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Abstract
Metal oxide nanoparticles, such as CuO and SnO2, are outstanding systems for H2S gas sensing in air. In this work, those 
nanoparticles were deposited with different mixing percentages on substrates to form percolating networks of nanoparticles. 
Electrical electrodes were deposited on the nanoparticles’ films to investigate their gas sensing response against H2 and 
H2S, and their electrical characteristics. The sensor devices based on CuO–SnO2 nanoparticles revealed enhanced sensing 
characteristics against H2S with a sensitivity of 10 ppm. The enhanced sensing characteristics could be attributed to the 
formation of PN-junctions among CuO and SnO2 nanoparticles. The reasonable production cost (due to simple structure and 
cheap used materials), low power consumption ( ~ 1 µW for H2S at room temperature), high sensitivity, high response, and 
reasonable response time of the present sensors qualify them for practical implementation in portable gas sensing devices 
with enhanced characteristics.

1  Introduction

The recent developments in technology and industry lead 
to further emission of toxic gases that cause pollution to 
domestic environments. Some of those gases are extremely 
toxic and their presence, even in few tens of ppm, is a haz-
ard to human life. Therefore, highly sensitive and selective 
detection of gases is required to monitor and control environ-
ment quality [1].

A conductometric gas sensor is a device that detects gas-
eous species in an environment by change in its electrical 
resistance [2, 3]. This type of sensors is attractive for utiliza-
tion in portable field applications due to its many advantages 
that include the simple fabrication process, compact size, 
and direct reading [4]. The functionality of those sensors 
can be greatly enhanced when utilizing nanomaterials, as 
the sensing elements, due to their large surface to volume 
ratio that generates further active reaction sites [5, 6]. SnO2 

nanoparticles are the main candidate used for gas sensors, 
however, their performance is affected by many factors, such 
as nanoparticle size, polycrystallinity, and operation tem-
perature [7]. The sensing performance of those nanoparticles 
is vastly enhanced by the addition of another metal-oxide 
nanoparticle with a high affinity to the target gas.

H2S gas is a volatile gas that may be generated from dif-
ferent sources such as dumps, toilets, human mouth, and 
mainly from petroleum extraction and refining activities [8, 
9]. Accurate H2S sensors are required for implementation 
for safety, control, and environment quality applications in 
the fields related to its emission. CuO modified SnO2 nano-
particles is a promising system for sensitive and selective 
detection of H2S in the air because of the formation of PN-
junctions between those semiconducting nanoparticles and 
the great chemical affinity of CuO nanoparticles for H2S gas 
[10, 11]. H2S gas is a reducing gas where its adsorption on 
the CuO–SnO2 PN-junctions leads to the reduction of both 
barrier width and depletion width at the junction. Herein, 
the uniform desperation of CuO with SnO2 nanoparticles is 
desirable since it allows the diffusion of H2S gas to the sens-
ing locations on the CuO–SnO2 PN-junctions.

This investigation reports on the fabrication of H2S gas 
sensors based on composite percolating films of CuO and 
SnO2 nanoparticles. CuO nanoparticles are synthesized 
using a solvothermal method, while SnO2 nanoparticles are 
synthesized using a sol–gel method in a microwave oven. 
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The nanoparticles are dispersed in different ratios and depos-
ited on glass slides to form percolating film of nanoparticles. 
A pair of parallel copper electrodes is used to investigate the 
electrical characteristics as well as the gas sensing properties 
of the produced sensors. The sensors are tested against H2 
and H2S gases where the sensitivity, response, and response 
time are explored. The sensors demonstrate enhanced sens-
ing characteristics which are attributed to the formation of 
PN-junctions between CuO and SnO2 nanoparticles. There-
fore, those sensors have the potential for implementation in 
practical portable gas sensing devices.

2 � Experimental

2.1 � Materials

Cu(CH3COOH), NaOH, citric acid, and ethanol 99.8% 
were purchased from Sigma Aldrich. Acetic acid 99.5% and 
SnCl2·2H2O were purchased from BDH.

2.2 � Synthesis of nanoparticles

CuO nanoparticles were synthesized using a solvothermal 
method [12] with modification. 0.5 g of Cu(CH3COOH) 
was dissolved in 0.3 ml of acetic acid by sonication, then 
mixed with 100 ml ethanol with a gradual increase of solu-
tion temperature to 80 °C. 10 ml of ethanol solution with 
0.26 g of NaOH was added to the solution drop by drop 
under vigorous stirring. The color of the solution changed 
to black, and the solution was kept under stirring for 30 min. 
The nanoparticles were washed using deionized water and 
ethanol 5 times by a centrifuge at 6000 rpm, then dried in 
an oven at 60 °C overnight.

