Mohammed M.M. Jaradat*, Zead Mustafa, Sami Ullah Khan, Muhammad Arshad, and Jamshaid Ahmad

Some fixed point results on G-metric and G_{b}-metric spaces

https://doi.org/10.1515/dema-2017-0018

Received April 16, 2017; accepted June 20, 2017

Abstract

The purpose of this paper is to prove some fixed point results using $J S$ - G-contraction on G-metric spaces, also to prove some fixed point results on G_{b}-complete metric space for a new contraction. Our results extend and improve some results in the literature. Moreover, some examples are presented to illustrate the validity of our results.

Keywords: fixed point, G-metric space, G_{b}-metric space, $J S$ - G-contraction
MSC: Primary 47H10; Secondary 54H25.

1 Introduction

Mustafa and Sims [1] introduced the notion of G-metric spaces as a generalization of classical metric spaces and obtained some fixed point theorems for mappings satisfying different generalized contractive conditions. Thereafter, the concept of G-metric space has been studied and used to obtain various fixed point theorems by several mathematicians (see ([2-24]).

Definition 1.1. [1] Let X be a non empty and $G: X \times X \times X \rightarrow[0, \infty)$ be a function satisfying the following properties
(G1) $G(a, b, c)=0$ if $a=b=c$,
(G2) $0<G(a, a, b)$ for all $a, b \in X$ with $a \neq b$,
(G3) $G(a, a, b) \leq G(a, b, c)$ for all $a, b, c \in X$ with $b \neq c$,
(G4) $G(a, b, c)=G(a, c, b)=G(b, c, a)=\cdots$ (symmetry in all three variables),
(G5) $G(a, b, c) \leq G(a, w, w)+G(w, b, c)$ for all $a, b, c, a \in X$ (rectangle inequality).
Then the function G is called a generalized metric, or, a G-metric on X and the pair (X, G) is called a G-metric space. Throughout this paper we mean by \mathbb{N} the set of all Natural Numbers.

[^0]Definition 1.2. [1] Let (X, G) be a G-metric space, and let $\left(a_{n}\right)$ be a sequence of points of X. Then we say that $\left(a_{n}\right)$ is G-convergent to $a \in X$ if $\lim _{n, m \rightarrow \infty} G\left(a, a_{n}, a_{m}\right)=0$, that is, for any $\epsilon>0$, there exists $N \in \mathbb{N}$ such that $G\left(a, a_{n}, a_{m}\right)<\epsilon$ for all, $n, m \geq N$. We call a the limit of the sequence and write $a_{n} \rightarrow x$ or $\lim _{n \rightarrow \infty} a_{n}=a$.

Proposition 1.3. [1] Let (X, G) be a G-metric space. The following statements are equivalent:
(1) $\left(a_{n}\right)$ is G-convergent to a.
(2) $G\left(a_{n}, a_{n}, a\right) \rightarrow 0$ as $n \rightarrow+\infty$.
(3) $G\left(a_{n}, a, a\right) \rightarrow 0$ as $n \rightarrow+\infty$.
(4) $G\left(a_{n}, a_{m}, a\right) \rightarrow 0$ as $n, m \rightarrow+\infty$.

Definition 1.4. [1] Let (X, G) be a G-metric space. A sequence $\left(a_{n}\right)$ is called a G-Cauchy sequence if for any $\epsilon>0$, there is $N \in \mathbb{N}$ such that $G\left(a_{n}, a_{m}, a_{l}\right)<\epsilon$ for all $n, m, l \geq N$, that is $G\left(a_{n}, a_{m}, a_{l}\right) \rightarrow 0$ as $n, m, l \rightarrow+\infty$.

Definition 1.5. [1] A G-metric space (X, G) is called G-complete if every G-Cauchy sequence is G-convergent in (X, G).

