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Bayesian Inference for Linear Regression under Alpha-Skew-Normal Prior 
(Pentaabiran Bayesian untuk Model Regresi Linear Prior Normal-Pencong-Alfa)
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ABSTRACT

A study on Bayesian inference for the linear regression model is carried out in the case when the prior distribution 
for the regression parameters is assumed to follow the alpha-skew-normal distribution. The posterior distribution and 
its associated full conditional distributions are derived. Then, the Bayesian point estimates and credible intervals for 
the regression parameters are determined based on a simulation study using the Markov chain Monte Carlo method. 
The parameter estimates and intervals obtained are compared with their counterparts when the prior distributions are 
assumed either normal or non-informative. In addition, the findings are applied to Scottish hills races data. It appears 
that when the data are skewed, the alpha-skew-normal prior contributes to a more precise estimate of the regression 
parameters as opposed to the other two priors.
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ABSTRAK

Suatu kajian tentang pentaabiran Bayesian untuk model regresi dijalankan untuk kes taburan prior bagi parameter 
regresi yang diandaikan mengikuti taburan normal-pencong-alfa. Taburan posterior dan taburan bersyarat penuh yang 
berkaitan diterbitkan. Seterusnya, anggaran titik dan selang boleh percaya Bayesian ditentukan berdasarkan satu kajian 
simulasi menggunakan kaedah rantai Markov Monte Carlo. Anggaran titik dan selang yang diperoleh dibandingkan 
dengan keputusan apabila taburan diandaikan normal dan tak bermaklumat. Di samping itu, penemuan ini digunakan 
untuk data perlumbaan bukit Scottish. Kajian ini mendapati bahawa dalam kes data pencong, penganggaran parameter 
adalah lebih tepat apabila prior normal-pencong-alfa diandaikan berbanding prior normal dan tak bermaklumat. 

Kata kunci: Model regresi linear Bayesian; simulasi; taburan normal-pencong-alfa

INTRODUCTION

There had been a growing interest on the study of non-
Gaussian parametric distributions since the last twenty 
years. This was in response due to the increase on the 
demand of analyzing datasets which exhibit skewness 
or heavy tail distributions. Several statistical distribution 
and techniques have shed the light on how to treat data 
sets which show either skewness, heavy tail or both. A 
review of these techniques and distributions can be found 
in several articles such as Arellano-Valle and Azzalini 
(2006), Azzalini and Capitanio (2014) and Genton 
(2004). Furthermore, a large class of such distributions 
which is called the skew-symmetric (SS) distributions 
has been discussed by Alodat et al. (2014) and Wang et 
al. (2004). These new families of skew distributions have 
been used for re-studying a large number of statistical 
methodologies under the new setups. For example, the 
problems of inference and prediction for linear and non-
linear regression models have been considered under the 
assumption that the error term has a skew distribution 
(Arellano-Valle et al. 2005). Also, some authors such 
as Alodat and Al-Momani (2014) have considered the 
regression problem when both error term and regression 
coefficients have skew distributions. Alhamide et al. 

(2016) has considered the linear regression modeling when 
the error term is assumed to follow the extended skew 
distribution. In all the cases, the analysis of the regression 
under the skew setups shows an improvement in terms of 
the accuracy measures such Akaike Information criterion 
(AIC), bias and mean-squared errors.
	 Although the regression model has been treated under 
several skew normal families, from a Bayesian point of 
view, there is still much work which could be added to the 
literature in this field. This is due to some new findings in 
the area of the skew normal distributions. One of the recent 
findings in the skew normal distributions is the so called 
alpha-skew normal distribution which was introduced by 
Elal-Olivero (2010). Let  be a random variable which 
follows an alpha skew normal distribution given by, 

	 	 (1)

		
where φ is the probability density function (pdf) of a 
standard normal random variable. This pdf can be denoted 
by ASN(α). The parameter α reflects the properties of 
asymmetricity and unibimodality of the distribution. 
Furthermore, the distribution reduces to the normal 
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distribution when α = 0. In order to give the above 
distribution a higher ability to capture the features of data, 
we define the following location- scale version of (1):

	 	 (2)