SnO2 nanoparticles were synthesized using the sol–gel 
method inside a typical microwave oven [13]. A solution of 
SnCl2·H2O and citric acid was mixed slowly with 3:5 mol 
ratio without precipitate formation. The mixture was heated 
at 80 °C, where water started to evaporate giving a sol then 
gel with time. The gel was exposed to microwave radia-
tion with a fixed power of 1.25 kW for 6 min where the 
gel burned. The outcome, black powder, was collected and 
annealed at 550 °C for 2 h with a temperature increase rate 
of 3 °C /min to result a white powder of SnO2 nanoparticles.

2.3 � Sensor fabrication

Glass slides with dimensions of 10 × 10mm2 each were 
cleaned in a sonicator bath using acetone, ethanol, and 
deionized water. Different percentages of CuO and SnO2 
nanoparticles (1:0, 0.75:0.25, 0.5:0.5, 0.25:0.75, and 0:1) 
were dispersed in deionized water using a sonicator bath for 
10 min to obtain good mixing. A 50 μl solution drop was 

casted on a glass slide, and it was left to dry overnight in an 
oven at 50 °C to give a uniform layer. A holder with a pair 
of parallel copper electrodes with a separation of 1.5 mm 
was deposited on top of each film/substrate. The copper 
electrodes were connected to wires using silver paste to 
allow charge transport and sensitivity measurements. Next, 
the prepared device was fixed on a temperature-controlled 
stage inside a gas sensitivity test chamber that was made 
out of Teflon.

2.4 � Characterization

An FEI scanning electron microscope (SEM) (model: Nonva 
NanoSEM-450) equipped with an energy dispersive X-ray 
spectroscopy (EDS) system was employed to identify the 
morphology and chemical composition of the produced 
nanoparticles. It should be noted here that a thin film of 
gold was deposited on each sample prior to SEM imaging to 
enhance the resolution. The composition and crystallogra-
phy were further analyzed using a PANalytical X-ray diffrac-
tometer (XRD) (model: Empyrean). Herein, 2θ angle was 
scanned with a step size of 0.02° within the range 10°–80°. 
The measurements were conducted using the radiation peak 
of Cu-K� that exhibits a wavelength (λ) of 1.5406 Å.

Current–voltage (I(V)) electrical characterization tech-
nique was utilized to investigate electrical charge transport 
within the produced films using a source measurement 
unit (Keithley Instruments, SMU-236). The electrical tests 
were established inside the Teflon test chamber on the test 
stage with temperature control using a K-type thermocou-
ple (placed on sample surface). For gas sensitivity meas-
urements, the target gas was diluted with air using mass 
flow meters (Bronkhorst), then presented into the Teflon test 
chamber. SMU-236 was utilized to determine the electri-
cal response of the gas by measuring the electrical current 
change across each sensor whereas a constant voltage was 
applied.

3 � Results and discussion

The morphology and composition of the produced nanopar-
ticles are presented in Fig. 1. The SEM images demonstrate 
the production of nanoparticles that form larger agglomer-
ates. The images reveal that the sizes of CuO and SnO2 nan-
oparticles are 10.0 ± 3.3 nm and 16.2 ± 5.4 nm, respectively. 
The EDS composition measurements shown in Fig. 1 con-
firm the formation of both of CuO and SnO2 nanoparticles.

Figure 2 shows X-ray analysis of both CuO and SnO2 
powder. The XRD results confirm the formation of CuO 
and SnO2 nanoparticles of monoclinic and tetragonal 
structures, respectively. The reference card used for CuO 
nanoparticles is ICSD-87126, and for SnO2 nanoparticles 
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Fig. 1   SEM images of the produced CuO nanoparticles: a CuO and b SnO2. EDS measurements of the composition of nanoparticles: c CuO and 
d SnO2

Fig. 2   XRD of the produced a CuO and b SnO2 nanoparticles with Miller indices indicated on the figures
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is ICSD-160667. The Miller indices are identified accord-
ing to the above structures and indicated on the figures. 
The Sherrer’s equation can be used to estimate the nano-
particle size ( D ) from XRD measurements, and presented 
as [14, 15]:

