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ABSTRACT 
 

ABOU GHAIDA, WASSIM, R., Masters: June 2020, Applied Statistics 

Title: Parameter Estimation and Prediction of Future Failures in the Log-Logistic 

Distributions Based on Hybrid-Censored Data 

Supervisor of Thesis: Ayman, S, Bakleezi. 

       

The main purpose of this thesis is to study the prediction of future observations of a 

Log-Logistic distribution from Hybrid Censored Samples. We will study parameter 

point estimation, interval estimation, different point predictors will be formed such as 

Maximum Likelihood Predictor (MLP), Best Unbiased Predictor (BUP), and Conditional 

Median Predictor (CMP). Different Prediction intervals will be constructed such as 

Intervals based on Pivotal quantities, and High-Density Intervals (HDI). A simulation 

study will be run using the R software to investigate and compare the performance of 

all point predictors and prediction intervals. It is observed that the (BUP) is the best 

point predictor and the (HDI) is the best prediction interval. 

Key words: Hybrid Censoring Scheme, Log-Logistic distribution, Maximum Likelihood 

Predictor (MLP), Best Unbiased Predictor (BUP), Conditional Median Predictor (CMP), 

Prediction Intervals (PI), High Density Intervals (HDI), Maximum Likelihood Estimation 

(MLE). 
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CHAPTER 1: INTRODUCTION 
 

This chapter will present a background about the Log-Logistic distribution, 

different censoring schemes, the specific problem and objectives of the study in 

addition to the literature review that provides some previous studies that have been 

done relevant to our study. 

 

1.1  Application and background (The Log-Logistic Distribution) 

  In probability and Statistics, Statisticians use many distributions for life testing 

and reliability studies. The distributions could be used in different fields such as 

economy, medical fields, physical and industrial fields and so many other fields. The 

most commonly used distributions are Weibull distribution, Log-Normal distribution, 

Generalized Gamma distributions, Logistic distributions, Burr XII, Generalized 

Exponential distributions, etc. 

Log-Logistic distribution is one of the parametric distributions that could be used 

as a life testing distribution since it belongs to the Scale-Shape family and because 

of the simplicity of its CDF and survival function, as both of them could be written in 

enclosed form. It is one of the right skewed and heavy tails functions, and it could be 

used as an alternative to lognormal distribution. 

 Back in the 80s, Bennett (1983) has considered the Log- Logistic distribution 

as a model for cancer survival data, as the Hazard rate or mortality can be used for 

the analysis of a group of patients under study. The Log-Logistic distribution can be 

used further in real life prediction of events. Chung (2010) has used the Log-Logistic 

accelerated failure time to predict accident duration based on recorded accident data 

set.  
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Mathematically speaking, simple transformations can be done to well-known 

distributions to obtain Log-Logistic distribution. Shoukri, Mian, and Tracy (1988) 

considered the standard distribution with probability 𝑔(𝑧) = 𝑒𝑧. (1 + 𝑒𝑧)−2 with the 

transformation 𝑧 = 𝛽 ∙ ln(
𝑇

𝛼
) to obtain the probability density function of 𝑇 as 

 𝑓(𝑡) = {

(
𝛽

𝛼
)∙(

𝑡

𝛼
)

𝛽−1

(1+(
𝑡

𝛼
)

𝛽
)

2       where  𝑡 ≥ 0, 𝜆, 𝛽 ≥ 0.

0                                      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

According to Al-Shomrani, Shawky, Arif, and Aslam (2016), the Log-Logistic  

distribution 𝑇 is a continuous probability distribution with probability density function: 

𝑓(𝑡) = {

𝛽

𝜆
(

𝑡

𝜆
)𝛽−1

(1+(
𝑡

𝜆
)𝛽)2

      where  𝑡 ≥ 0, 𝜆, 𝛽 > 0 .

0                                      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

where 𝜆 is the scale parameter and 𝛽 is the shape parameter. Without loss of 

generality we let 
1

𝜆
= 𝛼 we get    

𝑓(𝑡) = {
𝛼𝛽(𝛼𝑡)𝛽−1

(1 + (𝛼𝑡)𝛽)2
      where  𝑡 ≥ 0, 𝛼, 𝛽 > 0 .

0                                      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                                                       (1) 

The Moment Generating Function mgf of 𝑇 according to Casella and Berger 

(2002)  is 𝑀𝑇(𝜌) = ∫ 𝑒𝜌𝑡∞

−∞
𝑓(𝑡)𝑑𝑡 = ∫ 𝑒𝜌𝑡∞

0
𝑓(𝑡)𝑑𝑡 = ∫ 𝑒𝜌𝑡 𝛼𝛽(𝛼𝑡)𝛽−1

(1+(𝛼𝑡)𝛽)2

∞

0
𝑑𝑡                          

According to Ekawati, Warsono, and Kurniasari (2015) 𝑀𝑇(𝜌) can be written as 

𝑀𝑇(𝜌) = ∑
𝑝𝑛

𝛼𝑛∙𝑛!
∞
𝑛=0 ∙ 𝐵 (

𝛽+𝑛

𝛽
,

𝛽−𝑛

𝛽
)                                                                                                   (2)        

𝐵 is the type-II beta function. 

The mean of the distribution is defined as 𝐸(𝑇) =
1

𝛼
∙ 𝐵 (

𝛽+1

𝛽
,

𝛽−1

𝛽
)                             (3) 

In general, the 𝑟𝑡ℎ Expectation 𝐸(𝑇𝑟) =
1

𝛼𝑟 ∙ 𝐵 (
𝛽+𝑟

𝛽
,

𝛽−𝑟

𝛽
)                                                      (4)       
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The variance 𝑉(𝑇) = 𝐸(𝑇2) − (𝐸(𝑇))2 =
1

𝛼2 ∙ 𝐵 (
𝛽+2

𝛽
,

𝛽−2

𝛽
) − (

1

𝛼
∙ 𝐵 (

𝛽+1

𝛽
,

𝛽−1

𝛽
))

2

         (5)    

The Probability Distribution function is 𝐹(𝑡) = 𝑃(𝑇 ≤ 𝑡) =
(𝛼𝑡)𝛽

1+(𝛼𝑡)𝛽                                      (6)   

and its Survival function is:   𝑆(𝑡) = 1 −  𝐹(𝑡) = 1 −
(𝛼𝑡)𝛽

1+(𝛼𝑡)𝛽 =
1

1+(𝛼𝑡)𝛽                                (7)  

The Hazard function according to (Mitra, 2013) can be considered as the 

instantaneous rate of failure which could be given ℎ(𝑡) =
𝑓(𝑡)

𝑆(𝑡)
=

𝛼𝛽(𝛼𝑡)𝛽−1

1+(𝛼𝑡)𝛽                       (8)  

ℎ′(𝑡) =
𝛼2𝛽[(𝛽 − 1)(𝛼𝑡)𝛽−2 − (𝛼𝑡)2𝛽−2]

[1 + (𝛼𝑡)𝛽]2
                                                                                     (9) 

For 0 < 𝛽 ≤ 1, the Hazard function is decreasing for all values of 𝑡 > 0. 

For 𝛽 > 1, the Hazard function is decreasing for 𝑡 <
1

𝛼
𝑒

ln (𝛽−1)

𝛽  and increasing for  

𝑡 >
1

𝛼
𝑒

ln (𝛽−1)

𝛽  , and its peak is at 𝑡 =
1

𝛼
𝑒

ln (𝛽−1)

𝛽     

The median M is defined such that ∫
𝛼𝛽(𝛼𝑡)𝛽−1

(1+(𝛼𝑡)𝛽)2

𝑀

0
𝑑𝑡 =

1

2
  which will be reduced to 𝑀 =

1

𝛼
  

Referring to Al-Shomrani et al. (2016) The quantile function: 

 𝑥𝑞 =
1

𝛼
(𝑞−1 − 1)

−1

𝛽  ; 0 < 𝑞 < 1                                                                                                      (10)  
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Figure 1: Graph of Probability Density Function of Log-Logistic Distribution 

 

                     

Figure 2: Graph of Hazard Function of Log-Logistic Distribution 

1.2 Types of Censoring Schemes  

1.2.1 Life Time Data 

        The term Lifetime refers to the time needed or covered until a certain event 

happens, and since the occurrence of such an event is random then Lifetime could be 

considered as a random variable T.  
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        Two types of analysis that study the lifetimes of units arise. The first type is called 

reliability analysis which studies the lifetime of units such as electrical devises or 

machines, where the lifetime is considered as the time span of the failure of such unit 

since it is under operation or the time span of such a unit to stop working under the 

same working conditions. 

 The second type is called Survival analysis which studies the life of biological units 

(humans, animals...) and the lifetime in this case is considered the time elapsed until 

the death of such unit or the occurrence of a certain disease.   

 

1.2.2 Censored Data  

    Censored data can be interpreted as the incomplete data when a researcher is 

looking for failure times of certain number of units under study. As a matter of fact, not 

all failure times or lifetimes can be observed by the researcher and hence a censored 

data is obtained.  

Statisticians use censoring schemes for its importance in saving time and cost 

of performing experiments, making experiments on a limited number of units, and 

drawing inferences.  

1.2.3 Type I-Censored Data  

        In Type I-Censored Data the time T where the experiment is terminated is 

previously determined by the researcher and hence it’s a fixed number where the 

number of failures 𝑚 cannot be determined until the end of the experiment and hence 

it is considered as a random variable.  
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1.2.4 Type II-Censored Data  

       In Type II-Censored Data the number of failures 𝑚 is predetermined and the Time 

T where the experiment is terminated is not fixed where the experiment terminates 

when the number of failures 𝑚 is reached and hence time T is a random variable.  

 

1.2.5 Hybrid Censored Data  

 A mixture of the two types of censoring schemes is the hybrid censoring 

scheme. Epstein (1954) introduced this type of censoring scheme (type-I hybrid 

censoring) when the life distribution of electron tube data was assumed to be 

exponential.  

This censoring scheme can be briefly explained as follows: 

- when 𝑛 units are placed into life testing, the researcher decides in advance to 

terminate the experiment when a pre-determined number 𝑟 of failed units is 

reached or when the predetermined time 𝑇 of terminating the experiment has 

reached.  

- if 𝑋𝑟 is the time at which the 𝑟𝑡ℎ failure occurs ( 𝑋𝑟 is a random variable) then 

the experiment will be terminated at time 𝑇∗ = min (𝑋𝑟 , 𝑇) and hereby the 

experiment will not last longer than 𝑇 or 𝑋𝑟. It is clear that type-I censoring 

scheme and type-II censoring schemes are a special case of hybrid censoring. 

That is type-I can be obtained from Hybrid censoring when 𝑟 is set to be 𝑛. And 

type-II can be obtained when 𝑇 → ∞. If the researcher wants to guarantee a 

certain number of failures then the experiment could be terminated at  𝑇∗ =

max (𝑋𝑟 , 𝑇) and this censoring scheme could be referred to (type-II hybrid 

censoring).  
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1.2.6 Left Censored Data  

 When 𝑛 units are that put into life-testing, and 𝑟  out of 𝑛  units have failed before 

a certain time 𝑇 and the time of failure of such units is unknown. That is all what we 

know about the 𝑟 units is that 0 ≤ 𝑡𝑖 ≤ 𝑇, 𝑖 = 1 … 𝑟 where 𝑡𝑖 is the time of failure of the 

𝑖𝑡ℎ unit. In this case the 𝑟 units are called left censored units. 

 

1.3 Examples related to censored data and models 

     Censored Data might arise from real life situations as mentioned before, for 

example it is almost impossible to follow the failure of all electric bulbs and hence the 

researcher withdraws some of the units that are considered censored units, another 

example on censored data is when some patients are being monitored until the death 

or appearance of another disease, and hence the patients that are no longer being 

monitored are considered censored data. Regardless to the Censoring schemes we 

have earlier discussed, censored data might be left censored, right censored, left 

truncated, and double truncated and so on... 

 We will refer here to (Mitra, 2013) to illustrate some examples about left, double 

truncation, and right censoring. 

 Electronic devices and items are set into experiment of life testing before being 

released into the market. Suppose that the manufacturer sets a testing period of pre-

specified time say 𝑇 = 100 hours. Of course, some of the items will fail to work during 

this period of time and these items will not be set into market. Their lifetimes are 

unknown to the customers and these items are considered as left truncated data. Each 

item that is sold by the manufacturer is right censored as its actual life time is 𝑡𝑖 > 𝑇 =

100 .  
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 Before setting an example about double truncation, we will briefly relate this 

phenomenon to a variable having values included between two bounds: lower and 

upper bounds. 

 A good example about double truncation is sound waves. Sound waves can be any 

positive value but humans can only hear sounds whose sound waves frequencies 𝑓𝑖 

are included between 20 Hz and 20000 Hz that is: 20 ≤ 𝑓𝑖 ≤ 20000. The lower and 

upper bounds are 20 and 20000 respectively and the truncation points are on the left 

of 20 Hz and right of 20000 Hz.  

 

1.4  Literature Review   

      In this section we will focus on reviewing previous studies and researches done by 

different statisticians whose work is related to life testing distributions. Our interest is 

basically to shade the light on different approaches taken to estimate the parameters 

of the different distributions. Moreover, we will basically focus on papers that discuss 

the prediction of future failures of censored data under adaptive or progressive 

censoring scheme.  

 

Many statisticians have fitted many parametric distributions for life testing. The 

distributions that could be used for this purpose are: lognormal, Weibull, gamma, 

generalized gamma, exponential, logistic…  

Sewailem and Baklizi (2019) have discussed the estimation of the parameters 

of Log-Logistic distribution using classical and Bayesian approach under adaptive 

progressive type-II censoring. Due to the non-linearity of the likelihood equations, the 

(NR) method was used to solve the MLEs. Asymptotic confidence intervals and 
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approximate confidence intervals for the parameters, were obtained. Intervals based 

on (ML) estimation along with their corresponding coverage probability and credible 

intervals were obtained. Finally, the Bayesian approach was recommended as it has 

a better performance than that of the classical approach.  

 Dube, Pradhan, and Kundu (2011) have tried to estimate the parameters of a 

lognormal distribution based on Hybrid Censored data. Due to the non-linearity of the 

MLEs, they used the (EM) algorithm to calculate the MLEs. The (EM) algorithm can 

be summarized as follows: the complete data set W is the union of the observed data 

set X and the unobserved data set or censored set U. With the presence of missing 

data, the authors could find the asymptotic variance covariance matrix of the MLEs by 

inverting the observed information matrix ( 𝐼𝑋(𝜃̂) ) where 𝜃 is the vector of parameter 

estimates. Another approach has been used to approximate the parameters is the 

Approximate Maximum Likelihood Estimation (AMLE) which can be applied by using 

Taylor Expansion theorem around a certain point up to some order say first order.  

Finally, the authors have compared the performance of both MLEs and the AMLEs 

through a simulation study and noticed that the MLEs and the AMLEs are the same 

with a slight difference in variance covariance matrix.  

Hyun, Lee, and Yearout (2016)have analysed type-I and type-II Censored data 

where the lifetimes follow Log-Logistic distribution. The authors considered the MLE 

of the parameters and the asymptotic confidence intervals. The Log-Likelihood 

function and the Log-Likelihood equations were formed. It was observed that the 

Likelihood equations could not be obtained in closed form and then Newton Raphson 

was used to solve the non-linear likelihood equations. Moreover, in order to construct 

the asymptotic confidence intervals, the authors approximated the Fisher information 
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matrix by the observed fisher information matrix at the MLEs. Finally, a simulation 

study have been done by generating type-I and type-II hybrid censored samples from 

Log-Logistic distribution. The average failure percent, the mean of the MLEs and the 

standard error were recorded in addition to the coverage probability of the confidence 

intervals based on 1000 replications. 

         Valiollahi, Asgharzadeh, and Kundu (2017) have studied the prediction of future 

observations based on Hybrid censored samples from generalized exponential 

distribution with parameters 𝛼 and 𝜆. The authors used the likelihood prediction 

approach to obtain the prediction likelihood function. Using the Markovian property, 

the conditional density of 𝑌 was obtained for 𝑦 ≥ 𝑇0 where 𝑇0 is the time where the 

experiment was terminated. The maximum likelihood predictor of y has been obtained 

as a function of 𝛼 and 𝜆 that were replaced by their predictive maximum likelihood 

estimators that were estimated numerically. Another predictor has been discussed 

using the conditional prediction approach; the best unbiased predictor (BUP) as 

∫ 𝑦. 𝑓(𝑦|𝑥, 𝛼, 𝜆)
∞

𝑇0
𝑑𝑦. Additional predictor; the conditional median predictor (CMP) 

defined as 𝑃(𝑌 ≤ 𝑌̂ 𝑋 = 𝑥⁄ ) =  𝑃(𝑌 ≥ 𝑌̂ 𝑋 = 𝑥⁄ ). The predictors were obtained as a 

function of 𝛼 and 𝜆 that were replaced by their predictive maximum likelihood 

estimators. Moreover, prediction intervals based on pivotal quantity, (HCD), and 

Bayesian prediction intervals were obtained. Finally, Simulation study based on 10000 

replications was run to compare the performance of the different estimators. They 

noticed that the Mean Square Prediction Error Estimates increased as 𝑠 increased for 

all prediction methods. (Here 𝑠 = 1, 𝑠 = 2, 𝑠 = 3 represent the first, second, third 

failure and so on..). It was also noticed that Mean Square Prediction Error Estimates 

of the different predictors used under type –II were smaller than those under type-I. 
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The (BUP) has slightly less Mean Square Prediction Error than MLP and CLP. Also, 

the average length of coverage percentages increased as 𝑠 increased. And in 

conclusion, the authors recommended to use the (BUP) for prediction of future 

observations and the (HCD) interval as it works better than the pivotal quantity interval 

(for 𝑠 > 1). 

      In a similar fashion, Asgharzadeh, Valiollahi, and Kundu (2015) have studied the 

prediction of future observations based on type-I hybrid censored samples for two 

parameter Weibull random variable. The three classical point predictors (MLP, BUP, 

& CMP) were obtained in addition to Bayesian point predictor. First of all, the MLP was 

obtained as a function of the predictive maximum likelihood estimates of the 

parameters (PMLE) which were obtained numerically. The BUP and the CMP were 

obtained each as a function of the parameters that were replaced by their MLEs. 

Moreover, a Bayesian prediction approach was used and prediction intervals (PIs) 

based on hybrid censored data were obtained. A real data analysis was performed to 

check the validity of the model. Of the three used point predictors, the best predictor 

in terms of Bias and MPSE (mean square predictor error) was the BUP followed by 

the CMP whereas the MLP did not perform in a satisfactory manner. Finally, Bayesian 

predictors based on informative prior had a better performance than those based on 

non-informative priors and Bayesian prediction intervals were wider than classical 

prediction intervals. 

 Singh, Tripathi, and Wu (2015) have studied parameter estimation of lognormal 

distribution under progressive censored samples. First of all, the (EM) algorithm had 

to be used in order to find the estimates of the parameters. The observed information 

matrix was obtained as well as the asymptotic variance covariance matrix of the 

estimated parameters where the asymptotic variance covariance matrix is the inverse 
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of the observed information matrix. The asymptotic confidence intervals were formed. 

The approximate maximum likelihood estimation was performed by using Taylor 

expansion around a certain point to get the AMLEs of the parameters. Also Bayes 

estimation of the parameters was suggested under squared error loss function and 

since again the estimators could not be obtained explicitly then Lindley’s method was 

suggested. A simulation study has been run to compare the performance of the 

parameters in different methods. It was noticed that the MLEs and the AMLEs have 

almost a similar behaviour in terms of Bias and MSE values. Finally, the coverage 

probabilities for the interval estimation of the parameters were not satisfactory perhaps 

the reason behind that was the small sample sizes.    

 Lawless (1971) has considered the prediction of an observation from a sample of 

𝑛 units that follow an exponential distribution. That is if the observed failure times are 

 𝑋1 ≤ 𝑋2 ≤ ⋯ ≤ 𝑋𝑘 then, we can predict the 𝑟𝑡ℎ observation 𝑋𝑟 (𝑘 < 𝑟 ≤ 𝑛) by finding 

an interval estimate of 𝑋𝑟 that will help us predict the remaining time left for the 

experiment. Then based on the first 𝑘 failures, we can obtain such a prediction interval.  

The author considered the probability function of the random variate 𝑈 =
𝑋𝑟−𝑋𝑘

𝑆𝑘
 where  

𝑆𝑘 = ∑ 𝑋𝑖
𝑘
𝑖=1 + (𝑛 − 𝑘)𝑋𝑘 . To illustrate the above, one can use the probabilistic 

statement 𝑃(𝑈 ≤ 𝑎) = 𝛾 which is equivalent to 𝑃 (
𝑋𝑟−𝑋𝑘

𝑆𝑘
 ≤ 𝑎) = 𝛾 and then 

𝑃(𝑋𝑟 ≤ 𝑎𝑆𝑘 + 𝑋𝑘) = 𝛾 and by replacing 𝑎, 𝑆𝑘 , and 𝑋𝑘 in the above probabilistic 

statement we can be (1 − 𝛾)100% confident that the 𝑟𝑡ℎ failure will occur before the 

time 𝑎𝑆𝑘 + 𝑋𝑘.  