	 Thus (2) can be denoted by ASN(α,μ,σ). The aim 
beyond the above definition is to define a new family of 
skew distributions that have enough flexibility to fit both 
unimodal and bimodal shape. 
	 Considering the ASN(α,μ,σ) as a choice of the prior 
distribution is reasonable as opposed to the other form 
of skew normal distributions as given by Azzalini and 
Capitanio (2014) due to its flexibility in allowing for the 
skewness property in the data and also, according to Elal-
Olivero (2010), the later distribution has less theoretical 
tractability because it has the pdf which includes the CDF 
of the normal distribution that has no closed form. This 
paper is concerned with the study of the statistical inference 
by using the Bayesian approach for the linear regression 
models under alpha skew normal prior distribution (LR-
ASN). This paper also includes the simulation results on the 
estimation of the parameters of the LR-ASN as compared to 
the linear regression models under normal prior distribution 
(LR-ND) and non-informative prior (LR-NI). Based on the 
comparison, we demonstrate the value of two informative 
priors, which are the normal prior and the alpha skew 
normal prior, and a non-informative prior for depicting 
our lack of knowledge on the parameters, in the Bayesian 
linear regression modeling of skew data. The remainder 
of this paper is organized as follows: first, we present the 
linear regression model under alpha skew normal prior. 
Next, we introduce the linear regression model under 
normal prior distribution and non-informative prior. This 
is followed by a simulation study for computing the Bayes 
estimates and credible intervals for the parameters under 
ASN prior and then comparison of results found based on 
normal and non-informative priors. Finally, we apply the 
findings to the Scottish hills races data and summarized 
the results found. 

THE MODEL

In this section, we consider the linear regression model:

	 yi = β + ϵi,    for i = 1, 2, …, n,	 (3)

where yi are responses, βT = (β0, …, βk) and  = (1, Xi1, 
Xi2, Xi3, …, Xik) is a vector for the values of explanatory 
variables and the random errors  ϵ = (ϵ1, …, ϵn)

T~Nn(0, 
σ2In). In order to analyze the above regression model 
using Bayesian methods involving  ASN(α, μ, σ2) 
prior, we adopt a prior distribution with the following 
hierarchical representation:

	 β0, β1, …, βk|α, μ, σ2 ~ ASN(α, μ, σ2)

	 α|a, σ2~N(a, σ2)

	 μ|b, σ2 ~ N(b, σ2)

	 σ2|c, d ~IG (c, d),

where a, b, c and d  are the hyperparameters. It is known 
that the joint pdf of y is:

	 f (y|X; β, μ; α; σ) =  σ–n exp ββ

	 Let Θ = (βT, μ, α, σ2) and π(Θ) denotes the joint prior 
distribution. Then

	 π(Θ) = π(β|α,μ,σ2) × π(α|a, σ2) × π(μ|b, σ2) × π(σ2|c,d).

Therefore, the posterior distribution of Θ given y and X is

	 π(Θ|y, X) ∝  exp  (y – Xβ)T (y – Xβ) 

	

	 ×  exp   exp 

	

	 In order to make the inferences about Θ, we draw 
a random sample from π(Θ|y, X), and implement the 
Metropolis-Hastings algorithm by using R (Robert 
& Casella 2010). When implementing the algorithm, 
the normal distribution is considered as the proposal 
distribution. This requires finding the full conditional 
distributions corresponding to  π(Θ|y, X) as the following:

(i) 	 The distribution of  β|y, X, α, μ, σ2 is given by

	 π(β|y, X, α, μ, σ2) ∝ exp   (y – Xβ)T (y – Xβ)

	  exp  (β – μ)T (β – μ)
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	 × exp   (– 2yT Xβ + βTXT Xβ + (β – μ)T(β – μ)) ,

	 where μ = μ1k+1. Hence,

	 π(β|y, X, α, μ, σ2) 

	
	 × exp   (βTXT Xβ + βT β – 2yT Xβ – 2μT β)

	
	

	 × exp   (βT(XTX + Ik+1)
 β – 2(XT y + μ)T β)

	  exp   (βTAβ – 2wT β) ,

	
	 where 

	 A = XT X + Ik+1    and  w = XT y + μ. 

	 By completing the squares for the term  βT Aβ – 2wT β 
and eliminating the constant terms, we have

	 π(β|y, X, α, μ, σ2)  

	 × exp   (β – A–1w)T A(β – A–1w) .		  (4)

(ii)	 The conditional distribution of  α|β, X, σ2, μ, y is given 
by

	 π(α|β, X, μ, σ2, y) 

	 exp   (α – a)2

	

	  exp   (α – a)2 .	 (5)

(iii) 	The conditional distribution of  μ|β, X, α, σ2, y is given 
by

	 π(μ|β, X, α, σ2, y)  

	 exp 

	 Then,  π(μ|β, X, α, σ2, y) simplifies to 

	 π(μ|β, X, α, σ2, y) 

	 exp    2 ,	 (6)

	 where μ* = b +   

(iv)	The conditional distribution of  σ2|β, X, α, μ, y is given 
by

	 π(σ2|β, α, μ, y) ∝  exp   (y – Xβ)T (y + Xβ)