Corollary 1.6. [1] Let (X, d) be a metric space, then (X, d) is complete metric space iff $\left(X, G_{m}\right)$ is complete G-metric space where

$$
G_{m}(a, b, c)=\max \{d(a, b), d(b, c), d(a, c)\}
$$

Corollary 1.7. [1] A G-metric space (X, G) is continuous on its three variables.
Very recently, Jleli and Samet [25] introduced a new type of contraction which involves the following set of all functions $\psi:(0, \infty) \rightarrow(1, \infty)$ satisfying the conditions:
$\left(\psi_{1}\right) \psi$ is nondecreasing;
$\left(\psi_{2}\right)$ for each sequence $\left\{t_{n}\right\} \subseteq(0, \infty), \lim _{n \rightarrow \infty} \psi\left(t_{n}\right)=1$ if and only if $\lim _{n \rightarrow \infty} t_{n}=0$;
$\left(\psi_{3}\right)$ there exist $r \in(0,1)$ and $L \in(0, \infty]$ such that $\lim _{t \rightarrow 0^{+}} \frac{\psi(t)-1}{t^{r}}=L$.
To be consistent with Jleli and Samet [25], we denote by \digamma the set of all functions $\psi:(0, \infty) \rightarrow(1, \infty)$ satisfying the conditions $\left(\psi_{1}-\psi_{3}\right)$.

Also, they established the following result as a generalization of Banach Contraction Principle.
Theorem 1.8. [25, Corollary 2.1] Let (X, d) be a complete metric space and $f: X \rightarrow X$ be a mapping. Suppose that there exist $\psi \in \Psi$ and $k \in(0,1)$ such that

$$
x, y \in X, \quad d(f x, f y) \neq 0 \Rightarrow \psi(d(f x, f y)) \leq[\psi(d(x, y))]^{k}
$$

Then f has a unique fixed point.
In 2015, Hussain et al. [26] customized the above family of functions and proved a fixed point theorem as a generalization of [25]. They customized the family of functions $\psi:[0, \infty) \rightarrow[1, \infty)$ to be as follows:
$\left(\psi_{1}\right) \psi$ is nondecreasing and $\psi(t)=1$ if and only if $t=0$;
$\left(\psi_{2}\right)$ for each sequence $\left\{t_{n}\right\} \subseteq(0, \infty), \lim _{n \rightarrow \infty} \psi\left(t_{n}\right)=1$ if and only if $\lim _{n \rightarrow \infty} t_{n}=0$;
$\left(\psi_{3}\right)$ there exist $r \in(0,1)$ and $L \in(0, \infty]$ such that $\lim _{t \rightarrow 0^{+}} \frac{\psi(t)-1}{t^{r}}=L$;
$\left(\psi_{4}\right) \psi(u+v) \leq \psi(u) \psi(v)$ for all $u, v>0$.
To be consistent with Hussain et al. [26], we denote by Ψ the set of all functions $\psi:[0, \infty) \rightarrow[1, \infty)$ satisfying the conditions $\left(\psi_{1}-\psi_{4}\right)$. For more details in this direction, we refer the reader to [27-30].

In this paper, we introduce a new contraction called $J S-G$-contraction and we prove some fixed point results of such contraction in the setting of G-metric spaces, also we prove some fixed point results on $G_{b^{-}}$complete metric space for a new contraction.

2 Fixed Point Results on G-Metric Space

We start this section by introducing the following definition.
Definition 2.1. Let (X, G) be a G-metric space, and let $g: X \rightarrow X$ be a self mapping. Then g is said to be a $J S$ - G-contraction whenever there exist a function $\psi \in \Psi$ and positive real numbers $r_{1}, r_{2}, r_{3}, r_{4}$ with $0 \leq$ $r_{1}+3 r_{2}+r_{3}+2 r_{4}<1$ such that

$$
\begin{align*}
\psi(G(g a, g b, g c)) \leq & {[\psi(G(a, b, c))]^{r_{1}}[\psi(G(a, g a, g c))]^{r_{2}}[\psi(G(b, g b, g c))]^{r_{3}} } \\
& \times[\psi(G(a, g b, g b)+G(b, g a, g a))]^{r_{4}}, \tag{2.1}
\end{align*}
$$

for all $a, b, c \in X$.
Theorem 2.2. Let (X, G) be a complete G-metric space and $g: X \rightarrow X$ be a JS-G-contraction. Then g has a unique fixed point.