 Basak, Basak, and Balakrishnan (2006) have discussed predicting future time 

failures of units that are censored in progressive censored samples. For the failure 

times 𝑋1, 𝑋2, … … , 𝑋𝑛 of 𝑛 units that are put into life testing and observed 𝑌 =
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(𝑌1, 𝑌2, 𝑌3, … … , 𝑌𝑚) is the 𝑚 progressive type II order statistic, the authors worked on 

predicting 𝑌𝑗:𝑟𝑖
 (𝑗 = 1 … . . 𝑟𝑚, 𝑖 = 1 … . 𝑚). where 𝑌𝑗:𝑟𝑖

 is the 𝑗𝑡ℎorder statistic out of 𝑟𝑖 

removed units at stage 𝑖 = 1 … . 𝑛. They considered that the density of 𝑌𝑗:𝑟𝑖
 is the same 

as the density of the 𝑗𝑡ℎorder statistic out of 𝑟𝑖 units from a population of density 
𝑔(𝑥)

1−𝐺(𝑌𝑖)
 

; 𝑥 ≥ 𝑌𝑖 (left truncated at 𝑌𝑖). The best linear unbiased predictor (BLUP), the maximum 

likelihood predictor (MLP) and the conditional median predictor (CMP) were 

considered. The authors proved the existence and uniqueness of the (MLP) for 

exponential distribution and that the modified (CMP) compares very well with the other 

predictors in terms of (MSPE). They also formed prediction intervals for exponential 

and extreme value distributions and came up with the conclusion that the prediction 

intervals for the (BLUP) and (CMP) are close and the modified (CMP) is well 

comparable with the other predictors. 

 Ebrahimi (1992) has studied the prediction of future failures and prediction 

intervals in exponential distribution with parameter 𝜆 under hybrid censoring. When 𝑛 

units are put into life testing with lifetimes 𝑋1, 𝑋2, … . . 𝑋𝑛 with number of fixed failures 𝑟 

in advance and time 𝑇, the author has predicted 𝑋𝑠, where 𝑠 > min (𝑟, 𝑚).  

Where 𝑚 represents the number of failures up to time 𝑇 .The author has found the  

(MLP) of 𝑋𝑠̃ and the parameter 𝜆 was replaced by the predictive maximum likelihood 

estimate (PMLE) and the predictor 𝑋𝑠̂ where 𝜆 was replaced by the (MLE). Also, 

prediction intervals were found. The (MLP) performed better when 𝑠 < 2𝑟 and worst 

when 𝑠 > 2𝑟. Finally, the (MLP) performed better than 𝑋𝑠̂ in terms of MSE. 

      As we have seen in the literature review section, not so much work has been done 

on the prediction of future failures when the underlying distribution is the Log-Logistic 

distribution. Moreover, in this thesis we will build our work on the past researches 
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conducted on prediction of future failures as the statistical and scientific work is an 

ongoing process, trying to add some concepts such as obtaining the MLEs of the 

parameters and extending the model to include left censored data in addition to the 

observed and right censored values. (Hybrid censoring, log-logistic distribution) 

 

1.5  The Specific Problem  

     It is noticeable that the log-Logistic distribution has been used by statisticians for 

modelling life time data, its importance comes from the fact that it might be a good 

replacement of the well-known Weibull distribution to analyse lifetime data.  

In this thesis we will extend the work of the authors reviewed in the previous part to 

the case when the observations follow the Log-Logistic distribution when the data is 

left censored and with hybrid censoring on the right. This includes several types of 

censoring as special cases including left censoring, type-I and type-II censoring. Thus, 

extending and generalizing either results on this problem. 

         

1.6  Objectives of the Study  

        The main objective of the study is to predict of future failures of log-Logistic 

distribution model based on Hybrid-Censored Data. We will derive the maximum 

likelihood estimator in addition to several point predictors such as Maximum Likelihood 

predictor, Conditional Mean Predictor and Median Predictor. The Performance of such 

predictors will be investigated using Simulation and the results will be applied to real 

or simulated data sets.  
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1.6.1 Specific Objectives 

         In order to achieve our main objective, we will some specific objectives as 

follows: 

1. Construct the likelihood function when the data is left censored at 𝑡0 and hybrid 

censored (type-I and type-II), likelihood equations, and MLEs of the parameters 𝛼 

and 𝛽. 

2. Calculate the bias and MSE for each estimator. 

3. Will obtain the predictive likelihood function, and the MLP (Maximum Likelihood 

Predictor). 

4. Consider other predictors like the conditional mean predictor and median predictor. 

5. Investigate and compare the performance of the predictors. 

6. Prediction Intervals 

7. Comparison of the intervals  

8. Apply the results to real or simulated data. 

 

 

CHAPTER 2: ESTIMATION AND PREDICTION USING THE 

LIKELIHOOD FUNCTION  

 

2.1 The Likelihood equations and the MLE 

2.1.1 Overview of Maximum Likelihood   

       The MLE technique is used to estimate the parameters of a distribution by 

maximizing the probability of an observed sample. And since the maximum of a 

function is occurred at the maximum of its logarithm, then it is sufficient to maximize 

the logarithm of the likelihood.  
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The likelihood equations can be obtained by deriving the log-likelihood function with 

respect to the parameters and solving for the parameters when we set the partial 

derivatives equal to 0. 

 But sometimes the solutions of these equations cannot be obtained implicitly due 

to the non-linearity of such equations and hence some numerical approaches must be 

done in order to estimate the solutions or perimeters for these equations.  

 One of the most important approaches that can be done is the Taylor Series 

Expansion around a certain point. The Taylor series expansion can be explained in 

the following illustration: 

If a function 𝑓 is differentiable in a neighbourhood of a point 𝑎 then 𝑓(𝑥) can be written 

as 𝑓(𝑥) = 𝑓(𝑎) + (𝑥 − 𝑎)𝑓′(𝑎) +
(𝑥−𝑎)2

2!
∙ 𝑓"(𝑎) + ⋯ . +

(𝑥−𝑎)𝑛

𝑛!
∙ 𝑓(𝑛)(𝑎)+∈ where ∈ is a 

function that tends to zero as 𝑛 → ∞. So, 𝑓 can be approximated up to 1 term to 𝑓(𝑎) +

(𝑥 − 𝑎)𝑓′(𝑎). Using the Taylor expansion about a certain point, the approximate MLEs 

can be obtained. Dube et al. (2011). Another numerical technique that could be used 

to solve a system of simultaneous equations is the Newton Raphson method (NR). 

 One of the methods used to compute the maximum likelihood estimates when the 

data comes from an incomplete data is an algorithm called (EM) algorithm which was 

proposed by Dempster, Laird, and Rubin (1977); the iterations of the algorithm consist 

of two steps one of which is the expectation and the other is maximization. The method 

suggests the existence of two sample spaces 𝑆1and 𝑆2where 𝑆1the sample space of 

non-observed data and 𝑆2 is the sample space of observed data and a 

correspondence from 𝑆1 to 𝑆2 that maps a non-observed data 𝑥 into 𝑦(𝑥) where 𝑦 is 

an observed data and 𝑥 can be determined indirectly from 𝑦. 
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 For a complete data 𝑥, incomplete data 𝑦, and a vector of parameters 𝜃, there 

exists the relation between complete data and incomplete data as 𝑓2(𝑦 𝜃⁄ ) =

∫ 𝑓1𝑆1(𝑦)
(𝑥 𝜃⁄ )𝑑𝑥   

𝑓1 and 𝑓2 are the sampling densities of non-observed and observed data respectively. 

The (EM) algorithm works at finding a value of 𝜃 that maximizes 𝑓2(𝑦 𝜃⁄ ) given an 

observed 𝑦 and the complete data specification 𝑓1(𝑥 𝜃⁄ ) generates the incomplete data 

specification 𝑓2(𝑦 𝜃⁄ ) and hence finding 𝑓1(𝑥 𝜃⁄ ) will generate 𝑓2(𝑦 𝜃⁄ ).  

 

2.1.2 Likelihood functions for different types of censored data 

      According to(Mitra, 2013); for a lifetime variable 𝑇 whose pdf is 𝑔(𝑡), cdf is 𝐺(𝑡), 

and if the censored units belong to set 𝐶 and the uncensored units belong to set 𝑈, 

then under right censoring the likelihood function 𝐿 ∝ ∏ 𝑔(𝑡𝑖𝑖∈𝑈 ) ∙ ∏ (1 − 𝐺(𝑡𝑖)𝑖𝜖𝐶  and 

such that each right censored observation contributes (1 − 𝐺(𝑡)) to the whole 

likelihood. Similarly, for a left censored data the likelihood function 𝐿 ∝ ∏ 𝑔(𝑡𝑖𝑖∈𝑈 ) ∙

∏ 𝐺(𝑡𝑖)𝑖𝜖𝐶  and for interval censored data the likelihood function 𝐿 ∝ ∏ 𝑔(𝑡𝑖𝑖∈𝑈 ) ∙

∏ (𝐺(𝑡𝑢𝑝𝑝𝑒𝑟)𝑖𝜖𝐶 − 𝐺(𝑡𝑙𝑜𝑤𝑒𝑟)). 

 A likelihood function can be obtained from type-II censored data and it can be 

obtained through the following perspective; suppose that 𝑛 units are put into life testing 

and 𝑟 failures have to be obtained and the experiment stops after the 𝑟 units have 

been obtained. If 𝑡𝑟 represents the smallest 𝑟𝑡ℎorder statistic of the lifetimes of the 𝑛 

units, then the likelihood function is given by 𝐿 ∝ ∏ 𝑔(𝑡𝑖
𝑟
𝑖=1 ) ∙ {1 − 𝐺(𝑡𝑟)}𝑛−𝑟. For a left 

truncated 𝑇 random variable and whose point of truncation is 𝑡𝐿, the pdf of the left 

truncated random variable is 𝑔𝐿𝑇(𝑡) =
𝑔(𝑡)

1−𝐺(𝑡𝐿)
 for 𝑡 > 𝑡𝐿and the cdf is given by 𝐺𝐿𝑇(𝑡) =
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𝐺(𝑡)−𝐺(𝑡𝐿)

1−𝐺(𝑡𝐿)
 for 𝑡 > 𝑡𝐿. Similarly for a right truncated 𝑇 random variable and whose point 

of truncation is 𝑡𝑅, the pdf of the right truncated random variable is 𝑔𝑅𝑇(𝑡) =
𝑔(𝑡)

𝐺(𝑡𝑅)
 for 

𝑡 < 𝑡𝑅 and the cdf is given by 𝐺𝑅𝑇(𝑡) =
𝐺(𝑡)

𝐺(𝑡𝑅)
 for 𝑡 < 𝑡𝑅. 

 Finally, for a doubly truncated random variable where the left and right truncation 

points are respectively 𝑡𝐿 and 𝑡𝑅 the pdf is given by 𝑔𝐷𝑇(𝑡) =
𝑔(𝑡)

𝐺(𝑡𝑅)−𝐺(𝑡𝐿)
 for 𝑡𝐿 < 𝑡 < 𝑡𝑅 

and its cdf is  

𝐺𝐷𝑇(𝑡) =
𝐺(𝑡)−𝐺(𝑡𝐿)

𝐺(𝑡𝑅)−𝐺(𝑡𝐿)
 for 𝑡𝐿 < 𝑡 < 𝑡𝑅 

 

 

2.1.3 The Likelihood equations (MLE) for Log-Logistic distribution  

Suppose that 𝑛 units are put into lifetime test, and of which 𝑟 units are left 

censored at time 𝑡0, the likelihood of each left censored unit at time 𝑡0 is: 

 𝐿𝑖(𝛼, 𝛽) =
(𝛼𝑡0)𝛽

1+(𝛼𝑡0)𝛽 and hence the Likelihood for the  𝑟 left censored units at time 𝑡0 is   

∏
(𝛼𝑡0)𝛽

1+(𝛼𝑡0)𝛽 =  
(𝛼𝑡0)𝑟𝛽

(1+(𝛼𝑡0)𝛽)
𝑟

𝑟
𝑖=1  .   

Now we will consider the Hybrid Censoring (type 1 and type 2). Suppose that 

the preassigned number of failures is 𝑚 or that the preassigned time is 𝜏.   

Case 1: If we have 𝑚 observed units where their corresponding ordered failure times 

are: 𝑡𝑟+1, 𝑡𝑟+2, 𝑡𝑟+3, … … … … … , 𝑡𝑟+𝑚 where 𝑡𝑖 < 𝜏 for all 𝑖 𝜖{𝑟 + 1, … … . , 𝑟 + 𝑚}. 

The contribution of the 𝑚 observed units or failures to the likelihood in this case is: 

∏ 𝑓(𝑡𝑖
𝑟+𝑚
𝑖=𝑟+1 ) = ∏

𝛼𝛽(𝛼𝑡𝑖)𝛽−1 

(1+(𝛼𝑡𝑖)𝛽)
2

𝑟+𝑚
𝑖=𝑟+1     

The contribution of the 𝑛 − (𝑟 + 𝑚) unobserved data to the likelihood (censored) is: 
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(1 − 𝐹(𝑡𝑟+𝑚))
𝑛−(𝑟+𝑚)

  where 𝑡𝑟+𝑚 is the (𝑟 + 𝑚)𝑡ℎ smallest order statistic among the 

lifetimes. So the likelihood is (1 −
(𝛼𝑡𝑟+𝑚)𝛽

1+(𝛼𝑡𝑟+𝑚)𝛽)𝑛−(𝑟+𝑚) = (
1

1+(𝛼𝑡𝑟+𝑚)𝛽)𝑛−(𝑟+𝑚) . 

Case 2: Suppose we reach time 𝜏 (the preassigned time) with 𝑠 failures and their 

corresponding failure times are 𝑡𝑟+1, 𝑡𝑟+2, 𝑡𝑟+3, … … … … … , 𝑡𝑟+𝑠 where 𝑠 < 𝑚  and  

𝑡𝑟+𝑠 < 𝜏 < 𝑡𝑟+𝑠+1. The contribution to the likelihood of the 𝑠 observed units is: 

∏ 𝑓(𝑡𝑖
𝑟+𝑠
𝑖=𝑟+1 ) = ∏

𝛼𝛽(𝛼𝑡𝑖)𝛽−1 

(1+(𝛼𝑡𝑖)𝛽)
2

𝑟+𝑠
𝑖=𝑟+1     

The contribution of the 𝑛 − (𝑟 + 𝑠) unobserved data is:  

(1 − 𝐹(𝜏))
𝑛−(𝑟+𝑠)

= (
1

1+(𝛼𝜏)𝛽)𝑛−(𝑟+𝑠). The likelihood function in case 1 is: 

𝐿(𝛼, 𝛽) =
(𝛼𝑡0)𝑟𝛽

(1+(𝛼𝑡0)𝛽)
𝑟 ∙ ∏

𝛼𝛽(𝛼𝑡𝑖)𝛽−1 

(1+(𝛼𝑡𝑖)𝛽)
2

𝑟+𝑚
𝑖=𝑟+1 ∙ {(

1

1+(𝛼𝑡𝑟+𝑚)𝛽)
𝑛−(𝑟+𝑚)

}                                         (11)     

Applying the logarithm of the likelihood function: 

ln 𝐿(𝛼, 𝛽) = 𝑟𝛽 ln(𝛼𝑡0) − 𝑟 ln(1 + (𝛼𝑡0)𝛽) + ∑ ln(𝛼𝛽(𝛼𝑡𝑖)𝛽−1

𝑖=𝑟+𝑚

𝑖=𝑟+1

) 

−2 ∑ ln(

𝑖=𝑟+𝑚

𝑖=𝑟+1

(1 + (𝛼𝑡𝑖)𝛽) − (𝑛 − (𝑟 + 𝑚)) ln(1 + (𝛼𝑡𝑟+𝑚)𝛽)                                             (12) 

The partial derivatives of ln 𝐿(𝛼, 𝛽) are as follows: 

𝜕𝐿

𝜕𝛼
=

𝑟𝛽

𝛼
−

𝑟𝛽(𝛼𝑡0)𝛽−1𝑡0

1 + (𝛼𝑡0)𝛽
+ ∑

𝛽

𝛼

𝑖=𝑟+𝑚

𝑖=𝑟+1

− 2 ∑
𝛽(𝛼𝑡𝑖)𝛽−1𝑡𝑖

1 + (𝛼𝑡𝑖)𝛽

𝑖=𝑟+𝑚

𝑖=𝑟+1

−
 (𝑛 − (𝑟 + 𝑚))𝛽(𝛼𝑡𝑟+𝑚)𝛽−1𝑡𝑟+𝑚

1 + (𝛼𝑡𝑟+𝑚)𝛽
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𝜕𝐿

𝜕𝛼
=

𝑟𝛽

𝛼
−

𝑟𝛽(𝛼𝑡0)𝛽

𝛼(1 + (𝛼𝑡0)𝛽)
+

𝑚𝛽

𝛼
− 2 ∑

𝛽(𝛼𝑡𝑖)𝛽

𝛼(1 + (𝛼𝑡𝑖)𝛽)

𝑖=𝑟+𝑚

𝑖=𝑟+1

−
(𝑛 − (𝑟 + 𝑚))𝛽(𝛼𝑡𝑟+𝑚)𝛽

𝛼(1 + (𝛼𝑡𝑟+𝑚)𝛽)

= 0                                                                                                                                (13) 

 

𝜕𝐿

𝜕𝛽
= 𝑟 ln(𝛼𝑡0) −

𝑟(𝛼𝑡0)𝛽 ln(𝛼𝑡0)

(1 + (𝛼𝑡0)𝛽)
+ ∑

1 + 𝛽 ln(𝛼𝑡𝑖)

𝛽

𝑖=𝑟+𝑚

𝑖=𝑟+1

− 2 ∑
(𝛼𝑡𝑖)𝛽 ln(𝛼𝑡𝑖)

(1 + (𝛼𝑡𝑖)𝛽)

𝑖=𝑟+𝑚

𝑖=𝑟+1

−
(𝑛 − (𝑟 + 𝑚))(𝛼𝑡𝑟+𝑚)𝛽 ln(𝛼𝑡𝑟+𝑚)

(1 + (𝛼𝑡𝑟+𝑚)𝛽)
= 0                                                        (14) 

 

Similarly, the likelihood function in case 2 is: 

𝐿(𝛼, 𝛽) =
(𝛼𝑡0)𝑟𝛽

(1+(𝛼𝑡0)𝛽)
𝑟 ∙ ∏

𝛼𝛽(𝛼𝑡𝑖)𝛽−1 

(1+(𝛼𝑡𝑖)𝛽)
2

𝑟+𝑠
𝑖=𝑟+1 ∙ {(

1

1+(𝛼𝜏)𝛽)
𝑛−(𝑟+𝑠)

}                                                  (15)    

  Applying the logarithm to the likelihood function: 

ln 𝐿(𝛼, 𝛽) = 𝑟𝛽 ln(𝛼𝑡0) − 𝑟 ln(1 + (𝛼𝑡0)𝛽) + ∑ ln(𝛼𝛽(𝛼𝑡𝑖)𝛽−1

𝑖=𝑟+𝑠

𝑖=𝑟+1

) 

−2 ∑ ln(

𝑖=𝑟+𝑠

𝑖=𝑟+1

(1 + (𝛼𝑡𝑖)𝛽) − (𝑛 − (𝑟 + 𝑠)) ln(1 + (𝛼𝜏)𝛽)                                                       (16) 

The partial derivatives of ln 𝐿(𝛼, 𝛽) are as follows: 

𝜕𝐿

𝜕𝛼
=

𝑟𝛽

𝛼
−

𝑟𝛽(𝛼𝑡0)𝛽

𝛼(1 + (𝛼𝑡0)𝛽)
+

𝑠𝛽

𝛼
− 2 ∑

𝛽(𝛼𝑡𝑖)𝛽

𝛼(1 + (𝛼𝑡𝑖)𝛽)

𝑖=𝑟+𝑠

𝑖=𝑟+1

−
(𝑛 − (𝑟 + 𝑠))𝛽(𝛼𝜏)𝛽

𝛼(1 + (𝛼𝜏)𝛽)
= 0  (17) 

𝜕𝐿

𝜕𝛽
= 𝑟 ln(𝛼𝑡0) −

𝑟(𝛼𝑡0)𝛽 ln(𝛼𝑡0)

(1 + (𝛼𝑡0)𝛽)
+ ∑

1 + 𝛽 ln(𝛼𝑡𝑖)

𝛽

𝑖=𝑟+𝑠

𝑖=𝑟+1

− 2 ∑
(𝛼𝑡𝑖)𝛽 ln(𝛼𝑡𝑖)

(1 + (𝛼𝑡𝑖)𝛽)

𝑖=𝑟+𝑠

𝑖=𝑟+1

−
(𝑛 − (𝑟 + 𝑠))(𝛼𝜏)𝛽 ln(𝛼𝜏)

