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A B S T R A C T

As the number of people infected with the newly identified 2019 novel coronavirus (SARS-CoV2) is continuously
increasing every day, development of potential therapeutic platforms is vital. Based on the comparatively high
similarity of receptor-binding domain (RBD) in SARS-CoV2 and SARS-CoV, it seems crucial to assay the cross-
reactivity of anti-SARS-CoV monoclonal antibodies (mAbs) with SARS-CoV2 spike (S)-protein. Indeed, devel-
oping mAbs targeting SARS-CoV2 S-protein RBD could show novel applications for rapid and sensitive devel-
opment of potential epitope-specific vaccines (ESV). Herein, we present an overview on the discovery of new
CoV followed by some explanation on the SARS-CoV2 S-protein RBD site. Furthermore, we surveyed the novel
therapeutic mAbs for targeting S-protein RBD such as S230, 80R, F26G18, F26G19, CR3014, CR3022, M396, and
S230.15. Afterwards, the mechanism of interaction of RBD and different mAbs were explained and it was
suggested that one of the SARS-CoV-specific human mAbs, namely CR3022, could show the highest binding
affinity with SARS-CoV2 S-protein RBD. Finally, some ongoing challenges and future prospects for rapid and
sensitive advancement of therapeutic mAbs targeting S-protein RBD were discussed. In conclusion, it may be
proposed that this review may pave the way for recognition of RBD and different mAbs to develop potential
therapeutic ESV.

1. Introduction

The coronavirus (CoV) has various strains, the most prominent of
which is severe acute respiratory syndrome (SARS), middle east re-
spiratory syndrome (MERS), and newly identified 2019 novel CoV
(SARS-CoV2) [1,2]. SARS-CoV is known as an infectious disease with
high transmissibility that caused the global epidemic following the
early cases of Guangdong, China [3]. Within weeks, SARS-CoV reached
almost all countries and peaked in March and April 2003 within a short
time [4,5]. At first, the cause of the disease was unknown, but due to
the rapid spread of the disease, it was considered as a potential in-
fectious agent [6,7]. With reports announced by the US Centers for
Disease Control and Prevention (CDC) and the World Health

Organization (WHO), a viral agent belonging to the CoV group but with
completely different genetic features than other CoVs, was isolated
from infected patients [8]. Finally, at the end of 2003, the epidemic was
controlled [4]. Given that the disease is a newly emerging pandemic
and is likely to recur, understanding suspected clinical and laboratory
symptoms, the treatment process, its transmission, some strategies for
controlling the infection, and essential recommendations before tra-
veling to and from infected areas were shown to be necessary [9,10].

Nearly ten years later in 2012, the CoV caused a SARS-like illness in
Saudi Arabia that, unlike SARS-CoV, affected not only the respiratory
system but also other vital organs such as the kidney and liver [11,12].
As a result, its mortality rate was more than SARS-CoV and was named
MERS-CoV [13,14]. The clinical features of MERS-CoV infection were
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varied and ranged from asymptomatic or mild to acute respiratory
syndrome and multiple organ failure and could lead to death, especially
in people with underlying disease [15,16]. There is no specific drug for
the treatment of MERS and preventive intensive care are needed to
prevent the virus from spreading to health care centers [17].

SARS-CoV2 is known as a new variant of the CoV that has not been
previously reported in humans [18,19]. There is still much to be
learned about how CoV diseases-19 (COVID-19) spreads, its severity,
and other features of the virus. Indeed, epidemiological and clinical
research are ongoing to determine the prevalence of CoV-19 infections
among people as a public health concern. Bioinformatical and bio-
physical researches are underway to examine a number of drugs
available to find the potential drug to inhibit the CoV protease.
Therefore, there is a great deal of interest in identifying potential drugs
among the numerous compounds available in the treatment of viral or
other diseases through the bioinformatics and biophysical approaches.
Drugs that have the ability to bind the RBD can be considered as po-
tential inhibitors of the CoV-19 protease .

Rapid access to CoV genomic data made it possible to produce first-
generation homologous models for 3CLpro cysteine protease [20]. This
enzyme is critical for CoV replication and has previously been studied
as a target for antiviral therapies in the treatment of SARS-CoV [20,21].
This version shows that although the viral genome closely resembles
the bat CoV, the protease most closely resembles the corona protease of
the SARS-CoV, indicating that the virus has entered the human popu-
lation through another animal (civets) [22].

