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INTRODUCTION 
 
Autism spectrum disorder (ASD) is a complex 
neurological disorder that affects an individual’s 
development by impairing social interaction and 
communication and causes stereotypical behaviors that 
disrupt the anatomy and functional connectivity in the 
brain. Most common psychiatric comorbidities found to 
be associated with autism include anxiety and intellectual 
disability. Individuals with autism have impaired speech 
[1, 2] and tend to have limited social interaction mostly 
due to their own limitation of social skills and due to their 
failure to understand self-inner mental states [3]. The 
impairment of speech in affected individuals depends on  

 

the severity of the autism disorder as autistic individuals 
tend to repeat certain words or phrases they hear others 
say, their speech might sound more formal and they 
exhibit repetitive behaviors [4]. The prevalence of autism 
is on the rise and the global prevalence of ASD has been 
reported to be 1 in 160 persons, according to the World 
Health Organization (WHO) (2014). Based on a parent 
survey, the recent prevalence of ASD in the U.S. is 
reported to be 1 in 45 children [5]. A study conducted in 
2006 in the United Kingdom reported an ASD prevalence 
of 38.9/10,000 in 9 to 10-year-olds [6], while another 
study conducted by the National Autistic Society (2014) 
reported that 1/100 children are affected with ASD. In 
Gulf Cooperation Council (GCC) countries, the 
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ABSTRACT 
 
Autism spectrum disorder (ASD) is a genetic heterogeneous neurodevelopmental disorder that is characterized 
by impairments in social interaction and speech development and is accompanied by stereotypical behaviors 
such as body rocking, hand flapping, spinning objects, sniffing and restricted behaviors. The considerable 
significance of the genetics associated with autism has led to the identification of many risk genes for ASD used 
for the probing of ASD specificity and shared cognitive features over the past few decades. Identification of ASD 
risk genes helps to unravel various genetic variants and signaling pathways which are involved in ASD. This 
review highlights the role of ASD risk genes in gene transcription and translation regulation processes, as well 
as neuronal activity modulation, synaptic plasticity, disrupted key biological signaling pathways, and the novel 
candidate genes that play a significant role in the pathophysiology of ASD. The current emphasis on autism 
spectrum disorders has generated new opportunities in the field of neuroscience, and further advancements in 
the identification of different biomarkers, risk genes, and genetic pathways can help in the early diagnosis and 
development of new clinical and pharmacological treatments for ASD. 
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prevalence of ASD was reported to range from 1.4–29 in 
10,000 individuals [7]. The rise in the prevalence of ASDs 
is a result of many contributing factors. Some researchers 
believe in the biome depletion theory, which states that an 
overreaction of maternal immune response is an 
underlying factor responsible for the development of ASD 
in children. In addition, as our immune systems co-evolve 
with many types of pathogens, a lack of these pathogens 
within urban and developed areas can cause over-
reactivity of the immune system [8]. Other factors include 
increased exposure to environmental toxins that can 
damage the genetic structure of an individual, thereby 
increasing genetic susceptibility (Figure 1) [9–11]. A 
study by Velasquez-Manoff (2012) reported that 
autoimmune disorders and immune dysregulation in 
pregnancy are also found to contribute to the rise of ASD 
[12]. The genetics involved in autism are of considerable 
importance as they help us identify various genes, 
proteins, and signaling pathways found in ASD. The 
study of genes and genetic changes found in patients with 
ASD can help unravel the genetic architecture underlying 
ASD and can aid in early diagnosis and clinical treatment. 
In the present study, the genomic changes that occur in 
ASD with different genetic variations will be discussed, 
and the role of ASD risk genes in gene transcription and 
translation regulation processes, neuronal activity 
modulation, synaptic plasticity, signaling pathways, and 
the novel candidate genes that play a significant role in the 
pathophysiology of ASD will be examined. 
 
Genetic basis of autism  
 
Many genes associated with ASD are found in circadian 
entrainment, which indicates a heterogeneous genetic 
etiology for ASD [13]. Some rare mutations cause the 
development of syndromic autism. For example, about 
30% of patients with Fragile-X Syndrome (FXS) have 
also been found to develop ASD [14]. A subgroup of 
patients with Cortical Dysplasia-focal Epilepsy (CDFE), 
Rett Syndrome and Tuberous Sclerosis Syndrome have 

also found to express autistic behavior [15, 16]. Copy 
number variations (CNVs) that involve the deletion or 
duplication of loci are also responsible for syndromic 
autism. For example, mutations in SHANK3/PROSAP2 
that are found in Phelan-McDermid syndrome are 
associated with ASD [17]. Mutations in different genes, 
such as STXBP1, KCNQ4, MYH14, GJB6, COL11A1, 
UBE3A, KATNAL2, and THRA, have also been 
associated with ASD [13]. 
 
Common genetic variants 
 
Three independent genome-wide association studies 
(GWAS) have reported genetic variants commonly 
associated with autism. Out of these 3 studies, 2 have 
used 0.5 million single nucleotide polymorphisms (SNPs) 
and have discovered that they are linked at 5p14.1 [18] 
and 5p15.2 [19] loci. Similarly, in a different study, other 
associations for rs4141463 have been found at loci 
20p12.1. by using one million SNPs [20]. Another ASD 
risk gene, CNTNAP2, has been found to have a common 
genetic SNP variation caused by an alteration of 
functional connectivity in the frontal lobes [21]. A high 
contribution of these common genetic variants has been 
associated to autism liability, estimated to be about 40% 
in simplex and 60% in multiplex families. The 
contribution of these common variants is of great 
significance for better diagnosis in autism but the SNPs 
associated with ASD are still under research [22]. 
 
Copy number variations (CNVs) 
 
CNVs are found to be a source of autism risk. A study 
conducted on autism-affected families reported excess 
gene duplications and deletions in affected autistic 
individuals compared to the normal controls [23]. Rare 
de novo and inherited events found in pathogenic CNVs 
involved genes associated with autism, such as CHD2 
[24–26], HDAC4, and GDI1, SETD5, HDAC9, and 
MIR137 [23]. CNVs were found to be highly penetrant 

 

 
 

Figure 1. Flow diagram outlining the factors that contribute to autistic phenotypes. 
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in females with autism and in individuals with X 
syndrome protein targets. It was also found that de novo 
CNV-affected genes converge on neuronal signaling 
and networks associated with the functioning of synapse 
and regulation of chromatin [23].  
 
