trusted proxy
that transforms the ciphertext for Alice into a ciphertext for Bob, without actually knowing or gaining
access to the plaintext. Popular, well-known proxy re-encryption schemes are the Blaze, Bleumer
and Strauss (BBS) [17] and the Ateniese, Fu, Green and Hohenberger (AFGH) [39] schemes, which
are based on El Gamal and Bilinear maps cryptographic algorithms, respectively. In this work, the
blockchain processing node (a trusted entity) serves as the proxy, and performs re-encryption on
the data.

3.5. Blockchain Network

Blockchain technology, originally proposed by Satoshi Nakamoto [40], acts as a shared,
decentralized ledger to record transactions. Public, private and consortium blockchains are the three
main types of blockchain. For decentralized networks and offering transparency, public blockchain is
predominantly used. Private and consortium blockchains are, however, preferred when more control
and privacy are of the essence. Consensus and decentralization, key features of blockchain, are the
reasons for using blockchain technology in our system. Moreover, our blockchain’s processing node
serves as the trusted proxy that performs the re-encryption on the data before they are given to the
secondary user. Proof-of-work (PoW) and Practical Byzantine Fault Tolerance (PBFT) provide security
offered by the use of this technology. They utilize the agreement of nodes in the addition of a block to
the chain, which acts as a ledger for all transactions.

Blockchain has helped in the effectiveness and advancement of many industries. It is also capable
of implementing smart contracts, which are programmable scripts that automatically execute actions
based on pre-defined triggers. The smart contracts are called upon when a data user requests access to
data. Prior to the data being sent to the cloud, the owner specifies how its data are to be used and gives
the details to the blockchain network. A processing node then embeds the contract into the data being
given to the requestor. Our blockchain keeps logs of the transactions to achieve effective auditing.

Due to privacy concerns, our system utilizes the distributed ledger property of the blockchain,
namely immutability, for authenticity and verifiability, and also the use of the consortium blockchain.
Only authorized users can gain access to data. This enhances transparency for data owners, and allows
them to effectively manage their data.



Sensors 2019, 19, 1235 6 of 20

A block consists of a single event, with the event spanning from the time a request is made to when
the block is broadcast onto the blockchain. Consensus nodes are responsible for mining and reporting
all activities. A block is made up of a format that distinctively describes the block. This is followed
by a block size, and then a block header, which is hashed with sha256(sha256()) as implemented in
Bitcoin headers [40]. The block size contains the size of the block and the header ensures immutability.
Changing a block header, in order to falsify a piece of information, requires a change to all headers
starting from the genesis (parent) block.

A block header also contains the version number which indicates the validation rules to follow.
The previous block’s hash is also contained in the header. A timestamp is also included in the header
and it indicates when the block was created. A target difficulty, which is a value that indicates how
processing is achieved by the consensus nodes, is also found in the header. This makes processing
difficult for malicious nodes but solvable by verified consensus nodes. There is also an arbitrary
number generated by the consensus nodes, which modifies the header hash in order to produce a hash
below the target difficulty. This is called a nonce. A transaction counter is found in the block, whose
function is to record the total number of transactions in the entire block. The transaction is made up of
the consensus transaction and the user transaction. Each type comprises a timestamp and the data.
A block locktime defines the structure for the entire block. This is a timestamp that records the last
entry of a transaction as well as the closure of a block. When all conditions are met, the block is then
broadcast onto the blockchain network.

For scalability concerns, our blockchain stores hashes of transactions. Transactions on this
blockchain typically include data requests, data processing (encryption and/or re-encryption),
and data access.

4. System Model

4.1. Problem Statement

We demonstrate a simple IoT file/data sharing scenario in a healthcare environment for the
sake of clarity, where we consider a patient whose data can only be accessed by his/her physician,
pharmacist or relatives. Patients’ data are normally collected and collated by health sensors that are
usually bound to them, and uploaded onto a cloud server after recording. Before a patient’s medical
data are outsourced to a cloud server, the patient encrypts their own data under a set of attributes,
which indicates the access privilege on the data. The patient then gives the details of all authorized
users to the blockchain’s processing node. Thus, access to a patient’s data can be possible only if the
user satisfies the attribute set and also uses the private key related to that attribute set.

However, there may be an instance where a physician might share the patient’s data, depending
on the kind of ailment they are treating, with other healthcare professionals who are not in the same
hospital and therefore have a different access policy on the data. It now lies of the proxy (blockchain
processing node) to re-encrypt the patient’s data under the patient’s attribute set to the new attribute
set in a way that does not reveal any information about the data and its corresponding attributes.
This must also be done in an efficient and secured way. The model of our system is presented in
Figure 1.



Sensors 2019, 19, 1235 7 of 20

Figure 1. System model.

4.2. System Overview

1. Data Owner: This is the entity (the patient in this case) whose data are to be accessed. Access is
possible if and only if the private key of the data user corresponds to the attribute set specified by
the data owner.

2. Data User: This is the entity who wants to make use of the data from the owner. Both the data
owner and user(s) should be registered on the blockchain.

3. Cloud Server: This is the repository for the data from the owner. All encrypted files are sent to
the cloud server (honest, but curious) through a secured communication channel.

4. Blockchain Network: This primarily consists of the following entities:

• Issuer: This entity registers the participants (data owner and users) on the blockchain
network. It gives out membership keys to them and that serves as their identity (ID).

• Verifier: The verifier, which also serves as an authentication unit, checks whether a user who
makes an access request or a data owner who uploads its data onto the cloud, are actually
members of the blockchain network.

• Processing node: This is the heartbeat of the blockchain network. All processes (transactions)
that ever occur on the network are performed by this entity. In this work, however, it serves
as the (trusted) proxy that oversees the re-encryption process.

• Smart contract center: This unit prepares the contract that binds how data are to be used.

The various processes that happen in the system model are described below:

1. The proxy generates a secret key, SK, and a public key Ppub, and hands the public key and access
policy to the data owner. That is, the data owner is given {Ppub, Haccess}.

2. The patient encrypts the data with the attribute set and sends the encrypted data to the cloud
through a secured channel. The encrypted data are CT = {Enc

(
M,−→x

)
}.

3. The data user makes a request for the data.
4. The proxy accesses the permission rights of the data users from the cloud server. After accessing

it, the blockchain network, which also serves as a trusted authority, gives the private key to the
user according to the user’s attributes.

5. Users can now access data from the cloud server.
6. The primary user is given PK−→v while the secondary user is given PK−→

v′
. The proxy generates

a re-encryption key REKey and transforms the policy set H → H′ for the secondary user who
wants the shared data from the primary user but holds a different access policy, H′.

5. The Scheme

As in several security algorithms, our proposed scheme consists of the following algorithms:
Setup, KGen, Encrypt, RKGen, ReEncrypt, and Decrypt. The IPE scheme, as presented in [12], is adopted



Sensors 2019, 19, 1235 8 of 20

in this work and therefore most of the algorithms will be the same. Setup, KGen, Enrypt and Decrypt
have been previously presented in [12].

The assumption is made here that ∑ = (Zp)n is the set of attributes bound to data, where n is
the dimension of the vectors, −→x and −→v , and p is the prime order of the group, Z. For any vector
−→v = (v1, ..., vn) ∈ ∑, each element vi belongs to the set Zp. The algorithms are as follows.