(1 + (𝛼𝜏)𝛽)
= 0                                                                        (18) 

Case 1 and case 2 can be combined as follows: 
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𝐿(𝛼, 𝛽) =
(𝛼𝑡0)𝑟𝛽

(1 + (𝛼𝑡0)𝛽)𝑟
∙ ∏

𝛼𝛽(𝛼𝑡𝑖)𝛽−1 

(1 + (𝛼𝑡𝑖)𝛽)2

𝑟+𝑓

𝑖=𝑟+1

∙ {(
1

1 + (𝛼𝜏∗)𝛽
)

𝑛−(𝑟+𝑓)

} 

                 

=
(𝛼𝑡0)𝑟𝛽

(1 + (𝛼𝑡0)𝛽)𝑟
∙ ∏

𝛼𝛽(𝛼𝑡𝑖)𝛽−1 

(1 + (𝛼𝑡𝑖)𝛽)2

𝑟+𝑓

𝑖=𝑟+1

 ∙ {(1 + (𝛼𝜏∗)𝛽)
(𝑟+𝑓)−𝑛

}                                          (19)  

where, 𝑓 is the number of observed failures, 𝜏∗ is the time where the experiment stops: 

𝑓 = {
𝑚              𝑐𝑎𝑠𝑒 1
𝑠               𝑐𝑎𝑠𝑒 2

          𝜏∗ = {
𝑡𝑟+𝑚       𝑐𝑎𝑠𝑒 1
𝜏               𝑐𝑎𝑠𝑒 2

 

The Log-Likelihood function in both cases is: 

ln 𝐿(𝛼, 𝛽) = 𝑟𝛽 ln(𝛼𝑡0) − 𝑟 ln(1 + (𝛼𝑡0)𝛽) + ∑ ln(𝛼𝛽(𝛼𝑡𝑖)𝛽−1

𝑖=𝑟+𝑓

𝑖=𝑟+1

) 

−2 ∑ ln(

𝑖=𝑟+𝑓

𝑖=𝑟+1

(1 + (𝛼𝑡𝑖)𝛽) − (𝑛 − (𝑟 + 𝑓)) ln(1 + (𝛼𝜏∗)𝛽)                                                    (20) 

 

Finally, the partial derivatives of the Log-Likelihood with respect to 𝛼 and 𝛽 in both 

cases is given by:  

𝜕𝐿

𝜕𝛼
=

𝑟𝛽

𝛼
−

𝑟𝛽(𝛼𝑡0)𝛽

𝛼(1 + (𝛼𝑡0)𝛽)
+

𝑓𝛽

𝛼
− 2 ∑

𝛽(𝛼𝑡𝑖)𝛽

𝛼(1 + (𝛼𝑡𝑖)𝛽)

𝑖=𝑟+𝑓

𝑖=𝑟+1

−
(𝑛 − (𝑟 + 𝑓))𝛽(𝛼𝜏∗)𝛽

𝛼(1 + (𝛼𝜏∗)𝛽)

= 0                                                                                                                               (21) 

𝜕𝐿

𝜕𝛽
= 𝑟 ln(𝛼𝑡0) −

𝑟(𝛼𝑡0)𝛽 ln(𝛼𝑡0)

(1 + (𝛼𝑡0)𝛽)
+ ∑

1 + 𝛽 ln(𝛼𝑡𝑖)

𝛽

𝑖=𝑟+𝑓

𝑖=𝑟+1

− 2 ∑
(𝛼𝑡𝑖)𝛽 ln(𝛼𝑡𝑖)

(1 + (𝛼𝑡𝑖)𝛽)

𝑖=𝑟+𝑓

𝑖=𝑟+1

−
(𝑛 − (𝑟 + 𝑓))(𝛼𝜏∗)𝛽 ln(𝛼𝜏∗)

(1 + (𝛼𝜏∗)𝛽)
= 0                                                                   (22) 

Note that the likelihood in both cases is reduced to  
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𝐿(𝛼, 𝛽) = ∏
𝛼𝛽(𝛼𝑡𝑖)𝛽−1 

(1+(𝛼𝑡𝑖)𝛽)
2

𝑓
𝑖=1  ∙ {(1 + (𝛼𝜏∗)𝛽)

𝑓−𝑛
}                                                                         (23)  

when 𝑡0 = 0 or in other words if there is no left censored units. And the partial 

derivative equations of the Log-Likelihood function with respect to 𝛼 and 𝛽 will be 

reduced to: 

𝜕𝐿

𝜕𝛼
=

𝑓𝛽

𝛼
− 2 ∑

𝛽(𝛼𝑡𝑖)𝛽

𝛼(1 + (𝛼𝑡𝑖)𝛽)

𝑖=𝑓

𝑖=1

−
(𝑛 − 𝑓)𝛽(𝛼𝜏∗)𝛽

𝛼(1 + (𝛼𝜏∗)𝛽)
= 0                                                          (24) 

𝜕𝐿

𝜕𝛽
= ∑

1 + 𝛽 ln(𝛼𝑡𝑖)

𝛽

𝑖=𝑓

𝑖=1

− 2 ∑
(𝛼𝑡𝑖)𝛽 ln(𝛼𝑡𝑖)

(1 + (𝛼𝑡𝑖)𝛽)

𝑖=𝑓

𝑖=1

−
(𝑛 − 𝑓)(𝛼𝜏∗)𝛽 ln(𝛼𝜏∗)

(1 + (𝛼𝜏∗)𝛽)
= 0                   (25) 

 It is clear that the solution of equations (21) and (22) cannot be obtained explicitly 

due to the non-linearity type of the equations and therefore, in order to solve such 

equations we need to use some numerical techniques such as Newton Raphson 

method (NR) and the use of this technique is conditional on its convergence as it does 

not converge all the time, or we can use the (EM) algorithm to solve these equations.   

  

2.2 The Predictive Likelihood Function and the MLP 

    Our main objective of this thesis is to discuss the prediction of 𝑌 = 𝑇𝑝+(𝑟+𝑓)   where 

𝑝 = 1, … … . , 𝑛 − (𝑟 + 𝑓)  for all the 𝑛 − (𝑟 + 𝑓)  unobserved or censored units based 

on the observed data 𝑇 = (𝑇𝑟+1, … … . 𝑇𝑟+𝑓). 

Due to the property of Markov for Censored order statistic, the conditional 

distribution of 𝑌 given 𝑇 = 𝑡 is the same as the distribution of the 𝑝𝑡ℎ order statistic of 

sample of size 𝑛 − (𝑟 + 𝑓)  from a population with cumulative distribution function: 

 𝐺(𝑦) =
𝐹(𝑦)−𝐹(𝜏∗)

1−𝐹(𝜏∗)
  for all 𝑦 > 𝜏∗  (left truncated at 𝜏∗). The density function of which is 

𝑔(𝑦) =
𝑑

𝑑𝑦
𝐺(𝑦) =

𝑓(𝑦)

1−𝐹(𝜏∗)
. Therefore, the conditional density of  𝑌 = 𝑇𝑝+(𝑟+𝑓)  
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given 𝑇 = 𝑡 = (𝑡𝑟+1, … … . 𝑡𝑟+𝑓) for all 𝑦 > 𝜏∗   is given by: 

𝑓(𝑦 𝑡⁄ ) =
(𝑛−(𝑟+𝑓))!

(𝑝−1)!(𝑛−(𝑟+𝑓)−𝑝)!
(𝐺(𝑦))

𝑝−1
(1 − 𝐺(𝑦))

𝑛−(𝑟+𝑓)−𝑝
𝑔(𝑦). Knowing that: 

 𝐺(𝑦) =  
𝐹(𝑦)−𝐹(𝜏∗)

1−𝐹(𝜏∗)
  𝑎𝑛𝑑 𝑔(𝑦) =  

𝑓(𝑦)

1−𝐹(𝜏∗)
 , we get: 

𝑓(𝑦 𝑡⁄ ) =
(𝑛 − (𝑟 + 𝑓))!

(𝑝 − 1)! (𝑛 − (𝑟 + 𝑓) − 𝑝)!
(

𝐹(𝑦) − 𝐹(𝜏∗)

1 − 𝐹(𝜏∗)
)

𝑝−1

∙ (1 − (
𝐹(𝑦) − 𝐹(𝜏∗)

1 − 𝐹(𝜏∗)
))

𝑛−(𝑟+𝑓)−𝑝

∙
𝑓(𝑦)

1 − 𝐹(𝜏∗)
 

𝑓(𝑦 𝑡⁄ ) = 𝑝 (
𝑛 − (𝑟 + 𝑓)

𝑝
) ∙ (

(𝛼𝑦)𝛽

1+(𝛼𝑦)𝛽 −
(𝛼𝜏∗)𝛽

1+(𝛼𝜏∗)𝛽)
𝑝−1

 ∙ (
1

1+(𝛼𝑦)𝛽)
𝑛−(𝑟+𝑓)−𝑝

∙
𝛼𝛽(𝛼𝑦)

𝛽−1

(1+(𝛼𝑦)
𝛽

)
2 ∙ (

1

1+(𝛼𝜏∗)𝛽)
𝑟+𝑓−𝑛

  

Simplifying (
(𝛼𝑦)𝛽

1+(𝛼𝑦)𝛽 −
(𝛼𝜏∗)𝛽

1+(𝛼𝜏∗)𝛽)
𝑝−1

 we get: 

 (
(𝛼𝑦)𝛽

1+(𝛼𝑦)𝛽 −
(𝛼𝜏∗)𝛽

1+(𝛼𝜏∗)𝛽)
𝑝−1

= [(𝛼𝑦)𝛽 − (𝛼𝜏∗)𝛽]
𝑝−1

∙ (1 + (𝛼𝑦)𝛽)
1−𝑝

∙ (1 + (𝛼𝜏∗)𝛽)1−𝑝  and hence  

𝑓(𝑦 𝑡⁄ ) = 𝑝 (
𝑛 − (𝑟 + 𝑓)

𝑝
) [(𝛼𝑦)𝛽 − (𝛼𝜏∗)𝛽]

𝑝−1
(1 + (𝛼𝑦)𝛽)

−𝑛+(𝑟+𝑓)−1
∙ (1 + (𝛼𝜏∗)𝛽)

𝑛−(𝑟+𝑓)−𝑝+1
∙ 𝛼𝛽(𝛼𝑦)𝛽−1    

for all  𝑦 > 𝜏∗, 𝑝 = 1, … … . , 𝑛 − (𝑟 + 𝑓).                                                                                     (26) 

 

2.2.1 Likelihood Prediction Approach  

We will apply the Maximum Likelihood to the joint distribution of the prediction 

of 𝑌 and the likelihood of the present distribution. Referring to Valiollahi et al. (2017)  

The predictive likelihood function (PLF) of 𝑌 𝑎𝑛𝑑 (𝛼, 𝛽) is given by: 

𝐿(𝑦, 𝛼, 𝛽 𝑡⁄ ) = 𝑓(𝑦 𝑡⁄ , 𝛼, 𝛽) ∙ 𝑔(𝑡 𝛼⁄ , 𝛽)      

where 𝑓(𝑦 𝑡⁄ , 𝛼, 𝛽) is the conditional density of 𝑌 and 𝑔(𝑡 𝛼⁄ , 𝛽) is the likelihood of the 

present log-logistic distribution. Hence 

𝐿(𝑦, 𝛼, 𝛽) = 𝑝 (
𝑛 − (𝑟 + 𝑓)

𝑝
) ∙ [(𝛼𝑦)𝛽 − (𝛼𝜏∗)𝛽]

𝑝−1
∙ (1 + (𝛼𝑦)𝛽)

−𝑛+(𝑟+𝑓)−1
∙ (1 + (𝛼𝜏∗)𝛽)

𝑛−(𝑟+𝑓)−𝑝+1

∙ 𝛼𝛽(𝛼𝑦)𝛽−1 ∙
(𝛼𝑡0)𝑟𝛽

(1 + (𝛼𝑡0)𝛽)
𝑟 ∙ ∏

𝛼𝛽(𝛼𝑡𝑖)
𝛽−1 

(1 + (𝛼𝑡𝑖)
𝛽

)
2

𝑟+𝑓

𝑖=𝑟+1

 ∙ {(1 + (𝛼𝜏∗)𝛽)
(𝑟+𝑓)−𝑛

} 
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Which could be simplified further to: 

𝐿(𝑦, 𝛼, 𝛽) = 𝑝 (
𝑛 − (𝑟 + 𝑓)

𝑝
) ∙ [(𝛼𝑦)𝛽 − (𝛼𝜏∗)𝛽]

𝑝−1
∙ (1 + (𝛼𝑦)𝛽)

−𝑛+(𝑟+𝑓)−1
∙ (1 + (𝛼𝜏∗)𝛽)−𝑝+1

∙ 𝛼𝛽(𝛼𝑦)𝛽−1 ∙
(𝛼𝑡0)𝑟𝛽

(1 + (𝛼𝑡0)𝛽)𝑟
∙ ∏

𝛼𝛽(𝛼𝑡𝑖)𝛽−1 

(1 + (𝛼𝑡𝑖)𝛽)2
                                                     (27)

𝑟+𝑓

𝑖=𝑟+1

 

 

Applying the Logarithm of the predictive likelihood function and ignoring the constant: 

ln 𝐿(𝑦, 𝛼, 𝛽) = (𝑝 − 1) ln[(𝛼𝑦)𝛽 − (𝛼𝜏∗)𝛽] + ((𝑟 + 𝑓) − 𝑛 − 1) ln(1 + (𝛼𝑦)𝛽) + (1 − 𝑝) ln(1 + (𝛼𝜏∗)𝛽)

+ (𝑓 + 1) ln(𝛼𝛽) + (𝛽 − 1) ln(𝛼𝑦) + 𝑟𝛽 ln(𝛼𝑡0) − 𝑟 ln(1 + (𝛼𝑡0)𝛽) + 

(𝛽 − 1) ∑ ln(𝛼𝑡𝑖)

𝑖=𝑟+𝑓

𝑖=𝑟+1

− 2 ∑ ln(1 + (𝛼𝑡𝑖)𝛽

𝑖=𝑟+𝑓

𝑖=𝑟+1

)                                                                                          (28) 

We will use the partial derivatives of the Log of the Predictive Likelihood function 

to obtain the Predictive Likelihood equations (PLEs) 

The partial derivatives of ln 𝐿(𝑦, 𝛼, 𝛽) are as follows: 

𝜕 ln 𝐿(𝑦, 𝛼, 𝛽)  

𝜕𝑦
=   (𝑝 − 1) ∙ 𝛼𝛽 ∙

(𝛼𝑦)𝛽−1

(𝛼𝑦)𝛽 − (𝛼𝜏∗)𝛽
+ [(𝑟 + 𝑓) − 𝑛 − 1] ∙ 𝛼𝛽 ∙

(𝛼𝑦)𝛽−1

1 + (𝛼𝑦)𝛽
  +

𝛽 − 1

𝑦
 

 

𝜕 ln 𝐿(𝑦, 𝛼, 𝛽) 

𝜕𝑦
=

1

𝑦
[

(𝑝 − 1)𝛽(𝛼𝑦)𝛽

(𝛼𝑦)𝛽 − (𝛼𝜏∗)𝛽
+

(𝑟 + 𝑓 − 𝑛 − 1)𝛽(𝛼𝑦)𝛽

1 + (𝛼𝑦)𝛽
+ 𝛽 − 1]                                        (29) 

 

𝜕 ln 𝐿(𝑦, 𝛼, 𝛽)

𝜕𝛼
=

(𝑝 − 1)[𝛽𝑦(𝛼𝑦)𝛽−1 − 𝛽𝜏∗(𝛼𝜏∗)𝛽−1]

(𝛼𝑦)𝛽 − (𝛼𝜏∗)𝛽
+

(𝑟 + 𝑓 − 𝑛 − 1)𝛽𝑦(𝛼𝑦)𝛽−1

1 + (𝛼𝑦)𝛽
+

(1 − 𝑝)𝛽𝜏∗(𝛼𝜏∗)𝛽−1

1 + (𝛼𝜏∗)𝛽

+
𝑓 + 1

𝛼
+

𝛽 − 1

𝛼
+

𝑟𝛽

𝛼
−

𝑟𝛽𝑡0(𝛼𝑡0)𝛽−1

1 + (𝛼𝑡0)𝛽
+ 

(𝛽 − 1) ∑
1

𝛼

𝑖=𝑟+𝑓

𝑖=𝑟+1

− 2 ∑
𝛽𝑡𝑖(𝛼𝑡𝑖)

𝛽−1

1 + (𝛼𝑡𝑖)
𝛽

𝑖=𝑟+𝑓

𝑖=𝑟+1

 

After some simplifications, we get: 



25 

 

𝜕 ln 𝐿(𝑦, 𝛼, 𝛽)

𝜕𝛼
=

𝛽

𝛼
((𝑝 − 1) +

(𝑟 + 𝑓 − 𝑛 − 1)(𝛼𝑦)𝛽

1 + (𝛼𝑦)𝛽
+

(1 − 𝑝)(𝛼𝜏∗)𝛽

1 + (𝛼𝜏∗)𝛽
+ (𝑓 + 𝑟 + 1)

−
𝑟(𝛼𝑡0)𝛽

1 + (𝛼𝑡0)𝛽
− 2 ∑

(𝛼𝑡𝑖)𝛽

1 + (𝛼𝑡𝑖)𝛽

𝑖=𝑟+𝑓

𝑖=𝑟+1

) = 0                                                                       (30) 

Similarly, after deriving ln 𝐿(𝑦, 𝛼, 𝛽) with respect to 𝛽 with some simplifications, we get: 

𝜕 ln 𝐿(𝑦, 𝛼, 𝛽)

𝜕𝛽
= (𝑝 − 1)

(𝛼𝑦)𝛽 ln(𝛼𝑦) − (𝛼𝜏∗)𝛽 ln(𝛼𝜏∗)

(𝛼𝑦)𝛽 − (𝛼𝜏∗)𝛽
+ (𝑟 + 𝑓 − 𝑛 − 1)

(𝛼𝑦)𝛽 ln(𝛼𝑦)

1 + (𝛼𝑦)𝛽

+ (1 − 𝑝)
(𝛼𝜏∗)𝛽 ln(𝛼𝜏∗)

1 + (𝛼𝜏∗)𝛽
+

(𝑓 + 1)

𝛽
+ ln(𝛼𝑦) + 𝑟 ln(𝛼𝑡0) −

𝑟(𝛼𝑡0)𝛽 ln(𝛼𝑡0)

1 + (𝛼𝑡0)𝛽

+ ∑ ln(𝛼𝑡𝑖

𝑖=𝑟+𝑓

𝑖=𝑟+1

) − 2 ∑
(𝛼𝑡𝑖)𝛽 ln(𝛼𝑡𝑖)

1 + (𝛼𝑡𝑖)𝛽

𝑖=𝑟+𝑓

𝑖=𝑟+1

= 0                                                                (31) 

 

Solving equation(29)will give the Maximum Likelihood Predictor of Y;( 𝑌𝑀𝐿𝑃)̃ 

𝜕 ln 𝐿(𝑦,𝛼,𝛽) 

𝜕𝑦
= 0, we get 

(𝑝−1)𝛽(𝛼𝑦)𝛽

(𝛼𝑦)𝛽−(𝛼𝜏∗)𝛽 +
(𝑟+𝑓−𝑛−1)𝛽(𝛼𝑦)𝛽

1+(𝛼𝑦)𝛽 + 𝛽 − 1 = 0 

(𝑝 − 1)𝛽(𝛼𝑦)𝛽[1 + (𝛼𝑦)𝛽] + (𝑟 + 𝑓 − 𝑛 − 1)𝛽(𝛼𝑦)𝛽[(𝛼𝑦)𝛽 − (𝛼𝜏∗)𝛽] + (𝛽 − 1)[(𝛼𝑦)𝛽 −

(𝛼𝜏∗)𝛽][1 + (𝛼𝑦)𝛽] = 0. Let  (𝛼𝑦)𝛽 = 𝑋 and (𝑟 + 𝑓 − 𝑛 − 1) = 𝐾  

Then (𝑝 − 1)𝛽𝑋[1 + 𝑋] + 𝐾𝛽𝑋[𝑋 − (𝛼𝜏∗)𝛽] + (𝛽 − 1)[𝑋 − (𝛼𝜏∗)𝛽][1 + 𝑋] = 0 which will be 

reduced to the quadratic equation in X: 

[(𝑝 − 1)𝛽 + 𝐾𝛽 + 𝛽 − 1]𝑋2 + [(𝑝 − 1)𝛽 − (𝛼𝜏∗)𝛽𝐾𝛽 + (𝛽 − 1) − (𝛼𝜏∗)𝛽]𝑋 − (𝛽 − 1)(𝛼𝜏∗)𝛽 = 0 .  