In an ASD gene study, 6 risk loci, namely 1q21.1, 
3q29, 7q11.23, 16p11.2, 15q11.2-13, and 22q11.2, 
associated with autism disorders were reported by 
analyzing de novo CNVs that were tested within 2,591 
families. The study found out that genes within small 
de novo mutations tend to overlap with high risk genes 
associated with ASD [27]. Most of the affected 
individuals were found to carry a de novo causative 
mutation, as well as deleterious mutations [28]. Gene 
disrupting mutations, such as frame-shift, splice site, 
and nonsense mutations, were most frequently found 
in individuals with ASD [28]. Three percent of the 
autistic individuals were found to have gene disrupting 
mutations that were present on both maternal and 
paternal chromosomes, and 2% of autistic males had a 
1.5 fold increase in complete loss of function 
mutations for X-chromosomes, compared to males 
without ASD [29].  
 
Gene aberrations associated with ASD 
 
A study associated with the identification of novel 
candidate genes in ASD-associated pathways revealed 
several deletions and gene disruptions in many ASD 
cases, wherein eighteen deletions were detected at the 
3p26.3, 4q12, 14q23, and 2q22.1 regions [30]. 
Candidate genes associated with GABAergic signaling 
and neural development pathways were revealed by the 
evidence provided by case specific CNVs. These genes 
include a GABA type A receptor associated protein 
(GABARAPL1), a postsynaptic GABA transporter 
protein (SLC6A11), and a GABA receptor allosteric 
binder known as diazepam binding inhibitor (DBI). A 
genetic overlap between ASD and other 
neurodevelopmental disorders was also reported, 
including genes such as GRID1, GRIK2, and GRIK4, 
which include glutamate receptors, NRXN3, SLC6A8, 
and SYN3, and are responsible for synaptic regulation. 
These CNVs are associated with ASD heritability and 
can help to uncover new etiological mechanisms 
underlying ASD [30]. 
 
Genetic variation in ASD 
 
There is a substantial variation in the ASD genetic 
architecture and the heterogeneity of ASD is due to the 
genetic variability that underlies this disorder. A single 
mutation is enough to cause ASD and several thousand 
low-risk alleles can contribute to the development of 
ASD [31]. There are many rare variants that can 

contribute to the risk of developing ASD and there is 
extreme locus heterogeneity in ASD due to copy-
number variant data and mutations involving the 
alteration of de novo proteins [32]. Many of the ASD 
genes share a common pathway that affects neuronal 
and synaptic homeostasis. For example, social 
impairment and speech problems in ASD individuals 
are due to a single copy mutation SHANK3 [33]. This 
shows that many of the ASD associated genes are part 
of a large number of molecular pathways or 
mechanisms that are related to other neuropsychiatric 
conditions [34]. 
 
Novel candidates in ASD 
 
Many mutations have been reported in CHD8, an ATP-
dependent chromodomain helicase responsible for the 
regulation of CTNNB1 [35] and p53 pathway [36]. 
CHD8 has been investigated in many exome studies and 
is considered as a novel candidate for ASD [37–39]. In 
addition, the SCN2A gene, which encodes a voltage-
gated sodium channel, plays an important role in the 
generation of action potentials in neurons. These 
mutations are most frequently found in Identity 
Disorder (ID), with some cases also showing signs of 
autism [40, 41]. In autism probands, three truncating 
mutations of GRIN2B and SYNGAP1 and TBR1 
associated with dual-specificity tyrosine phosphorylation-
regulated kinase 1A (DYRK1A) play an important role in 
excitatory signaling in ASD. While, GRIN2B is 
associated with learning and memory, and targeted 
sequencing has linked it with various neurodevelopmental 
disorders, including ASD [38].  
 
An ASD study showed the differential expression of 
autism candidate genes in lymphoid cell lines of 
autistic individuals [42]. The study reported the 
upregulation and increased expression of protein 
argininosuccinate synthetase (ASS), which acts as an 
important brain signaling molecule and is involved in 
controlling the rate-limiting step in the production of 
nitric oxide (NO), is associated with ASD [42]. An 
upregulation in the mRNA expression levels of 
ITGA2B encoding glycoprotein αIIβ was found in 
ASD affected individuals. This elevated level of 
expression can disrupt the cellular morphology in 
affected individuals [43]. Another autism study that 
identified abnormal brain gene expression patterns in 
autistic brains via whole-genome analysis of mRNA 
levels and CNVs reported that in young autistic 
individuals, the highly dysregulated pathway was the 
adenosine A2A receptor-signaling pathway [44]. 
Adenosine receptors play an important role in the 
development and functioning of the brain, as well as 
the synaptic plasticity, motor, and cognitive function 
and neuronal stem cell proliferation regulation [44]. 
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Many studies have reported the association between 
Purkinje cells (PCs) and ASD [45–47]. Additionally, 
many studies have reported a significant reduction in 
the number of PCs in the post-mortem brains of 
patients who were affected with ASD [48–51]. Lower 
expression of neurotrophins NT3 and NT4, which play 
an important role in the climbing fiber system 
development in PCs, was also reported in affected 
autistic individuals [52]. Downregulation of neural and 
muscle specific alternative splicing regulator 
(A2BP1/FOX1) [53] and the MOCOS gene was also 
reported in ASD individuals [54]. Language and 
speech disorders in ASD were found to be result of 
mutations in the FOXP2 and CNTNAP2 genes [55]. 
The FOXP1 gene, which is a transcription repressor 
and is important for normal brain development and 
functioning, was found to be elevated in individuals 
with ASD. This indicates the involvement of FOXP1, 
FOXP2, and CNTNAP2 genes in the pathogenesis of 
ASD [56]. Synaptic components such as Nav1.2 
channel, which is a voltage-gated ion channel involved 
in action potential propagation, neuronal pacemaking 
and Cav1.3 channel, which is an excitability-
transcription coupling were found to be mutated in 
autistic patients [57]. Another ASD study showed the 
presence of an additional copy of 22q13/SHANK3 in a 
boy with Asperger syndrome that caused severe social 
communication impairment [58]. The SHANK3 gene 
is involved in the enlargement of dendritic spine heads 
as evidenced in mice [59]. There have also been 
reports of X-linked mutations in NLGN3 and NLGN4 
in ASD that affect synapse formation and 
maintenance, which is important for speech 
development and social communication [58]. An ASD 
study that identified rare variants in mGLUR signaling 
pathway reported rare and deleterious variants in the 
SHANK3, TSC1, and TSC2 genes in non-syndromic 
autism individuals [60]. HOMER1, which is an autism 
risk gene, is considered an important component of the 
postsynaptic density (PSD) proteins network. This 
network creates a link between gene products 
associated with autism and neuroligins [60]. 
Disruption of mGluR5-Homer1 interactions can cause 
the development of phenotypes associated with autism 
[61]. Mutations in SYNGAP1, which is involved in the 
negative regulation of the Ras/ERK pathway and 
synaptic transmission, have also been identified in 
ASD [60]. The UBE3A and GABA receptor genes, 
which are expressed in the central nervous system, are 
located at the15q11-13 locus, and are also associated 
with autism [62]. O’Roak, Vives, Fu, et al. (2012) also 
discovered that six genes (GRIN2B, TBR1, CHD8, 
PTEN, TBL1XR1, and DYRK1A) contribute to 1% of 
ASDs and were found to be sporadic. Parikshak et al. 
[63] found that genes associated with autism tightly 
bind together in modules that are responsible for 

human cortical development and biological functions, 
including transcriptional regulation and the 
development of synapses. 
 