(Ppub, SK)← Setup (λ, n): With any security parameter λ ∈ Z+, the setup algorithm runs σ(λ)

after which a tuple (p, G, G2, e) is obtained. A random generator g ∈ G, along with random exponents
δ1, δ2, θ1, θ2, {w1,i}n

i=1, {t1,i}n
i=1, { f1,i, f2,i}n

i=1 and {h1,i, h2,i}n
i=1, found in Zp are all selected. A random

element, g2 ∈ G, is also selected. Furthermore, it selects a random number, Ψ ∈ Zp and obtains the set
of elements {w2,i}n

i=1, {t2,i}n
i=1 in Zp with constraints such that

Ψ = δ1w2,i − δ2w1,i, Ψ = θ1t2,i − θ2t1,i

The setup algorithm then computes

W1,i = gw1,i , W2,i = gw2,i , T1,i = gt1,i , T2,i = gt2,i , F1,i = g f1,i , F2,i = g f2,i , H1,i = gh1,i , H2,i = gh2,i

Now, the following notations are also given:

Q1 = gδ1 , Q2 = gδ2 , R1 = gθ1 , R2 = gθ2 , g1 = gΨ, Υ = e(g, g2)

The public Ppub and secret SK keys are then, respectively, computed as:

Ppub =
(

g, gΨ, {W1,i, W2,i, F1,i, F2,i}n
i=1 , {T1,i, T2,i, H1,i, H2,i}n

i=1 , {Qi, Ri}2
i=1 , Υ

)
∈ G8n+6 × GT

SK =
(
{w1,i, w2,i, t1,i, t2,i, f1,i, f2,i, h1,i, h2,i}n

i=1, {δi, θi}2
i=1 , g2

)
∈ Z8n+4

p × G

PK−→v ←KGen
(
SK,−→v

)
: For a vector−→v = (v1, ..., vn), the algorithm selects random exponents λ1,

λ2, {ri, φi}n
i=1 in Zp, and creates a private key PK−→v =

(
KA, KB, {K1,i, K2,i}n

i=1 , {K3,i, K4,i}n
i=1
)
∈ G4n+2.

The composition of the various elements in the PK−→v is defined as follows:{
K1,i = g−δ2ri gλ1viw2,i , K2,i = gδ1ri g−λ1viw1,i

}n
i=1 ,

{
K3,i = g−θ2φi gλ2vit2,i , K4,i = gθ1φi g−λ2vit1,i

}n
i=1 ,

KA = g2

n

∏
i=1

K− f1,i
1,i K− f2,i

2,i K−h1,i
3,i K−h2,i

4,i , KB =
n

∏
i=1

g−(ri+φi)

CT←− Encrypt (Ppub,−→x , M): To encrypt a message M ∈ GT and a vector−→x = (x1, ..., xn) ∈ (Zp)

under the public key Ppub, the algorithm selects random elements {si}4
i=1 ∈ Zp and uses them to

compute the ciphertext CT as follows:

CT = (gs2 , gs1
1 ,
{

Ws1
1,i · F

s2
1,i ·Q

xis3
1 , Ws1

2,i · F
s2
2,i ·Q

xis3
2

}n

i=1
,
{

Ts1
1,i · H

s2
1,i · R

xis4
1 , Ts1

2,i · H
s2
2,i · R

xis4
2

}n

i=1
,

{
Ts1

1,i · H
s2
1,i · R

xis4
1 , Ts1

2,i · H
s2
2,i · R

xis4
2

}n

i=1
, Υ−s2 M) ∈ G4n+2 × GT

where s2 = Ψs1.

REKey−→v ← RKGen (SK,−→v ,
−→
x′ ): KGen algorithm is first called and a random element, l ∈ Zp,

is selected. It then computes α, αδ2 , α−δ1 , αθ2 , and α−θ1 , where α = gl
2. The Encrypt algorithm is then

called to encrypt α under the vector
−→
x′ by utilizing Encrypt(Ppub,

−→
x′ , α). The output is a ciphertext



Sensors 2019, 19, 1235 9 of 20

CTA. The RKGen algorithm then selects random exponents
{

λ′i
}2

i=1,
{

r′i , φ′i
}n

i=1 ∈ Zp and uses them to
compute REKey−→v as follows:

{
K′1,i = g−δ2r′i gλ′1viw2,i αδ2 , K′2,i = gδ1r′i g−λ′1viw1,i α−δ1

}n

i=1
,
{

K′3,i = g−θ2φ′i gλ′2vit2,i αθ2 , K′4,i = gθ1φ′i g−λ′2vit1,i α−θ1
}n

i=1
,

K′A = g2

n

∏
i=1

K
′− f1,i
1,i K

′− f2,i
2,i K

′−h1,i
3,i K

′−h2,i
4,i , K′B =

n

∏
i=1

g−(r
′
i+φ′i )

CT′ ←− ReEncrypt (REKey−→v , CT): On input of the ciphertext CT and the re-encryption key
REKey−→v , this algorithm first checks whether the attributes list of the user in REKey−→v satisfies the
attribute set of the CT. If that is not the case, it returns ⊥; else, ∀i = {1, ..., n}, the algorithm first
computes the following:

n

∏
i=1

e
(
C1,i, K′1,i

)
· e
(
C2,i, K′2,i

)
· e
(
C3,i, K′3,i

)
· e
(
C4,i, K′4,i

)

=
n

∏
i=1

e
(

gw1,is1 g f1,is2 gδ1xis3 , g−δ2r′i gλ′1viw2,i αδ2
)
· e
(

gw2,is1 g f2,is2 gδ2xis3 , gδ1r′i g−λ′1viw1,i α−δ1
)

·e
(

gt1,is1 gh1,is2 gθ1xis4 , g−θ2φ′i gλ′2vit2,i αθ2
)
· e
(

gt2,is1 gh2,is2 gθ2xis4 , gθ1φ′i g−λ′2vit1,i α−θ1
)

= ∏n
i=1 e

(
gw1,is1 , g−δ2r′i

)
· e
(

g f1,is2 , g−δ2r′i gλ′1viw2,i αδ2
)
· e
(

gδ1xis3 , gλ′1viw2,i
)
· e (gw1,is1 , αs2) · e

(
gw2,is1 , gδ1r′i

)
·e
(

g f2,is2 , gδ1r′i g−λ′1viw1,i α−δ1
)
· e
(

gδ2xis3 , g−λ′1viw1,i
)
· e
(

gw2,is1 , α−δ1
)
· e
(

gt1,is1 , g−θ2φ′i
)

·e
(

gh1,is2 , g−θ2φ′i gλ′2vit2,i αθ2
)
· e
(

gθ1xis4 , gλ′2vit2,i
)
· e
(

gt1,is1 , αθ2
)
· e
(

gt2,is1 , gθ1φ′i
)

·e
(

gh2,is2 , gθ1φ′i g−λ′2vit1,i α−θ1
)
· e
(

gθ2xis4 , g−λ′2vit1,i
)
· e
(

gt2,is1 , α−θ1
)

= ∏n
i=1 e

(
g−δ2w1,i , gr′is1

)
· e
(

gs2 ,
(

g−δ2r′i gλ′1viw2,i αδ2
) f1,i

)
· e (g, g)λ′1δ1w2,ixivis3 · e

(
gw1,is1 , αδ2

)
· e
(

gδ1w2,i , gr′is1
)

·e
(

gs2 ,
(

gδ1r′i g−λ′1viw1,i α−δ1
) f2,i

)
· e (g, g)−λ′1δ2w1,ixivis3 · e

(
gw2,is1 , α−δ1

)
· e
(

g−θ2t1,i , gφ′i s1
)

·e
(

gs2 ,
(

g−θ2φ′i gλ′2vit2,i αθ2
)h1,i

)
· e (g, g)λ′2θ1t2,ixivis4 · e

(
gt1,is1 , αθ2

)
· e
(

gθ1t2,i , gφ′i s1
)

·e
(

gs2 ,
(

gθ1φ′i g−λ′2vit1,i α−θ1
)h2,i

)
· e (g, g)−λ′2θ2t1,ixivis4 · e

(
gt2,is1 , α−θ1

)
= ∏n

i=1 e
(

gδ1w2,i−δ2w1,i , gr′is1
)
· e
(

gθ1t2,i−θ2t1,i , gφ′i s1
)
· e
(

gs2 , K
′ f1,i
1,i K

′ f2,i
2,i K

′h1,i
3,i K

′h2,i
4,i

)
· e
(

g−δ1w2,i+δ2w1,i , αs1
)