	
	

	

	

	 By some simplification, we find that

	 π(σ2|β, X, α, μ, y) ∝

	

	 × exp β β

	  

	 Hence,

	 π(σ2|β, X, α, μ, y) ∝  

	
	 (σ2 + (σ – α(βi – μ)) 	  (7)

	 where

	 a* = 

	 and

	 d* = 
β β
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BAYESIAN INFERENCE FOR LINEAR REGRESSION             
UNDER NORMAL PRIOR

We consider the linear regression model in (3) where the 
errors are assumed to follow the normal distribution Nn(0, 
σ2In). Then the joint density of y is: 

	 f (y|X, β, σ2) = σ–n exp β β

	 To completely specify the Bayesian model, we need 
to specify the prior distributions for the parameters Θ = 
(βT, σ2). We assume the following prior structure for Θ: 

	 β|σ2 ~ N(β0, Σ0) and σ2|c, d ~ IG(c, d).

	 In order to implement the MCMC algorithm, we need 
to obtain the full conditional distributions for the posterior 
distribution. Following Hoff (2009), the full conditional 
distributions corresponding to π(Θ|y,X) can be easily 
shown as the followings.
(i) 	 The conditional distribution of β given y, X and σ2 is 

given by

	 π(β|y, X, σ2) ∝ exp β β

	 i.e.,
	
	 β ~ Nn(V

–1W, σ2V–1).

(ii)	The conditional distribution for σ2|y, X, β is given by

	 π(σ2|y, X, β) ∝ 

	 where

	 c* =  + c

	 and

	 d* =  
β β

 

BAYESIAN INFERENCE FOR LINEAR REGRESSION UNDER 
NON-INFORMATIVE PRIOR

Consider the linear regression models 

	 yi = β + ϵi,    for i = 1, 2, …, n,

where ϵi ~ Nn(0, σ2In),    = (y1, …, yn)
T, β = (β1, …, βp)

T 
and  = (1, Xi1, Xi2, …, Xip). 

Then, the joint density function of Y is given by 

	 f (y|X, β, σ2) =  σ–n exp β β

	 Following Berger et al. (2001), we assume the standard 
non-informative prior as given by  π(β, σ2)∝ . So, the 
joint posterior density function is 

	 The conditional distributions for each of the 
parameters are as the followings:

(i) 	 The conditional distributions for β given y, X and σ2 
is

	 β | y, X, σ2 ~ Nn(V
*–1W*, σ2V*–1).

(ii) 	It can be easily seen that the conditional distribution 
for σ2 conditional on y, X, β is given by an inverse 
gamma pdf, denoted as IG   where d** = 

SIMULATION STUDY

In this section, we conduct a simulation study using the 
Metropolis-Hastings algorithm by considering samples of 
sizes n = 15, 20 and 25, with 10 000 iterations inclusive of 
the burn-in iterations of 2000, where X1 and X2 represent 
the predictor variables for the regression model that are 
generated using the normal distribution with known 
mean and variance. In the simulation, the true values of 
the regression parameters β0, β1, β2, variance σ2 and the 
hyper-parameters which describe the ASN distribution 
through a hierarchical structure are assumed known. The 
true regression parameters are given in Tables 1, 2, and 3 
while the values of hyper-parameters are given by a = 2, 
b = 3, c = 10 and d =1. The point estimates and credible 
intervals found for the parameters of ASN distribution 
are compared to those found for LR-ND and LR-NI. The 
estimated posterior mean and standard error (S.E) found 
for each parameter under the different priors are shown in 
Tables 1, 2, and 3. In addition to these point estimates, the 
computed 95% credible intervals for the mean posterior of 
the parameters of the three models are determined. For the 
purpose of illustration, as given in Table 4, we provide the 
95% credible intervals for the case when n = 25. 
	 For assessing the convergence of the iterative 
simulation of the posterior mean of the parameters, plots 
of the simulated values as given in Figure 1 are studied.