Disruption of the NRXN1 gene in autism reported that 
in autistic individuals, the amino acid alterations in the 
NRXN1 gene are not frequently present as compared to 
non-autistic individuals in an NRXN1 gene coding 
sequence scan [64]. Two missense changes seen in the 
residues of the leader sequence of a-NRXN1 and 
epidermal growth factor (EGF)-like domain suggests 
these changes in NRXN1 might be a contributing factor 
in developing autism [64]. 
 
Autistic phenotypes 
 
To identify the genes affected by rare de novo CNVs, 
in autism, a network-based analysis of genetic 
associations (NETBAG) is used [65]. The network 
forming genes are associated with autism and are 
involved in the development of synapse, neuron 
motility and axon targeting. In addition to the WNT 
signaling pathway, which is responsible for neural 
circuits formation and dendrite morphogenesis 
regulation, there is a reelin signaling pathway that 
plays a significant role in neuron motility and autistic 
phenotypes [66, 67]. This network also includes 
deleted in colorectal carcinoma (DCC) protein, which 
is responsible for guiding the axon in autism disorder 
[68]. In addition, other proteins involved in the 
regulation of actin network that are used in axonal 
morphogenesis, such as p21-activated kinase (PAK) 
and LIM-domain containing protein kinase (LIMK) 
and any malfunction in these proteins influences 
autistic phenotypes as they play a significant role in 
dendrite/axon signaling [65]. Autistic individuals are 
also found to have increased density of spine in 
portions of cerebral cortex with over-connectivity in 
local brain regions [69, 70]. This indicates that 
malfunctioning of the neuronal and synaptic 
connectivity is central to autism, and several genes 
could be related to postsynaptic density and actin 
remodeling that could contribute to autistic phenotypes 
[65]. Also, higher ASD rates have been reported in 
individuals with low copy repeats LCR-A to B region 
deletion compared to individuals without deletions. This 
might contribute to autistic phenotypes in disorders 
related to 22q11.2 (also known as DiGeorge syndrome) 
in addition to decreased adaptive functioning [71]. 
 
There are ASD risk genes that contribute to autistic 
phenotypes and are associated with different lobes of 
the brain (Figure 2). The frontal lobe is the largest and 
controls different cognitive functions such as memory, 
behaviors, language and voluntary movements. The 
parietal lobe controls sensorimotor planning, language 
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and touch. The temporal lobe is mainly involved in 
controlling the semantic and recognition memory and 
the occipital lobe, which is the smallest lobe in the brain 
mainly controls visual processes [72]. One of the most 
important ASD risk gene is CNTNAP2 and it is found 
to be associated with frontal and occipital lobes of the 
brain [70, 73]. While NRXN1 is found to be linked with 
parietal and frontal lobes [74]. FOXP2 is found to be 
linked with temporal lobes and MET in occipital and 
temporal lobes [75]. Genetic findings have associated 
cadherins as an ASD risk gene [18, 76–78] and a recent 
study identified the expression of cadherins CDH9 and 
CDH11 in the ASD-relevant areas of the cerebellum in 
mice and reported high expression of these genes in 
segregated populations of the Purkinje cells present in 
the cerebellum [79].  
 
Gene regulation in ASD 
 
DNA methylation  
A global methylation profiling study in lymphoblastoid 
cell lines derived from autistic monozygotic twins and 
their non-autistic siblings revealed decreased expression 
of RORA and BCL-2 proteins in autistic individuals as 
compared to the controls [80]. The study confirms how 
DNA methylation in idiopathic autism affects the 
epigenetic regulation of gene expression and the 
molecular changes associated with brain pathobiology 
in ASD [80]. 

Postsynaptic translational regulation 
Postsynaptic density plays a critical role in the neural 
transmission and maturation of synapsis and forms the 
basis of the etiology of ASD [81]. The encoded proteins 
of autism associated genes located in the postsynaptic 
density are associated with FMRP, and there is a 
localization of mutated protein found in Fragile-X 
syndrome, which is responsible for the synthesis of 
proteins at the postsynaptic density [82]. The SHANK2 
and SHANK3 genes are found in the postsynaptic 
density, which bind to neuroligins and are involved in 
the glutamatergic response in ASD, as well as in 
language and social cognition development [83]. Other 
candidate genes of autism include NF1, PTEN, MET, 
TSC1, TSC2, and CYFIP1 that are located in the 
duplication region (15q11–13) [84–87]. Mutations in 
ASD genes also implicate the protein metabolism at the 
synapse that is modulated by the ubiquitination 
pathways [88]. For example, UBE3A, which is the 
Angelman syndrome gene, has an important role in this 
pathway, in addition to genes such as FBXO40, 
RFWD2, USP7, and PARK2 [89, 90]. This indicates 
that remodeling and maintenance of the synapse 
functioning is an important determinant in the 
pathology of ASD [91]. 
 
Modulation of neuronal activity  
Mutations in neurexin and neuroligin families are 
associated with the pathophysiology of ASD [92]. 