·e (g, g)[λ
′
1(δ1w2,i−δ2w1,i)s3+λ′2(θ1t2,i−θ2t1,i)s4]xivi · e

(
g−θ1t2,i−θ2t1,i , αs1

)
= ∏n

i=1 e
(

gΨ, gr′is1
)
· e
(

gΨ, gφ′i s1
)
· e
(

g−Ψ, αs1
)
· e (g, g)Ψ[λ′1s3+λ′2s4]

−→x ·−→v

·e
(

gs2 , K
′ f1,i
1,i K

′ f2,i
2,i K

′h1,i
3,i K

′h2,i
4,i

)
· e
(

g−Ψ, αs1
)

= e
(

gΨs1 , ∏n
i=1 g(r′i+φ′i)

)
· e (g, g)Ψ[λ′1s3+λ′2s4]

−→x ·−→v · e
(

g−Ψ, αs1
)
· e
(

gs2 , ∏n
i=1 K

′ f1,i
1,i K

′ f2,i
2,i K

′h1,i
3,i K

′h2,i
4,i

)
After completing this computation, the algorithm then computes CTB as:

CTB = e
(

A, K′A
)
· e (B, K′B) ·∏

n
i=1 e

(
C1,i, K′1,i

)
· e
(

C2,i, K′2,i

)
· e
(

C3,i, K′3,i

)
· e
(

C4,i, K′4,i

)
= e

(
gs2 , g2 ∏n

i=1 K
′− f1,i
1,i K

′− f2,i
2,i K

′−h1,i
3,i K

′−h2,i
4,i

)
· e
(

gΨs1 , ∏n
i=1 g−(r′i+φ′i)

)
· e
(

gΨs1 , ∏n
i=1 g(r′i+φ′i)

)
· e
(

g−Ψ, αs1
)



Sensors 2019, 19, 1235 10 of 20

·e
(

gs2 , ∏n
i=1 K

′ f1,i
1,i K

′ f2,i
2,i K

′h1,i
3,i K

′h2,i
4,i

)
· e (g, g)Ψ[λ′1s3+λ′2s4]

−→x ·−→v

= e (gs2 , g2) · e (g, g)Ψ[λ′1s3+λ′2s4]
−→x ·−→v · e

(
g−Ψ, αs1

)
recalling that A = gs2 , B = gΨs1 , with s2 = Ψs1.

The re-encrypted ciphertext CT′ therefore becomes the tuple(
A, B, CTA, CTB, D = e (g, g2)

−s2 M
)

.
M←Decrypt (CT, PK−→v ): On the input of the ciphertext CT and a private key PK−→v , the algorithm

begins to decrypt the ciphertext, but based on two conditions.
Case I: For a well-formed ciphertext, the algorithm decrypts

CT =
(

A, B, {C1,i, C2,i}n
i=1 , {C3,i, C4,i}n

i=1 , D = e (g, g2)
−s2 M

)
using the private key

PK−→v =
(
KA, KB, {K1,i, K2,i}n

i=1 , {K3,i, K4,i}n
i=1
)

in order to output a message M, given by

M← D · e (A, KA) · e (B, KB) ·
n

∏
i=1

e
(
C1,i, K′1,i

)
· e
(
C2,i, K′2,i

)
· e
(
C3,i, K′3,i

)
· e
(
C4,i, K′4,i

)
Correctness: Assume the actual vector −→x = (x1, ..., xn) is used for the formation of the

ciphertext CT. The message can be recovered as follows: Let β = D · e (A, KA) · e (B, KB) and
γ = ∏n

i=1 e (C1,i, K1,i) · e (C2,i, K2,i) · e (C3,i, K3,i) · e (C4,i, K4,i)

Solving for γ, we have

γ = ∏n
i=1 e

(
gw1,is1 g f1,is2 gδ1xis3 , g−δ2ri gλ1viw2,i

)
· e
(

gw2,is1 g f2,is2 gδ2xis3 , gδ1ri g−λ1viw1,i
)

·e
(

gt1,is1 gh1,is2 gθ1xis4 , g−θ2φi gλ2vit2,i
)
· e
(

gt2,is1 gh2,is2 gθ2xis4 , gθ1φi g−λ2vit1,i
)

= ∏n
i=1 e

(
gw1,is1 , g−δ2ri

)
· e
(

g f1,is2 , g−δ2ri gλ1viw2,i
)
· e
(

gδ1xis3 , gλ1viw2,i
)
· e
(

gw2,is1 , gδ1ri
)
· e
(

g f2,is2 , gδ1ri g−λ1viw1,i
)

·e
(

gδ2xis3 , g−λ1viw1,i
)
· e
(

gt1,is1 , g−θ2φi
)
· e
(

gh1,is2 , g−θ2φi gλ2vit2,i
)
· e
(

gθ1xis4 , gλ2vit2,i
)
· e
(

gt2,is1 , gθ1φi
)

·e
(

gh2,is2 , gθ1φi g−λ2vit1,i
)
· e
(

gθ2xis4 , g−λ2vit1,i
)

= ∏n
i=1 e

(
g−δ2w1,i , gs1ri

)
· e
(

gs2 ,
(

g−δ2ri gλ1viw2,i
) f1,i
)
· e (g, g)λ1δ1w2,1·xi ·vi ·s3 · e

(
gδ1w2,i , gs1ri

)
·e
(

gs2 ,
(

gδ1ri g−λ1viw1,i
) f2,i
)
· e (g, g)−λ1δ2w1,1·xi ·vi ·s3 · e

(
g−θ2t1,i , gs1φi

)
· e
(

gs2 ,
(

g−θ2φi gλ2vit2,i
)h1,i

)
·

e (g, g)λ2θ1t2,1·xi ·vi ·s4 · e
(

gθ1t2,i , gs1φi
)
· e
(

gs2 ,
(

gθ1φi g−λ2vit1,i
)h2,i

)
· e (g, g)−λ2θ2t1,1·xi ·vi ·s4 ·

= ∏n
i=1 e

(
gδ1w2,i−δ2w1,i , gris1

)
·
(

gθ1t2,i−θ2t1,i , gφis1
)
· e
(

gs2 , K f1,i
1,i K f2,i

2,i Kh1,i
3,i Kh2,i

4,i

)
·e (g, g)[λ1(δ1w2,i−δ2w1,i)s3+λ2(θ1t2,i−θ2t1,i)s4]xi ·vi

= ∏n
i=1 e

(
gΨ, gris1

)
· e
(

gΨ, gφis1
)
· e
(

gs2 , K f1,i
1,i K f2,i

2,i Kh1,i
3,i Kh2,i

4,i

)
· e (g, g)Ψ[λ1s3+λ2s4]

−→x ·−→v

= e
(

gΨs1 , ∏n
i=1 g(ri+φi)

)
· e
(

gs2 , ∏n
i=1 K f1,i

1,i K f2,i
2,i Kh1,i

3,i Kh2,i
4,i

)
· e (g, g)Ψ[λ1s3+λ2s4]

−→x ·−→v

= e
(

gs2 , ∏n
i=1 g(ri+φi)

)
· e
(

gs2 , ∏n
i=1 K f1,i

1,i K f2,i
2,i Kh1,i

3,i Kh2,i
4,i

)
· e (g, g)Ψ[λ1s3+λ2s4]

−→x ·−→v

The message M can then be recovered as,

M← D · e(A, KA) · e(B, KB) · γ

= e (g, g2)
−s2 M · e

(
gs2 , g2

n

∏
i=1

K− f1,i
1,i K− f2,i

2,i K−h1,i
3,i K−h2,i

4,i

)
· e
(

gs2 ,
n

∏
i=1

g−(ri+φi)

)
· e
(

gs2 ,
n

∏
i=1

g(ri+φi)

)



Sensors 2019, 19, 1235 11 of 20

·e
(

gs2 ,
n

∏
i=1

K f1,i
1,i K f2,i

2,i Kh1,i
3,i Kh2,i

4,i

)
· e (g, g)Ψ[λ1s3+λ2s4]

−→xi ·−→vi

= e (g, g2)
−s2 M · e (g, g2)

s2 · e (g, g)Ψ[λ1s3+λ2s4]
−→xi ·−→vi

= M · e (g, g)Ψ[λ1s3+λ2s4]
−→xi ·−→vi

The above result outputs 1 iff
(−→x ,−→v

)
= 0 in Zp. If it happens that

(−→x ,−→v
)
6= 0,

then λ1s3 + λ2s4 = 0. The probability of being the identity then becomes 1/p since the exponents λ1,
λ2, s3, and s4 are all randomly chosen from Zp.