Proof. Let $a_{0} \in X$ be arbitrary. For $a_{0} \in X$, we define the sequence $\left\{a_{n}\right\}$ by $a_{n}=g^{n} a_{0}=g a_{n-1}$. If there exist $n_{0} \in \mathbb{N}$ such that $a_{n_{0}}=a_{n_{0}+1}$, then $a_{n_{0}}$ is a fixed point of g, and we have nothing to prove. Thus, we suppose that $a_{n} \neq a_{n+1}$, i.e., $G\left(g a_{n-1}, g a_{n}, g a_{n}\right)>0$ for all $n \in \mathbb{N}$. Now, we will prove that $\lim _{n \rightarrow \infty} G\left(a_{n}, a_{n+1}, a_{n+1}\right)=$ 0 .

Since g is a $J S$ - G-contraction, by using condition (2.1), we get that
$1<\psi\left(G\left(a_{n}, a_{n+1}, a_{n+1}\right)\right)=\psi\left(G\left(g a_{n-1}, g a_{n}, g a_{n}\right)\right)$
$\leq\left[\psi\left(G\left(a_{n-1}, a_{n}, a_{n}\right)\right)\right]^{r_{1}}\left[\psi\left(G\left(a_{n-1}, g a_{n-1}, g a_{n}\right)\right)\right]^{r_{2}}\left[\psi\left(G\left(a_{n}, g a_{n}, g a_{n}\right)\right)\right]^{r_{3}}$ $\times\left[\psi\left(G\left(a_{n-1}, g a_{n}, g a_{n}\right)+G\left(a_{n}, g a_{n-1}, g a_{n-1}\right)\right)\right]^{r_{4}}$
$=\left[\psi\left(G\left(a_{n-1}, a_{n}, a_{n}\right)\right)\right]^{r_{1}}\left[\psi\left(G\left(a_{n-1}, a_{n}, a_{n+1}\right)\right)\right]^{r_{2}}\left[\psi\left(G\left(a_{n}, a_{n+1}, a_{n+1}\right)\right)\right]^{r_{3}}\left[\psi\left(G\left(a_{n-1}, a_{n+1}, a_{n+1}\right)\right)\right]^{r_{4}}$.

Using (G5) and $\left(\psi_{4}\right)$, we get

$$
\begin{aligned}
\psi\left(G\left(a_{n-1}, a_{n}, a_{n+1}\right)\right) & \leq \psi\left(G\left(a_{n-1}, a_{n}, a_{n}\right)+G\left(a_{n}, a_{n}, a_{n+1}\right)\right) \\
& \leq \psi\left(G\left(a_{n-1}, a_{n}, a_{n}\right)+2 G\left(a_{n}, a_{n+1}, a_{n+1}\right)\right) \\
& \leq \psi\left(G\left(a_{n-1}, a_{n}, a_{n}\right)\right) \psi\left(2 G\left(a_{n}, a_{n+1}, a_{n+1}\right)\right) \\
& =\psi\left(G\left(a_{n-1}, a_{n}, a_{n}\right)\right) \psi\left(G\left(a_{n}, a_{n+1}, a_{n+1}\right)+G\left(a_{n}, a_{n+1}, a_{n+1}\right)\right) \\
& \leq \psi\left(G\left(a_{n-1}, a_{n}, a_{n}\right)\right)\left[\psi\left(G\left(a_{n}, a_{n+1}, a_{n+1}\right)\right)\right]^{2}
\end{aligned}
$$