Huang, et al. [23] used crystallographic and biophysical methods to
identify the structural and functional properties of HKU9 (a bat CoV not
transmitted to humans). The main reason for these studies was that β-
CoV (a type that includes SARS-CoV and MERS-CoV) should be well
characterized if they lead to the next global epidemic. After comparing
the RBD of the virus with the existing structures of SARS-CoV, MERS-
CoV, and HKU4-CoV (bat CoV), it was found that the recognition of
receptor-ligand interaction is difficult despite the knowledge of the
evolutionary history of RNA viruses [24].

Extensive research is ongoing to find disinfectants for previously
known CoV as well as SARS-CoV2. A review study by Liu, et al. [25]
discusses the possible prevention and treatment options for SARS-CoV2.
There are four important enzymes that are essential for the pathogen-
esis: the S- protein that facilitates virus entry through the angiotensin-
converting enzyme 2 (ACE2) to the host cell surface receptor, the major
protease of CoV 3CLpro, and the papain-like protease (PLpro) involved
in the assembly of new viruses, and RNA-dependent RNA polymerase
(RdRp) that facilitates CoV RNA genome replication [25].

2. Discovery of new CoV

A new variant of the CoV spread in Wuhan, China, last year, fol-
lowed by Chinese authorities reporting an outbreak of pneumonia of
unknown origin. CoVs belong to the family Coronaviridae and α and β
viruses normally infect mammals, while γ and δ CoVs usually infect
birds and fish [26,27]. Canine CoV, which can cause mild diarrhea, and
cat CoV, which can cause infectious catfish peritoneal inflammation,
are both α-CoVs. Until the appearance of SARS-CoV2, which belongs to
β-CoV (Fig. 1A), only six known CoV were capable of infecting humans
and causing respiratory disease, including SARS and MERS. The new
CoV is genetically more related to SARS-CoV than MERS-CoV, but both
are β-Cov, originating from bats. While we don't know for sure if this
virus will behave like SARS-CoV and MERS-CoV, we can use the in-
formation from both previous viruses for development of potential anti-
viral agents [1,26,28].

3. RBD of SARS-CoV2

The RBD in the S-protein has been shown to be the most flexible
segment of the CoV structure [26,29]. Six RBD residues have been

demonstrated to be crucial for interaction of S-protein with ACE2 as a
receptor and for identifying the host range of SARS-CoV-mimicking
viruses (Table 1) [30,31].

As tabulated in Table 1 and Fig. 1(B), only one of these six amino
acids are similar between SARS-CoV2 and SARS-CoV.

While this data revealed that SARS-CoV2 may interact with human
ACE2 with a high binding affinity, theoretical investigations demon-
strated that the formation of this complex is not favorable and the RBD
sequence is not similar with that in SARS-CoV to be potential for in-
teraction with receptor [30, 33].

S-proteins present on the surface of the virus are a key factor in the
detection of receptors and play an important role in the mechanism of
membrane infiltration and infection. Researchers have found that S-
protein from β-CoV originates from a common ancestor and evolves in
the outer region of the RBD and this determines the virus's potential for
transmission between species. An atomic model of a CoV S-protein has
been introduced that facilitates the entry of CoV into host cells [34]. A
number of strategies for development of ESV using only certain do-
mains of the S-protein as antigen have been proposed through the
analysis of this model. These human viruses, which contain S-proteins,
are responsible for one-third of the typical cold-like pseudo-pneumonia.
The epidemic nature of deadly pneumonia reveals that animal CoV are
capable of being transmitted from animals to humans. Currently, it was
assumed that a limited number of people could be infected by animal
CoV; however, animals are infected by a large number of these kinds of
viruses. The recent animal CoV outbreak is due to the overcoming inter-
species barriers by this virus. This indicates the inevitability of the new
CoV with the potential to be contagious. Antiviral treatments and ap-
proved ESV are not yet available for SARS-CoV2.