 

 

 
 

Figure 2. Diagram showing ASD risk genes and autistic phenotypes associated with different lobes of the brain. CNTNAP2 is 
found to be associated with frontal and occipital lobes of the brain [70, 73]. NRXN1 is found to be linked with parietal and frontal lobes [74]. 
FOXP2 is found to be linked with temporal lobe and MET in occipital and temporal lobes [75]. Cadherins (CDH9 and CDH11) are found to be 
linked with the cerebellum region [37].  
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Together, neurexins and neuroligins are involved in the 
modulation of excitatory and inhibitory synaptic 
functions [93]. The genes of these super families that 
play a significant role in ASD include NRXN1, 
NLGN1, NLGN3, CNTN4, CNTN6, and CNTNAP2 
[94]. Neuronal activity is influenced by genes such as 
GRIN2B, SCN1A, and SCN2A, and they are involved 
in the mediation of synaptic plasticity. In addition, they 
encode for ion channels [32]. Neuronal activity that 
regulates transcription factors also regulates other 
genes, including UBE3A, PCDH10, DIA1, and 
NHE9/SLC9A9 [95, 96]. Imbalances in excitation and 
inhibition in brain regions have been found in knockout 
ASD mouse models of genes, such as NRXN1, 
SHANK3, FMR1, CNTNAP2, and these knockout 
models had social interaction impairments and reduced 
ultrasonic vocalizations that overlapped behavioral 
endophenotypes relevant to ASD [91]. 
 
Synaptic plasticity 
Synaptic plasticity is affected by cytogenetic 
abnormalities, such as the duplication of maternal 
allele 15q11–q13 and genetic syndromes like Rett or 
Fragile-X syndrome associated with ASD. In 
idiopathic autism, most commonly identified synaptic 
gene mutations include NLGN4X [96, 98] or 
SHANK3 [33] and NLGN3. Abnormalities in the 
formation of synapse and disrupted pathways, such as 
GTPase/Ras signaling and neurogenesis, are revealed 
by the analysis of genes affected by rare CNVs [99, 
100]. The identification of specific ASD genes are 
found to be resisted by some de novo or inherited 
CNVs, for example, the 16p11 region, recur at the 
same locus in individuals who are not related [101]. 
This indicates a locus and allelic heterogeneity in 
ASD [101]. Another X-linked gene GLRA2 deletion 
has been identified in autism disorder [102]. This 
gene encodes the glycine receptors (GlyR) α2 
subunits. These glycine receptors are involved in the 
mediation of inhibitory neurotransmission in the 
nervous system. Mutations in GLRA2 results in 
synaptic plasticity, language delay, cognitive and 
social impairments, as well as altered glycinergic 
signaling [102]. Mutations in Calcium voltage-gated 
channel subunit alpha1 C (CACNA1C) might 
contribute to NMDA-receptor independent synaptic 
plasticity associated with ASD [103]. A study showed 
that mutations in CACNA1C cause alterations in 
calcium homeostasis that contribute to the 
development of ASD [104]. 
 
Genes and brain connectivity 
 
Genes involved in ASD are related to each other within 
many processes, including neuronal and synaptic 
development, modulation, protein synthesis, calcium 

signaling, oxytocin pathways, mTOR, and various 
transcriptional mechanisms (Figure 3) [105]. ASD 
potential endophenotypes include brain connectivity 
and morphology alterations [106]. A study by Frazier  
et al. (2014) on ASD subjects carrying heterogenous 
germline PTEN mutations showed cognitive 
malfunctioning and abnormalities in the white matter 
with reductions in PTEN protein compared to the 
healthy controls [117]. Alterations were also found in 
the gene-brain pathway based on the rs1858830 MET 
risk allele by differences seen in activation and 
deactivation patterns of fMRI in response to social 
stimuli, as well as the structural and functional 
connectivity in the temporal-parietal region of the brain 
in ASD subjects [108]. 
 
Genome-wide association study (GWAS) 
 
Many GWASs have been performed in ASD [89, 109–
111]. Within the intergenic region between CDH9 and 
CDH10 cell adhesion genes, a linkage disequilibrium 
block has been reported [18]. Another gene called 
Semaphorin 5A (SEMA5A), which plays an important 
role in axonal guidance and the development of 
neurons is found to be a susceptibility gene for ASD as 
a study has found a de novo microdeletion of 
SEMA5A in ASD and ID patients [112]. There was 
another genome-wide significance reported in the 
macro domain containing 2 (MACROD2) gene at an 
intronic SNP [113]. Replication and identification  
of a common variation on chromosome 5p14.1 
associated with autism was reported by another GWAS 
study [57, 114]. 
 
Wnt-signaling in ASD  
 
Wnt-signaling plays an important role in the 
differentiation and morphology of neurons, and 
neurotransmission [115]. This pathway is found to be 
dysregulated in individuals affected with ASD [116]. 
Dysregulation of this pathway is found to affect the 
cortical and spine patterning and morphology with 
cytoarchitecture disruption in the cortex of the affected 
brains of autistic individuals [117, 118]. Glycogen 
Synthase Kinase-3 (GSK3), which is a Wnt-signaling 
pathway component, plays an important role in ASD 
development as it was found to be hyperactive and 
caused impaired social interaction and increased anxiety 
in a GSK3 knockout mouse model [119]. Another gene, 
known as CHD8, which regulates the Wnt signaling 
pathway and promotes transcriptional factor activity in 
the brain, is found to be associated with ASD [120]. 
Knockout of CHD8 gene during cortical development 
resulted in the downregulation of the CHD8 gene, 
which lead to the reduction of the TCF/LEF 
transcription factor family, causing a defect in the 
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development of the brain [121] (Figure 4). This proves 
that the dysregulation of the Wnt-signaling pathway 
affects the cortical patterning and synaptic development 
in individuals with ASD [122]. 
 
The DISC1 gene is associated with Wnt signaling and 
ASD and is involved in the inhibition of GSK3β that 
leads to the activation of β-catenin; thus, it acts as a 
positive regulator of the Wnt/β-catenin signaling [123]. 
Mutations in DISC1 fail to inhibit GSK3β and cause 
suppression of the Wnt/β-catenin signaling pathway 

[124]. Mutations in an intracellular Wnt/β-catenin 
signal pathway protein, DIX domain containing-1 
(DIXDC1), displayed impairment in social behavior, 
coupled with anxiety and depression in mice models 
[125] and also showed reduction in the dendritic spines 
and glutamatergic synapses in brains of the 
experimental mice. It has been suggested that the 
functional sequence variants of DIXDC1 can manifest 
as behavioral syndromes in human due to its restricted 
tissue distribution property in the late developmental 
and postnatal central nervous system [126]. The TSC1 

 

 
 

Figure 3. Gene interaction map for ASD genes generated using string1 webserver. Thickness of the line indicates the strength of 
the interaction between the genes. All sources are used to generate the interaction model with default medium confidence interaction score 
of 0.4. Ref: https://string-db.org/. 