Case II: However, for the re-encrypted version of the ciphertext,
CT =

(
A, B, CTA, CTB, D = e (g, g2)

−s2 M
)

, the algorithm first decrypts CTA by utilizing

PK−→
v′

, as shown below to obtain α. That is, α←− Decrypt
(

PK−→
v′

, CTA

)
. The deduction and correctness

are shown below. We first compute CTA as follows:

CTA =
n

∏
i=1

{
gw1,is1 g f1,is2 gδ1xis3 , gw2,is2 g f2,is2 gδ2xis3

}
·
{

g−δ2r′i gλ′iviw2,i αδ2 , gδ1r′i g−λ′iviw1,i α−δ1
}

=
n

∏
i=1

e
(

gw1,i ,s1 , g−δ2r′i
)
· e
(

g f1,is2 , g−δ2,r′i gλ′1viw2,i αδ2
)
· e
(

gδ1xis3 , gλ′1viw2,i
)
· e (gw1,is1 , αs2)

·e
(

gw2,is1 , gδ1r′i
)
· e
(

g f2,is2 , gδ1,r′i g−λ′1viw1,i α−δ1
)
· e
(

gδ2xis3 , g−λ′1viw1,i
)
· e
(

gw2,is2 , α−δ1
)

=
n

∏
i=1

e
(

g−δ2w1,i , gr′is1
)
· e
(

gs2 ,
(

g−δ2r′i gλ′1viw2,i αδ2
) f1,i

)
· e (g, g)λ′1δ1w2,ixivis3 · e

(
gw1,is1 , αδ2

)
·e
(

gδ1w2,i , gr′is1
)
· e
(

gs2 ,
(

gδ1r′i g−λ′1viw1,i α−δ1
) f2,i

)
· e (g, g)−λ′1δ2w1,ixivis3 · e

(
gw2,is2 , α−δ1

)
=

n

∏
i=1

e
(

gδ1w2,i−δ2w1.i , gr′1s1
)
· e
(

gs2 , K
′ f1,i
1,i K

′ f2,i
2,i

)
· e
(

g−δ1w2,i+δ2w1,i , αs1
)
· e (g, g)λ′1[δ1w2,i−δ2w1,i ]xi ·vi ·s3

=
n

∏
i=1

e
(

gΨ, gr′is1
)
· e
(

gs2 , K
′ f1,i
1,i K

′ f2,i
2,i

)
· e
(

g−Ψ, αs1
)
· e (g, g)Ψλ′1xi ·vi ·s3

= e

(
gΨs1 ,

n

∏
i=1

gr′is1

)
· e
(

gs2 ,
n

∏
i=1

K
′ f1,i
1,i K

′ f2,i
2,i

)
· e
(

g−Ψs1 , α
)
· e (g, g)Ψλ′1s3

−→x ·−→v

= e

(
gs2 ,

n

∏
i=1

gr′i

)
· e
(

gs2 ,
n

∏
i=1

K
′ f1,i
1,i K

′ f2,i
2,i

)
· e
(

g−s2 , α
)
· e (g, g)Ψλ′1s3

−→x ·−→v

Multiplying the result with PK−→
v′

, we have

α = α · e (g, g2)
Ψλ′1s3(−→x ·−→v )

Thus, the output of the above is α iff −→x · −→v = 0. After completing the computation for α,
we compute the message M as M←− D · CTB · e

(
gΨs1 , α

)
, and it is shown below.

= e (g, g2)
−s2 M · e (gs2 , g2) · e (g, g)Ψ[λ′1s3+λ′2s4](

−→x ·−→v ) · e
(

g−Ψ, αs1
)
· e
(

gΨs1 , α
)

Recalling that α = gl
2, we have

= e (g, g2)
−s2 ·M · e (g, g2)

s2 · e (g, g)Ψ[λ′1s3+λ′2s4](
−→x ·−→v ) · e (g, g2)

−Ψls1 · e (g, g2)
Ψls1



Sensors 2019, 19, 1235 12 of 20

= M · e (g, g)Ψ[λ′1s3+λ′2s4](
−→x ·−→v )

The above result outputs 1 iff
(−→x ,−→v

)
= 0 in Zp. If it happens that

(−→x ,−→v
)
6= 0,

then λ′1s3 + λ′2s4 = 0. The probability of being the identity then becomes 1/p since the exponents are
all randomly chosen from Zp.

6. Security Model

Following the approach in [25], we prove that our scheme exhibits attribute-hiding property.
The adversary,A, and the challenger, C, are engaged in a series of games in our security model. BothA
and C are, by assumption, given the attribute set ∑, and the predicate class F beforehand. The security
game is played over the vectors of the re-encryption process.

Initialize: The adversary, A, outputs two vectors
−→
x′ ,
−→
y′ ∈ ∑.

Setup: The challenger, C, runs Setup to obtain the public key Ppub and the secret key SK, after
which A is given Ppub.

Query Phase 1: A adaptively issues private key queries for the vector −→v = {vi, ..., vn} ∈ ∑
subject to the restriction that, ∀i, 〈−→vi ,

−→
x′ 〉 = 0 iff 〈−→vi ,

−→
y′ 〉 = 0. C responds with PK−→v ← KGen(SK,−→vi )

Challenge: Two messages M0, M1 ∈ M are output by A. If M0 6= M1, it is a requirement that

〈−→vi ,
−→
x′ 〉 6= 〈−→vi ,

−→
y′ 〉 6= 0 for all queries made on the vector −→v . C picks a random bit, b ∈ {0, 1}.

If b = 0, C gives CT′ ← Encrypt(Ppub,
−→
x′ , M0) to A, and if b = 1, CT′ ← Encrypt(Ppub,

−→
y′ , M1) is

given to A.
Query Phase 2: Additional private key queries are made by A for additional vectors, subject to

the same restrictions as stated above.
Guess: A outputs a guess b′ ∈ {0, 1}, and wins the game if b = b′.
The advantage of A is defined as Adv(A) = |Pr[b = b′]− 1

2 |. For the scenario where the two
messages are not the same, i.e. M0 6= M1, A is not permitted to issue private key queries for vectors
−→vi such that 〈−→vi ,

−→
x′ 〉 = 〈−→vi ,

−→
y′ 〉 = 0. This is done throughout all the query phases. If that is not the

case, for a vector −→vi , the adversary can obtain a private key PK−→vi
and decrypt the challenge ciphertext

using the private key corresponding to that vector. The restriction is however not required for the case
where M0 = M1.

Security Proof

In proving the security of our scheme, we introduce a series of security games between the
adversary and the challenger as stated above. We also consider the case where there is a distinction
between the two messages. As stated in the security model, the adversary is not in any way permitted

to make private key queries for the vector −→v such that 〈−→vi ,
−→
x′ 〉 = 〈−→vi ,

−→
y′ 〉 = 0.