S-proteins with a transparent membrane help the CoV attach to
specific cells and eventually enter them. The cryo-electron microscope
and supercritical analysis has revealed the structure of the SARS-CoV2
trimeric S-protein. Fig. 2A(i) demonstrates the domain of the expression
construct. After supercritical analysis, three-dimensional (3D) con-
formation of a trimer with a single RBD was obtained in the up con-
formation (Fig. 2A (ii)). The observation in SARS-CoV2 S-protein and
SARS-CoV suggested that RBD provides the similar mechanism of
binding that is believed to be conserved among the different CoVs. The
general conformation of SARS-CoV2 S-protein is similar to that of SARS-
CoV S-protein (Fig. 2B (i)). One of the minor differences between these
two S-proteins is the location of the RBDs in their related down-state
configurations. The SARS-CoV RBD in the down-state configuration
folds substantially against the N-terminal domain (NTD), whereas, the
SARS-CoV2 S-protein RBD in the down-state configuration is moved to
the central domain (Fig. 2B (ii)). However, the structural homology
showed a high degree of similarity between the two S-proteins (Fig. 2B
(iii)) [34].

4. Therapeutic antibodies for COVID-19 targeting S-protein RBD

4.1. S230

Walls, et al. [35] showed that as both SARS-CoV and SARS-CoV2 has
similar host cell surface binding domain, promising blocking com-
pounds or approaches assayed to block SARS-CoV entry could be ex-
plored against SARS-CoV2. They studied two Abs isolated from human
survivors targeting the S-protein RBD (Fig. 3A, B). They found that only
S230 mAb stimulated fusogenic structural alterations through receptor
bio-functional mimetics. The S230 mAb was purified from B cells of
SARS-CoV-contaminated patients and effectively neutralized several
SARS-CoV isolates [36–38]. Cryo-EM characterization of the SARS-CoV
S-protein upon interaction with the S230 Fab disclosed that protein
could be in the close and open states (Figs. 3 A(i-iv)). Docking study of
S230 and S-protein revealed that some segments of mAb interact with B
domain (Figs. 3B (i, ii)), which also mediates the interaction of S-pro-
tein and human ACE2 [39]. Comparison of the SARS-CoV S-protein-

A. Hussain, et al. Biomedicine & Pharmacotherapy 130 (2020) 110559

2



S230 complex conformation with the SARS-CoV B domain-ACE2 com-
plex revealed that these proteins would compete upon interaction with
SARS-CoV S (Figs. 3B (iii, iv)) [35].

4.2. 80R

Sui, et al. [40] probed the different recombinant single-chain vari-
able region fragments (scFvs) against the S1 domain of S- protein of the
SARS-CoV. Mapping of the 80R epitope demonstrated it binds the N-
terminal residues of S-protein and relative to ACE2, they bind to S1
domain with high affinity. Sui, et al. [40] also investigated the antiviral
activity of 80R mAb on SARS-CoV S-protein in vivo. They found that
80R mAb at levels therapeutically permissible in humans, significantly
decreased the virus infection. They suggested that the crucial core do-
main of S-protein needed for 80R binding acts as a structurally sensitive
segment to overlap the receptor ACE2-binding site [41].

4.3. F26G18 and F26G19

Berry, et al. [42] reported the selectivity and affinity of chimeric
versions of recombinant mAbs. They showed that the F26G18 and
F26G19 chimeric mAbs bind to the different domains of S-proteins
[42]. Although, F26G18 mAb binds to the linear epitope (460-476) on
the S1 segment of SARS-CoV, F26G19 mAb binds to the different con-
formational epitope on the S1 segment of SARS-CoV. This data sug-
gested that the specificity of chimeric mAbs to the S-protein is based on
the interaction of mAb with residues 318–510 in the RBD.

4.4. CR3014 and CR3022

Ter Meulen, et al. [43] reported that prophylactic administration of
the CR3014 mAb decreased replication of SARS-CoV and completely
blocked the development of SARS-CoV-stimulated lung pathology and
reduced shedding of CoV in pharyngeal secretions (Fig. 4A (i-iv)). This
data showed that administration of a human mAbs might serve as a
potential prophylaxis for the blocking of human SARS-CoV outbreak.
The epitope mapping employing recombinant S segments with some
naturally appearing mutations, demonstrated the dominance of residue
N479 for the binding of the most efficient neutralizing MAb, namely
CR3014 (Fig. 4B) [44].

The combination of two mAbs CR3014 and CR3022 promisingly
regulate the immune escape mechanism and also the potential sy-
nergistic effect between these mAbs may result in a lower mAb level to
be used for passive immune prophylaxis of CoV infection (Fig. 4C) [45].
The combination of mAbs demonstrated neutralization of SARS-CoV in
a synergistic mode by screening various epitopes on the S-protein RBD
(Fig. 4C). Dose reduction indices (DRI) of 4.5 and 20.5 were determined
for CR3014 and CR3022, respectively. Since increase of SARS-CoV in-
fection by subneutralizing mAb levels is of great drawbacks, it can be
assumed that anti-SARS-CoV mAbs do not result in the conversion of
the abortive infection of macrophages by SARS-CoV into a high-
yielding agent [45].