Here, k is set to 0.95 and it is a dimensionless constant 
that is assigned to nanoparticle structure, λ = 1.5406 Å 
and it is the wavelength of XRD radiation peak (Cu-K� ), 
� is defined as the full width at half maximum of an XRD 
peak, and � is the Bragg’s angle. The size calculations 
are established using the XRD peaks (11-1) and (110) 
for CuO and SnO2 nanoparticles, respectively. The CuO 
nanoparticle size is estimated to 7.9 nm, while the SnO2 
nanoparticle size is estimated to 18.8 nm. Those values 
are consistent with the results obtained from the SEM 
images within the error bars. Furthermore, it should be 
noted that nanoparticles exhibit size distributions and they 

D =
k�

� cos �
.

form agglomerates which cause variation in the actual size 
estimation.

Thin films of nanoparticles are tested with the following 
CuO:SnO2 ratios: 1:0, 0.75:0.25, 0.5:0.5, 0.25:0.75, and 0:1. 
Pictures of produced films are shown in Fig. 3. Each film 
is tested for its electrical charge transport inside the Teflon 
chamber, where a holder that contains a pair of parallel cop-
per electrodes is placed on top of the film. The test chamber 
and schematic diagram of the electrical measurement circuit 
are shown in Fig. 3.

Figure 4a shows I(V) measurements for a CuO film as a 
function of temperature. The figure reveals small non-line-
arity within the measurement voltage range and a negative 
temperature coefficient of the resistance. The dependence 
of the resistance on temperature is shown in Fig. 4b. The 
resistance is calculated using the linear region at low voltage 
(1 V). The figure confirms the negative temperature coef-
ficient of the resistance. Furthermore, it demonstrates that 
the resistance is proportional directly to the percentage of 
SnO2 within the sample. The non-linearity could result from 
different reasons, for example, Schottky barriers between 

Fig. 3   Schematic diagram of the 
electrical measurement circuit 
and sample pictures of CuO, 
SnO2 samples, and the Teflon 
test chamber

Fig. 4   a I(V) as a function of temperature for the sample CuO:SnO2 ratio of 1:0. b The dependence of the electrical resistance on temperature for 
the produced sensors as a function of CuO:SnO2 ratios
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metal contacts and semiconducting materials [9]. The nega-
tive temperature coefficient of the resistance was observed 
previously for different percolating networks of nanoparti-
cles [8, 16, 17]. Furthermore, the results expose that sen-
sor resistances are dominated by SnO2 which is consistent 
with published values of resistivity: ρCuO = 18 Ω m [18] and 
ρSnO2 ~ 85 Ω m [19] at room temperature.

The fabricated sensors were tested for their sensitivity of 
H2 and H2S gases. The gas response tests were established 
by applying a fixed bias voltage across a sensor electrodes 
and measuring the variation in current signal during gas 
exposure, see Fig. 3. A sample of the CuO sensor response 
results against H2 gas measured at 140 °C is presented in 
Fig. 5a. The figure shows that when the sensor is exposed to 
H2 gas, the electrical current increases with an amount that 
is proportional to H2 concentration. Once H2 gas is stopped 
and the chamber is “washed” with air, the electrical current 
revert back to its base value. Furthermore, the current signal 
tends to saturate at high H2 concentrations.

The gas response of a sensor can be expressed as 
S =

|
|
|

Igas−Iref

Iref

|
|
|
=

|ΔI|

Iref

 . Here, Igas is the current signal while the 
target gas present in the test chamber, while Iref is the base 
current signal, i.e. with air only. Figure 5b–f present the 
hydrogen gas response results for the produced sensors with 
CuO:SnO2 ratios of 1:0, 0.75:0.25, 0.5:0.5, 0.25:0.75, and 
0:1. The figures reveal that the produced sensors are sensi-
tive to a minimum H2 concentration of 600 ppm. Further-
more, the response increase with H2 concentration. The sen-
sors that contain CuO nanoparticles show response at 100 °C 
and 140 °C, while the sensor with pure SnO2 nanoparticles 

function only at 140 °C. None of the sensors exhibit any 
response at 25 °C. This indicates the higher affinity of CuO 
to H2 (compared with SnO2) at the lower temperatures.