https://string-db.org/
https://string-db.org/
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and TSC2 genes are also found to play a significant role 
in Wnt signaling [127]. These genes are associated with 
GSK3β and Axin and help in the degradation of β-
catenin leading to the inhibition of Wnt/β-catenin 
mediated gene transcription. Mutations in these genes 
are found to increase Wnt signaling, while 
overexpression of these genes caused reduction in 
Wnt/β-catenin signaling [119, 128, 129]. Dedicator of 
cytokinesis 4 (DOCK4) is another gene that plays an 
important role in Wnt signaling [123]. DOCK4 is a part 
of the destruction complex and its decreased expression 
is found to reduce the transcriptional activity induced by 
Wnt signaling [123]. In autism, levels of DOCK4 are 
found to be diminished, which leads to reduced Wnt 
signaling and the growth of dendrites [123, 130]. 
Several genes belonging to the non-canonical Wnt 
signaling pathway are found to be associated with 
autism [119]. The Prickle2 (Pk2) gene interacts with 
post synaptic density 95 (PSD-95). Mouse models with 
Prickle2 mutations displayed altered social, learning, 
and behavioral abnormalities, in addition to reductions 
in dendrite branching. Mutations in Ankyrin-3 (ANK3) 
and Prostaglandin E2 (PGE2) genes are associated with 
ASD [131–133]. ANK3 and PGE2 genes are important 
in neuronal development. PGE2 is regulated by 
Cyclooxygenase-2 (COX2) and is the main regulator of 
PGE2 synthesis. Studies have shown there is an 
association of abnormal COX2/PGE2 signaling with 
ASD [133]. All the findings suggest that both activation 
and inhibition of Wnt signaling pathway are associated 
with autism risk. 
 
Presynaptic Wnt signaling  
 
Canonical Wnt signaling or Wnt/β-catenin signaling 
plays an important role in the development of synapsis 
in the pre- and post-synaptic terminals. The release of 
neurotransmitters at the presynaptic terminal is 
triggered by the binding of Wnt ligand to a receptor that 
activates Dishevelled-1 (DVL1). This binds to the pre-
synaptic proteins, such as Synapsin-1 (SYN1) and 
Synaptotagmin (SYT) that are associated with ASD and 
enhance the clustering of synaptic vesicles (SV’s) and 
release of neurotransmitters. On the other hand, cell 
adhesion proteins, such as cadherins and cell adhesion 
complexes (NLGN/NRXN), play an important role in 
the modulation of presynaptic terminal activity. Their 
interaction regulates both excitatory and inhibitory 
synaptic function, disrupting the E/I balance in the 
postsynaptic neurons. β-catenin is bound to cadherins 
and their interaction is essential for the recruitment of 
SVs to synapses. MET, a receptor for hepatocyte 
growth factor (HGF), is found to have a genetic link 
with ASD. MET phosphorylates Tyr-142 of β-catenin 
and promotes its dissociation from the cadherins leading 
to its release in the postsynaptic terminal [119] (Figure 

4). Wnt/β-catenin signaling plays a significant role in 
ASD as it is involved in stabilizing the synaptic 
structure by enhancing clustering of SVs, release of 
neurotransmitters and modulation of cell adhesion 
complexes [134]. 
 
Postsynaptic Wnt signaling  
 
Activation of the Wnt/β-catenin signaling causes Wnt 
ligands to bind to the Frizzled-9 (FZD9) receptor that 
recruits the multi-protein destruction complex 
consisting of scaffolding proteins (APC and Axin), 
phosphatases (PP1 and PP2A), and kinases (GSK3β and 
CK1). This activation inhibits GSK3β and prevents the 
degradation of β-catenin, thus stabilizing it and 
translocating it to the nucleus, leading to gene 
transcription [123] (Figure 4). Conversely, canonical 
and non-canonical Wnt signaling are associated with 
Ca2+ signaling. Wnt ligands are found to increase the 
influx of Ca2+ in neurons, and voltage gated Ca2+ 

sensitive channels, like NMDAR, allows the entrance of 
Ca2+ in the postsynaptic membrane that allows long 
term synaptic potentiation (LTP) establishment. Both 
high and low responses of LTP are associated with 
ASD. Ca2+ causes the activation of CAMKII, which is 
involved in the reorganization of cytoskeleton, 
calcineurin (CaN), a calcium dependent protein 
phosphatase and protein kinase C (PKC). The activation 
of CAMKII leads to the activation of transcription 
factor CREB, causing its translocation to the nucleus, 
which leads to gene transcription [135]. 
 
Hyperactive pro-growth signaling pathways involved 
in ASD 
 
mTOR 
mTOR, a highly conserved serine/threonine kinase, is 
important in the regulation of cell growth, cell 
metabolism and cell survival processes [136]. The 
catalytic subunits of mTOR consist of two structurally 
and functionally distinct protein complexes known as 
mTORC1 and mTORC2, which are involved in 
integrating information in the brain received from 
various intracellular and extracellular responses [137]. 
As mTOR is shown to be a major role player in the 
regulation of various processes that control synthesis of 
proteins, dynamics of actin cytoskeletal, regulating 
energy homeostasis and metabolism, the dysregulation 
of these pathways can lead to disorders including ASD, 
and neurodegeneration [138–140]. The disruption of 
mTOR pathway is associated with ASD and several 
other disorders that are caused by genetic alterations in 
mTOR pathway members, such as TSC1, TSC2, and 
PTEN. Also, mTOR activity levels can serve as 
indicators of disrupted growth states in the brain [141]. 
Studies have shown that several mTOR substrates such 
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as p70 ribosomal S6 kinase 1 (S6K1) and the eukaryotic 
translation initiation factor 4E-binding proteins (4E-
BPs) are found to be associated with ASD [142]. In 
particular, deletion of 4E-BP2, which is also a 
downstream effector of mTOR results in elevated 
dendritic spine density, and various behavioral 
abnormalities that are reminiscent of ASD [143–146]. 
mTORC1 complex promotes the ribosome production 
and translation by phosphorylating S6K1 through 
various effectors [147]. Hyperactivation of mTORC1 is 
responsible for ASD symptoms as one study has 
showed that mTORC1 hyperactivation in cerebellar 
Purkinje cells resulted in autistic like behaviors in mice 
[148] and it can be targeted for the treatment of ASD by 
modulating its expression.  