4.5. M396 and S230.15

Prabakaran, et al. [46] reported the structure of SARS-CoV RBD
interacted with m396 mAb (Fig. 5 (i-iv)). They found that there is a
remarkable alteration in the elbow angle between the unliganded and
RBD-bound conformations of the Fab 396 (Fig. 5i). The unliganded Fab,
depicted in red, shows an undeviating elbow angle, whereas the RBD-
interacted Fab, depicted in blue, is significantly turned. The mAb and
the ACE2 bind to common residues within RBD consisting Thr-484, Thr-
486, Thr-487, Gly-488, Tyr-491, Arg-426. Hence, this segment is crucial
for the interaction of RBD to both the mAb and the ACE2. Fig. 5(ii)
displays a superimposed illustration of the RBD binding with mAb,
shown in yellow and with ACE2, shown in cyan. Fig. 5(iii-iv) presents
the binding domain of the mAb and the ACE2, respectively [46].

Fig. 1. (A) The phylogenetic tree related to SARS-CoV2 [26]. (B) S- protein characterization in human SARS-CoV2 and related CoV [31,32]. Reprinted with
permission from Refs. [26,31,32].

Table 1
Six RBD residues of S-protein which are critical for the interaction of SARS-CoV
and SARS-CoV2 with ACE2 [29,31].

SARS-CoV SARS-CoV2 Status

Tyr-442 Leu-445 Different
Leu-472 Phe-486 Different
Asn-479, Gln-493 Different
Asp-480 Ser-494 Different
Thr-487 Asn-501 Different
Tyr-491 Tyr-505 Similar
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Fig. 2. (A) Structure of SARS-CoV2 S-protein, (i) Schematic of SARS-CoV2 S-protein primary structure, (ii) Side- and top- views of the prefusion structure of the
SARS-CoV2 S-protein. (B) Conformational comparison between SARS-CoV2 S-protein and SARS-CoV S-protein, (i) Single protomer of SARS-CoV2 S-protein with the
RBD, (ii) RBDs of SARS-CoV2 and SARS-CoV and the NTD of SARS-CoV2, (iii) Structural alignments of different domains from SARS-CoV2 S-protein and SARS-CoV S-
protein [34]. Reprinted with permission from Ref. [34].
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Zhu, et al. [47] reported that two human mAbs, m396 and S230.15,
effectively neutralized related isolates from the SARS-CoV infection,
namely Urbani, Tor2 and from palm civets, namely SZ3, SZ16. Both
mAbs competed with ACE2 for interaction with the S-protein RBD
(Fig. 5B). Two recognized crucial amino acids in the RBD, namely lle-
489 and Tyr-491 were determined in the SARS-CoV S-protein that
probably play an important role in the interaction of m396 and S-pro-
tein RBD. These amino acids are potentially conserved in the SARS-CoV
S-protein, revealing prospective m396 cross-reactivity.

Some other mAbs targeting the same region of ACE2 on the surface
of RBD of SARS-CoV S-protein are 9F7, 10E7, 12B11, 18C2, 24H8,
26E1, 29G2, 32H5, 20E7, 26A4, 27C1, 31H12, 30E10, 13B6, 11E12,
18D9, 19B2, 28D6, 30F9, 35B5, 24F4, 33G4, 38D4, and 26E1 [48,49].

5. Comparison between the mAbs and the mechanism of
interaction

Coughlin and Prabhakar [50] studied a number of human mAbs
binding the S-protein RBD. The interaction of SARS-CoV S-protein and
mAbs are demonstrated in Fig. 6A(i). As both SARS-CoV and SARS-
CoV2 used ACE2 as a receptor, promising blocking compounds or ap-
proaches assayed to inhibit SARS-CoV entry could be explored against
SARS-CoV2 [51].