Figure 6a–e show the gas response for H2S of the pro-
duced sensors with CuO:SnO2 ratios of 1:0, 0.75:0.25, 
0.5:0.5, 0.25:0.75, and 0:1. The figures demonstrate a mini-
mum sensitivity of the sensors of 10 ppm and an increase in 
the response with H2S concentration. Therefore, those sen-
sors are selective to H2S compared with H2. A comparison 
between the minimum sensitivity of previously reported sen-
sors as well as commercial sensors is presented in Table 1. 
The response of the present sensors to H2S is enhanced or at 
least comparable with the reported values of similar system 
of nanoparticles [20, 21], and better in terms of their func-
tionality at room temperature [22]. All the sensors are func-
tional at the three measurement temperatures (except that of 
CuO:SnO2 ratio of 0.25:0.75). At low gas concentrations, the 
responses of all sensors are approximately identical, while 
different responses are observed at high concentrations. 
For the sensor with CuO:SnO2 ratio of 1:0, the response is 
almost identical regardless of the measurement temperature. 
For sensors with CuO:SnO2 ratios of 0.75:0.25 and 0.5:0.5, 
the response is higher at room temperature compared to 
that at high temperatures. Nevertheless, for sensors with the 
majority of SnO2 (CuO:SnO2 ratios of 0.25:0.75 and 0:1), 
the response increase with temperature.

A sensor response time is defined as the time needed for 
the sensor response to cover 90% of its maximum value. 
The values of the response times toward both H2 and H2S 
are shown in Table 2. Each of the presented values is the 
average sensor response for different gas concentrations at 

Fig. 5   a Electrical current signal for different H2 gas concentrations 
of CuO sensor at 140 °C measured at 1 V. Sensor response of the pro-
duced sensors against H2 gas as a function of temperature and sample 

composition with CuO:SnO2 ratios of: b 1:0, c 0.75:0.25, d 0.5:0.5, e 
0.25:0.75, and f 0:1



	 A. I. Ayesh et al.

1 3

550  Page 6 of 8

different temperatures, and the error is the standard devi-
ation. The table shows that the sensors’ response times 
toward H2 is lower than that toward H2S. Furthermore, the 
response time toward H2 of sensors with majority SnO2 is 
higher than the others ( ~ double), while the response time 
toward H2S of all sensors is almost constant (variations 
are within the error). The response time values presented 
her are comparable with the literatures’ reported values 
for CuO and SnO2 based sensors [9, 17, 23–25]. The lower 
response time towards H2 gas than H2S can be assigned to 
the lower molecular weight of H2 that causes easiness of 
penetration and extraction.

The functionality of the sensors toward H2S at room tem-
perature indicates their selectivity, low power consumption 
( ~ 1 µW for H2S at room temperature), and safe operation. The 
enhanced gas response of nanoparticles, in general, is typically 
assigned to their large surface to volume ratio. The satura-
tion of response signal, thus, may be assigned to adsorption 
of the target gas on most of the reactive sites on nanoparticles’ 
surfaces. When the surface of a metal-oxide nanoparticle is 
exposed to hydrogen, which is a reducing gas, its molecules 
react with the adsorbed oxygen species on the nanoparticle 
surface. Thus, electrons are re-injected to the conduction band 
according to the below reaction [17, 26, 27]:

Similarly, the H2S response of metal-oxide nanoparticles is 
mainly due to the high generation of charge carriers because 
of the adsorption of oxygen spices (that include O− and O2−) 
on the reactive surface sites of metal-oxide nanoparticles [28, 
29]. This adsorption can be explained as [30]:

(1)H2(ads) + O−

(ads)
→ H2O(gas) + e−

(2)H2S + 3O−

(ads)
→ H2O + SO2 + 3e−

(3)H2S + 3O2−
(ads)

→ H2O + SO2 + 6e−

Fig. 6   Sensor response of the produced sensors against H2S gas as a function of temperature and sample composition with CuO:SnO2 ratios of: 
a 1:0, b 0.75:0.25, c 0.5:0.5, d 0.25:0.75, and e 0:1

Table 1   Reported sensor 
response to H2S gas

Sensor response of similar systems 
based on Cu/SnO2

References Sensor response of commercial 
sensors (ppm)

References

10 ppm @ 100 °C [20] 25 [35]
20 ppm @ 140 °C [21] 50 [36]
20 ppm @ 150 °C [37] 50 [38]

Table 2   Response times of the sensor with different compositions to 
H2 and H2S gases