and

$$
\begin{aligned}
\psi\left(G\left(a_{n-1}, a_{n+1}, a_{n+1}\right)\right) & \leq \psi\left(G\left(a_{n-1}, a_{n}, a_{n}\right)+G\left(a_{n}, a_{n+1}, a_{n+1}\right)\right) \\
& \leq \psi\left(G\left(a_{n-1}, a_{n}, a_{n}\right)\right) \psi\left(G\left(a_{n}, a_{n+1}, a_{n+1}\right)\right)
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
1< & \psi\left(G\left(a_{n}, a_{n+1}, a_{n+1}\right)\right) \\
\leq & {\left[\psi\left(G\left(a_{n-1}, a_{n}, a_{n}\right)\right)\right]^{r_{1}}\left[\psi\left(G\left(a_{n-1}, a_{n}, a_{n}\right)\right)\right]^{r_{2}}\left[\psi\left(G\left(a_{n}, a_{n+1}, a_{n+1}\right)\right)\right]^{2 r_{2}} } \\
& \times\left[\psi\left(G\left(a_{n}, a_{n+1}, a_{n+1}\right)\right)\right]^{r_{3}}\left[\psi\left(G\left(a_{n-1}, a_{n}, a_{n}\right)\right)\right]^{r_{4}}\left[\psi\left(G\left(a_{n}, a_{n+1}, a_{n+1}\right)\right)\right]^{r_{4}} .
\end{aligned}
$$

So, by reordering the product terms of the above inequality, then using the induction, we get that

$$
\begin{align*}
1<\psi\left(G\left(a_{n}, a_{n+1}, a_{n+1}\right)\right) & \leq\left[\psi\left(G\left(a_{n-1}, a_{n}, a_{n}\right)\right)\right]^{\frac{r_{1}+r_{2}+r_{4}}{1-2 r_{2} r_{3}-r_{4}}} \\
& \vdots \tag{2.2}\\
& \leq\left[\psi\left(G\left(a_{0}, a_{1}, a_{1}\right)\right)\right]^{\left(\frac{r_{1}+r_{2}+r_{4}}{1-2 r_{2}-r_{3}-r_{4}}\right)^{n}} .
\end{align*}
$$

Taking limit as $n \rightarrow \infty$, and noting that $\frac{r_{1}+r_{2}+r_{4}}{1-2 r_{2}-r_{3}-r_{4}}<1$, we get

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \psi\left(G\left(a_{n}, a_{n+1}, a_{n+1}\right)\right)=1 \tag{2.3}
\end{equation*}
$$

which implies by $\left(\psi_{2}\right)$ that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} G\left(a_{n}, a_{n+1}, a_{n+1}\right)=0 \tag{2.4}
\end{equation*}
$$

From the condition $\left(\psi_{3}\right)$, there exist $0<r<1$ and $L \in(0, \infty]$ such that

$$
\lim _{n \rightarrow \infty} \frac{\psi\left(G\left(a_{n+1}, a_{n}, a_{n}\right)\right)-1}{\left[G\left(a_{n}, a_{n+1}, a_{n+1}\right)\right]^{r}}=L
$$

Suppose that $L<\infty$. In this case, let $B_{1}=\frac{L}{2}>0$. From the definition of the limit, there exists $n_{0} \in \mathbb{N}$ such that

$$
\left|\frac{\psi\left(G\left(a_{n}, a_{n+1}, a_{n+1}\right)\right)-1}{\left[G\left(a_{n}, a_{n+1}, a_{n+1}\right)\right]^{r}}-L\right| \leq B_{1}
$$

for all $n>n_{0}$. This implies that

$$
\frac{\psi\left(G\left(a_{n+1}, a_{n}, a_{n}\right)\right)-1}{\left[G\left(a_{n}, a_{n+1}, a_{n+1}\right)\right]^{r}} \geq L-B_{1}=\frac{L}{2}=B_{1},
$$

for all $n>n_{0}$. Then

$$
n\left(G\left(a_{n}, a_{n+1}, a_{n+1}\right)\right)^{r} \leq A_{1} n\left[\psi\left(G\left(a_{n}, a_{n+1}, a_{n+1}\right)\right)-1\right],
$$

where $A_{1}=\frac{1}{B_{1}}$.
Now for $L=\infty$, let $B_{2}>0$ be an arbitrary number. From the definition of the limit there exist $n_{1} \in \mathbb{N}$ such that