After some simplification we get: 

[𝑝𝛽 + 𝐾𝛽 − 1]𝑋2 + [𝑝𝛽 − (𝛼𝜏∗)𝛽𝐾𝛽 − 1 − (𝛼𝜏∗)𝛽]𝑋 − (𝛽 − 1)(𝛼𝜏∗)𝛽 = 0                                  (32) 

We know that 𝑝 < 𝑛 − (𝑟 + 𝑓) and (𝑟 + 𝑓 − 𝑛 − 1) = 𝐾, then 𝑛 − (𝑟 + 𝑓) = −𝐾 − 1 and 

𝑝 < −𝐾 − 1, 𝑝𝛽 < −𝐾𝛽 − 𝛽, hence  𝑝𝛽 + 𝐾𝛽 < 0 and 𝑝𝛽 + 𝐾𝛽 − 1 < 0. 

Let 𝐴 = 𝑝𝛽 + 𝐾𝛽 − 1, 𝐵 = [(𝑝 − 1)𝛽 − (𝛼𝜏∗)𝛽𝐾𝛽 + (𝛽 − 1) − (𝛼𝜏∗)𝛽] and  



26 

 

𝐶 = −(𝛽 − 1)(𝛼𝜏∗)𝛽. Since 𝐴 < 0 then if we choose 𝛽 < 1, 𝐶 will be positive and 

 𝐵2 − 4𝐴𝐶 > 0 and hence the above quadratic equation will have solutions. Choosing 

the positive solution, we get: 

𝑋 =
−𝐵±√𝐵2−4𝐴𝐶

2𝐴
 , (𝛼𝑦)𝛽 =

−𝐵±√𝐵2−4𝐴𝐶

2𝐴
 and so 

𝑌𝑀𝐿𝑃̃ =
1

𝛼
[
−𝐵 ± √𝐵2 − 4𝐴𝐶

2𝐴
]

1
𝛽                                                                                                                        (33) 

(If 𝛽 ≥ 1, 𝑌𝑀𝐿𝑃̃ could be obtained iff 𝐵2 − 4𝐴𝐶 > 0) 

Since we do not know the values of 𝛼 and 𝛽 we may replace them with the predictive 

maximum likelihood estimates 𝛼̃ and 𝛽̃.  

 

2.3 Other Predictors 

2.3.1 Conditional Prediction Approach  

    According to Valiollahi et al. (2017), a conditional predictor could be used to predict 

the future values of 𝑌 = 𝑇𝑝+(𝑟+𝑓)   where 𝑝 = 1, … … . , 𝑛 − (𝑟 + 𝑓)  using the conditional 

distribution of 𝑌 = 𝑇𝑝+(𝑟+𝑓) given 𝑇 = (𝑇𝑟+1, … … . 𝑇𝑟+𝑓). This conditional predictor 𝑌𝐶𝑜𝑛𝑑 

is the best unbiased predictor (BUP) of 𝑌 which means that the mean of (𝑌𝐶𝑜𝑛𝑑 − 𝑌) is 

zero (unbiased predictor) and the variance Var (𝑌𝐶𝑜𝑛𝑑 − 𝑌) is less than or equal  

Var (𝑌𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟 − 𝑌) for all unbiased predictor values 𝑌𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟 of 𝑌. This (BUP) of 𝑌 is 

given by: 𝑌𝐶𝑜𝑛𝑑 = 𝐸(𝑌 𝑇) =⁄ ∫ 𝑦 ∙ 𝑓(𝑦 𝑡, 𝛼, 𝛽)𝑑𝑦⁄
∞

𝜏∗  where 𝜏∗ is the time where the 

experiment stops. 

   𝑌𝐶𝑜𝑛𝑑 =  ∫ 𝑦 ∙
∞

𝜏∗ 𝑝 (
𝑛 − (𝑟 + 𝑓)

𝑝
) ∙ [(𝛼𝑦)𝛽 − (𝛼𝜏∗)𝛽]

𝑝−1
∙ (1 + (𝛼𝑦)𝛽)

−𝑛+(𝑟+𝑓)−1
∙ 

(1 + (𝛼𝜏∗)𝛽)𝑛−(𝑟+𝑓)−𝑝+1 ∙ 𝛼𝛽(𝛼𝑦)𝛽−1 ∙ 𝑑𝑦 

           = 𝑝 (
𝑛 − (𝑟 + 𝑓)

𝑝
) ∙ (1 + (𝛼𝜏∗)𝛽)𝑛−(𝑟+𝑓)−𝑝+1 ∙ 𝐼1  
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where 𝐼1 = ∫ 𝑦
∞

𝜏∗ ∙ [(𝛼𝑦)𝛽 − (𝛼𝜏∗)𝛽]
𝑝−1

∙ (1 + (𝛼𝑦)𝛽)
−𝑛+(𝑟+𝑓)−1

∙  𝛼𝛽(𝛼𝑦)𝛽−1 ∙ 𝑑𝑦      

Using the binomial expansion: 

 [(𝛼𝑦)𝛽 − (𝛼𝜏∗)𝛽]
𝑝−1

= ∑ (
𝑝 − 1

𝑘
) (−1)𝑝−1−𝑘

𝑝−1

𝑘=0

∙ ((𝛼𝑦)𝛽)
𝑘

∙ ((𝛼𝜏∗)𝛽)
𝑝−1−𝑘

                                 (34) 

Hence 𝐼1 = ∫ 𝑦 ∙ ∑ (
𝑝 − 1

𝑘
) (−1)𝑝−1−𝑘 ∙ ((𝛼𝑦)𝛽)

𝑘
∙ ((𝛼𝜏∗)𝛽)

𝑝−1−𝑘𝑝−1
𝑘=0

∞

𝜏∗ ∙ 

(1 + (𝛼𝑦)𝛽)
−𝑛+(𝑟+𝑓)−1

∙  𝛼𝛽(𝛼𝑦)𝛽−1 ∙ 𝑑𝑦 

𝐼1 = ∑ (
𝑝 − 1

𝑘
) (−1)𝑝−1−𝑘 ∙ ((𝛼𝜏∗)𝛽)

𝑝−1−𝑘
∙

𝑃−1

𝑘=0

𝛽 ∫ ((𝛼𝑦)𝛽)
𝑘+1

∞

𝜏∗
. (1 + (𝛼𝑦)𝛽)

−𝑛+(𝑟+𝑓)−1
𝑑𝑦     (35) 

  

We know that 1 −
1

1+(𝛼𝑦)𝛽 =
(𝛼𝑦)𝛽

1+(𝛼𝑦)𝛽 , let 𝑡 =
1

1+(𝛼𝑦)𝛽
 then (𝛼𝑦)𝛽 =

1−𝑡

𝑡
  and 1 +

(𝛼𝑦)𝛽 =
1

𝑡
 and 𝑑𝑦 =

−𝑑𝑡

𝛼𝛽(𝛼𝑦)𝛽−1𝑡2
  as 𝑦 = 𝜏∗, 𝑡 =

1

1+ (𝛼𝜏∗)𝛽
, as 𝑦 → ∞, 𝑡 → 0 and the 

integral 𝐼2 = ∫ ((𝛼𝑦)𝛽)
𝑘+1

∙ (1 + (𝛼𝑦)𝛽)
−𝑛+(𝑟+𝑓)−1

𝑑𝑦
∞

𝜏∗   will become  

𝐼2 = ∫ (
1−𝑡

𝑡
)

𝑘+1
∙

0
1

1+ (𝛼𝜏∗)𝛽
(

1

𝑡
)

−𝑛+(𝑟+𝑓)−1
∙

−𝑑𝑡

𝛼𝛽(𝛼𝑦)𝛽−1𝑡2
 .  

Replacing (𝛼𝑦)𝛽−1 with(
1−𝑡

𝑡
)

𝛽−1

𝛽 , then 

𝐼2 = ∫ (1 − 𝑡)𝑘+1 ∙

0

1

1+ (𝛼𝜏∗)𝛽

(𝑡)−𝑘−1 ∙ (𝑡)𝑛−(𝑟+𝑓)+1 ∙ (−𝑑𝑡) ∙
1

𝛼𝛽
∙ (𝑡)−2 ∙ (𝑡)

𝛽−1
𝛽 ∙ (1 − 𝑡)

1−𝛽
𝛽  

𝐼2 =
1

𝛼𝛽
∙ ∫ (𝑡)

𝑛−(𝑟+𝑓)−𝑘−1−
1
𝛽

1

1+ (𝛼𝜏∗)𝛽

0

∙ (1 − 𝑡)
𝑘+

1
𝛽𝑑𝑡                                                                   (36) 
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𝑌𝐶𝑜𝑛𝑑 = 𝑝 (
𝑛 − (𝑟 + 𝑓)

𝑝
) ∙ (1 + (𝛼𝜏∗)𝛽)

𝑛−(𝑟+𝑓)−𝑝+1
∙ ∑ (

𝑝 − 1
𝑘

) (−1)𝑝−1−𝑘

𝑝−1

𝑘=0

∙ ((𝛼𝜏∗)𝛽)
𝑝−1−𝑘

∙
1

𝛼
∙ ∫ (𝑡)

𝑛−(𝑟+𝑓)−𝑘−1−
1
𝛽

1

1+ (𝛼𝜏∗)𝛽

0

∙ (1 − 𝑡)
𝑘+

1
𝛽𝑑𝑡                   (37) 

and since 𝛼 and 𝛽 are unknown, one can estimate them by their MLEs to obtain the 

𝑌𝐶𝑜𝑛𝑑 . 

Note that, 𝐼2 can be expressed as 
1

𝛼𝛽
∙ 𝐵(

1

1+ (𝛼𝜏∗)𝛽 ; 𝑛 − (𝑟 + 𝑓) − 𝑘 −
1

𝛽
, 𝑘 +

1

𝛽
+ 1)  

where 𝐵(𝑧; 𝑎, 𝑏) is the incomplete beta function defined as: 

𝐵(𝑧; 𝑎, 𝑏) = ∫ (𝑡)𝑎−1𝑧

0
∙ (1 − 𝑡)𝑏−1𝑑𝑡 for 0 ≤ 𝑧 < 1 

 

2.3.2 Conditional Median Predictor  

According to Valiollahi et al. (2017), another predictor that could be used for the 

prediction of future values of 𝑌 is the conditional median predictor 𝑌𝑚𝑒𝑑 which is the 

median of the conditional distribution of 𝑌 given 𝑇 = (𝑇𝑟+1, … … . 𝑇𝑟+𝑓). That is: 

𝑃(𝑌 ≤ 𝑌𝑚𝑒𝑑  𝑇 = (𝑇𝑟+1, … … . 𝑇𝑟+𝑓)) = 𝑃(⁄ 𝑌 ≥ 𝑌𝑚𝑒𝑑  𝑇 = (𝑇𝑟+1, … … . 𝑇𝑟+𝑓))⁄ .  

Consider the distribution 𝐵(𝑦) =
𝐹(𝑦)−𝐹(𝜏∗)

1−𝐹(𝜏∗)
 where 𝐹 is the CDF of the Log-

Logistic distribution.  

B(y) = (
(αy)β

1+(αy)β −
(ατ∗)β

1+(ατ∗)β) ∙
1

1−F(τ∗)
= (

(αy)β

1+(αy)β −
(ατ∗)β

1+(ατ∗)β) ∙ (1 + (ατ∗)β)  

           B(y) =
(αy)β−(ατ∗)β

1+(αy)β                                                                                                                (38)  

Following the result of Asgharzadeh et al. (2015) and Valiollahi et al. (2017), 

𝐵(𝑦) can be considered as a Betta distribution 𝐵(𝑝, 𝑛 − 𝑟 − 𝑓 − 𝑝 + 1). It is well known 
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that if 𝑋 has Beta distribution with parameters 𝑎 and 𝑏 then the pdf of 𝑋 is given by: 

𝑓(𝑥) = {
𝑥𝑎−1(1−𝑥)𝑏−1

𝐵(𝑎,𝑏)
 𝑓𝑜𝑟 𝑥, 𝑎, 𝑏 > 0

0                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 and 𝐵(𝑎, 𝑏) =

Γ(𝑎)Γ(𝑏)

Γ(𝑎+𝑏)
 and Γ is the Gamma function. 

𝑃(𝑌 ≤ 𝑌𝑚𝑒𝑑 𝑇 = (𝑇𝑟+1, … … . 𝑇𝑟+𝑓))⁄  

   = 𝑃(
(𝜶𝒀)𝜷−(𝜶𝝉∗)𝜷

𝟏+(𝜶𝒀)𝜷  ≤
(𝜶𝑌𝑚𝑒𝑑)𝜷−(𝜶𝝉∗)𝜷

𝟏+(𝜶𝑌𝑚𝑒𝑑)𝜷 𝑇 = (𝑇𝑟+1, … … . 𝑇𝑟+𝑓))⁄  

which is equivalent to 𝑃 (𝐵 ≤
(𝜶𝑌𝑚𝑒𝑑)𝜷−(𝜶𝝉∗)𝜷

𝟏+(𝜶𝑌𝑚𝑒𝑑)𝜷 ) = 0.5 and hence 
(𝜶𝑌𝑚𝑒𝑑)𝜷−(𝜶𝝉∗)𝜷

𝟏+(𝜶𝑌𝑚𝑒𝑑)𝜷 =Med(𝐵)  

(Median of the Betta distribution) So, (𝛼𝑌𝑚𝑒𝑑)𝛽 =
Med(𝐵)+(𝜶𝝉∗)𝜷

1−Med(𝐵) 
 and 

 𝑌𝑚𝑒𝑑 =
1

𝛼
∙ [

Med(𝐵)+(𝜶𝝉∗)𝜷

1−Med(𝐵)
]

1

𝛽
                                                                                                              (39) 

To obtain the conditional median predictor 𝑌𝑚𝑒𝑑, we need to substitute 𝛼 and 𝛽 by 

their MLEs as both of them are unknown. 

 

2.4 Prediction Intervals 

2.4.1 Pivotal Method 

We will find prediction intervals (PI) for 𝑌 = 𝑇𝑝+(𝑟+𝑓) based on the hybrid 

censored sample 𝑇 = (𝑇𝑟+1, … … . 𝑇𝑟+𝑓). Consider the random variable 

 𝑍 = 𝐵(𝑦) =
(𝜶𝒚)𝜷−(𝜶𝝉∗)𝜷

𝟏+(𝜶𝒚)𝜷   . 

As mentioned before 𝑍 has a Betta distribution 𝐵(𝑝, 𝑛 − 𝑟 − 𝑓 − 𝑝 + 1) the distribution 

of 𝑍 does not depend on the parameters 𝛼 and 𝛽 and it could be used as a pivotal 

quantity to obtain (1 − 𝛾)100%   prediction interval of 𝑌 (PI). 

If 𝐵𝛾 is the 100𝛾𝑡ℎ percentile of 𝐵(𝑝, 𝑛 − 𝑟 − 𝑓 − 𝑝 + 1) then (1 − 𝛾)100% (PI) of is 

(𝑎1, 𝑏1) where  
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𝑎1 =
1

𝛼
∙ [

𝐵𝛾
2

+(𝜶𝝉∗)𝜷

1− 𝐵𝛾
2

]

1

𝛽

                                                                                                                           (40)  

 𝐵𝛾

2
 stands for the 100

𝛾

2
𝑡ℎ

 percentile and  

𝑎2 =
1

𝛼
∙ [

𝐵
1−

𝛾
2

+ (𝛼𝜏∗)𝜷

1 − 𝐵
1−

𝛾
2

]

1
𝛽

                                                                                                              (41) 

 In order to obtain the lower and upper bounds of the prediction intervals, the 

parameters 𝛼 and 𝛽 have to be replaced by their MLEs. 

2.4.2 Highest Density Interval  

Another Prediction interval approach that can be used to predict 𝑌 = 𝑇𝑝+(𝑟+𝑓) is 

the highest density interval approach which can be briefly described as the interval 

that contains all points that have a probability density higher than that of points outside 

the interval.  

The following figure shows the difference between 80% Highest Density interval 

(HDI) and 80% Symmetrical Density interval (as an example)  

 

Figure 3: Difference between (HDI) and Symmetrical Density Interval 

The (HDI) can be used for unimodal distributions and it could be considered as 

the narrowest interval containing the required density. Since the distribution of 𝐵(𝑦) is 
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beta distribution 𝐵(𝑝, 𝑛 − 𝑟 − 𝑓 − 𝑝 + 1) which is unimodal then the (HDI) prediction 

approach can be used to obtain prediction interval for 𝑌 = 𝑇𝑝. 

The (1 − 𝛾)100% (HDI) for prediction of 𝑌 is (𝑎2, 𝑏2) where 𝑎2 and 𝑏2 are the 

lower and upper limits respectively of the (HDI) prediction interval and are defined by: 

𝑎2 =
1

𝛼
∙ [

𝑤1+(𝜶𝝉∗)𝜷

1− 𝑤1
]

1

𝛽
                                                                                                                           (42)  

and 𝑏2 =
1

𝛼
∙ [

𝑤2+(𝜶𝝉∗)𝜷

1− 𝑤2
]

1

𝛽
                                                                                                                   (43)  

and 𝑤1, 𝑤2 are defined as:  

∫ 𝑔(
𝑤2

𝑤1
𝑧)𝑑𝑧 = 1 − 𝛾 and 𝑔(𝑤1) = 𝑔(𝑤2)   

∫ 𝑔(

𝑤2

𝑤1

𝑧)𝑑𝑧 = ∫ 𝑔(

𝑤2

0

𝑧)𝑑𝑧 − ∫ 𝑔(

𝑤1

0

𝑧)𝑑𝑧 

   ∫
𝑧𝑝−1(1−𝑧)𝑛−𝑟−𝑓−𝑝

𝐵(𝑝,𝑛−𝑟−𝑓−𝑝−1)

𝑤2

0
𝑑𝑧 − ∫

𝑧𝑝−1(1−𝑧)𝑛−𝑟−𝑓−𝑝

𝐵(𝑝,𝑛−𝑟−𝑓−𝑝−1)

𝑤1

0
𝑑𝑧 = 1 − 𝛾    

𝐵𝑤2
(𝑝, 𝑛 − 𝑟 − 𝑓 − 𝑝 + 1) − 𝐵𝑤2

(𝑝, 𝑛 − 𝑟 − 𝑓 − 𝑝 + 1) = 1 − 𝛾                                         (44)  

where 𝐵𝑢(𝑚, 𝑛) =
1

𝐵(𝑚,𝑛)
∫ 𝑦𝑚−1𝑢

0
∙ (1 − 𝑦)𝑛−1𝑑𝑦 is the incomplete beta integral. 

Solving 𝑔(𝑤1) = 𝑔(𝑤2),  we get (
𝑤1

𝑤2
)𝑝−1 = (

1−𝑤2

1−𝑤1
)𝑛−𝑟−𝑓−1                                                   (45)   

it is clear that if 𝑝 = 1, we get (
1−𝑤2

1−𝑤1
)𝑛−𝑟−𝑓−1 = 1 which gives 𝑤1 =  𝑤2 and then no 

prediction interval can be obtained.  

 In order to obtain the lower and upper bounds of the (HDI), 𝑤1 and 𝑤2 are the 

solutions of equations (44) and (45); the parameters 𝛼 and 𝛽 could be replaced by 

their MLEs. 
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CHAPTER 3: SIMULATION STUDY AND SOME EXAMPLES  
 

3.1 Simulation Design and the Simulation Algorithm  

     It is almost impossible to study the performance of different predictors theoretically, 

and hence a simulation study will help us investigate such performance and come up 

with conclusions. In this chapter we will carry out a simulation study using the R 

programming software Ihaka and Gentleman (1996). The R software that is used to 

produce graph of the pdf of Log-Logistic function for different parameters, perform 

calculations and produce results.  