Game1 : The challenge ciphertext is generated under (
−→
x′ ,
−→
x′ ) and M0, and it is computed as

CT1 =

(
gs2 , gs1

1 ,
{

Ws1
1,i · F

s2
1,i ·Q

x′is3
1 , Ws1

2,i · F
s2
2,i ·Q

x′is3
2

}n

i=1
,
{

Ts1
1,i · H

s2
1,i · R

x′is4
1 , Ts1

2,i · H
s2
2,i · R

x′is4
2

}n

i=1
, Υ−s2 M0

)

Game2 : (
−→
x′ ,
−→
x′ ) and a random message Rx ∈ GT are used to generate the challenge ciphertext,

and it is computed as

CT2 =

(
gs2 , gs1

1 ,
{

Ws1
1,i · F

s2
1,i ·Q

x′is3
1 , Ws1

2,i · F
s2
2,i ·Q

x′is3
2

}n

i=1
,
{

Ts1
1,i · H

s2
1,i · R

x′is4
1 , Ts1

2,i · H
s2
2,i · R

x′is4
2

}n

i=1
, Rx

)



Sensors 2019, 19, 1235 13 of 20

Game3 : The challenge ciphertext is generated under (
−→
x′ ,
−→
0 ) and a random message Rx ∈ GT ,

and it is computed as

CT3 =

(
gs2 , gs1

1 ,
{

Ws1
1,i · F

s2
1,i ·Q

x′is3
1 , Ws1

2,i · F
s2
2,i ·Q

x′is3
2

}n

i=1
,
{

Ts1
1,i · H

s2
1,i, Ts1

2,i · H
s2
2,i

}n

i=1
, Rx

)

Game4 : The challenge ciphertext is generated under (
−→
x′ ,
−→
y′ ) and a random message Rx ∈ GT ,

and it is computed as

CT4 =

(
gs2 , gs1

1 ,
{

Ws1
1,i · F

s2
1,i ·Q

x′is3
1 , Ws1

2,i · F
s2
2,i ·Q

x′is3
2

}n

i=1
,
{

Ts1
1,i · H

s2
1,i · R

y′is4
1 , Ts1

2,i · H
s2
2,i · R

y′is4
2

}n

i=1
, Rx

)

Game5 : The challenge ciphertext is generated under (
−→
0 ,
−→
y′ ) and a random message Rx ∈ GT ,

and it is computed as

CT5 =

(
gs2 , gs1

1 ,
{

Ws1
1,i · F

s2
1,i, Ws1

2,i · F
s2
2,i

}n

i=1
,
{

Ts1
1,i · H

s2
1,i · R

y′is4
1 , Ts1

2,i · H
s2
2,i · R

y′is4
2

}n

i=1
, Rx

)

Game6 : The challenge ciphertext is generated under (
−→
y′ ,
−→
y′ ) and a random message Rx ∈ GT ,

and it is computed as

CT6 =

(
gs2 , gs1

1 ,
{

Ws1
1,i · F

s2
1,i ·Q

y′is3
1 , Ws1

2,i · F
s2
2,i ·Q

y′is3
2

}n

i=1
,
{

Ts1
1,i · H

s2
1,i · R

y′is4
1 , Ts1

2,i · H
s2
2,i · R

y′is4
2

}n

i=1
, Rx

)

Game7 : (
−→
y′ ,
−→
y′ ) and M1 is used to generate the challenge ciphertext, and it is computed as

CT7 =

(
gs2 , gs1

1 ,
{

Ws1
1,i · F

s2
1,i ·Q

y′is3
1 , Ws1

2,i · F
s2
2,i ·Q

y′is3
2

}n

i=1
,
{

Ts1
1,i · H

s2
1,i · R

y′is4
1 , Ts1

2,i · H
s2
2,i · R

y′is4
2

}n

i=1
, Υ−s2 M1

)
We prove that Game1 and Game7 are indistinguishable to an adversary with polynomial time.

This is achieved by proving the computational indistinguishability of the transitions between the
games. This is because the indistinguishability between Game1 and Game2 also indicates that Game6

and Game7 are also indistinguishable, by the property of symmetry of the hybrid games [25].
Under the (t, ε) Decision Bilinear Diffie–Hellman assumption, Game1 and Game2 cannot

be distinguished by an adversary running in polynomial time t with an advantage greater
than ε, assuming there is an adversary A with non-negligible advantage ε that can attack the
scheme. We describe the game between the challenger and the adversary as follows. On input
(g, ga, gb, gc, Z) ∈ G4 × GT , the goal of the challenger is to output 1 if Z = gabc, and 0 otherwise.
The challenger and the adversary engage in the following interaction:

Public parameters: The challenger chooses random exponents {δi, θi}2
i=1, {w1,i, t1,i}n

i=1,
{ f1,i, f2,i}n

i=1, {h1,i, h2,i}n
i=1 , andω ∈ Zp. A random Ψ ∈ Zp is also selected to obtain {w2,i, t2,i}n

i=1
under the constraints

Ψ = δ1w2,i − δ2w1,i, Ψ = θ1t2,i − θ2t1,i

If Ψ = 0, the challenger selects a new set of random exponents. It then sets the following conditions

W1,i = gw1,i , W2,i = gw2,i , T1,i = gt1,i , F1,i = g ˆf1,i , F2,i = g ˆf2,i , H1,i = g ˆh1,i , H2,i = g ˆh2,i T2,i = gt2,i

where
ˆf1,i = x′iδ1b + f1,i, ˆf2,i = x′iδ2b + f2,i, ˆh1,i = x′iθ1b + h1,i, ˆh2,i = x′iθ2b + h2,i

∀i = 1, ..., n and g2 = g−Ψabgω.



Sensors 2019, 19, 1235 14 of 20

The challenger then initiates the following notations:

Q1 = gδ1 , Q2 = gδ2 , R1 = gθ1 , R2 = gθ2 , g1 = gΨ, Υ = e(ga, gb)−Ψ · e(g, g)ω

Key Derivation: A issues private key queries for the vectors. Considering making queries for

the vector −→v = (v1, ..., vn) ∈ Zp, A can request for private key queries as long as 〈−→v ,
−→
x′ 〉 = $ 6= 0.

The challenger selects random exponents λ′1, λ′2,
{

r′i , φ′i
}n

i=1 ∈ Zp in generating the re-encrypted key
REKey−→v , and sets

λ̂′1 = µa + λ′1, λ̂′2 = µa + λ′2

where µ = 1
2$ . The re-encrypted keys K′1,i, K′2,i, K′3,i, K′4,i are then generated as follows:

K′1,i = (ga)viw2,iµ g−δ2r′i gλ′1viw2,i αδ2 , K′2,i = (ga)−viw1,iµ gδ1r′i g−λ′1viw1,i α−δ1 ,

K′3,i = (ga)vit2,iµ g−θ1φ′i gλ′2vit2,i αθ2 , K′4,i = (ga)−vit1,iµ gθ1φ′i g−λ′2vit1,i α−θ1 ,

∀i = 1, ..., n. The K′A and K′B elements are, respectively, computed as

K′A = g2 ∏n
i=1 K

′− ˆf1,i
1,i K

′ ˆ− f2,i
2,i K

′− ˆh1,i
3,i K

′ ˆ−h2,i
4,i and K′B = ∏n

i=1 g−(r
′
i+φ′i ).

Let X = K
′− ˆf1,i
1,i K

′ ˆ− f2,i
2,i and Y = K

′− ˆh1,i
3,i K

′ ˆ−h2,i
4,i . Computing for both X and Y yields

X =
[
(ga)viw2,iµ g−δ2r′i gλ′1viw2,i αδ2

]−(x′iδ1b+ f1,i) ·
[
(ga)−viw1,iµ gδ1r′i g−λ′1viw1,i α−δ1

]−(x′iδ2b+ f2,i)

=
(

gab
)−vix′iδ1w2,iµ

(ga)−viw2,i f1,iµ
(

gb
)x′iδ1δ2r′i gr′iδ2 f1,i

(
gb
)−λ′1vix′iδ1w2,i

g−λ′1viw2,i f1,i
(

αb
)−x′iδ1δ2

α−δ2 f1,i

·
(

gab
)vix′iδ2w1,iµ

(ga)viw1,i f2,iµ
(

gb
)−x′iδ1δ2r′i g−r′iδ1 f2,i

(
gb
)λ′1vix′iδ2w1,i

gλ′1viw1,i f2,i
(

αb
)x′iδ1δ2

αδ1 f2,i

=
(

gab
)vix′i [δ2w1,i−δ1w2,i]µ

(ga)vi[w1,i f2,i−w2,i f1,i]µ gr′i [δ2 f1,i−δ1 f2,i]
(

gb
)λ′1vix′i [δ2w1,i−δ1w2,i]

gλ′1vi[w1,i f2,i−w2,i f1,i]

α[δ1 f2,i−δ2 f1,i]

=
(

gab
)−Ψvix′iµ

(ga)χviµ gr′iϑ
(

gb
)−Ψλ′1vix′i gχλ′1vi α−ϑ

where Ψ = δ1w2,i − δ2w1,i, χ = w1,i f2,i − w2,i f1,i and ϑ = δ2 f1,i − δ1 f2,i.