Based on the Tables 1-4 and Figure 1, we may report the 
following concluding remarks:

We note that the standard errors associated with the 
posterior means of the linear regression estimates under 
alpha-skew-normal prior are less than the standard errors 
of the corresponding posterior means for the linear 
regression estimates under normal and non-informative 
prior distributions. In general, the standard error for all 
the parameters decrease when the values of n increase. 
We conclude that the posterior mean for the parameters 
of LR-ASN are found to be more precise than the posterior 
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TABLE 4. The 95% credible intervals for the parameters under different priors with n = 25 

Parameters
LR-ND LR-NI LR-ASN

2.5% 97.5% 2.5% 97.5% 2.5% 97.5%
β0 (2.0617)
β1 (3.2027)
β2 (2.3862)
μ (2.6701)
α (2.1169)
σ2 (0.0945)

0.8169
3.0574
2.2512

-
-

0.0154

3.3738
3.3147
2.5087

-
-

0.3098

2.07194
3.0358
2.25612

-
-

0.0377

2.28813
3.26774
2.48437

-
-

0.1264

1.9944
3.1837
2.3789
2.5356
1.5822
0.0508

2.1906
3.2029
2.3971
2.8604
2.4458
0.0951

TABLE 1. Posterior mean and standard error for the parameters under the three prior distributions with n = 15

Parameters
LR-ND LR-NI LR-ASN

Mean S.E Mean S.E Mean S.E
β0 (2.0617)
β1 (3.2027)
β2 (2.3862)
μ (2.6701)
α (2.1169)
σ2 (0.0945)

2.0805
3.2056
2.3799

-
-

0.1052

0.8553
0.0836
0.0847

-
-

0.0832

2.0154
3.1177
2.3155

-
-

0.0882

0.0785
0.0923
0.0951

-
-

0.0426

2.0288
3.2129
2.3828
2.6879
2.0268
0.0668

0.0646
0.0089
0.0051
0.1139
0.2470
0.0060

TABLE 2. Posterior mean and standard error for the parameters under the three prior distributions with n = 20

Parameters
LR-ND LR-NI LR-ASN

Mean S.E Mean S.E Mean S.E
β0 (2.0617)
β1 (3.2027)
β2 (2.3862)
μ (2.6701)
α (2.1169)
σ2 (0.0945)

2.0992
3.2006
2.3754

-
-

0.1031

0.7629
0.0731
0.0663

-
-

0.0801

2.0312
3.3054
2.3429

-
-

0.0669

0.0616
0.0620
0.0629

-
-

0.0262

2.1152
3.2025
2.3819
2.7039
2.0489
0.0602

0.0532
0.0057
0.0051
0.1122
0.2335
0.0034

TABLE 3. Posterior mean and standard error for the parameters under the three prior distributions with n = 25

Parameters
LR-ND LR-NI LR-ASN

Mean S.E Mean S.E Mean S.E
β0 (2.0617)
β1 (3.2027)
β2 (2.3862)
μ (2.6701)
α (2.1169)
σ2 (0.0945)

2.0821
3.1856
2.3811

-
-

0.1054

0.6558
0.0657
0.0652

-
-

0.0792

2.1787
3.1506
2.3715

-
-

0.0692

0.0539
0.0589
0.0585

-
-

0.0234

2.0982
3.1935
2.3866
2.6957
2.0243
0.0518

0.0467
0.0048
0.0045
0.0830
0.2188
0.0015

mean for linear regression models under normal and non-
informative prior distributions. Given certain sample size, 
say n = 25, it appears that the 95% credible intervals for 
the parameters of LR-ASN are shorter than those credible 
intervals for LR-ND and LR-NI, which also indicates that 
a more precise estimation is obtained when the prior is 
assumed to follow the alpha-skew-normal distribution. The 
chains of the simulated posterior mean of the parameters 
of LR-ASN converge and become stable about certain 
particular mean value, indicating that sufficient information 
is available for accurate inference.

AN APPLICATION: THE SCOTTISH HILLS RACES DATA

The data set considered in this application is the Scottish 
hills races data which consists of n = 33 observations 
where the response variable y = time (in seconds) taken 
by a particular horse and two other predictor variables, 
denoted as x1 = distance (in miles) and  x2 = climb (in feet). 
This data set has also been applied by Chatterjee and Hadi 
(2012). It is appropriate to study this data by plotting the 
histogram and Q-Q normal plot of the residuals found by 
fitting a multiple linear regression model under normal 
error which can be easily found as  = –10.361 + 6.6921x1 
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+ 0.008x2. Based on the plots in Figure 2, the histogram 
of the residuals is found to be skewed to the left and the 
Q-Q normal plot of the residuals indicates departures of 
several points from the straight line, possibly be due to 
the presence of outliers in the data, in which we believe 
contributing to the skewness of the response values. It will 
be further shown in the analysis that the linear regression 
under alpha skew normal prior can nicely capture the 
skewness property inherent in the data. All the three 

models, which are LR-ASN, LR-ND and LR-NI, are fitted to 
the Scottish hills races data and the estimated posterior 
mean and standard deviation found for the parameters 
are given in Table 5. Also, note that the credible intervals 
for the parameters which are shown in Table 6 indicate 
that LR-ASN outperform LR-ND and LR-NI since the widths 
are found to be shorter under alpha skew normal prior as 
opposed to the other two priors.