In addition, some packages such as (optimr), (zipfR),Evert, Baroni, and Evert 

(2006) and (HDInterval)  Meredith and Kruschke are used. The (optimr) package is 

used to maximize functions being given a restriction on the parameters, the (zipfR) 

package is used to evaluate beta and incomplete beta integrals, and the (HDInterval) 

package is used to find the Highest Density Intervals. The simulation is based on 

Hybrid Censoring Scheme type-I and Type-II and could be illustrated by the following 

algorithm: 

A sample of size 𝑛 is generated from a Log-Logistic distribution with parameters 

𝛼 and 𝛽. The sample is generated using the uniform distribution and (CDF) of Log-

Logistic distribution such that 𝐹(𝑡) = 𝑢, 𝑡 = 𝐹−1(𝑢) =
1

𝛼
∙ (

𝑢

1−𝑢
)

1

𝛽
                                     (46)  

where 𝐹 is the CDF of the Log-Logistic distribution and 𝑢 represents generated 

numbers from uniform distribution. 𝑟 values will be left censored at 𝑡0, 𝑚 values will be 

observed failures, and the 𝑛 − 𝑟 − 𝑚 remaining units will be right censored at 𝑡1. The 

preassigned number of failures is 𝑚1. 
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Different choices of 𝑛, 𝑡0, 𝑡1, and 𝑚1 are considered. The ordered pair (𝛼, 𝛽) is 

taken respectively as (1,1) and (3,2), the sample size 𝑛 is taken as 30,50 and 80. The 

choice of 𝑡0, 𝑡1, and 𝑚1 is as follows: 

𝑡0 is equal to 0 (no left censored units) or  𝐹(𝑡0) = 0.1 that is 
(𝛼𝑡0)𝛽

1+(𝛼𝑡0)𝛽 = 0.1, (𝛼𝑡0)𝛽 =
1

9
  

𝑡1 is chosen so that 𝐹(𝑡1) = {
0.5   𝐻𝑒𝑎𝑣𝑦 𝐶𝑒𝑛𝑠𝑜𝑟𝑖𝑛𝑔

        0.7    𝑀𝑜𝑑𝑒𝑟𝑎𝑡𝑒 𝐶𝑒𝑛𝑠𝑜𝑟𝑖𝑛𝑔
 

i) 𝐹(𝑡1) =0.5, 
(𝛼𝑡1)𝛽

1+(𝛼𝑡1)𝛽 = 0.5 which will be reduced to (𝛼𝑡1)𝛽 = 1 

ii) 𝐹(𝑡1) =0.7, 
(𝛼𝑡1)𝛽

1+(𝛼𝑡1)𝛽 = 0.7 which will be reduced to  (𝛼𝑡1)𝛽 =
7

3
  

For each value of 𝑡1, 𝑚1 will be chosen such that 𝑚1 = 𝑛(𝐹(𝑡1) − 𝐹(𝑡0)) and so 

𝑚1 = 𝑛(𝐹(𝑡1) − 0.1) (Here  𝑚1 is the expected number of failures between 𝑡0 and 𝑡1) 

When (𝛼, 𝛽) = (1,1), 𝑡0 =
1

9
  

                  𝑡1 = 1 , the corresponding pairs (𝑛, 𝑚1) will be (30,12), (50,20)𝑎𝑛𝑑 (80,32) 

 𝑡1 =
7

3
, the corresponding pairs (𝑛, 𝑚1) will be (30,18), (50,30)𝑎𝑛𝑑 (80,48) 

When (𝛼, 𝛽) = (3,2), 𝑡0 =
1

9
  

𝑡1 =
1

3
, the corresponding pairs (𝑛, 𝑚1) will be (30,12), (50,20)𝑎𝑛𝑑 (80,32) 

𝑡1 = √
7

27
, the corresponding pairs (𝑛, 𝑚1) will be (30,18), (50,30)𝑎𝑛𝑑 (80,48) 

A special case is to be considered for a few particular runs of simulations when 𝑛 = 30  

𝑡0 =
1

9
, 𝑡1 =

7

3
 and 𝑚1 = 18 for 𝑝 = 4 , 5. Since the (BUP) involves the incomplete beta 

integral 𝐵(
1

1+ (𝛼𝜏∗)𝛽 ; 𝑛 − (𝑟 + 𝑓) − 𝑘 −
1

𝛽
, 𝑘 +

1

𝛽
+ 1), and both the (CMP), and 

Prediction intervals involve the beta integral 𝐵(𝑝, 𝑛 − 𝑟 − 𝑓 − 𝑝 + 1) ; to avoid the 

problem of obtaining the parameters of the above incomplete beta and beta 
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distributions as negative values, we can replace 𝑡0 with 
1

18
 to decrease the value of 𝑟 

(number of left censored values). Moreover, it would be interesting to study the 

performance of different point predictors and prediction intervals for small sample 

sizes mainly for 𝑛 = 20, we will stick to 𝑡0 = 0, 𝑚1 = 8 and 𝑚1 = 12, 𝑡1 will take the 

same values as designed through all simulation design.  

        Based on each sample we obtain from the 𝑖𝑡ℎ iteration, 𝑖 = 1, , , , , 2000, we will 

predict the future values of  𝑌 = 𝑇𝑝+(𝑟+𝑓) ,𝑝 = 1,2 … 𝑛 − (𝑟 + 𝑓) . Replicate the process 

for 2000 times and report the bias and mean square error (MSE) for 𝛼 and 𝛽, (MLP), 

(BUP), (CMP) and will find the prediction intervals.  

In tables 1 and 2, we will report the Bias and MSE of 𝛼 and 𝛽 when (𝛼, 𝛽) =

(1,1)𝑎𝑛𝑑 (3,2) respectively. The Bias and MSE of (𝛼, 𝛽) are calculated as follows:  

Suppose that 𝜃𝑖̃ is the estimator value of 𝜃 = 𝛼 or 𝜃 = 𝛽 obtained from the 𝑖𝑡ℎ iteration, 

( 𝑖 = 1, , , , , 𝑁 = 2000 ) 

then Bias=
1

𝑁
(∑ (𝜃𝑖̃  − 𝜃))                                                                                                          (47)𝑁

𝑖=1   

and MSE=
1

𝑁
(∑ ((𝜃𝑖̃  − 𝜃)2)                                                                                                      (48)𝑁

𝑖=1   

In tables 3 to 12, we will report the Bias and MSE of each point predictor (MLP, 

BUP and CMP) when (𝛼, 𝛽) = (1,1)𝑎𝑛𝑑 (3,2) respectively. Moreover, the convergence 

probabilities and the lengths of the predictive intervals will be reported.  

Similarly, if  𝑦𝑖̃ is the value of the predictor of  𝑌 = 𝑇𝑝+(𝑟+𝑓) obtained from the 𝑖𝑡ℎ 

iteration,( 𝑖 = 1, , , , , 𝑁 = 2000 ) then Bias=
1

𝑁
(∑ (𝑦𝑖̃  − 𝑌)𝑁

𝑖=1 )                                            (49)    

and MSE=
1

𝑁
(∑ ((𝑦𝑖̃  − 𝑌)2)                                                                                                      (50)𝑁

𝑖=1   

In addition to the point prediction estimates, we will obtain the interval 

estimation. The intervals obtained are the classical intervals obtained from pivotal 
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approach and high-density intervals. The simulation study will estimate the 

convergence probability and the length of the interval. The convergence probability we 

are interested in estimating is:  

Converge Probability= 𝑃(𝐿 ≤ 𝑌 ≤ 𝑈) = 1 − 𝛾 where 𝐿 and 𝑈 are the lower and upper 

bounds of the interval, 𝛾 = 5% and the length of the interval we want to estimate is  

length= 𝑈 − 𝐿.  

The above converge probability and length are estimated in the following algorithm: 

Let (𝐿𝑖 , 𝑈𝑖) be the interval obtained from the 𝑖𝑡ℎ iteration, ( 𝑖 = 1, , , , , 𝑁 = 2000 ) 

And let the indicator function 𝐼𝑖 be defined as follows: 

 𝐼𝑖 = {
1  𝑖𝑓 𝐿𝑖 ≤ 𝑌 ≤  𝑈𝑖

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
  and then 𝑃(𝐿 ≤ 𝑌 ≤ 𝑈) =

1

𝑁
∙ ∑ 𝐼𝑖

𝑁
𝑖=1  and this can be expressed 

as the number of intervals that capture the true value of 𝑌 divided by 𝑁 = 2000 

The length of the interval can be estimated by 
1

𝑁
∙ ∑ (𝑈𝑖 − 𝐿𝑖)𝑁

𝑖=1 which the average 

length of all intervals is divided by 𝑁 = 2000. 

 

3.2 The Results  

In tables 1 and 2, we will report the Bias and MSE of 𝛼 and 𝛽 when (𝛼, 𝛽) =

(1,1)𝑎𝑛𝑑 (3,2) respectively.  

Table 1 

Bias and MSE of the Parameters of Log-Logistic Distribution when (𝛼, 𝛽) = (1,1)  

𝑛 𝑡0 𝑡1 𝑚1   𝜶 = 𝟏  𝜷 = 𝟏  

30   1/9 1 12  
Bias 0.097545 0.116178 

MSE 0.197643 0.138666 

30 0 1 12 
Bias 0.170724 0.149191 

MSE 0.283160 0.140554 

50  1/9  1 20  
Bias 0.045967 0.055532 

MSE 0.102250 0.062089 
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50 0 1 20 
Bias 0.099848 0.087444 

MSE 0.152339 0.066794 

80  1/9 1 32 
Bias 0.032568 0.038773 

MSE 0.063537 0.035274 

80 0 1 32 
Bias 0.064772 0.054471 

MSE 0.076238 0.034497 

30  1/9  7/3 18 
Bias 0.070046 0.077895 

MSE 0.132020 0.063179 

30 0 7/3 18 
Bias 0.092989 0.081473 

MSE 0.155860 0.063289 

50  1/9 7/3 30  
Bias 0.048125 0.033046 

MSE 0.075044 0.033630 

50 0 7/3 30 
Bias 0.046414 0.043833 

MSE 0.083330 0.030888 

80  1/9 7/3 48 
Bias 0.014646 0.025621 

MSE 0.042546 0.018627 

80  0  7/3 48 
Bias 0.035613 0.030364 

MSE 0.046684 0.018715 

20 0 1 8 
Bias 0.291171 0.264914 

MSE 0.614476 0.322403 

20 0 7/3 12 
Bias 0.136200 0.138709 

MSE 0.279931 0.122507 

 

Table 2 

Bias and MSE of the Parameters of Log-Logistic Distribution when (𝛼, 𝛽) = (3,2) 

𝑛 𝑡0 𝑡1 𝑚1   𝜶 = 𝟑  𝜷 = 𝟐  

30  1/9  1/3 12 
Bias 0.076703 0.223737 

MSE 0.421016 0.593744 

30 0  1/3 12 
Bias 0.157618 0.308816 

MSE 0.492402 0.610075 

50  1/9  1/3 20 
Bias 0.040952 0.121221 

MSE 0.220630 0.261818 

50 0  1/3 20 
Bias 0.104775 0.196636 

MSE 0.263885 0.295064 

80  1/9  1/3 32 
Bias 0.031876 0.058661 

MSE 0.137230 0.133005 

80 0  1/3 32 
Bias 0.064550 0.098158 

MSE 0.152831 0.133872 

30  1/9 √
7

27
  18 

Bias 0.059731 0.131678 

MSE 0.267180 0.258162 
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30 0 √
7

27
  18 

Bias 0.062043 0.171791 

MSE 0.279396 0.260169 

50  1/9 √
7

27
   30 

Bias 0.027327 0.095494 

MSE 0.157110 0.146275 

50 0 √
7

27
  30 

Bias 0.060411 0.104568 

MSE 0.168519 0.136454 

80  1/9 √
7

27
  48 

Bias 0.017251 0.048773 

MSE 0.098348 0.071689 

80 0 √
7

27
  48 

Bias 0.021057 0.067343 

MSE 0.098120 0.076841 

20 0 1/3 8 
Bias 0.279768 0.547642 

MSE 0.868763 1.394588 

20 0 √
7

27
 12 

Bias 0.106705 0.277820 

MSE 0.446681 0.521039 

 

From the simulation study in tables 1and 2 it is observed that: 

 For fixed 𝑡0 and 𝑡1 the Bias and MSE of both 𝛼 and 𝛽 decrease as 𝑛 increases 

 For fixed 𝑛, 𝑡1, and 𝑚1 the Bias and MSE of both 𝛼 and 𝛽 increase as 𝑡0 

decreases from 
1

9
 to 0 

 For fixed 𝑛 and 𝑡0 the Bias and MSE of 𝛽 decrease as 𝑚1 increases 

 For fixed 𝑛 and 𝑡0 the Bias and MSE of 𝛼 almost always decrease as 𝑚1 

increases 

 

Table 3 

Point Predictors and 95% PI for 𝑝 = 1 and (𝛼, 𝛽) = (1,1) 

    
Point Predictors   Interval Prediction 

    
MLP         BUP        CMP   Pivotal HDI 

𝑛 𝑡0 𝑡1 𝑚1   

30  1/9 1 12 Bias -0.1653411 0.0088773 -0.0373782 Cov.Prob 0.9335 - 

MSE 0.0546398 0.0000788 0.0013971 Length 0.5241 - 

30 0 1 12 Bias -0.1583430 -0.0048037 -0.0358420 Cov.Prob 0.9110 - 

MSE 0.0682651 0.0000231 0.0012846 Length 0.3714 - 
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50  1/9 1 20 Bias -0.2292700 0.0024348 -0.0227377 Cov.Prob 0.9350 - 

MSE 0.0700625 0.0000059 0.0005170 Length 0.2936 - 

50 0 1 20 Bias -0.0823001 -0.0011181 -0.0194644 Cov.Prob 0.9235 - 

MSE 0.0367704 0.0000013 0.0003789 Length 0.2106 - 

80  1/9 1 32 Bias 0.0414881 0.0009631 -0.0141138 Cov.Prob 0.9460 - 

MSE 0.0142557 0.0000009 0.0001992 Length 0.1795 - 

80 0 1 32 Bias 0.0583238 0.0005410 -0.0105410 Cov.Prob 0.9340 - 

MSE 0.0249204 0.0000003 0.0001111 Length 0.1315 - 

30  1/9 7/3 18 Bias -0.4152790 0.0066044 -0.1220861 Cov.Prob 0.9385 - 

MSE 0.3520266 0.0000436 0.0149050 Length 1.4085 - 

30 0 7/3 18 Bias -0.2473566 -0.0036681 -0.0808269 Cov.Prob 0.9255 - 

MSE 0.2910252 0.0000135 0.0065330 Length 0.8597 - 

50  1/9 7/3 30 Bias 0.5398556 0.0108213 -0.0591195 Cov.Prob 0.9360 - 

MSE 0.4113920 0.0001171 0.0034951 Length 0.7890 - 

50 0 7/3 30 Bias 0.5841602 -0.0040112 -0.0465912 Cov.Prob 0.9315 - 

MSE 0.5029379 0.0000161 0.0021707 Length 0.4988 - 

80  1/9 7/3 48 Bias -0.1199604 -0.0052065 -0.0472660 Cov.Prob 0.9475 - 

MSE 0.0990764 0.0000271 0.0022341 Length 0.4876 - 

80 0 7/3 48 Bias -0.0128922 0.0011160 -0.0245192 Cov.Prob 0.9520 - 

MSE 0.1102201 0.0000012 0.0006012 Length 0.3021 - 

20 0 1 8 
Bias -0.3534305 -0.0007041 -0.0508772 Cov.Prob 0.8805 - 

MSE 0.1800746 0.0000005 0.0025885 Length 0.5507 - 

20 0 7/3 12 
Bias 0.4364375 -0.0003411 -0.1239414 Cov.Prob 0.9115 - 

MSE 0.4881803 0.0000001 0.0153615 Length 1.3763 - 

 

In table 3 we observe that the (BUP) has the best performance in terms of Bias and 

MSE. It provides the least Bias and MSE. The second best predictor is the (CMP) and 

the (MLP) does not perform well and there is no fixed pattern in the performance of 

(MLP) as we change the values of 𝑛, 𝑡0 , 𝑡1, 𝑎𝑛𝑑 𝑚1. The coverage probability of the 

Prediction interval gets close to the nominal level of 95% as 𝑛 increases for fixed 𝑡0 

while the average length decreases. 
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Table 4 

Point Predictors and 95% PI for 𝑝 = 1 and (𝛼, 𝛽) = (3,2) 

    
Point Predictors   Interval Prediction 

    
MLP         BUP        CMP   Pivotal HDI 

𝑛 𝑡0 𝑡1 𝑚1   

30  1/9  1/3 12 Bias -0.0356428 -0.0001214 -0.0067327 Cov.Prob 0.9170 - 

MSE 0.0023130 0.0000000 0.0000453 Length 0.0794 - 

30 0  1/3 12 Bias 0.0209951 -0.0010612 -0.0064391 Cov.Prob 0.9065 - 

MSE 0.0023301 0.0000011 0.0000415 Length 0.0649 - 

50  1/9  1/3 20 Bias -0.0491196 0.0003674 -0.0036448 Cov.Prob 0.9285 - 

MSE 0.0030274 0.0000001 0.0000133 Length 0.0470 - 

50 0  1/3 20 Bias -0.0180144 -0.0005035 -0.0038210 Cov.Prob 0.9200 - 

MSE 0.0016416 0.0000003 0.0000146 Length 0.0394 - 

80  1/9  1/3 32 Bias -0.0279471 -0.0000879 -0.0025565 Cov.Prob 0.9425 - 

MSE 0.0011871 0.0000000 0.0000065 Length 0.0297 - 

80 0  1/3 32 Bias -0.0021231 -0.0002719 -0.0023719 Cov.Prob 0.9380 - 

MSE 0.0009112 0.0000001 0.0000056 Length 0.0251 - 

30  1/9 √
7

27
 18 

Bias -0.0988914 -0.0021778 -0.0141224 Cov.Prob 0.9380 - 

MSE 0.0126730 0.0000047 0.0001994 Length 0.1428 - 

30 0 √
7

27
 18 

Bias -0.0961920 -0.0007020 -0.0094334 Cov.Prob 0.9345 - 

MSE 0.0136949 0.0000005 0.0000890 Length 0.1030 - 

50  1/9 √
7

27
 30 

Bias -0.0430364 -0.0005838 -0.0076966 Cov.Prob 0.9260 - 

MSE 0.0037569 0.0000003 0.0000592 Length 0.0830 - 

50 0 √
7

27
 30 

Bias -0.1058517 0.0001221 -0.0051086 Cov.Prob 0.9385 - 

MSE 0.0140694 0.0000000 0.0000261 Length 0.0616 - 

80  1/9 √
7

27
 48 

Bias -0.0072073 -0.0008286 -0.0052486 Cov.Prob 0.9445 - 

MSE 0.0012743 0.0000007 0.0000275 Length 0.0520 - 

80 0 √
7

27
 48 

Bias 0.0077276 -0.0000515 -0.0033197 Cov.Prob 0.9440 - 

MSE 0.0021962 0.0000001 0.0000110 Length 0.0390 - 

20 0 1/3 8 
Bias -0.0073401 -0.0030650 -0.0107117 Cov.Prob 0.893 - 

MSE 0.0026192 0.0000094 0.0001147 Length 0.1039 - 

20 0 √
7

27
 12 

Bias 0.0370314 -0.0003054 -0.0132941 Cov.Prob 0.9025 - 

MSE 0.0070952 0.0000001 0.0001767 Length 0.0937 - 
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In table 4 we also observe that the (BUP) has the best performance in terms of Bias 

and MSE. And the second-best predictor is the (CMP), the coverage probability of the 

Prediction interval gets close to the nominal level of 95% as 𝑛 increases for fixed 𝑡0 

while the average length decreases.  