Y =
[
(ga)vit2,iµ g−θ2φ′i gλ′2vit2,i αθ2

]−(x′iθ1b+h1,i) ·
[
(ga)−vit1,iµ gθ1φ′i g−λ′2vit1,i α−θ1

]−(x′iθ2b+h2,i)

=
(

gab
)−vix′iθ1t2,iµ

(ga)−vit2,ih1,iµ
(

gb
)x′iθ1θ2φ′i gφ′i θ2h1,i

(
gb
)−λ′2vix′iθ1t2,i

g−λ′2vit2,ih1,i
(

αb
)−x′iθ1θ2

α−θ2h1,i

·
(

gab
)vix′iθ2t1,iµ

(ga)vit1,ih2,iµ
(

gb
)−x′iθ1θ2φ′i g−φ′i θ1h2,i

(
gb
)λ′2vix′iθ2t1,i

gλ′2vit1,ih2,i
(

αb
)x′iθ1θ2

αθ1h2,i

=
(

gab
)vix′i [θ2t1,i−θ1t2,i]µ

(ga)vi[t1,ih2,i−t2,ih1,i]µ gφ′i [θ2h1,i−θ1h2,i]
(

gb
)λ′2vix′i [θ2t1,i−θ1t2,i]

gλ′2vi[t1,ih2,i−t2,ih1,i]

α[θ1h2,i−θ2h1,i]

=
(

gab
)−Ψvix′iµ

(ga)ζviµ gφ′i ξ
(

gb
)−Ψλ′2vix′i gζλ′2vi α−ξ

where Ψ = θ1t2,i − θ2t1,i, ζ = t1,ih2,i − t2,ih1,i and ξ = θ2h1,i − θ1h2,i.
X · Y results in

X · Y =
(

gab
)−2Ψvix′iµ

(ga)vi [χ+ζ]µ gr′iϑ+φ′i ξ
(

gb
)−Ψvix′i [λ

′
1+λ′2] gvi[χλ′1+ζλ′2]α−(ϑ+ξ)



Sensors 2019, 19, 1235 15 of 20

The challenger can then compute K′A as

K′A = g2

n

∏
i=1

(
gab
)−2Ψvix′iµ

(ga)vi [χ+ζ]µ
(

gb
)−Ψvix′i [λ

′
1+λ′2] · gr′iϑ+φ′i ξ+vi[χλ′1+ζλ′2]α−(ϑ+ξ)

= gω
n

∏
i=1

(ga)vi [χ+ζ]µ ·
n

∏
i=1

(
gb
)−Ψvix′i [λ

′
1+λ′2] ·

n

∏
i=1

gr′iϑ+φ′i ξ+vi[χλ′1+ζλ′2] · α−(ϑ+ξ)

The challenger issues the private key PK−→
v′

=
(

K′A, K′B,
{

K′1,i, K′2,i

}n

i=1
,
{

K′3,i, K′4,i

}n

i=1

)
for the

queried vector.
Challenge Ciphertext: In generating the challenge ciphertext, the challenger selects random

elements s1, s3, s4 ∈ Zp, and sets

ŝ1 = s1, ŝ2 = c, ŝ3 = s3 − bc, ŝ4 = s4 − bc.

The challenger then computes A = gs2 = gc and B = gΨs1 =
(

gΨ)s1 = gs1
1 , and ∀i = 1, ..., n,

the ciphertexts C1,i, C2,i, C3,i, C4,i are computed as follows

C1,i = gw1,is1 · (gc)
ˆf1,i · gδ1x′is3 = (gw1,i )s1 ·

((
gb
)x′iδ1

g f1,i

)c

·
(

gδ1
)x′i(s3−bc)

= W ŝ1
1,i · F

ŝ2
1,i ·Q

x′i ŝ3
1

C2,i = gw2,is1 · (gc)
ˆf2,i · gδ2x′is3 = (gw2,i )s1 ·

((
gb
)x′iδ2

g f2,i

)c

·
(

gδ2
)x′i(s3−bc)

= W ŝ1
2,i · F

ŝ2
2,i ·Q

x′i ŝ3
2

C3,i = gt1,is1 · (gc)
ˆh1,i · gθ1x′is4 =

(
gt1,i
)s1 ·

((
gb
)x′iθ1

gh1,i

)c

·
(

gθ1
)x′i(s4−bc)

= T ŝ1
1,i · H

ŝ2
1,i · R

x′i ŝ4
1

C4,i = gt2,is1 · (gc)
ˆh2,i · gθ2x′is4 =

(
gt2,i
)s1 ·

((
gb
)x′iθ2

gh2,i

)c

·
(

gθ2
)x′i(s4−bc)

= T ŝ1
2,i · H

ŝ2
2,i · R

x′i ŝ4
2

The challenger then computes D = Z−Ψ · e (g, gc)ω ·M0.
Under the Decisional BDH assumption, Game1 and Game2 are indistinguishable since, if

Z = e (g, g)abc, the challenge ciphertext is as given in Game1, while, if Z is a randomly chosen
element in GT , then the challenge ciphertext is as shown in Game2.

7. Implementation and Performance Analysis

In this section, we provide details of the implementation of our system and also evaluate the
performance of our system. Experiments were designed and some useful parameters were measured.
In our system, users (data owners inclusive) are registered on the blockchain network and this involves
aggregating information pertaining to a specific user. Users are categorized as specified by the data
owner. Each user is then given a public and private key pair, which are associated with their details,
and to be used in requesting and accessing data.

We implemented the blockchain system on a private Ethereum blockchain network. Ethereum is
a programmable blockchain platform that utilizes the robust nature of Solidity (a state-based scripting
language). An application was designed in Python that connects each data owner and performs the
proxy re-encryption scheme on the data. This application synchronizes with the blockchain using the
JSON-RPC (JavaScript Object Notation—Remote Procedure Calls) library. With the blockchain notified
about data request, queries are sent to the cloud server and data are filtered and sent to the blockchain.
Re-encryption is either performed or not, based on the user type.

7.1. Experiment 1

In this first experiment, we measured the time it takes to register a user (both data owner and
data user) on the blockchain network. To register, the user sends its details to the blockchain and



Sensors 2019, 19, 1235 16 of 20

membership keys are given to the user. We measured the delay it takes in mining this transaction.
Variations over 40 runs of this scenario were simulated and the average registration delay was obtained.
Experiment results indicate an average delay of 13.94 s, which is not far off the 13 s for a block
generation in Ethereum networks. The experiment result is shown in Figure 2.

Figure 2. User registration delay.

7.2. Experiment 2

In this second experiment, the impact of proxy re-encryption was measured. A flow chart, as
shown in Figure 3, was designed that describes data processing as the data are requested by a user.
As soon as data request is made, the blockchain network checks if the user is a legitimate member of
the network. If successful, it sends a notification to the cloud server, which then filters and retrieves
the data before sending them back to the blockchain network.

Figure 3. Flow chart.

After receiving the data, the blockchain checks for the user type. For a primary user, the blockchain
delivers the data and proceeds to mine the address and this becomes a transaction. For a secondary
user, the proxy is called upon and it re-encrypts the data before giving it out, after which it is also
mined. Experiment results are shown in Figure 4.