Indeed, the S-protein RBD with 193 residue length is the crucial site
for interaction of neutralizing mAbs. Several mAbs interact with various
epitopes on RBD; e.g. the SARS-CoV neutralizing mAbs, namely CR3014
and CR3022 interacted with the SARS-CoV RBD in a noncompetitive
manner and neutralized the CoV in a synergistic mode [41]. Tian, et al.
[52] modeled the structure of SARS-CoV2 S-protein RBD and reported
its interaction with a number of neutralizing mAbs, and displayed that
the molecular dynamic outcomes complete the binding of SARS-CoV2
S-protein RBD and some SARS-CoV mAbs (Fig. 6A(ii)). For example,
amino acids in RBD of SARS-CoV that contribute in the formation of
polar forces with a neutralizing mAb m396 are firmly conserved in

SARS-CoV2 S-protein RBD (Fig. 6A(iii)). Afterwards ELISA assay was
done to examine the binding ability of SARS-CoV-specific mAbs to
SARS-CoV2 S-protein RBD (Fig. 6A(iv)). Interestingly, it was shown that
most of these mAbs failed to bind SARS-CoV2 S-protein RBD [52].

Based on the comparatively high identity of RBD in SARS-CoV2 and
SARS-CoV, it is assumed to assay the cross-reactivity of anti-SARS-CoV
mAbs with SARS-CoV2 S-protein RBD, which could show outstanding
applications for rapid and sensitive advancement of ESV-based ther-
apeutic systems against SARS-CoV2. It was revealed that SARS-CoV-
specific human mAbs, namely CR3022, could potentially interact with
SARS-CoV2 S-protein RBD (Fig. 6B) [52]. As the epitope of this mAb
does not overlap with the ACE2 binding domain, it may be indicated
that CR3022 show the potential to be used as a potential candidate
therapeutic, alone or in integration with other mAbs, for the inhibiting
and treatment of COVID-19. Surprisingly, a number of the most effi-
cient SARS-CoV-specific neutralizing mAbs such as S230, m396,
CR3014 that bind the ACE2 binding domain do not show an ability to
bind SARS-CoV2 S-protein, indicating that dissimilarity in the RBD of
SARS-CoV and SARS-CoV2 shows a crucial effect for the cross-reactivity
of neutralizing mAbs, and that it is still important to design and develop
potential mAbs that could interact specifically and selectively to SARS-
CoV2 S-protein RBD.

6. Ongoing challenges and future prospects

Scientists around the world have stepped up their research to tackle
CoV and have suggested some potential approaches to develop poten-
tial ESV and related treatments. As soon as Chinese researchers released
the genetic information of the SARS-CoV2, scientists quickly began
working on the development of ESV and drugs to treat COVID-19. It is
believed that the previously developed SARS-CoV and MERS-CoV ESV
would be sufficiently useful in the case of overlapping sequences and
structures. This is because like SARS-CoV and MERS-CoV, the SARS-
CoV2 as a new virus uses RNA as a genetic material and shows the same

Fig. 3. (A) Cryo-EM structure of the SARS-CoV S-protein upon interaction with S230 mAb, (i and ii) Orthogonal views of the S-protein structure with one closed B
domain, (iii and iv) Orthogonal views of the S-protein structure with three open B domains. (B) The interaction of S230 with the SARS-CoV S-protein, (i and ii)
Different views of the S230 mAb binding site to an open B domain, (iii) S230 and (iv) ACE2 compete in the attachment to SARS-CoV S-protein. Reprinted with
permission from Re.
f. [35].
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protein and ligand interactions [1,2,56].
However, in-depth analysis has shown that the vaccine is not

working for SARS-CoV2 and cannot stop the outbreak and infection of
this virus [52]. Therefore, the development of potential ESV against
SARS-CoV2 has received a great deal of interest in preventing CoV in-
fection. The conventional vaccines are currently produced from weak or
inactivated toxic of the virus or parts of the virus, including proteins,
and the immune system recognizes the virus as an invader at the time of
injection and generates Abs to prevent subsequent invasions. However,
the point is that growing enough viruses or purifying enough proteins to
vaccinate millions of people against SARS-CoV2 can take months or

even years. Therefore, some other promising strategies should be con-
sidered to develop vaccines against SARS-CoV2 in a less labor and time-
intensive manner. One approach can be done by transformation of the
virus's RNA (SARS-CoV or MERS-CoV ESV) into DNA and determining
some regions of the virus based on molecular simulations, which po-
tentially stimulate the immune system to produce Abs [57]. Those
identified segments of DNA are then introduced into the bacteria to
produce large amounts of protein fragments for development of ESV.
This method dramatically shortens the time needed to produce a po-
tential ESV against SARS-CoV2.