 

Table 5 

Point Predictors and 95% PI for 𝑝 = 2 and (𝛼, 𝛽) = (1,1) 

    
Point Predictors   Interval Prediction 

    
MLP         BUP        CMP   Pivotal HDI 

𝑛 𝑡0 𝑡1 𝑚1   

30  1/9 1 12 Bias 0.1238545 0.0250110 -0.0356993 Cov.Prob 0.8975 0.8840 

MSE 0.0543504 0.0006255 0.0012744 Length 0.8769 0.7434 

30 0 1 12 Bias 0.0585212 0.0015198 -0.0380157 Cov.Prob 0.8855 0.8675 

MSE 0.0593781 0.0000023 0.0014452 Length 0.6024 0.5164 

50  1/9 1 20 Bias -0.5453093 0.0020687 -0.0282673 Cov.Prob 0.9240 0.9165 

MSE 0.3203246 0.0000043 0.0007990 Length 0.4566 0.3956 

50 0 1 20 Bias -0.3688397 -0.0033507 -0.0241865 Cov.Prob 0.9180 0.9055 

MSE 0.1721850 0.0000112 0.0005850 Length 0.3283 0.2857 

80  1/9 1 32 Bias 0.1333461 0.0031152 -0.0141857 Cov.Prob 0.9280 0.9225 

MSE 0.0320699 0.0000097 0.0002012 Length 0.2730 0.2387 

80 0 1 32 Bias -0.1518207 0.0004090 -0.0116876 Cov.Prob 0.9295 0.9205 

MSE 0.0479051 0.0000002 0.0001366 Length 0.1978 0.1733 

30  1/9 7/3 18 Bias -0.7310354 0.0209757 -0.1670016 Cov.Prob 0.9000 0.8885 

MSE 0.8051026 0.0004400 0.0278895 Length 2.5112 2.0944 

30 0 7/3 18 Bias 0.3077984 0.0101719 -0.0941888 Cov.Prob 0.9105 0.9005 

MSE 0.4000714 0.0001035 0.0088715 Length 1.4623 1.2386 

50  1/9 7/3 30 Bias -0.3068474 0.0141647 -0.0752611 Cov.Prob 0.9350 0.9270 

MSE 0.2483905 0.0002006 0.0056642 Length 1.3048 1.1168 

50 0 7/3 30 Bias -0.2441730 -0.0020880 -0.0543395 Cov.Prob 0.9315 0.9300 

MSE 0.2458407 0.0000044 0.0029528 Length 0.7951 0.6862 

80  1/9 7/3 48 Bias -0.4434387 0.0019518 -0.0475851 Cov.Prob 0.9475 0.9365 

MSE 0.2937690 0.0000038 0.0022643 Length 0.7558 0.6559 
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80 0 7/3 48 Bias 0.1373340 0.0037369 -0.0261495 Cov.Prob 0.9375 0.9335 

MSE 0.1386088 0.0000140 0.0006838 Length 0.4628 0.4035 

20 0 1 8 
Bias 0.1128964 -0.0068497 -0.7770131 Cov.Prob 0.8470 0.8305 

MSE 0.0939428 0.0000469 0.0060375 Length 0.9803 0.8237 

20 0 7/3 12 
Bias -0.2820765 0.0446107 -0.1579553 Cov.Prob 0.8885 0.8770 

MSE 0.5010694 0.0019901 0.0249497 Length 2.6007 2.1496 

 

In Table 5 we observe that the (BUP) has the best performance in terms of Bias and 

MSE. It provides the least Bias and MSE. The second-best predictor is the (CMP) and 

the (MLP) does not perform well. The probability of the prediction interval based on 

pivotal quantity is slightly bigger than that of the HDI interval and the length of the HDI 

is less than that of the pivotal quantity interval for all combinations of  𝑛, 𝑡0, 𝑡1, and 𝑚1 

 

 

Table 6 

Point Predictors and 95% PI for 𝑝 = 2 and (𝛼, 𝛽) = (3,2) 

    
Point Predictors   Interval Prediction 

    
MLP         BUP        CMP   Pivotal HDI 

𝑛 𝑡0 𝑡1 𝑚1   

30  1/9  1/3 12 Bias -0.0798906 -0.0003420 -0.0078126 Cov.Prob 0.9040 0.8970 

MSE 0.0077366 0.0000001 0.0000610 Length 0.1228 0.1080 

30 0  1/3 12 Bias -0.1098029 -0.0041781 -0.0097948 Cov.Prob 0.8820 0.8600 

MSE 0.0142840 0.0000175 0.0000959 Length 0.0961 0.0852 

50  1/9  1/3 20 Bias -0.0255834 0.0004877 -0.0038237 Cov.Prob 0.9115 0.9090 

MSE 0.0014081 0.0000002 0.0000146 Length 0.0697 0.0616 

50 0  1/3 20 Bias -0.0105547 -0.0014895 -0.0050050 Cov.Prob 0.9145 0.9085 

MSE 0.0015578 0.0000022 0.0000250 Length 0.0582 0.0516 

80  1/9  1/3 32 Bias -0.0081806 0.0001233 -0.0024999 Cov.Prob 0.9345 0.9355 

MSE 0.0004983 0.0000000 0.0000062 Length 0.0437 0.0387 

80 0  1/3 32 Bias 0.0481446 -0.0007660 -0.0029591 Cov.Prob 0.9220 0.9140 

MSE 0.0032718 0.0000006 0.0000088 Length 0.0370 0.0328 
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30  1/9 √
7

27
 18 

Bias -0.1722274 -0.0010769 -0.0159727 Cov.Prob 0.9210 0.9125 

MSE 0.0336022 0.0000012 0.0002551 Length 0.2291 0.1994 

30 0 √
7

27
 18 

Bias -0.0629317 -0.0018666 -0.0118709 Cov.Prob 0.9035 0.8940 

MSE 0.0094738 0.0000035 0.0001409 Length 0.1602 0.1404 

50  1/9 √
7

27
 30 

Bias 0.0727522 -0.0019253 -0.0100715 Cov.Prob 0.9370 0.9315 

MSE 0.0074687 0.0000037 0.0001014 Length 0.1290 0.1131 

50 0 √
7

27
 30 

Bias 0.0462383 -0.0008137 -0.0065900 Cov.Prob 0.9255 0.9185 

MSE 0.0054594 0.0000007 0.0000434 Length 0.0933 0.0822 

80  1/9 √
7

27
 48 

Bias 0.0729730 -0.0011922 -0.0060945 Cov.Prob 0.9300 0.9345 

MSE 0.0067363 0.0000014 0.0000371 Length 0.0791 0.0696 

80 0 √
7

27
 48 

Bias -0.0040232 -0.0003281 -0.0038653 Cov.Prob 0.9385 0.9380 

MSE 0.0022064 0.0000001 0.0000149 Length 0.0577 0.0510 

20 0 1/3 8 
Bias 0.0247661 -0.0043042 -0.0130384 Cov.Prob 0.8445 0.8265 

MSE 0.0034740 0.0001852 0.0001700 Length 0.1447 0.1277 

20 0 √
7

27
 12 

Bias -0.0055823 -0.0057162 -0.0217901 Cov.Prob 0.9105 0.8940 

MSE 0.0072028 0.0000327 0.0000474 Length 0.2511 0.2185 

 

In Table 6 we notice that the (BUP) has the best performance in terms of Bias and 

MSE, The second-best predictor is the (CMP).  

The (MLP) performs well. The pivotal quantity interval and the HDI interval perform 

almost the same but the HDI interval length is slightly narrower and both coverage 

probabilities get closer to the nominal level as 𝑛 increases. 
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Table 7 

Point Predictors and 95% PI for 𝑝 = 3 and (𝛼, 𝛽) = (1,1) 

    
Point Predictors   Interval Prediction 

    
MLP         BUP        CMP   Pivotal HDI 

𝑛 𝑡0 𝑡1 𝑚1   

30  1/9 1 12 Bias -0.2549160 0.0394335 -0.0400133 Cov.Prob 0.8755 0.8680 

MSE 0.1277635 0.0015550 0.0016011 Length 1.2462 1.1008 

30 0 1 12 Bias -0.3619757 0.0025867 -0.0473229 Cov.Prob 0.8450 0.8360 

MSE 0.2068615 0.0000067 0.0022395 Length 0.8316 0.7411 

50  1/9 1 20 Bias -0.0472683 0.0037886 -0.0307795 Cov.Prob 0.8995 0.8920 

MSE 0.0334774 0.0000144 0.0009474 Length 0.6067 0.5468 

50 0 1 20 Bias -0.2076484 -0.0041888 -0.0277416 Cov.Prob 0.9080 0.8975 

MSE 0.0858963 0.0000175 0.0007696 Length 0.4285 0.3879 

80  1/9 1 32 Bias -0.1688761 0.0049930 -0.0140516 Cov.Prob 0.9285 0.9275 

MSE 0.0454471 0.0000249 0.0001974 Length 0.3517 0.3199 

80 0 1 32 Bias -0.2485550 -0.0020691 -0.0153844 Cov.Prob 0.9095 0.9090 

MSE 0.0893068 0.0000043 0.0002367 Length 0.2505 0.2285 

30  1/9 7/3 18 Bias -0.3044236 0.0677450 -0.2267696 Cov.Prob 0.9150 0.9090 

MSE 0.4913320 0.0045894 0.0514245 Length 4.0087 3.5692 

30 0 7/3 18 Bias -0.3726691 -0.0211598 -0.1606330 Cov.Prob 0.9055 0.8935 

MSE 0.5407066 0.0004477 0.0258030 Length 2.1365 1.8926 

50  1/9 7/3 30 Bias -0.2618255 0.0254532 -0.0866332 Cov.Prob 0.9400 0.9300 

MSE 0.2729537 0.0006479 0.0075053 Length 1.8353 1.6371 

50 0 7/3 30 Bias -0.0257220 -0.0100282 -0.0715004 Cov.Prob 0.9110 0.9110 

MSE 0.2344724 0.0001006 0.0051123 Length 1.0527 0.9459 

80  1/9 7/3 48 Bias -0.2831964 0.0006305 -0.0565767 Cov.Prob 0.9265 0.9260 

MSE 0.1971060 0.0000004 0.0032009 Length 0.9989 0.9020 

80 0 7/3 48 Bias -0.3559214 -0.0005226 -0.0336028 Cov.Prob 0.9325 0.9215 

MSE 0.2710168 0.0000003 0.0011291 Length 0.6095 0.5529 

20 0 1 8 
Bias 0.0801076 0.0064554 -0.0943852 Cov.Prob 0.8010 0.7855 

MSE 0.1276503 0.0000416 0.0089085 Length 1.4674 1.2859 

20 0 7/3 12 
Bias -0.4136681 0.0509599 -0.2645827 Cov.Prob 0.8675 0.8590 

MSE 0.8074782 0.0025969 0.0700040 Length 4.3019 3.7767 
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In table 7 the (BUP) shows the best performance in terms of Bias and MSE and the 

second-best predictor is the (CMP).  

The (MLP) does not perform well. The (HDI) intervals are narrower than the pivotal 

quantity intervals and the coverage probability of the pivotal quantity is slightly bigger 

than that of the (HDI) but they are close to the nominal level only when 𝑛 increases. 

 

Table 8 

Point Predictors and 95% PI for 𝑝 = 3 and (𝛼, 𝛽) = (3,2) 

    
Point Predictors   Interval Prediction 

    
MLP         BUP        CMP   Pivotal HDI 

𝑛 𝑡0 𝑡1 𝑚1   

30  1/9  1/3 12 Bias -0.0002865 0.0009938 -0.0073408 Cov.Prob 0.8860 0.8860 

MSE 0.0018606 0.0000010 0.0000539 Length 0.1590 0.1458 

30 0  1/3 12 Bias 0.0402289 -0.0034564 -0.0094984 Cov.Prob 0.8550 0.8440 

MSE 0.0044099 0.0000119 0.0000902 Length 0.1230 0.1135 

50  1/9  1/3 20 Bias 0.0218879 -0.0001042 -0.0046385 Cov.Prob 0.9100 0.9050 

MSE 0.0013513 0.0000000 0.0000215 Length 0.0892 0.0822 

50 0  1/3 20 Bias 0.0449275 -0.0017215 -0.0053526 Cov.Prob 0.8890 0.8820 

MSE 0.0037440 0.0000030 0.0000287 Length 0.0735 0.0680 

80  1/9  1/3 32 Bias -0.0304175 0.0007796 -0.0019608 Cov.Prob 0.9290 0.9240 

MSE 0.0014383 0.0000006 0.0000038 Length 0.0550 0.0507 

80 0  1/3 32 Bias -0.0116306 -0.0003288 -0.0025965 Cov.Prob 0.9220 0.9125 

MSE 0.0011558 0.0000001 0.0000067 Length 0.0459 0.0424 

30  1/9 √
7

27
 18 

Bias -0.1929948 -0.0002218 -0.0189897 Cov.Prob 0.8985 0.9040 

MSE 0.0426268 0.0000000 0.0003606 Length 0.3256 0.2989 

30 0 √
7

27
 18 

Bias -0.0178158 -0.0037171 -0.0153040 Cov.Prob 0.9010 0.8940 

MSE 0.0067576 0.0000138 0.0002342 Length 0.2153 0.1970 

50  1/9 √
7

27
 30 

Bias 0.0327140 -0.0006912 -0.0098018 Cov.Prob 0.9150 0.9075 

MSE 0.0038957 0.0000005 0.0000961 Length 0.1711 0.1564 

    
       



45 

 

50 0 √
7

27
 30 

Bias 0.0235009 -0.0025488 -0.0087723 Cov.Prob 0.9200 0.9110 

MSE 0.0041981 0.0000065 0.0000770 Length 0.1199 0.1101 

80  1/9 √
7

27
 48 

Bias -0.0471465 -0.0000941 -0.0053663 Cov.Prob 0.9345 0.9405 

MSE 0.0038174 0.0000000 0.0000288 Length 0.1007 0.0924 

80 0 √
7

27
 48 

Bias 0.0519966 -0.0011418 -0.0048357 Cov.Prob 0.9350 0.9335 

MSE 0.0050858 0.0000013 0.0000234 Length 0.0735 0.0676 

20 0 1/3 8 
Bias 0.0110992 -0.0083584 -0.0180271 Cov.Prob 0.8135 0.7960 

MSE 0.0044274 0.0000699 0.0003249 Length 0.1904 0.1751 

20 0 √
7

27
 12 

Bias 0.0567831 -0.0043021 -0.0249301 Cov.Prob 0.8715 0.8550 

MSE 0.0126722 0.0000185 0.0006215 Length 0.3603 0.3306 

 

In table 8 we notice that the (BUP) has the best performance in terms of Bias and 

MSE. 

The second-best predictor is the (CMP). The (MLP) performs well. Both intervals are 

close to each other in terms of coverage probability and length but the (HDI) interval 

is slightly narrower than the pivotal quantity interval. Both probabilities get closer to 

the nominal level only when 𝑛 is big enough. 

 

Table 9 

Point Predictors and 95% PI for 𝑝 = 4 and (𝛼, 𝛽) = (1,1) 

    
Point Predictors   Interval Prediction 

    
MLP         BUP        CMP   Pivotal HDI 

𝑛 𝑡0 𝑡1 𝑚1   

30  1/9 1 12 Bias 0.2810341 0.0445622 -0.0572407 Cov.Prob 0.8470 0.8495 

MSE 0.1713002 0.0019858 0.0032765 Length 1.6541 1.5015 

30 0 1 12 Bias -0.0894944 -0.0018370 -0.0605059 Cov.Prob 0.8445 0.8370 

MSE 0.1105016 0.0000034 0.0036610 Length 1.0343 0.9460 

50  1/9 1 20 Bias -0.2741408 0.0124115 -0.0281113 Cov.Prob 0.8880 0.8845 

MSE 0.1145347 0.0001540 0.0007902 Length 0.7539 0.6944 
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50 0 1 20 Bias 0.3305809 -0.0034037 -0.0303375 Cov.Prob 0.8845 0.8750 

MSE 0.1643515 0.0000116 0.0009204 Length 0.5228 0.4836 

80  1/9 1 32 Bias -0.1268224 0.0012604 -0.0194786 Cov.Prob 0.9195 0.9195 

MSE 0.0361029 0.0000016 0.0003794 Length 0.4226 0.3926 

80 0 1 32 Bias -0.1617194 -0.0013939 -0.0157517 Cov.Prob 0.9140 0.9090 

MSE 0.0565256 0.0000019 0.0002481 Length 0.3043 0.2833 

30  1/18 7/3 18 Bias -0.5043125 0.0900003 -0.2419323 Cov.Prob 0.8965 0.8955 

MSE 0.9248591 0.0081005 0.058519 Length 6.3597 6.2668 

30 0 7/3 18 Bias -1.4497140 -0.0070811 -0.1972037 Cov.Prob 0.8885 0.8795 

MSE 2.6260650 0.0000501 0.0388893 Length 3.0382 2.7771 

50  1/9 7/3 30 Bias 0.0293435 0.0294928 -0.1113588 Cov.Prob 0.9265 0.9270 

MSE 0.2656450 0.0008698 0.0124008 Length 2.4628 2.2556 

50 0 7/3 30 Bias 0.2778015 0.0014436 -0.0722895 Cov.Prob 0.9140 0.9050 

MSE 0.3687683 0.0000021 0.0052258 Length 1.3714 1.2604 

80  1/9 7/3 48 Bias -0.1224487 0.0029378 -0.0626491 Cov.Prob 0.9275 0.9230 

MSE 0.1575907 0.0000086 0.0039249 Length 1.2541 1.1573 

80 0 7/3 48 Bias -1.5639390 -0.0041911 -0.0407972 Cov.Prob 0.9300 0.9235 

MSE 2.6068580 0.0000176 0.0016644 Length 0.7375 0.6833 

20 0 1 8 
Bias 0.5204436 -0.0036463 -0.1449950 Cov.Prob 0.7825 0.7710 

MSE 0.4496156 0.0000132 0.0210236 Length 2.2214 1.9880 

20 0 7/3 12 
Bias -0.1900704 0.0886910 -0.4643450 Cov.Prob 0.8540 0.8485 

MSE 1.0632540 0.0078661 0.2156169 Length 7.2680 6.8442 

 

In table 9 we notice that the (BUP) has the best performance in terms of Bias and 

MSE. The second-best predictor is the (CMP). The (MLP) cannot be used at all where 

it shows a bad performance in terms of Bias and MSE. The (HDI) is narrower than the 

pivotal quantity interval, both probabilities are close to each other and get closer to the 

nominal level only when 𝑛 is big enough. 

 

 

 

 



47 

 

Table 10 

Point Predictors and 95% PI for 𝑝 = 4 and (𝛼, 𝛽) = (3,2) 

    
MLP         BUP        CMP   Pivotal HDI 

𝑛 𝑡0 𝑡1 𝑚1   

30  1/9  1/3 12 Bias -0.0185014 0.0020521 -0.0073217 Cov.Prob 0.8425 0.8320 

MSE 0.0028885 0.0000042 0.0000536 Length 0.2963 0.2524 

30 0  1/3 12 Bias -0.0409078 -0.0028027 -0.0095292 Cov.Prob 0.8200 0.8135 

MSE 0.0048456 0.0000079 0.0000908 Length 0.1481 0.1396 

50  1/9  1/3 20 Bias -0.0602771 0.0010774 -0.0037363 Cov.Prob 0.8930 0.8935 

MSE 0.0048413 0.0000012 0.0000140 Length 0.1080 0.1015 

50 0  1/3 20 Bias -0.0370754 -0.0013812 -0.0050453 Cov.Prob 0.8660 0.8605 

MSE 0.0031402 0.0000019 0.0000255 Length 0.0866 0.0818 

80  1/9  1/3 32 Bias -0.0463508 -0.0000284 -0.0028394 Cov.Prob 0.9175 0.9095 

MSE 0.0027504 0.0000000 0.0000081 Length 0.0648 0.0610 

80 0  1/3 32 Bias 0.0160618 -0.0006086 -0.0029046 Cov.Prob 0.9165 0.9015 

MSE 0.0013727 0.0000004 0.0000084 Length 0.0540 0.0510 

30  1/9 √
7

27
 18 

Bias 0.0666684 -0.0009970 -0.0268499 Cov.Prob 0.8965 0.8955 

MSE 0.0124180 0.0000010 0.0007209 Length 0.4369 0.4231 

30 0 √
7

27
 18 

Bias -0.0052266 -0.0037944 -0.0175511 Cov.Prob 0.8990 0.8845 

MSE 0.0077357 0.0000144 0.0003080 Length 0.2733 0.2570 

50  1/9 √
7

27
 30 

Bias -0.0102363 -0.0021888 -0.0124229 Cov.Prob 0.9165 0.9100 

MSE 0.0036402 0.0000048 0.0001543 Length 0.2127 0.1993 

50 0 √
7

27
 30 

Bias 0.0053242 -0.0028934 -0.0096412 Cov.Prob 0.9165 0.9140 

MSE 0.0042642 0.0000084 0.0000930 Length 0.1464 0.1374 

80  1/9 √
7

27
 48 

Bias -0.0208940 -0.0003266 -0.0059089 Cov.Prob 0.9310 0.9355 

MSE 0.0022968 0.0000001 0.0000349 Length 0.1220 0.1143 

80 0 √
7

27
 48 

Bias 0.0346585 -0.0000556 -0.0039685 Cov.Prob 0.9325 0.9280 

MSE 0.0035567 0.0000000 0.0000157 Length 0.0875 0.0822 

20 0 1/3 8 
Bias -0.0029654 -0.0061570 -0.0178502 Cov.Prob 0.7745 0.7615 

MSE 0.0057341 0.0003790 0.0003186 Length 0.2411 0.2274 

20 0 √
7

27
 12 

Bias 0.0155442 -0.0103898 -0.0390597 Cov.Prob 0.8640 0.8570 

MSE 0.0134823 0.0001081 0.0015256 Length 0.5034 0.4855 
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Table 10 shows that (BUP) has the best performance in terms of Bias and MSE. The 

second-best predictor is the (CMP). The (MLP) performs well. Both intervals are close 

to each other in terms of coverage probability and length but the (HDI) interval is 

slightly narrower than the pivotal quantity interval. Both probabilities get closer to the 

nominal level only when 𝑛 is big enough. 