Sensors 2019, 19, 1235 17 of 20

Figure 4. Impact of proxy re-encryption.

The tests were run for a variation of 40 times and it was realized that it takes an average of
30.18 s for an end-to-end data processing without re-encryption (as described in the flow chart) to be
completed. Similarly, an average of 47.73 s was recorded for a process that involves re-encryption.
Consequently, we realized the addition of re-encryption to the scheme increased the delay by 58.15%.

8. Discussion

1. Collusion Resistance: Our proposed scheme prevents collusion attack in the sense that the
re-encrypted data are divided into two parts with one part stored on the blockchain network, and
the other part stored on the cloud. Because the blockchain network and the cloud server work in
tandem, a data user has to first obtain the bit-part data stored on the blockchain before obtaining
the other half from the cloud. As a first level security check (usually performed before decryption),
a data user must prove to the blockchain networks’ verification unit its membership before gaining
access to the data. A revoked user is deprived of this right because its membership keys have been
completely removed from the network and therefore the user becomes unknown to the network.
However, for a revoked user who still colludes with the cloud server for access to data,
the cloud server still has to provide the user’s details to the blockchain processing node for
the necessary checks to be made. With collusion attack prevented, the confidentiality of the data is
preserved/guaranteed.

2. Fine-grained access control: There is an effective management of user access by the
implementation of the ABE scheme. The utilization of the inner product encryption scheme
enables a fine-grained access control to data. The data owner specifies which attribute set or right
a data user enjoys and therefore, to access data, there should be a match-up between the attribute
set and the private key set. There is also the possibility of selective delegation due to the weight
(information type) set by the data owner. Furthermore, depending on the level of trust between
the data owner and the user(s), decryption of either all or some data can be delegated selectively
to the user(s).

9. Conclusions

In this paper, an inner-product proxy re-encryption scheme that ensures an efficient and secured
data access to IoT data is presented. The encryption of IoT data is done according to a given access
policy and shared with the various data users, and therefore the problem of data sharing has been
addressed. We incorporated a blockchain network, whose processing node acts as the proxy server.
A user can access data when it is a registered member of the network, with the verification performed
by the blockchain network. The proxy also re-encrypts the data by transforming the policy set in
the process of sharing the data. The blockchain network works in tandem with the cloud server



Sensors 2019, 19, 1235 18 of 20

to ensure a collusion-resistant scheme. Our approach also achieves a fine-grained access control to
data. Experiment results show that proxy re-encryption increased the delay, but the utilization of
a blockchain kept a record of all interactions between entities and eliminated the need of a trusted
third party. Making improvements to our scheme, in terms of its efficiency, is the focus of our future
work. We also plan to include a detailed smart contract algorithm and more experimental results in
the next work.

Author Contributions: Conceptualization, K.O.-B.O.A. and Q.X.; software design, E.B.S. and J.G.; security
analysis, H.X. and X.D.; and writing—review and editing, M.G.

Funding: This work was supported in part by the programs of International Science and Technology Cooperation
and Exchange of Sichuan Province under Grant 2017HH0028, Grant 2018HH0102 and Grant 2019YFH0014.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations

The following abbreviationsr are used in this manuscript:

ABE Attribute Based Encryption
IoT Internet of Things
IPE Inner Product Encryption
PRE Proxy Re-Encryption
ECC Elliptic Curve Cryptography
WSN Wireless Sensor Network
HIPAA Health Insurance Portability and Accountability Act
EMR Electronic Medical Record
EHR Electronic Health Records

References

1. Zheng, J.; Simplot-Ryl, D.; Bisdikian, C.; Mouftah, H. The internet of things. IEEE Commun. Mag.
2011, 49, 30–31. [CrossRef]

2. Miorandi, D.; Sicari, S.; De Pellegrini, F.; Chlamtac, I. Internet of things: Vision applications and research
challenges. Ad Hoc Netw. 2012, 10, 1497–1516. [CrossRef]

3. Casadei, R.; Fortino, G.; Pianini, D.; Russo, W.; Savaglio, C.; Viroli, M. Modelling and simulation of
opportunistic IoT services with aggregate computing. Future Gener. Comput. Syst. 2019, 91, 252–262.
[CrossRef]

4. Bennett, T.R.; Savaglio, C.; Lu, D.; Massey, H.; Wang, X.; Wu, J.; Jafari, R. MotionSynthesis toolset (MoST):
A toolset for human motion data synthesis and validation. In Proceedings of the 4th ACM MobiHoc
Workshop on Pervasive Wireless Healthcare, Philadelphia, PA, USA, 11–14 August 2014. [CrossRef]

5. Leavitt, N. Is cloud computing really ready for prime time? Computer 2009, 42, 15–20. [CrossRef]
6. Brodkin, J. Gartner: Seven cloud-computing security risks. Netw. World 2008, 2008, 1–3.
7. Chow, R.; Golle, P.; Jakobsson, M.; Shi, E.; Staddon, J.; Masuoka, R.; Molina, J. Controlling data in the

cloud: outsourcing computation without outsourcing control. In Proceedings of the IEEE 3rd International
Conference on Cloud Computing, Chicago, IL, USA, 13–13 November 2009; pp. 85–90.

8. Sahai, A.; Waters, B. Fuzzy identity-based encryption. In Proceedings of the 24th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Aarhus, Denmark, 22–26 May
2005; Springer: Berlin/Heidelberg, Germany; Volume 3494, pp. 457–473.

9. Wang, G.; Liu, Q.; Wu, J. Hierarchical attribute-based encryption for fine-grained access control in cloud
storage services. In Proceedings of the ACM conference on Computer and Communications Security CCS’10,
Chicago, IL, USA, 4–8 October 2010.

10. Zhao, G.; Rong, C.; Li, J.; Zhang, F.; Tang, Y. Trusted data sharing over untrusted cloud storage providers.
In Proceedings of the 2nd IEEE International Conference on Cloud Computing Technology and Sciene,
Indianapolis, IN, USA, 30 Novemebr–3 December 2011; pp. 96–103.

http://dx.doi.org/10.1109/MCOM.2011.6069706
http://dx.doi.org/10.1016/j.adhoc.2012.02.016
http://dx.doi.org/10.1016/j.future.2018.09.005
http://dx.doi.org/10.1145/2633651.2637472
http://dx.doi.org/10.1109/MC.2009.20


Sensors 2019, 19, 1235 19 of 20

11. Yu, S.; Wang, C.; Ren, K.; Lou, W. Achieving secure, scalable, and fine-grained data access control in
cloud computing. In Proceedings of the IEEE International Conference on Computer Communications
INFOCOM’10, San Diego, CA, USA, 14–19 March 2010.

12. Park, J.H. Inner-product encryption under standard assumptions. Des. Codes Cryptogr. 2011, 58, 235–257.
[CrossRef]

13. Qin, Z.; Xiong, H.; Wu, S.; Batamuliza, J. A survey of proxy re-encryption for secure data sharing in cloud
computing. IEEE Trans. Serv. Comput. 2017, 99. [CrossRef]

14. Sepehri, M.; Cimato, S.; Damiani, E. Efficient implementation of a proxy-based protocol for data sharing
on the cloud. In Proceedings of the Fifth ACM International Workshop on Security in Cloud Computing,
SCC@AsiaCCS 2017, Abu Dhabi, UAE, 2 April 2017; pp. 67–74.

15. Sepehri, M.; Cimato, S.; Damiani, E.; Yeuny, C.Y. Data Ssharing on the cloud: A scalable proxy-based
protocol for privacy-preserving queries. In Proceedings of the 7th IEEE International Symposium on Ubisafe
Computing in Conjunction with 14th IEEE Conference on Trust, Security and Privacy in Computing and
Communications, TrustCom/BigDataSE/ISPA, Helsinki, Finland, 20–22 August 2015; pp. 357–1362.