Brain- derived neurotrophic factor (BDNF) 
Neurotrophins play an important role in the nervous 
system and are involved in the regulation of neuronal 
development, survival, morphogenesis, differentiation 
and synaptic plasticity [141, 149]. The most abundant 
neurotrophin that is found in the central nervous system 
(CNS) is the brain- derived neurotrophic factor (BDNF) 
[149]. The control of neurotrophin signaling at different 
epigenetic, transcriptional and translational levels are 
critical for the overall connectivity of neurons and other 
physiological functions, such as cell fate, axon and 
dendritic growth and synaptic pruning [150, 151]. The 
dysregulation of neurotrophin signaling has been reported 
in various neurological disorders, such as Alzheimer’s, 
Huntington’s disease and autism [152–154]. Under 

 

 
 

Figure 4. Wnt and Ca2+ pathway in ASD. Wnt binds to LRP5/LRP6 receptor and stabilizes β-catenin in the nucleus and cytoplasm. High 
influx of Ca2+ ions causes activation of CAMK and CREB genes which initiates transcription in the postsynaptic side. Genes mutated in ASD 
are shown in red boxes.  



www.aging-us.com 10751 AGING 

normal conditions, receptors such as FMRP, TSC1/2, 
and PTEN regulate the excitatory activity induced by 
BDNF by acting on its receptor TrkB. However, in 
pathological conditions such as ASD, lack of this 
regulation leads to disruption of synaptic functions 
[155]. The pro-growth signaling pathways induced by 
other trophic factors such as insulin-like growth factor 
(IGF), vascular endothelial growth factor (VEGF), glial-
derived neurotrophic factor (GDNF) and ciliary 
neurotrophic factor (CNTF) are found to be 
dysregulated in ASD and used to categorize ASD into 
neural overgrowth or undergrowth types [141]. 
 
ERK/MAPK 
ERK1/2 are members of the MAPK signaling cascade and 
play important role in the regulation of cell growth, 
proliferation, differentiation and apoptosis [156]. 
MAPK/ERK pathway is involved in the signal 
transduction from cell surface receptors to the nucleus and 
they respond to growth factors, oxidative stress, 
chemokines and cytokines [157]. The activation of 
ERK1/2 is essential for dendritic spines formation and 
stabilization [158, 159] as well as supports the 
development of cerebral cortex by regulating cell cycle in 
neural progenitor cells proliferation. It is observed that the 
ERK/MAPK signaling interacts with many genes and 
CNVs implicated in ASD [160]. Activated or blocked 
levels of phospho-ERK1/2 are found to be associated with 
autistic phenotypes [161, 162]. Thus, targeting the 
ERK/MAPK pathway can be used to treat cognitive and 
behavioral impairments implicated in ASD [160] and a 
recent study performed in a mouse model with 
16p11.2 deletion, which is a CNV associated with autism, 
showed that treatment with ERK inhibitor during period 
of development rescued anatomical and behavioral 
deficits in the mice [163]. 
 
Other signaling pathways involved in ASD 
 
There are many ASD genes that have been associated 
with different signaling pathways and that contribute to 
different ASD phenotypes (Table 1). One such pathway is 
the Calcium (Ca2+) and calmodulin (CaM) signaling 
pathway. These pathways play a significant role in the 
connectivity of neurons and functioning of the synapse, so 
dysregulation of this pathway might be responsible for the 
development of ASD [164, 165]. Impaired Ca2+ signaling 
has been found in many ASD individuals [166–168]. In 
skin fibroblasts derived from ASD individuals, the agonist 
evoked Ca2+ signaling was found to be dysfunctional 
[167]. Ca2+ signaling dysregulation and activity-
dependent gene transcription changes were reported in a 
study involving induced Pluripotent Stem Cells (iPSC) 
that were derived from ASD individuals diagnosed with 
Timothy syndrome [169]. A study identified the common 
variants of ASD risk genes that regulated FMRP signaling 

showed that a SNP in the calcium/calmodulin-dependent 
kinase IV (CaMKIV) gene, which is a positive regulator 
of the FMRP transcription, causes a higher risk for the 
development of ASD [170]. Similarly, a de novo mutation 
of Glu183 to Val (E183V) in the catalytic domain of 
CAMKIIα increased dendritic branching and decreased 
synaptic transmission with reduced dendritic spine density 
causing ASD-related behaviors in mice [171]. 
 
Another signaling pathway known as Sonic hedgehog 
(SHH) plays a major role in the developmental 
processes of multicellular embryos [172]. It is also the 
main component involved in the regulation of neural 
patterning and polarity of the CNS [173]. Within the 
forebrain, hindbrain and spinal cord, SHH signaling 
paces up proliferation and axonal targeting [174]. The 
SHH pathway has also been implicated in ASD, and 
mutations have been observed in patched domain-
containing 1 (PTCHD1). A deficiency of this gene in 
male mice caused synaptic dysfunction and abnormal 
neuronal excitations leading to hyperactivity and 
cognitive alterations [175, 176]. Mutations in genes 7-
dehydrocholesterol reductase (DHCR7) [177] and 
engrailed2 (EN2) have also been associated with ASD 
[178, 179]. In addition, similar cerebellar morphological 
abnormalities were displayed by mouse variants of EN2 
and autistic individuals [180]. 
 
Retinoic acid (RA), derived from vitamin A (retinol), is 
a lipophilic molecule that is essential for vertebrate 
development and acts as a ligand for retinoic acid 
receptors (RARs) and retinoid X receptors (RXRs) 
[181]. Vitamin A deficiency leads to a number of 
abnormalities and induces autistic-like behaviors in rats 
by suppressing the expression of CD38 in the 
hypothalamus of the offspring [182]. Retinoic acid-
related orphan receptor alpha (RORA) variants have 
been found in ASD, and decreased protein expression 
and abnormal methylation have been found in the 
autistic brain [80]. RORA regulates FOXN1 and 
ALDH1A3, enzymes that synthesize Retinoic Acid 
(RA). These RA signaling genes have been found to be 
associated with ASD [183]. 
 
Another signaling that is found to be associated with ASD 
is the fibroblast growth factor (FGF) signaling [184]. FGF 
belongs to the family of cell signaling proteins that play 
an important role in brain patterning and any 
dysregulation of FGF signaling can lead to various 
neurological disorders [185]. The pathological role of 
FGF signaling in ASD was displayed by a study that 
reported impairment of synapse formation in hippocampal 
neurons in mutant mice lacking FGF7 [184]. 
 
The TGF-β superfamily consists of TGF-β/activin and 
the bone morphogenetic protein (BMP)/growth that
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Table 1. Studies showing ASD associated genes that contribute to ASD phenotypes through different signaling 
pathways. 