Another approach is to develop a mRNA that stimulates the body to

Fig. 4. (A) Binding of CR3014 mAb to (i, ii) Viral peplomers of SARS-CoV, (iii) HEK293 T cells with S-protein, (iv) In vitro neutralisation of SARS-Cov [43]. (B)
Titration of IgGs CR3006, CR3013, CR3014, and negative control IgG (Control) in an S565 fragment-coated ELISA [44]. (C) Wild-type SARS-CoV and a CR3014-
neutralization escape variant (E6) with combined CR3014 and CR3022 mAbs [45]. Reprinted with permission from Refs. [43–45].
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produce vaccine components [58]. Scientists have selected parts of
SARS-CoV2 that may trigger a severe immune response against the
virus. The mRNA vaccine dictates the human cells which viral proteins
should be biosynthesized. Since the body biosynthesizes protein by
vaccine mRNA, researchers can bypass the time-consuming and costly
process of producing vaccine proteins.

This strategy can be used to design vaccines against future viruses or
other infectious and contagious diseases. Meanwhile, other mRNA
vaccines against SARS-CoV2 and other diseases are still being tested.

The mRNA vaccine can be ready for initial immunization testing
within the next few months [58]. However, researchers must find some
pharmaceutical companies to produce the large amounts of mRNA that
are essential for the general public. Indeed, the experience with MERS
vaccine is an example of how long it typically takes to make sure a
vaccine is safe and effective. The company conducted initial safety
testing of the MERS vaccine in a phase I clinical trial from February
2016 to May 2017 [59]. The vaccine was switched to Phase II testing in
August 2018 to test the safety of a larger number of people and to
determine whether the vaccine stimulates the immune system to pro-
duce protective Abs [60]. Even if everything goes smoothly, the MERS
vaccine must pass the phase III safety and efficacy test before being
approved by the US Food and Drug Administration, and vaccines and
medicines will then become publicly available [60]. Using some well-
developed devices, researchers can perform experiments over several
weeks. The laboratory device may be improved in the next few weeks.
Indeed, the emergence of the SARS-CoV2 has forced the researchers to
look into speeding up their efforts. However, we estimate that it will
take at least a year to prepare the SARS-CoV2 ESV.

Although, vaccines help people avoid becoming infected with pa-
thogens, it may not help as soon as they become infected. However,
protective mAbs can both prevent and treat the infection. Abs in the
blood of people who have recovered from infection and become re-
sistant to the virus or bacteria that cause the disease often stay in the
body for several years or decades, and when mAbs later become

infected, they can protect the person. However, the important thing is
that these mAbs can protect the individual against other pathogens as
well. It takes weeks to months for the ESV to stimulate the immune
system to produce a protective level of mAbs. For example, Ebola
vaccines take at least a week to stimulate Ab production, but in the end,
they provide immediate protection. The companies are now producing
potential mAbs to fight the SARS-CoV2 based on the information that
they have learned from the SARS-CoV and MERS-CoV projects.

7. Conclusion

Most natural and synthetic compounds are involved in enhancing
vaccine efficacy, but toxicity is the most important problem in in-
troducing them for use in living organisms. Therefore, the design and
development of potential platforms is based on their safety and efficacy,
knowledge of the functional pathways, the activation of innate and
acquired immune system, and the ability to induce strong memory
immunity. Cellular proteins that induce immune responses expressed
extensively in host body tissues are promising options for development
of ESV. Despite extensive studies in the prevention and control of
COVID-19 to increase public health due to the variable nature of this
virus, the co-circulation of different subtypes, the emergence of mul-
tiple antigenic shifts and the ability of new strains to adapt to new
hosts, the effort to develop a comprehensive ESV continues with the
minimum side effects.
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Fig. 5. (A) Interaction of m396 and ACE2 with RBD, (i) Superimposed illustration of RBD-unliganded (red) and RBD-interacted Fab (blue), (ii) Comparison of the
RBD-Fab and the RBD-ACE2 interaction, (iii, iv) Conformational footprints of the mAb and ACE2 RBD, respectively demonstrated as red balls on the RBD surface
[46]. (B) M396 considerably neutralizes viruses pseudotyped with S-protein [47]. Reprinted with permission from Refs. [46,47].
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CoV2 S-protein RBD, (iv) Binding of mAbs to SARS-CoV2 S-protein RBD examined by ELISA [52]. (B) Binding representation of SARS-CoV2 S-protein RBD to ACE2
and mAbs [52]. Reprinted with permission form Refs [35,46,51–55].
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