 

Table 11 

Point Predictors and 95% PI for 𝑝 = 5 and (𝛼, 𝛽) = (1,1) 

    
Point Predictors   Interval Prediction 

    
MLP         BUP        CMP   Pivotal HDI 

𝑛 𝑡0 𝑡1 𝑚1   

30  1/9 1 12 Bias 0.1824793 0.0879572 -0.0488863 Cov.Prob 0.8125 0.8175 

MSE 0.1646084 0.0077365 0.0023899 Length 2.2607 2.0909 

30 0 1 12 Bias -0.4629519 0.0211571 -0.0565517 Cov.Prob 0.8170 0.8095 

MSE 0.3458682 0.0004476 0.0031981 Length 1.3649 1.2685 

50  1/9 1 20 Bias 0.3734983 0.0226218 -0.0228893 Cov.Prob 0.8790 0.8780 

MSE 0.1920756 0.0005117 0.0005239 Length 0.9252 0.8642 

50 0 1 20 Bias -0.0897199 -0.0063791 -0.0363289 Cov.Prob 0.8625 0.8595 

MSE 0.0726516 0.0000407 0.0013198 Length 0.6412 0.6007 

80  1/9 1 32 Bias -0.1208330 0.0031577 -0.0193609 Cov.Prob 0.9065 0.9075 

MSE 0.0385493 0.0000100 0.0003748 Length 0.4980 0.4686 

80 0 1 32 Bias -0.0109245 -0.0005775 -0.0160837 Cov.Prob 0.9050 0.8975 

MSE 0.0331991 0.0000003 0.0002587 Length 0.3495 0.3296 

30  1/18 7/3 18 Bias 0.2502458 0.1965792 -0.3251284 Cov.Prob 0.8880 0.8865 

MSE 1.2153840 0.03864361 0.1057084 Length 7.0655 7.1528 

30 0 7/3 18 Bias 0.1499252 0.0514196 -0.2194319 Cov.Prob 0.8790 0.8760 

MSE 0.7573855 0.0026440 0.0481504 Length 4.2034 3.9594 

50  1/9 7/3 30 Bias -0.3966119 0.0730512 -0.1039453 Cov.Prob 0.9075 0.9110 

MSE 0.5434928 0.0053365 0.0108046 Length 3.1244 2.9248 

50 0 7/3 30 Bias 0.2860448 0.0033778 -0.0838477 Cov.Prob 0.9025 0.9005 

MSE 0.4217468 0.0000114 0.0070304 Length 1.6976 1.5853 

80  1/9 7/3 48 Bias -0.3590155 0.0057516 -0.0693776 Cov.Prob 0.9300 0.9280 

MSE 0.2980865 0.0000331 0.0048132 Length 1.5301 1.4321 
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80 0 7/3 48 Bias -0.3000585 0.0060851 -0.0349530 Cov.Prob 0.9210 0.9195 

MSE 0.2608277 0.0000370 0.0012217 Length 0.8761 0.8225 

20 0 1 8 
Bias -0.7640827 0.0513039 -0.1532457 Cov.Prob 0.7540 0.7495 

MSE 0.8441595 0.0026320 0.0234842 Length 3.0854 2.8730 

20 0 7/3 12 
Bias 0.5364827 0.0415299 -0.9317452 Cov.Prob 0.8510 0.8540 

MSE 1.9266670 0.0017247 0.8681491 Length 12.8663 13.655 

 

In table 11 we notice that the (BUP) has the best performance in terms of Bias and 

MSE. The second-best predictor is the (CMP). The (MLP) does not perform well where 

it shows a bad performance in terms of Bias and MSE. Both intervals are close to each 

other in terms of coverage probability and length but the (HDI) interval is slightly 

narrower than the pivotal quantity interval. We can also notice that the length of both 

intervals is quite big as compared to other cases for the different values of 𝑝 from 𝑝 =

1 to 𝑝 = 4.  

 

Table 12 

Point Predictors and 95% PI for 𝑝 = 5 and (𝛼, 𝛽) = (3,2) 

    
Point Predictors   Interval Prediction 

    
MLP         BUP        CMP   Pivotal HDI 

𝑛 𝑡0 𝑡1 𝑚1   

30  1/9  1/3 12 Bias -0.0470967 0.0067358 -0.0042570 Cov.Prob 0.8205 0.8245 

MSE 0.0055950 0.0000454 0.0000181 Length 0.2437 0.2323 

30 0  1/3 12 Bias -0.0408560 -0.0082227 -0.0152693 Cov.Prob 0.8085 0.7980 

MSE 0.0054219 0.0000676 0.0002332 Length 0.1780 0.1701 

50  1/9  1/3 20 Bias -0.1075914 0.0011915 -0.0038696 Cov.Prob 0.8900 0.8875 

MSE 0.0129409 0.0000014 0.0000150 Length 0.1230 0.1172 

50 0  1/3 20 Bias 0.0852557 -0.0030114 -0.0068347 Cov.Prob 0.8680 0.8680 

MSE 0.0092859 0.0000091 0.0000467 Length 0.0999 0.0955 

80  1/9  1/3 32 Bias -0.0513937 -0.0000106 -0.0029109 Cov.Prob 0.9075 0.9075 

MSE 0.0033344 0.0000000 0.0000085 Length 0.0734 0.0699 
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80 0  1/3 32 Bias 0.0518168 -0.0010618 -0.0033688 Cov.Prob 0.9005 0.8920 

MSE 0.0038619 0.0000011 0.0000113 Length 0.0609 0.0581 

30  1/18 √
7

27
 18 

Bias -0.1788175 0.0019009 -0.01897 Cov.Prob 0.8805 0.8770 

MSE 0.0460049 0.0000036 0.0003599 Length 0.4102 0.3980 

30 0 √
7

27
 18 

Bias -0.0976312 -0.0064467 -0.0229588 Cov.Prob 0.8790 0.8755 

MSE 0.0195021 0.0000416 0.0005271 Length 0.3494 0.3359 

50  1/9 √
7

27
 30 

Bias -0.0913452 0.0006618 -0.0111125 Cov.Prob 0.9130 0.9110 

MSE 0.0126530 0.0000004 0.0001235 Length 0.2585 0.2466 

50 0 √
7

27
 30 

Bias 0.0176153 -0.0014071 -0.0088233 Cov.Prob 0.9185 0.9150 

MSE 0.0051903 0.0000020 0.0000779 Length 0.1734 0.1650 

80  1/9 √
7

27
 48 

Bias -0.0451054 -0.0003309 -0.0063283 Cov.Prob 0.9345 0.9300 

MSE 0.0040047 0.0000001 0.0000400 Length 0.1424 0.1353 

80 0 √
7

27
 48 

Bias -0.0206750 -0.0000623 -0.0041645 Cov.Prob 0.9275 0.9225 

MSE 0.0028336 0.0000000 0.0000173 Length 0.1008 0.0959 

20 0 1/3 8 
Bias -0.0867412 -0.0097039 -0.0237129 Cov.Prob 0.7380 0.7320 

MSE 0.0149435 0.0000941 0.0005622 Length 0.2871 0.2764 

20 0 √
7

27
 12 

Bias 0.0310069 -0.0263866 -0.0668689 Cov.Prob 0.8520 0.8625 

MSE 0.0201124 0.0006963 0.0044715 Length 0.7130 0.7369 

 

Table 12 shows that the (BUP) has the best performance in terms of Bias and MSE. 

The second-best predictor is the (CMP). The (MLP) performs well. Both intervals are 

close to each other in terms of coverage probability and length but the (HDI) interval 

is slightly narrower than the pivotal quantity interval.  Probabilities are close to nominal 

level only for big values of 𝑛. 

 

3.3 Real Data Analysis Example   

 In this section, we will consider a real data set from Log-Logistic distribution to 

compare the performance of different point predictors and prediction intervals when 

the distribution follows Log-Logistic distribution.  Referring to Lawless (2011) , Schmee 
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and Nelson (1977) , the data below represents the number of miles in thousands to 

failure of different 96 locomotive controls. The life test involving such controls was 

terminated after 135,000 miles and the failure times of the 37 failed units were 

recorded as follows: 

22.5, 37.5, 46.0, 48.5, 51.5, 53.0, 54.5, 57.5, 66.5, 68.0, 69.5, 76.5, 77.0, 78.5, 80.0, 

81.5, 82.0, 83.0, 84.0, 91.5, 93.5, 102.5, 107.0, 108.5, 112.5, 113.5, 116.0, 117.0, 

118.5, 119.0, 120.0, 122.5, 123.0, 127.5, 131.0, 132.5, 134.0.  

 

Samples from the data will be obtained according to four different sampling 

schemes, and based on each sample we will predict 𝑇𝑝 for 𝑝 = 1, 2, 3, 4 and 5. The 

different point predictors and different prediction intervals will be constructed.   

In order to proceed, we need to check whether the Log-Logistic model is a good fit to 

the data set. We notice that the Kolmogorov-Smirnov (K-S) distance and the p-value 

are as follows: K-S= 0.1214 and the p-value= 0.5879 which means that the Log-

Logistic is a good fit to the data.  

The different sampling schemes, and the corresponding samples are listed below:  

- Scheme 1: 𝑡0 = 50, 𝑡1 = 135 and 𝑚1 = 20  

Sample 1: 51.5, 53.0, 54.5, 57.5, 66.5, 68.0, 69.5, 76.5, 77.0, 78.5, 80.0, 81.5, 82.0, 

83.0, 84.0, 91.5, 93.5, 102.5, 107.0, 108.5.  

The MLEs for Sample 1 are 𝛼̂ = 0.0059 and 𝛽̂ = 2.4081 

- Scheme 2: 𝑡0 = 40, 𝑡1 = 135 and 𝑚1 = 25  

Sample 2: 46.0, 48.5, 51.5, 53.0, 54.5, 57.5, 66.5, 68.0, 69.5, 76.5, 77.0, 78.5, 80.0, 

81.5, 82.0, 83.0, 84.0, 91.5, 93.5, 102.5, 107.0, 108.5, 112.5, 113.5, 116.0 

The MLEs for Sample 2 are 𝛼̂ = 0.0059 and 𝛽̂ = 2.4719 
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- Scheme 3: 𝑡0 = 0, 𝑡1 = 135 and 𝑚1 = 25  

Sample 3: 22.5, 37.5, 46.0, 48.5, 51.5, 53.0, 54.5, 57.5, 66.5, 68.0, 69.5, 76.5, 77.0, 

78.5, 80.0, 81.5, 82.0, 83.0, 84.0, 91.5, 93.5, 102.5, 107.0, 108.5, 112.5. 

The MLEs for Sample 3 are 𝛼̂ = 0.0059 and 𝛽̂ = 2.4575  

- Scheme 4: 𝑡0 = 40, 𝑡1 = 135 and 𝑚1 = 30  

Sample 4: 46.0, 48.5, 51.5, 53.0, 54.5, 57.5, 66.5, 68.0, 69.5, 76.5, 77.0, 78.5, 80.0, 

81.5, 82.0, 83.0, 84.0, 91.5, 93.5, 102.5, 107.0, 108.5, 112.5, 113.5, 116.0, 117.0, 

118.5, 119.0, 120.0, 122.5.  

The MLEs for Sample 4 are 𝛼̂ = 0.0061 and 𝛽̂ = 2.4081  

Based on the above 4 sampling schemes, the results are reported in tables 13 to 15 

respectively.  

 

Table 13 

The values of Point Predictors and 95% PI – Scheme 1 

 Exact 
Value 

MLP BUP CMP PIVOTAL HDI 

𝒑 = 𝟏 112.5 110.8 111.0 110.2 (108,117) - 

𝒑 = 𝟐 113.5 111.9 113.3 112.6 (109,121) (109,120) 

𝒑 = 𝟑 116.0 113.4 115.8 115.0 (110,125) (109,123) 

𝒑 = 𝟒 117.0 115.6 118.1 117.4 (111,129) (110,127) 

𝒑 = 𝟓 119.0 117.2 120.5 119.8 (113,132) (112,130) 
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Table 14 

The values of Point Predictors and 95% PI – Scheme 2 

 Exact 
Value 

MLP BUP CMP PIVOTAL HDI 

𝒑 = 𝟏 117.0 116.5 118.0 117.7 (116,125) - 

𝒑 = 𝟐 118.5 117.2 120.7 120.0 (116,129) (116,127) 

𝒑 = 𝟑 119.0 117.8 123.0 122.0 (118,132) (117,131) 

𝒑 = 𝟒 120.0 120.1 125.0 124.8 (119,136) (118,134) 

𝒑 = 𝟓 122.5 122.7 127.0 127.2 (120,140) (119,138) 

 

Table 15 

The values of Point Predictors and 95% PI – Scheme 3 

 Exact 
Value 

MLP BUP CMP PIVOTAL HDI 

𝒑 = 𝟏 113.5 113.0 114.8 113.5 (113,121) - 

𝒑 = 𝟐 116.0 114.6 117.0 115.2 (113,125) (113,123) 

𝒑 = 𝟑 117.0 115.7 119.0 116.8 (114,129) (113,127) 

𝒑 = 𝟒 118.5 117.2 121.0 118.4 (115,133) (114,131) 

𝒑 = 𝟓 119.0 117.4 124.0 120.0 (117,136) (117,136) 

 

Table 16 

The values of Point Predictors and 95% PI – Scheme 4 

 Exact 
Value 

MLP BUP CMP PIVOTAL HDI 

𝒑 = 𝟏 123.0 122.8 124.8 124.2 (123,131) - 

𝒑 = 𝟐 127.5 125.7 127.2 126.5 (123,135) (123,134) 

𝒑 = 𝟑 131.0 129.9 129.7 128.9 (124,139) (123,138) 

𝒑 = 𝟒 132.5 132.6 132.1 131.3 (125,143) (124,141) 

𝒑 = 𝟓 134.0 134.2 134.5 133.8 (127,146) (126,145) 
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From tables 13 to 16, we noticed that the three different Point Predictors are close to 

the exact or observed value. Moreover, both of the Prediction Intervals capture the 

true observation and the HDI intervals have a width slightly less than that of the Pivotal 

interval. 

 

CHAPTER 4: SUMMARY, CONCLUSIONS AND FURTHER RESEARCH  
 

4.1 Summary 

 In this study, we have used the maximum Likelihood approach to estimate the 

parameters of the Log-Logistic distribution under hybrid censored data. The predictive 

likelihood function was obtained and the predictive likelihood equations were formed. 

Different point predictors of future failures were obtained such as the (MLP), (BUP), 

and (CMP). Classical prediction intervals were constructed, one of which is the interval 

based on pivotal quantity and the other is (HDI) interval. A simulation study based on 

2000 replications was run to investigate and compare between the performance of all 

point predictors in terms of Bias and MSE. Moreover, we compared the two prediction 

intervals in terms of coverage probability and width. Finally, an example based on real 

data was used to illustrate the study.   

 

4.2 Conclusions  

Based on the simulation study for different values of 𝑝 and different input values of 𝑛, 

𝑡0 , 𝑡1, and 𝑚1. We come up with the following conclusions: 

 The (BUP) has the best performance in terms of Bias and MSE, the second-

best predictor is the (CMP). 
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 There is no fixed pattern of the performance of the (MLP) in terms of Bias and 

MSE. 

 Under the effect of left censoring, for fixed values of 𝑛 ≥ 30 the length of both 

intervals gets slightly bigger while the coverage probabilities get closer to the 

nominal level and There is no fixed pattern in the performance of point 

predictors (in terms of bias and MSE). 

 For fixed value of 𝑛, as 𝑚1 and 𝑡1 increase it is noticed that the Bias and MSE 

of all point predictors are almost the same or slightly increasing for that of the 

CMP, the length of both intervals get slightly bigger while the coverage 

probability of both intervals get closer to the nominal level. 

 The (HDI) interval cannot be used when 𝑝 = 1. 

 The interval based on pivotal quantity when 𝑝 = 1 has a convergence 

probability close to the nominal level for all combinations of 𝑛, 𝑡0 , 𝑡1, and 𝑚1. 

(𝑛 ≥ 30)  

 As the value of 𝑝 gets bigger, the probability of both intervals gets close to the 

nominal level only for large values of 𝑛.  

 The width of the (HDI) interval is narrower than that of the interval based on 

pivotal quantity for 𝑝 > 1. 

 We recommend the best point predictor is the (BUP) as it has the least bias and 

MSE, and the best interval prediction method is the (HDI) method for 𝑝 > 1.  

 

4.3 Further Research   

A further research or study might be suggested in the following sense; first of all, 

the same study might be repeated with another lifetime distribution. Or we can use 
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progressive Censoring scheme for samples from Log-Logistic distribution. Also, same 

study could be done with left truncation instead of left censoring, and the addition of 

Bayesian point predictors and Bayesian prediction intervals, where different choices 

of loss functions and prior distributions might be considered. Furthermore, one can 

find an approximate enclosed form of the (MLEs).  

 

Moreover, further studies might focus more on the different aspects of the hazard 

function and its relation with the failure rate in both survival analysis and reliability 

studies. Finally, it would be quite interesting to study the scenarios that would minimize 

both sample sizes and time of termination of the experiment as the latter two play an 

important role in minimizing the cost of the experiment.  
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APPENDIX 
 

                                

APPENDIX A: R CODE FOR THE GRAPH OF (PDF) LOG-LOGISTIC 
 

par(mfrow=c(2,2)) 

x = seq(0, 10, length = 1001) 

y = 1/(1+x)^2 

plot(x,y,type="l",xlim=c(0, 10), ylim = c(0, 1),xlab = "t",ylab = "(α=1,β=1)", main = 

"probability density function") 

x = seq(0, 10, length = 1001) 

y = (0.5*(x^-0.5))/(1+(x^0.5)^2) 

plot(x,y,type="l",xlim=c(0, 10), ylim = c(0, 2),xlab = "t",ylab = "(α=1,β=0.5)", main = 

"probability density function") 

x = seq(0, 10, length = 1001) 

y = (18*x)/(1+(3*x)^2)^2 

plot(x,y,type="l",xlim=c(0, 10), ylim = c(0, 2),xlab = "t",ylab = "(α=3,β=2)", main = 

"probability density function") 

x = seq(0, 10, length = 1001) 

 

a=0.6;b=5 

y = (a*b*((a*x)^(b-1)))/(1+(a*x)^b)^2 

plot(x,y,type="l",xlim=c(0, 10), ylim = c(0, 0.8),xlab = "t",ylab = "(α=0.6,β=5)", main = 

"probability density function")           
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title(xlab = "t",ylab = "(α=0.6,β=5)", main = "probability density function") 

 

APPENDIX B: R CODE FOR THE GRAPH OF HAZARD FUNCTION OF 
LOG-LOGISTIC DISTRIBUTION 
par(mfrow=c(2,2)) 

x = seq(0, 10, length = 1001) 

a=1;b=1 

y = a*b*((a*x)^(b-1))/(1+(a*x)^b) 

plot(x,y,type="l",xlim=c(0, 10), ylim = c(0, 0.7),xlab = "t",ylab = "(α=1,β=1)", main = 

"Hazard function") 

x = seq(0, 10, length = 1001) 

a=1;b=0.5 

y = a*b*((a*x)^(b-1))/(1+(a*x)^b) 

plot(x,y,type="l",xlim=c(0, 10), ylim = c(0, 3),xlab = "t",ylab = "(α=1,β=0.5)", main = 

"Hazard function") 

x = seq(0, 10, length = 1001) 

a=3;b=2 

y = a*b*((a*x)^(b-1))/(1+(a*x)^b) 

plot(x,y,type="l",xlim=c(0, 10), ylim = c(0,4),xlab = "t",ylab = "(α=3,β=2)", main = 

"Hazard function") 

x = seq(0, 10, length = 1001) 

a=0.6;b=5 

y = a*b*((a*x)^(b-1))/(1+(a*x)^b) 

plot(x,y,type="l",xlim=c(0, 10), ylim = c(0, 2),xlab = "t",ylab = "(α=0.6,β=5)", main = 

"Hazard function") 
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####### 

 

APPECDIX C: R CODE FOR THE (MLE) 
 

X=function(Nsim,n,t0,t1,m1){ 

  mat=matrix(0,ncol=2,nrow=Nsim)#2000by2 matrix empty matrix 

  for (j in 1:Nsim){ 

    u=runif(n) 

    #t=u/(1-u) 

    a=1;b=1 

    t=(1/a)*((u/(1-u))^(1/b)) 

    t=c(sort(t)) 

 

    G1=subset(t,t<t0) 

    r=length(G1) 

    G2=subset(t,t>=t0 & t<=min(t1,t[m1+r])) 

    G3=subset(t,t>min(t1,t[m1+r])) 

     

     m=length(G2) 

   # print(j) 

    #print(r) 

    #print(m) 

   # print(min(t1,t[m1+r])) 

   # print("kkkkk") 
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    ti=c(G2)#the values of G2 

    L=ti[length(ti)]#the last one in G2 

    Case1=function(B){#function that gives the minimum of alpha and beta 

      a <- B[1] 

      b <- B[2] 

      -1*((r * b * log(a * t0))-(r * log(1 + (a * t0)^b))+(sum(log(a * b * ((a * ti)^(b-1))))-(2 * 

sum(log(1 + (a * ti)^b)))-((n-(r+m)) * log(1+(a * L)^b)))) 

    }# logliklihood function for case 1 

    Case2=function(B){ 

      a <- B[1] 

      b <- B[2] 

      -1*((r * b * log(a * t0))-(r * log(1 + (a * t0)^b))+(sum(log(a * b * ((a * ti)^(b-1))))-(2 * 

sum(log(1 + (a * ti)^b)))-((n-(r+m)) * log(1+(a * t1)^b)))) 

    } 

    if (length(ti)<m1){ 

      mat[j,]=c(optim(c(a,b), Case2 , method = "L-BFGS-B",lower = 0.00000001, upper 

= Inf)$par)#start with alpha and beta equal 1 and estimate max for case 1 

    }else{ 

      mat[j,]=c(optim(c(a,b), Case1 , method = "L-BFGS-B",lower = 0.00000001, upper 

= Inf)$par) 

    } 

  } 

  alpha_h=c(mat[,1]) 

  beta_h=c(mat[,2]) 
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  mean(alpha_h) 

  bias_alpha=(mean(alpha_h)-a) 

  mse_alpha=sum((alpha_h-a)^2)/Nsim 

  mean(beta_h) 

  bias_beta=(mean(beta_h)-b) 

  mse_beta=sum((beta_h-b)^2)/Nsim 

  print(bias_alpha) 

  print(mse_alpha) 

  print(bias_beta) 

  print(mse_beta)  