FIGURE 1. The plots of iterative simulation of the estimated posterior mean for the parameters of LR-ASN

FIGURE 2. Histogram and Q-Q normal plot of the residuals found for the Scottish hills races data 
based on the multiple linear regression model
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FIGURE 3. The histogram for all the estimated parameters of the LR-ASN for the Scottish hills races data

Thus, we have the following conclusions:

The posterior standard errors for the parameters of the 
linear regression model are found to be smaller for the 
model under alpha-skew-normal prior as compared to 
those found based on normal and non-informative prior 
distributions. This indicates that the model with alpha 
skew normal prior is more precise. The 95% credible 
intervals for LR-ASN are shorter than those credible 
intervals found for LR-ND and LR-NI, indicating a more 
precise estimation. Based on the computed values of 
deviance information criterion (DIC), the Bayesian linear 
regression model under alpha-skew-normal prior appears 
to fit the data better than the other models due to the 
smallest DIC value (Spiegelhalter et al. 2002).
	 The histograms of the estimated parameters found 
based on conditional posterior distributions for LR-ASN, 
LR-ND and LR-non-informative that are shown in Figures 
3, 4 and 5 respectively. These figures describe the 
distribution of the estimated parameters. Tables 5 and 6 
provide a summary of the information displayed by the 
histograms in terms of the estimated posterior means and 
the 95% credible intervals.

CONCLUSION

In this paper, we study the Bayesian statistical inference 
for the linear regression models. The linear regression 
models have been treated under three types of prior 
distributions, namely, the alpha-skew-normal, normal, 
and non-informative. Under the alpha-skew-normal 
prior, the conditional posterior distributions for each 
parameter of interest are derived. For point estimation 
of the parameters, Metropolis-Hastings algorithm is 
applied since the conditional posterior distributions are 
not available in a closed form. Based on the simulated 
data, it is found that the posterior means of the parameters 
under the alpha-skew-normal prior are more precise than 
the corresponding posterior means under normal and non-
informative priors. These findings are further supported 
by using the Scottish hills races data. Under both the 
simulation study and application of Scottish hills races 
data, the interval estimates are found to be narrower as 
the sample size increase. Based on this study, we have 
introduced the alpha-skew-normal distribution as an 
alternative prior distribution for describing the uncertainty 
on the parameters in the linear regression model. This 
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FIGURE 4. The histogram for all the estimated parameters of the LR-ND for the Scottish hills races data

FIGURE 5. The histogram for all the estimated parameters of the LR-NI for the Scottish hills races data
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prior distribution is found to be particularly suitable in 
the case when the data exhibit the skewness property. A 
further study can be carried out for comparing the choices 
of different skew normal distributions when the Bayesian 
linear regression modeling is applied for analyzing the 
skew data.
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TABLE 6. The 95% credible intervals for the parameters under the three models for the Scottish hills races data

Parameters
LR-ND LR-NI LR-ASN

2.5 % 97.5% 2.5 % 97.5% 2.5 % 97.5%
β0

β1

β2

μ
α
σ2

-13.708
6.1499
0.0058

-
-

23.3717

-6.1498
7.1948
0.0101

-
-

64.9754

-14.216
6.16542
0.00592

-
-

23.3743

-6.4938
7.2308
0.01024

-
-

65.1886

-12.437
6.2444
0.0062
-2.8982
1.7140
15.1076

-6.5543
7.0523
0.0093
3.1927
2.4067
31.9544

TABLE 5. Posterior means and standard error for the parameters under the three fitted models for the Scottish hills races data

Parameters
LR-ND LR-NI LR-ASN

Mean S.E Mean S.E Mean S.E
β0

β1

β2

μ
α
σ2

-9.9606
6.6679
0.0079

-
-

39.1579

1.9207
0.2671
0.0011

-
-

10.4515

-10.3697
6.6889
0.0081

-
-

39.3519

1.9647
0.2649
0.00109

-
-

11.0158

-9.6113
6.6415
0.0078
0.3227
2.0109
21.3771

1.3425
0.1814
0.00068
0.2439
0.1738
4.0284

DIC 222.4021 217.4239 209.1234