Genes in ASD Genes affecting signaling 
pathways 

Mutations contributing to 
autistic phenotypes References 

Calcium/Calmodulin Dependent 
Protein Kinase IV (CAMKIV) CaM signaling Deficits in learning and memory 

formation [13, 119] 

Calcium/Calmodulin Dependent 
Protein Kinase II (CAMKIIα) CaM signaling Memory impairment [13, 171, 220] 

Synaptic Ras GTPase Activating 
Protein 1 (SYNGAP1) 

Excitatory/glutamatergic 
signaling 

Non-syndromic mental 
retardation [42, 221] 

Glutamate Ionotropic Receptor NMDA 
Type Subunit 2B (GRIN2B) 

Excitatory/glutamatergic 
signaling Deficits in learning and memory [42, 222] 

Fibroblast Growth Factor 7 
(FGF7) FGF signaling Epileptic seizures [116, 184] 

Metabotropic glutamate receptor 
(mGLUR5) FGF signaling Aberrant dendrite growth leading 

to cognitive abnormalities [119, 223, 224] 

Sodium Voltage-Gated Channel Alpha 
Subunit 1 (SCN1A) GABA signaling Cognitive and behavioral deficits [225, 236] 

Methyl-CpG Binding Protein 2 
(MECP2) GABA signaling Cognitive and behavioral deficits, 

impaired coordination  [194] 

Solute Carrier Family 6 Member 11 
(SLC6A11) GABA signaling Cognitive deficits  [30, 227] 

Neurexin 1 
(NRXN1) 

GABA and glutamate 
signaling 

Cognitive impairments, 
behavioral and learning deficits [228–230] 

Glutamate Ionotropic Receptor Delta 
Type Subunit 1 
(GRID1) 

Glutamate signaling Impaired emotional and social 
behaviors [231] 

Calcium Voltage-Gated Channel 
Subunit Alpha1 C 
(CACNA1C) 

Glutamate signaling 
Impaired memory, hippocampal 

plasticity and anxiety-related 
behavior 

[232] 

SH3 And Multiple Ankyrin Repeat 
Domains 1 
(SHANK1) 

Glutamate signaling Increased anxiety, reduced long-
term memory [31] 

SH3 And Multiple Ankyrin Repeat 
Domains 2 
(SHANK2) 

Glutamate signaling Increased anxiety, impaired social 
behaviors [31] 

Glycine Receptor Alpha 2 (GLRA2) Glycinergic signaling Deficits in learning and memory [102] 

Tuberous Sclerosis Complex Subunit 1 
and 2 (TSC1 and TSC2) mTOR signaling pathway Learning deficit and impaired 

social behavior [233] 

Neurofibromin 1 (NF1) mTOR signaling pathway Learning and attention deficits [233] 

Fragile X Mental Retardation 1 
(FMR1) mTOR signaling pathway Cognitive deficits, increased 

anxiety [233] 

Contactin Associated Protein Like 2 
(CNTNAP2) mTOR signaling Impaired social and repetitive 

behaviors [234, 235] 

Phosphatase and Tensin Homolog 
(PTEN) mTOR signaling pathway ASD like social behavior [233] 

Homer Homolog 1 HOMER1 mGLUR signaling Learning and memory deficits [60, 236] 
Molybdenum Cofactor Sulfurase 
(MOCOS) 

Purine metabolism 
pathway Autistic features [54] 

Retinoid-Related Orphan Receptor-
Alpha (RORA) 

Retinoic acid (RA) 
signaling Language impairment [80, 237] 
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Forkhead Box N1 (FOXN1) Retinoic acid (RA) 
signaling 

Brain alterations contributing to 
autistic features (hypothetical) [238, 239] 

Aldehyde Dehydrogenase 1 Family 
Member A3 (ALDH1A3) 

Retinoic acid (RA) 
signaling Autistic traits [183] 

Patched Domain Containing 1 
(PTCHD1) 

Sonic hedgehog (SHH) 
signaling Cognitive alterations [116, 175] 

7-Dehydrocholesterol Reductase 
(DHCR7) 

Sonic hedgehog (SHH) 
signaling Intellectual impairment [116, 177] 

Engrailed Homeobox 2 (EN2) Sonic hedgehog (SHH) 
signaling Deficits in social behavior [116, 240] 

Distal-Less Homeobox (DLX) TGF-β/BMP signaling Autism like behaviors [116, 241, 242] 

Thyroid Hormone Receptor Alpha 1 
(THRA1) Thyroid pathway Impaired memory, anxiety, 

locomotor dysfunction [243, 244] 

Parkinsonism Associated Deglycase 2 
(PARK2) Ubiquitin pathway Impaired speech and stereotypical 

behaviors [89, 245] 

Chromodomain Helicase DNA Binding 
Protein 8 (CHD8) Wnt signaling (canonical) Defective neural progenitor 

proliferation and differentiation [121] 

Catenin Beta 1 (CTNNB1)  Wnt signaling (canonical) Defect in brain development [246, 247] 

Prickle Planar Cell Polarity Protein 2 
(PRICKLE2) 

Wnt signaling (non-
canonical) 

Abnormalities in behavior, 
learning and social interaction [248] 

Transducin Beta Like 1 X-Linked 
(TBL1X) Wnt signaling Intellectual disability and autistic 

features [249] 

SH3 And Multiple Ankyrin Repeat 
Domains 3 (SHANK3) Wnt signaling Delayed or absent speech, 

intellectual disability [58, 246, 250] 

Adenomatosis Polyposis Coli (APC) Wnt signaling Memory impairment, autistic 
behaviors [251] 

Ubiquitin Protein Ligase E3A 
(UBE3A) Wnt signaling Developmental delay, learning 

difficulties [252, 253] 

Glycogen Synthase Kinase 3 Beta 
(GSK3β) Wnt signaling Anxiety and impaired social 

interaction [13, 254] 

Disrupted in Schizophrenia 1 (DISC1) Wnt signaling 

Failure is establishment of long-
term synaptic potentiation (LTP) 

causing learning and memory 
deficits 

[119] 

Dedicator of Cytokinesis 4 (DOCK4) Wnt signaling 
Suppression of dendrite growth 

causing impairments in cognitive 
and language abilities 

[123] 

Transcription Factor 7 Like 2 
(TCF7L2) Wnt signaling Cognitive and sensorimotor 

impairments  [119, 255] 

Neuroligin 3 and 4 
(NLGN3 and NLGN4) Wnt signaling 

Failure in synapse formation 
resulting in impaired 

communication abilities 
[97, 119] 