} 

X(2000,30,0.0001,1,12) ### when t0=0 (no left censored units)we replace it with 

0.0001## 

#m1=20 

#n=50 

 

APPENDIX D: R CODE FOR THE (MLP) 
 

library(optimr) 

X=function(Nsim,n,p,t0,t1,m1){ 

  mat=matrix(0,ncol=3,nrow=Nsim)#2000by2 matrix empty matrix 

  for (j in 1:Nsim){ 

    u=runif(n) 

    #t=u/(1-u) 
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    a=1;b=1 

    t=(1/a)*((u/(1-u))^(1/b)) 

    t=c(sort(t)) 

    G1=subset(t,t<t0) 

    r=length(G1) 

    G2=subset(t,t>=t0 & t<=min(t1,t[m1+r])) 

    G3=subset(t,t>min(t1,t[m1+r])) 

     

    m=length(G2) 

   # print(j) 

   # print(r) 

   # print(m) 

    #print(min(t1,t[m1+r])) 

    #print("kkkkk") 

        ti=c(G2)#the values of G2 

    L=ti[length(ti)]#the last one in G2 

    Case1=function(B){#function that gives the minimum of alpha and beta 

      a <- B[1] 

      b <- B[2] 

      y <- B[3] 

      -1*((p-1)*log((a*y)^b - (a*L)^b)+(((r+m)-n-1)*log(1+(a*y)^b))+((1-

p)*log(1+(a*L)^b))+((m+1)*log(a*b))+((b-1)*log(a*y))+(r*b*log(a*t0))-

(r*log(1+(a*t0)^b))+((b-1)*sum(log(a*ti)))-2*sum(log(1+(a*ti)^b))) 
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    }# logliklihood function for case 1 

    Case2=function(B){ 

      a <- B[1] 

      b <- B[2] 

      y <- B[3] 

      -1*((p-1)*log((a*y)^b - (a*t1)^b)+(((r+m)-n-1)*log(1+(a*y)^b))+((1-

p)*log(1+(a*t1)^b))+((m+1)*log(a*b))+((b-1)*log(a*y))+(r*b*log(a*t0))-

(r*log(1+(a*t0)^b))+((b-1)*sum(log(a*ti)))-2*sum(log(1+(a*ti)^b))) 

    } 

    if (length(ti)<m1){ 

      mat[j,]=c(optimr(c(a,b,G3[p]), Case2 , method = "L-BFGS-B", 

lower=c(0.0001,0.0001,t1+0.0001))$par) 

    }else{ 

      mat[j,]=c(optimr(c(a,b,G3[p]), Case1 , method = "L-BFGS-B", 

lower=c(0.0001,0.0001,L+0.0001))$par) 

    } 

  } 

  alpha_h=c(mat[,1]) 

  beta_h=c(mat[,2]) 

  y_h=c(mat[,3]) 

  mean(alpha_h) 

  bias_alpha=(mean(alpha_h)-a) 

  mse_alpha=sum((alpha_h-a)^2)/Nsim 

  mean(beta_h) 
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  bias_beta=(mean(beta_h)-b) 

  mse_beta=sum((beta_h-b)^2)/Nsim 

  mean(y_h) 

  bias_y=(mean(y_h)-(G3[p])) 

  mse_y=sum((y_h-G3[p])^2)/Nsim 

  

  print(bias_y) 

  print(mse_y) 

 } 

n=80 

p=2 

X(2000,80,2,1/9,1,32) ### t0 is replaced with 0.0001 when t0=0### 

 

APPENDIX E: R CODE FOR THE (BUP)  
 

library(zipfR) 

X=function(Nsim,n,t0,t1,m1,p){ 

  mat=data.frame(matrix(nrow = Nsim, ncol = 7)) 

  colnames(mat)=c("a","b","case","L","m","r","G3") 

  for (j in 1:Nsim){ 

    u=runif(n) 

    #t=u/(1-u) 

    a=1;b=1 

    t=(1/a)*((u/(1-u))^(1/b)) 
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    t=c(sort(t)) 

    G1=subset(t,t<t0) 

      r=length(G1) 

    G2=subset(t,t>=t0 & t<=min(t1,t[m1+r])) 

    G3=subset(t,t>min(t1,t[m1+r])) 

    m=length(G2) 

#print(j) 

#print(r) 

#print(m) 

#print(min(t1,t[m1+r])) 

#print("kkkkk") 

    ti=c(G2)#the values of G2 

    L=ti[length(ti)]#the last one in G2 

    Case1=function(B){#function that gives the minimum of alpha and beta 

      a <- B[1] 

      b <- B[2] 

      -1*((r * b * log(a * t0))-(r * log(1 + (a * t0)^b))+(sum(log(a * b * ((a * ti)^(b-1))))-(2 * 

sum(log(1 + (a * ti)^b)))-((n-(r+m)) * log(1+(a * L)^b)))) 

    }# logliklihood function for case 1 

    Case2=function(B){ 

      a <- B[1] 

      b <- B[2] 
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      -1*((r * b * log(a * t0))-(r * log(1 + (a * t0)^b))+(sum(log(a * b * ((a * ti)^(b-1))))-(2 * 

sum(log(1 + (a * ti)^b)))-((n-(r+m)) * log(1+(a * t1)^b)))) 

    } 

    if (length(ti)<m1){ 

      mat[j,]=c(optim(c(a,b), Case2 , method = "L-BFGS-B",lower = 

c(0.00000001,0.00000001), upper = Inf)$par,2,t1,m,r,G3[p])#it saves different values 

of t1,m,r in each row or one sim## 

    }else{ 

      mat[j,]=c(optim(c(a,b), Case1 , method = "L-BFGS-B",lower = 

c(0.00000001,0.00000001), upper = Inf)$par,1,L,m,r,G3[p]) 

    } 

  } 

  alpha_h=c(mat[,1]) 

  beta_h=c(mat[,2]) 

  mean(alpha_h) 

  bias_alpha=(mean(alpha_h)-a) 

  mse_alpha=sum((alpha_h-a)^2)/Nsim 

  mean(beta_h) 

  bias_beta=(mean(beta_h)-b) 

  mse_beta=sum((beta_h-b)^2)/Nsim 

  print(bias_alpha) 

  print(mse_alpha) 

  print(bias_beta) 

  print(mse_beta) 
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  print(mat) 

} 

Mat=X(2000,50,1/9,1,20,1) ### ### 

#p=5 

#n=30 

Mat 

ycon = numeric(2000)  

for (i in 1:2000){ 

  a = Mat[i,1] 

  b = Mat[i,2] 

  L = Mat[i,4] 

  m = Mat[i,5] 

  r = Mat[i,6] 

  x = 1/(1+(a*L)^b) 

  for (k in 0:(p-1)) 

    ycon[i]=ycon[i]+(p*(choose(n-r-m,p))*((1+(a*L)^b)^(n-r-m-p+1))*(sum((choose(p-

1,k))*(-1)^(p-1-k)*((a*L)^b)^(p-1-k)*(1/a)))*(Ibeta(x,(n-r-m-k-(1/b)),(k+(1/b)+1)))) 

} 

#print(ycon) 

ych=mean(ycon) 

#ycon[2000] 

yc=mean(Mat$G3,na.rm=TRUE) # The mean excluding NA results 

#mean(ycon)-mean(Mat$G3,na.rm=TRUE) 
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#sum(is.na(Mat$G3)) # number of NA results 

#print(yc) 

#print(ych) 

bias=ych-yc 

mse=mean((ych-yc)^2) 

print(bias) 

print(mse) 

 

APPENDIX F: R CODE FOR BOTH (BUP) AND CONDITIONAL MEDIAN 
PREDICTOR 
 

library(zipfR) 

X=function(Nsim,n,t0,t1,m1,p){ 

  mat=data.frame(matrix(nrow = Nsim, ncol = 7)) 

  colnames(mat)=c("a","b","case","L","m","r","G3") 

  for (j in 1:Nsim){ 

    u=runif(n) 

    a=3;b=2 

    t=(1/a)*((u/(1-u))^(1/b)) 

    #t=u/(1-u) 

    t=c(sort(t)) 

      G1=subset(t,t<t0) 

      r=length(G1) 

    G2=subset(t,t>=t0 & t<=min(t1,t[m1+r])) 
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    G3=subset(t,t>min(t1,t[m1+r])) 

 

    m=length(G2) 

#print(j) 

#print(r) 

#print(m) 

#print(min(t1,t[m1+r])) 

#print("kkkkk") 

    ti=c(G2)#the values of G2 

    L=ti[length(ti)]#the last one in G2 

    Case1=function(B){#function that gives the minimum of alpha and beta 

      a <- B[1] 

      b <- B[2] 

      -1*((r * b * log(a * t0))-(r * log(1 + (a * t0)^b))+(sum(log(a * b * ((a * ti)^(b-1))))-(2 * 

sum(log(1 + (a * ti)^b)))-((n-(r+m)) * log(1+(a * L)^b)))) 

    }# logliklihood function for case 1 

    Case2=function(B){ 

      a <- B[1] 

      b <- B[2] 

      -1*((r * b * log(a * t0))-(r * log(1 + (a * t0)^b))+(sum(log(a * b * ((a * ti)^(b-1))))-(2 * 

sum(log(1 + (a * ti)^b)))-((n-(r+m)) * log(1+(a * t1)^b)))) 

    } 

    if (length(ti)<m1){ 
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      mat[j,]=c(optim(c(a,b), Case2 , method = "L-BFGS-B",lower = 

c(0.00000001,0.00000001), upper = Inf)$par,2,t1,m,r,G3[p])#it saves different values 

of t1,m,r in each row or one sim## 

    }else{ 

      mat[j,]=c(optim(c(a,b), Case1 , method = "L-BFGS-B",lower = 

c(0.00000001,0.00000001), upper = Inf)$par,1,L,m,r,G3[p]) 

    } 

  } 

  alpha_h=c(mat[,1]) 

  beta_h=c(mat[,2]) 

  mean(alpha_h) 

  bias_alpha=(mean(alpha_h)-a) 

  mse_alpha=sum((alpha_h-a)^2)/Nsim 

  mean(beta_h) 

  bias_beta=(mean(beta_h)-b) 

  mse_beta=sum((beta_h-b)^2)/Nsim 

  print(bias_alpha) 

  print(mse_alpha) 

  print(bias_beta) 

  print(mse_beta) 

  print(mat) 

  } 

Mat=X(2000,80,1/9,1,32,5) 

Mat 
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p=5 

n=80 

ycon = numeric(2000)  

ymed = numeric(2000) 

for (i in 1:2000){ 

  a = Mat[i,1] 

  b = Mat[i,2] 

  L = Mat[i,4] 

  m = Mat[i,5] 

  r = Mat[i,6] 

  x = 1/(1+(a*L)^b) 

  z = qbeta(0.5,p,n-r-m-p+1) 

  ymed[i]=((1/a)*((z+(a*L)^b)/(1-z))^(1/b)) 

  for (k in 0:(p-1)) 

    ycon[i]=ycon[i]+(p*(choose(n-r-m,p))*((1+(a*L)^b)^(n-r-m-p+1))*(sum((choose(p-

1,k))*(-1)^(p-1-k)*((a*L)^b)^(p-1-k)*(1/a)))*(Ibeta(x,(n-r-m-k-(1/b)),(k+(1/b)+1)))) 

} 

#print(ycon) 

ych=mean(ycon) 

yph=mean(ymed) 

#ycon[2000] 

yc=mean(Mat$G3,na.rm=TRUE) # The mean excluding NA results 

#mean(ycon)-mean(Mat$G3,na.rm=TRUE) 
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#sum(is.na(Mat$G3)) # number of NA results 

#print(yc) 

#print(ych) 

bias_yc=ych-yc 

mse_yc=mean((ych-yc)^2) 

print(bias_yc) 

print(mse_yc) 

bias_ymed=yph-yc 

mse_ymed=mean((yph-yc)^2) 

print(bias_ymed) 

print(mse_ymed) 

 

APPENDIX G: R CODE FOR THE PIVOTAL METHOD INTERVAL 
 

library(zipfR) 

X=function(Nsim,n,t0,t1,m1,p){ 

  mat=data.frame(matrix(nrow = Nsim, ncol = 7)) 

  colnames(mat)=c("a","b","case","L","m","r","G3") 

  for (j in 1:Nsim){ 

    u=runif(n) 

    a=1;b=1 

    t=(1/a)*((u/(1-u))^(1/b)) 

   # t=u/(1-u) 

    t=c(sort(t)) 
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    G1=subset(t,t<t0) 

    r=length(G1) 

    G2=subset(t,t>=t0 & t<=min(t1,t[m1+r])) 

    G3=subset(t,t>min(t1,t[m1+r]))  

    m=length(G2) 

    #print(j) 

    #print(r) 

   # print(m) 

    #print(min(t1,t[m1+r])) 

    #print("kkkkk") 

    ti=c(G2)#the values of G2 

    L=ti[length(ti)]#the last one in G2 

    Case1=function(B){#function that gives the minimum of alpha and beta 

      a <- B[1] 

      b <- B[2] 

      -1*((r * b * log(a * t0))-(r * log(1 + (a * t0)^b))+(sum(log(a * b * ((a * ti)^(b-1))))-(2 * 

sum(log(1 + (a * ti)^b)))-((n-(r+m)) * log(1+(a * L)^b)))) 

    }# logliklihood function for case 1 

    Case2=function(B){ 

      a <- B[1] 

      b <- B[2] 
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      -1*((r * b * log(a * t0))-(r * log(1 + (a * t0)^b))+(sum(log(a * b * ((a * ti)^(b-1))))-(2 * 

sum(log(1 + (a * ti)^b)))-((n-(r+m)) * log(1+(a * t1)^b)))) 

    } 

    if (length(ti)<m1){ 

      mat[j,]=c(optim(c(a,b), Case2 , method = "L-BFGS-B",lower = 

c(0.00000001,0.00000001), upper = Inf)$par,2,t1,m,r,G3[p])#it saves different values 

of t1,m,r in each row or one sim## 

    }else{ 

      mat[j,]=c(optim(c(a,b), Case1 , method = "L-BFGS-B",lower = 

c(0.00000001,0.00000001), upper = Inf)$par,1,L,m,r,G3[p]) 

    } 

  } 

  alpha_h=c(mat[,1]) 

  beta_h=c(mat[,2]) 

  mean(alpha_h) 

  bias_alpha=(mean(alpha_h)-a) 

  mse_alpha=sum((alpha_h-a)^2)/Nsim 

  mean(beta_h) 

  bias_beta=(mean(beta_h)-b) 

  mse_beta=sum((beta_h-b)^2)/Nsim 

  print(bias_alpha) 

  print(mse_alpha) 

  print(bias_beta) 

  print(mse_beta) 
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  print(mat) 

   

} 

Mat=X(2000,80,0.0001,sqrt(7/27),48,1) 

Mat 

p=1 

n=80 

lbound = numeric(2000)  

ubound = numeric(2000) 

capture_interval= numeric(2000) 

#width_interval= numeric(2000) 

for (i in 1:2000){ 

  a = Mat[i,1] 

  b = Mat[i,2] 

  L = Mat[i,4] 

  m = Mat[i,5] 

  r = Mat[i,6] 

  z1 = qbeta(0.025,p,n-r-m-p+1) 

  z2 = qbeta(0.975,p,n-r-m-p+1) 

   

  lbound[i]= ((1/a)*((z1+(a*L)^b)/(1-z1))^(1/b)) ## lower bound for the interval from 

each sample# 

  ubound[i]= ((1/a)*((z2+(a*L)^b)/(1-z2))^(1/b)) # upper bound# 
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  if(lbound[i] < Mat$G3[i] & Mat$G3[i] < ubound[i]) (capture_interval[i]=1) else 

(capture_interval[i]=0) 

  cat(i, lbound[i],Mat$G3[i],ubound[i],"\n") 

} 

conv_prob= mean(capture_interval) 

print(conv_prob) 

lf= mean(lbound) 

uf= mean(ubound) 

avwidth=uf-lf 

print(avwidth) 

 

APPENDIX H: R CODE FOR THE HIGH-DENSITY INTERVAL AND 
PIVOTAL QUANTITY INTERVAL  
 

library(HDInterval) 

library(zipfR) 

X=function(Nsim,n,t0,t1,m1,p){ 

  mat=data.frame(matrix(nrow = Nsim, ncol = 7)) 

  colnames(mat)=c("a","b","case","L","m","r","G3") 

  for (j in 1:Nsim){ 

    u=runif(n) 

    #t=u/(1-u) 

    a=3;b=2 
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    t=(1/a)*((u/(1-u))^(1/b)) 

    t=c(sort(t)) 

   

    G1=subset(t,t<t0) 

    r=length(G1) 

    G2=subset(t,t>=t0 & t<=min(t1,t[m1+r])) 

    G3=subset(t,t>min(t1,t[m1+r])) 

     

    m=length(G2) 

    #print(j) 

    #print(r) 

    #print(m) 

   # print(min(t1,t[m1+r])) 

    #print("kkkkk") 

    ti=c(G2)#the values of G2 

    L=ti[length(ti)]#the last one in G2 

    Case1=function(B){#function that gives the minimum of alpha and beta 

      a <- B[1] 

      b <- B[2] 

      -1*((r * b * log(a * t0))-(r * log(1 + (a * t0)^b))+(sum(log(a * b * ((a * ti)^(b-1))))-(2 * 

sum(log(1 + (a * ti)^b)))-((n-(r+m)) * log(1+(a * L)^b)))) 

    }# logliklihood function for case 1 

    Case2=function(B){ 
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      a <- B[1] 

      b <- B[2] 

      -1*((r * b * log(a * t0))-(r * log(1 + (a * t0)^b))+(sum(log(a * b * ((a * ti)^(b-1))))-(2 * 

sum(log(1 + (a * ti)^b)))-((n-(r+m)) * log(1+(a * t1)^b)))) 

    } 

    if (length(ti)<m1){ 

      mat[j,]=c(optim(c(a,b), Case2 , method = "L-BFGS-B",lower = 

c(0.00000001,0.00000001), upper = Inf)$par,2,t1,m,r,G3[p])#it saves different values 

of t1,m,r in each row or one sim## 

    }else{ 

      mat[j,]=c(optim(c(a,b), Case1 , method = "L-BFGS-B",lower = 

c(0.00000001,0.00000001), upper = Inf)$par,1,L,m,r,G3[p]) 

    } 

  } 

  alpha_h=c(mat[,1]) 

  beta_h=c(mat[,2]) 

  mean(alpha_h) 

  bias_alpha=(mean(alpha_h)-a) 

  mse_alpha=sum((alpha_h-a)^2)/Nsim 

  mean(beta_h) 

  bias_beta=(mean(beta_h)-b) 

  mse_beta=sum((beta_h-b)^2)/Nsim 

  print(bias_alpha) 

  print(mse_alpha) 
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  print(bias_beta) 

  print(mse_beta) 

  print(mat) 

  } 

Mat=X(2000,80,0.0001,sqrt(7/27),48,5) 

Mat 

p=5 

n=80 

lbound = numeric(2000)  

ubound = numeric(2000) 

capture_interval= numeric(2000) 

l2 = numeric(2000)  

u2 = numeric(2000) 

hdIlow = numeric(2000) 

hdIupp = numeric(2000) 

capt_interval2 = numeric(2000) 

#width_interval= numeric(2000) 

for (i in 1:2000){ 

  a = Mat[i,1] 

  b = Mat[i,2] 

  L = Mat[i,4] 

  m = Mat[i,5] 

  r = Mat[i,6] 
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  z1 = qbeta(0.025,p,n-r-m-p+1) 

  z2 = qbeta(0.975,p,n-r-m-p+1) 

   

  lbound[i]= ((1/a)*((z1+(a*L)^b)/(1-z1))^(1/b)) ## lower bound for the interval from 

each sample# 

  ubound[i]= ((1/a)*((z2+(a*L)^b)/(1-z2))^(1/b)) # upper bound# 

 

  if(lbound[i] < Mat$G3[i] & Mat$G3[i] < ubound[i]) (capture_interval[i]=1) else 

(capture_interval[i]=0) 

  cat(i, lbound[i],Mat$G3[i],ubound[i],"\n") 

  print(i) 

  w=hdi(qbeta,0.95,shape1=p,shape2=n-r-m-p+1) 

   

  l2[i]= w[1] 

  u2[i]= w[2] 

   

  hdIlow[i]=(1/a)*((w[1]+(a*L)^b)/(1-w[1]))^(1/b)## the lower bound from each run# 

  hdIupp[i]=(1/a)*((w[2]+(a*L)^b)/(1-w[2]))^(1/b) 

  if(hdIlow[i]< Mat$G3[i] & Mat$G3[i] < hdIupp[i]) (capt_interval2[i]=1) else 

(capt_interval2[i]=0) 

  cat(i, hdIlow[i],Mat$G3[p],hdIupp[i],"\n") 

} 

lf= mean(lbound) 

uf= mean(ubound) 



83 

 

conv_prob= mean(capture_interval) 

print(conv_prob) 

avwidth=uf-lf 

 