Sensor Response time to H2 
gas (s)

Response time 
to H2S gas (s)

100% CuO 41 ± 35 129 ± 58
75% CuO + 25% SnO2 44 ± 27 108 ± 48
50% CuO + 50% SnO2 19 ± 17 128 ± 58
25% CuO + 75% SnO2 94 ± 38 114 ± 31
100% SnO2 80 ± 38 132 ± 42
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Consequently, the increase in the response of sensors 
when exposed to H2S gas may be allocated to the increase 
in free electrons according to Eqs. 2 and 3. When H2S gas 
is removed, no further generation of free electrons and the 
sensor is “washed” from H2S gas, thus, the number of free 
electrons as well as electrical current signal are reduced. 
Henceforth, the sensing process of H2S is a reversible pro-
cess which permit utilizing the sensor for multiple tests. It 
should be noted here that the performance of those sensors 
is not expected to be influenced by the ambient humidity 
as the nanoparticles are metal oxides, and H2O is already 
produced upon adsorption of gas (Eqs. 1–3) without clear 
effect on sensor performance.

The adsorption of oxygen on pure SnO2 nanoparticles 
release electrons and form a depletion layer near its sur-
face. Here, electrons need further energy to be transported 
through the network of nanoparticles, therefore, the SnO2 
sensors are best functional at high temperatures.

The results in Figs. 5 and 6 reveal the improved response 
of the composite CuO-SnO2 sensors. The major contribution 
to the excellent sensing characteristics here is assigned to the 
formation of PN-junction between CuO and SnO2 that are 
P-type and N-type materials, respectively [10, 31]. There-
fore, in Fig. 6, the composition for the optimum formation 
of the PN-junctions here is 0.25:0.75 for CuO:SnO2. When 
the nanoparticles are in the air, the PN-junctions of CuO 
and SnO2 form barriers that reduce electron transportation 
through the network of nanoparticles, thus, electrical current 
is minimal. Once the PN-junctions are exposed to H2S, the 
gas reacts with CuO nanoparticles forming CuS metal [32] 
according [10]:

The formation of CuS metal eliminates the PN-junction. 
Herein, the work function of CuS is obviously less than that 
of SnO2 [33], thus, the band bends to low energy which 
elements the barrier between the CuO–SnO2 PN-junctions. 
Consequently, electrons can move freely through the junc-
tions which increases the electrical current clearly as com-
pared with that in the presence of air only. When the junction 
is exposed to air, CuS oxidizes again to CuO re-forming the 
CuO–SnO2 junctions. Furthermore, CuS convert to Cu2S 
at high temperatures beyond 103 °C which exhibits a lower 
conductance than CuS [32]. Therefore, the CuO–SnO2 junc-
tions exhibit low sensitivity to H2S at high temperatures, as 
demonstrated by Fig. 6b, c. Since each sensor contains many 
CuO–SnO2 junctions, the present sensors exhibit enhanced 
sensitivity as compared with their bulk equivalent.

The band structure between CuO–SnO2 and electronic 
interface can be utilized to explain the enhanced sensing 
properties towards H2S gas. The band structure between 
CuO–SnO2 is presented in Fig.  7 [34]. The SnO2 bend 
upward at the interface due to the increase in its work 

(4)CuO + H2S → CuS + H2O

function as well as the formation of layer of space charges 
from depleted electrons. Once the CuO–SnO2 junction is 
exposed to H2S gas, metallic CuS is formed that leads to 
destroying the junction thus the band structure of SnO2 
returns to its pure state.

4 � Conclusion

Hydrogen sulfide gas sensors were fabricated in this work 
using CuO and SnO2 nanoparticles. CuO nanoparticles were 
produced by a solvothermal method, while SnO2 nanopar-
ticles were produced by a sol–gel method in a microwave 
oven. The nanoparticles were deposited with different ratios 
on substrates to produce percolating films of nanoparticles. 
The produced sensor devices based on CuO–SnO2 nano-
particles were found to exhibit enhanced sensitivity and 
response towards H2S gas with a sensitivity of 10 ppm. The 
improved sensing behavior could be assigned to the produc-
tion of PN-junctions between CuO and SnO2 nanoparticles. 
The reported sensors are attractive for practical utilization 
in portable gas detectors due to their enhanced features that 
include their low production cost, functionality at room tem-
perature, and low power consumption.
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