$$
\frac{\psi\left(G\left(a_{n}, a_{n+1}, a_{n+1}\right)\right)-1}{\left[G\left(a_{n}, a_{n+1}, a_{n+1}\right)\right]^{r}} \geq B_{2}
$$

for all $n \geq n_{1}$. Then

$$
n\left(G\left(a_{n}, a_{n+1}, a_{n+1}\right)\right)^{r} \leq A_{2} n\left[\psi\left(G\left(a_{n}, a_{n+1}, a_{n+1}\right)\right)-1\right],
$$

where $A_{2}=\frac{1}{B_{2}}$. Thus, in both cases, there exist $A=\max \left\{A_{1}, A_{2}\right\}>0$ and $n_{\star}=\max \left\{n_{0}, n_{1}\right\} \in \mathbb{N}$ such that

$$
n\left(G\left(a_{n}, a_{n+1}, a_{n+1}\right)\right)^{r} \leq A n\left[\psi\left(G\left(a_{n}, a_{n+1}, a_{n+1}\right)\right)-1\right] \text { for all } n \geq n_{\star} .
$$

Now, using (2.2) we get

$$
n\left(G\left(a_{n}, a_{n+1}, a_{n+1}\right)\right)^{r} \leq A n\left[\left[\psi\left(G\left(a_{0}, a_{1}, a_{1}\right)\right)\right]^{\alpha^{n}}-1\right],
$$

where, $\alpha=\frac{r_{1}+r_{2}+r_{4}}{1-2 r_{2}-r_{3}-r_{4}}$. But,

$$
\begin{aligned}
\lim _{n \rightarrow \infty} n\left[\left[\psi\left(G\left(a_{0}, a_{1}, a_{1}\right)\right)\right]^{\alpha^{n}}-1\right] & =\lim _{n \rightarrow \infty} \frac{\left[\left[\psi\left(G\left(a_{0}, a_{1}, a_{1}\right)\right)\right]^{\alpha^{n}}-1\right]}{1 / n} \\
& =\lim _{n \rightarrow \infty} \frac{\alpha^{n} \ln (\alpha) \ln \left(\psi\left(G\left(a_{0}, a_{1}, a_{1}\right)\right)\right)\left[\left[\psi\left(G\left(a_{0}, a_{1}, a_{1}\right)\right)\right]^{\alpha^{n}}\right]}{-1 / n^{2}} \\
& =\lim _{n \rightarrow \infty}-n^{2} \alpha^{n} \ln (\alpha) \ln \left(\psi\left(G\left(a_{0}, a_{1}, a_{1}\right)\right)\right)\left[\left[\psi\left(G\left(a_{0}, a_{1}, a_{1}\right)\right)\right]^{\alpha^{n}}\right] \\
& =\lim _{n \rightarrow \infty} \frac{-n^{2} \ln (\alpha) \ln \left(\psi\left(G\left(a_{0}, a_{1}, a_{1}\right)\right)\right)\left[\left[\psi\left(G\left(a_{0}, a_{1}, a_{1}\right)\right)\right]^{\alpha^{n}}\right]}{\alpha_{1}^{n}} \\
& =\lim _{n \rightarrow \infty} \frac{-n^{2}}{\alpha_{1}^{n} \times \lim _{n \rightarrow \infty} \ln (\alpha) \ln \left(\psi\left(G\left(a_{0}, a_{1}, a_{1}\right)\right)\right)\left[\left[\psi\left(G\left(a_{0}, a_{1}, a_{1}\right)\right)\right]^{\alpha^{n}}\right]} \\
& =0 \times \ln (\alpha) \ln \left(\psi\left(G\left(a_{0}, a_{1}, a_{1}\right)\right)\right) \\
& =0\left(\operatorname{where} \alpha_{1}=1 / \alpha\right),
\end{aligned}
$$

which implies that $\lim _{n \rightarrow \infty} n\left(G\left(a_{n}, a_{n+1}, a_{n+1}\right)\right)^{r}=0$, thus there exists $n_{2} \in \mathbb{N}$ such that

$$
G\left(a_{n}, a_{n+1}, a_{n+1}\right) \leq \frac{1}{n^{1 / r}},
$$

for all $n>n_{2}$. Now, for $m>n>n_{2}$, we have

$$
G\left(a_{n}, a_{m}, a_{m}\right) \leq \sum_{i=n}^{m-1} G\left(a_{i}, a_{i+1}, a_{i+1}\right) \leq \sum_{i=n}^{m-1} \frac{1}{i^{\frac{1}{r}}} \leq \sum_{i=1}^{\infty} \frac{1}{i^{\frac{1}{r}}} .
$$