16. Mambo, M.; Okamoto, E. Proxy cryptosystems: Delegation of the power to decrypt ciphertexts. IICE Trans.
Fundam. Electr. Commun. Comput. Sci. 1997, 80A, 54–63.

17. Blaze, M.; Bleumer, G.; Strauss, M. Divertible Protocols and Atomic Proxy Cryptography; Springer:
Berlin/Heidelberg, Germany, 1998; pp. 127–144.

18. El Gamal, T. A public key cryptosystem and a signature scheme based on discrete logarithms. In Proceedings
of the CRYPTO 84 on Advances in Cryptology, Santa Barbara, CA, USA, 18–22 August 1985; Springer: New
York, NY, USA, 1985; pp. 10–18.

19. Do, J.-M.; Song, Y.-J.; Park, N. Attribute based proxy re-encryption for data confidentiality in cloud
computing environments. In Proceedings of the 2011 First ACIS/JNU International Conference on
Computers, Networks, Systems and Industrial Engineering (CNSI ’11), Jeju Island, Korea, 23–25 May
2001; IEEE Computer Society: Washington, DC, USA, 2001; pp. 248–251.

20. Guo, S.; Zeng, Y.; Wei, J.; Xu, Q. Attribute-based re-encryption scheme in the standard model. Wuhan Univ. J.
Nat. Sci. 2008, 13, 621–625. [CrossRef]

21. Liang, X.; Cao, Z.; Lin, H.; Shao, J. Attribute based proxy re-encryption with delegating capabilities. In
Proceedings of the 4th International Symposium on Information, Computer, and Communications Security
(ASIACCS’09), Sydney, Australia, 10–12 March 2009; ACM: New York, NY, USA, 2009; pp. 276–286.

22. Luo, S.; Hu, J.; Chen, Z. Ciphertext policy attribute-based proxy re-encryption. In Proceedings of the
12th International Conference on Information and Communications Security (ICICS’10), Barcelona, Spain,
15–17 December 2010; Springer: Berlin/Heidelberg, Germany, 2010; pp. 401–415.

23. Bethencourt, J.; Sahai, A.; Waters, B. Ciphertext-policy attribute-based encryption. In Proceedings of the 2007
IEEE Symposium on Security and Privacy (SP ’07), Berkeley, CA, USA, 20–23 May 2007; IEEE Computer
Society: Washington, DC, USA, 2007; pp. 321–334.

24. Goyal, V.; Pandey, O.; Sahai, A.; Waters, B. Attribute-based encryption for fine-grained access control of
encrypted data. In Proceedings of the 13th ACM Conference on Computer and Communications Security
(CCS’06), Alexandria, VA, USA, 30 October–3 November 2006; ACM: New York, NY, USA, 2006; pp. 89–98.

25. Katz, J.; Sahai, A.; Waters, B. Predicate Encryption Supporting Disjunctions, Polynomial Equations, and Inner
Products; Springer: Berlin/Heidelberg, Germany, 2008; pp. 146–162.

26. Okamoto, T.; Takashima, K. Hierarchical Predicate Encryption for Inner-Products; Springer:
Berlin/Heidelberg, Germany, 2009; pp. 214–231.

27. Du, X.; Guizani, M.; Xiao, Y.; Chen, H.H. A routing-driven elliptic curve cryptography based key
management scheme for heterogeneous sensor networks. IEEE Trans. Wirel. Commun. 2009, 8, 1223–1229.
[CrossRef]

28. Xiao, Y.; Rayib, V.K.; Sunc, B.; Du, X.; Hue, F.; Gallowaya, M. A survey of key management schemes in
wireless sensor networks. J. Comput. Commun. 2007, 30, 2314–2341. [CrossRef]

29. Du, X.; Xiao, Y.; Guizani, M.; Chen, H.H. An effective key management scheme for heterogeneous sensor
networks. Ad Hoc Netw. 2007, 5, 24–34. [CrossRef]

30. Du, X.; Chen, H.H. Security in wireless sensor networks. IEEE Wirel. Commun. Mag. 2008, 15, 60–66.

http://dx.doi.org/10.1007/s10623-010-9405-9
http://dx.doi.org/10.1109/TSC.2016.2551238
http://dx.doi.org/10.1007/s11859-008-0522-5
http://dx.doi.org/10.1109/TWC.2009.060598
http://dx.doi.org/10.1016/j.comcom.2007.04.009
http://dx.doi.org/10.1016/j.adhoc.2006.05.012


Sensors 2019, 19, 1235 20 of 20

31. Griggs, K.N.; Ossipova, O.; Kohlios, C.P.; Baccarini, A.N.; Howson, E.A.; Hayajneh, T. Healthcare Blockchain
System Using Smart Contracts for Secure Automated Remote Patient Monitoring. J. Med. Syst. 2018, 42, 130.
[CrossRef] [PubMed]

32. Kamau, G.; Boore, C.; Maina, E.; Njenga, S. Blockchain technology: Is this the solution to EMR interoperability
and security issues in developing countries? In Proceedings of the 2018 IST-Africa Week Conference
(IST-Africa), Gaborone, Botswana, 9–11 May 2018; pp. 1–8.

33. Ekblaw, A.; Azaria, A.; Halamka, J.D.; Lippman, A. A case study for blockchain in healthcare:
“Medrec” prototype for electronic health records and medical research data. In Proceedings of the IEEE
Open and Big Data Conference, Vienna, Austria, 22–24 August 2016; p. 13.

34. Xia, Q.; Sifah, E.B.; Smahi, A.; Amofa, S.; Zhang, X. BBDS: Blockchain-based data sharing for electronic
medical records in cloud environments. Information 2017, 8, 44. [CrossRef]

35. Yue, X.; Wang, H.; Jin, D.; Li, M.; Jiang, W. Healthcare data gateways: found healthcare intelligence on
blockchain with novel privacy risk control. J. Med. Syst. 2016, 40, 218. [CrossRef] [PubMed]

36. Badr, S.; Gomaa, I.; Abd-Elrahman, E. Multi-tier blockchain framework for IoT-EHRs systems.
Procedia Comput. Sci. 2018, 141, 159–166. [CrossRef]

37. Boneh, D.; Franklin, M. Identity-based encryption from the Weil Pairing. SIAM J. Comput. 2003, 32, 586–615.
[CrossRef]

38. Park, N.; Kwak, J.; Kim, H.; Kim, S.; Won, D. WIPI mobile platform with secure service for mobile RFID
network environment. In Proceedings of the ICSE 2006 International Workshop on Web-based Internet
Computing for Science and Engineering (In Conjunction with APWeb 2006), Harbin, China, 16–18 Janury
2006; Springer-Verlag: Berlin/Heidelberg, Germany, 2006; pp. 741–748.

39. Ateniese, G.; Fu, K.; Green, M.; Hohenberger, S. Improved proxy re-encryption schemes with applications to
secure distributed storage. In Proceedings of the 12th Annual Network and Distributed System Security
Symposium (NDSS), San Diego, CA, USA, 2–4 February 2005.

40. Nakamoto, S. Bitcoin: A Peer-to-Peer Electronic Cash System. 2008. Available online: https://bitcoin.org/
bitcoin.pdf (accessed on 11 March 2019).

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s10916-018-0982-x
http://www.ncbi.nlm.nih.gov/pubmed/29876661
http://dx.doi.org/10.3390/info8020044
http://dx.doi.org/10.1007/s10916-016-0574-6
http://www.ncbi.nlm.nih.gov/pubmed/27565509
http://dx.doi.org/10.1016/j.procs.2018.10.162
http://dx.doi.org/10.1137/S0097539701398521
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Works
	Preliminaries
	Bilinear Maps
	Inner-Product Encryption (IPE)
	Attribute Based Encryption (ABE)
	Proxy Re-Encryption (PRE)
	Blockchain Network

	System Model
	Problem Statement
	System Overview

	The Scheme
	Security Model
	Implementation and Performance Analysis
	Experiment 1
	Experiment 2

	Discussion
	Conclusions
	References