Dual Specificity Tyrosine 
Phosphorylation Regulated Kinase 1A 
(DYRK1A) 

Wnt signaling Head size abnormalities [134, 256] 

Transducin Beta Like 1 X-Linked 
Receptor 1 (TBL1XR1) Wnt signaling Delayed language development [257] 

DIX Domain Containing 1 
(DIXDC1) Wnt signaling Impaired social behavior and 

anxiety [116, 126] 

Ankyrin 3 (ANK3) Wnt signaling Autistic features [116, 258] 

Prostaglandin E2 (PGE2) Wnt signaling Hyperactivity, repetitive 
behaviors and anxiety [116, 259] 
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plays an important role in bone organogenesis [186]. 
BMPs are important in nervous system development 
and their signaling is dysregulated in ASD. BMPs are 
involved in the activation of downstream Smads 
proteins and also interact with other signaling pathways 
such as MAPK, mTOR, Notch, Hedgehog and Wnt 
[186]. Distal-less homeobox (DLX) genes encoding 
homeodomain transcription factors are found to be 
dysregulated in ASD that results in alteration of BMP 
signaling [187, 188]. DLX genes are involved in 
craniofacial patterning and survival of inhibitory 
neurons located in the forebrain [187]. One of the 
genes, DLX5 was found to be overexpressed in a cell 
line with upregulation of the BMP-binding endothelial 
regulator (Bmper) [189]. 
 
A common pathophysiological mechanism that is 
disrupted in ASD is the imbalance in excitatory and 
inhibitory neurotransmission. The excitatory mechanism 
is mediated by glutamate, while the inhibitory 
mechanism is mediated by GABA [190, 191]. Studies 
have reported abnormalities in glutamate and GABA 
receptors expression in the postmortem brains of 
individuals affected with ASD [192]. One of the genes 
affecting the GABA signaling is the MECP2 gene and a 
study showed that MECP2 transgenic mice displayed 
stereotypic behaviors, ataxia, motor dysfunction and 
seizures [193, 194]. 
 
Clinical aspects 
 
Clinical diagnosis of ASD is primarily based on the 
analysis of complex behavioral and functional changes in 
patients during their developmental process. Genetic tests 
such as comparative genomic hybridization and 
chromosomal microarray (CMA), and G-band 
karyotyping can be used for the early diagnosis of ASD. 
CMA has been shown to have higher clinical yield and 
higher resolution as compared to the G-band karyotyping 
[195, 196]. Karyotyping is used to detect chromosomal 
abnormalities such as translocations or small portions of 
chromosomes in different disorders [197]. G-banding 
also known as Giemsa banding is a staining technique 
that is used to differentiate the chromosomal arms [198]. 
In ASD, G-banding is considered useful as it can help in 
the detection of chromosomal abnormalities in 
individuals affected with ASD [199]. CMA test can 
detect gene duplications and deletions associated with 
ASD [200], and proves to be more efficient in analyzing 
different types of variations present in ASD.  
 
Improvement of emotional, physical and behavioral 
symptoms are one of the main aspects in the 
pharmacological treatment of ASD [201]. To treat these 
symptoms underlying ASD, one of the main goals is the 
identification of genes and biomarkers. Next generation 

sequencing (NGS) is a complex emerging clinical 
practice that is opening a new way for the identification 
of ASD-causing genes that includes abnormal social 
interaction and communication [202]. NGS helps in the 
identification of rare alleles, defects of single gene and 
variations of gene function. It includes whole-genome 
sequencing (WGS) and whole-exome sequencing 
(WES) [203, 204].  
 
A wide range of antiepileptic drugs (AEDs) are used for 
effective treatment of ASD. AEDs are psychotropic 
drugs that modulate electrochemical activity in the brain 
and can induce a positive or negative affect on mood 
and behavior [205]. One of the reasons of using AEDs 
in treating ASD is high incidence of epilepsy in most of 
the ASD affected individuals. Research has shown that 
AEDs treatment improved communication and behavior 
in ASD affected individuals with epileptic discharges 
[206]. Valproic acid, lamotrigine, levetiracetam and 
ethosuximide are most commonly used AEDs, and they 
are found to reduce seizures in ASD individuals [207]. 
Another AED, topiramate when combined with an 
antipsychotic drug risperidone reduced hyperactivity, 
irritability and stereotypical behaviors in ASD 
individuals [208]. Some AEDs such as sodium 
valproate may have negative effect on the developing 
fetus if the mother takes this drug during pregnancy. 
Sodium valproate can lead to an abnormal brain 
development leading to neurological disorders such as 
intellectual disability and autism [209, 210]. Also AEDs 
such as lamotrigine can enhance or have a mood 
leveling effect, while AEDs such as levetiracetam are 
associated with side effects in behavior such as 
aggression, anxiety or nervousness and hostility  
[211, 212]. There is a limitation of the efficacy of AEDs 
medications in individuals affected with ASD because 
AEDs show improvement in only specific type of 
behaviors such as hyperactivity, impulsivity, mood 
instability, repetitive behaviors and aggression [213].  
 
Although there are no pharmacological treatments that 
are able to treat the core symptoms of ASD but there are 
psychotropic drugs that have similar effect as AEDs in 
alleviating the common symptoms of ASD such as 
irritability, hyperactivity, lack of focus, mood 
dysregulation, and social withdrawal [214]. 
 
Oxytocin is another pharmacological agent currently 
being used to treat core ASD symptoms [215]. 
Controlled trial studies showed the intravenous 
administration of oxytocin in ASD patients improved 
the symptoms in various domains including social 
behavior [216–218]. Apart from the few limitations of 
oxytocin such as dosage establishment, children safety 
and route of administration, it can be used as a potential 
therapeutic agent to treat ASD [105].  
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Further studies are required to relate the pharmacological 
treatment with the genomic changes in ASD for better 
treatment planning. We expect that in few years there will 
be enough genomic data that can be used for the 
pharmacological analysis of patients with ASD. 
 
CONCLUSIONS 
 
The genetic architecture of ASD is heterogeneous and 
differs in every individual. The current identification 
of ASD is mostly based on observation of behaviors 
and the genetics that underlie ASD are still an active 
area of research. Nevertheless, advancements in the 
study of various molecular mechanisms encompassing 
the genetics of autism and the identification of many 
ASD risk genes have opened a new way to study the 
pathophysiology of ASD. We envisage that the 
identification of new biomarkers, risk genes and 
associated genetic pathways may help in the early 
diagnosis of ASD, and improvement in clinical and 
pharmacological treatments of the disorder. 
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