Since $0<r<1$, then $\sum_{i=1}^{\infty} \frac{1}{i^{\frac{1}{r}}}$ is convergent and hence $G\left(a_{n}, a_{m}, a_{m}\right) \rightarrow 0$ as $m, n \rightarrow \infty$. Thus, we proved that $\left\{a_{n}\right\}$ is a G-Cauchy sequence. Completeness of (X, G) ensures that there exists $a^{\star} \in X$ such that $a_{n} \rightarrow a^{\star}$ as $n \rightarrow \infty$.

Now we shall show that a^{\star} is a fixed point of g. Using (G5) we get that

$$
\begin{align*}
G\left(a^{\star}, a^{\star}, g a^{\star}\right) & \leq G\left(a^{\star}, a^{\star}, a_{n+1}\right)+G\left(a_{n+1}, a_{n+1}, g a^{\star}\right) \tag{2.5}\\
& =G\left(a^{\star}, a^{\star}, a_{n+1}\right)+G\left(g a_{n}, g a_{n}, g a^{\star}\right)
\end{align*}
$$

and

$$
\begin{equation*}
G\left(a_{n}, a_{n+1}, g a^{\star}\right) \leq\left(G\left(a_{n}, a_{n+1}, a^{\star}\right)\right)+\left(G\left(a^{\star}, a^{\star}, g a^{\star}\right)\right) . \tag{2.6}
\end{equation*}
$$

Hence, by the properties of ψ we get that

$$
\begin{gather*}
\psi\left(G\left(a^{\star}, a^{\star}, g a^{\star}\right)\right) \leq \psi\left(G\left(a^{\star}, a^{\star}, a_{n+1}\right)\right) \psi\left(G\left(g a_{n}, g a_{n}, g a^{\star}\right)\right) \tag{2.7}\\
\psi\left(G\left(a_{n}, a_{n+1}, g a^{\star}\right)\right) \leq \psi\left(G\left(a_{n}, a_{n+1}, a^{\star}\right)\right) \psi\left(G\left(a^{\star}, a^{\star}, g a^{\star}\right)\right) \tag{2.8}
\end{gather*}
$$

Thus,

$$
\begin{equation*}
\left[\psi\left(G\left(a_{n}, a_{n+1}, g a^{\star}\right)\right)\right]^{r_{2}+r_{3}} \leq\left[\psi\left(G\left(a_{n}, a_{n+1}, a^{\star}\right)\right)\right]^{r_{2}+r_{3}}\left[\psi\left(G\left(a^{\star}, a^{\star}, g a^{\star}\right)\right)\right]^{r_{2}+r_{3}} \tag{2.9}
\end{equation*}
$$

However, by using (2.1), $\left(\psi_{4}\right)$ and (2.9) we have

$$
\begin{align*}
\psi\left(G\left(a_{n+1}, a_{n+1}, g a^{\star}\right)\right)= & \psi\left(G\left(g a_{n}, g a_{n}, g a^{\star}\right)\right) \\
\leq & {\left[\psi\left(G\left(a_{n}, a_{n}, a^{\star}\right)\right)\right]^{r_{1}}\left[\psi\left(G\left(a_{n}, a_{n+1}, g a^{\star}\right)\right)\right]^{r_{2}} } \\
& \times\left[\psi\left(G\left(a_{n}, a_{n+1}, g a^{\star}\right)\right)\right]^{r_{3}} \\
& \times\left[\psi\left(G\left(a_{n}, a_{n+1}, a_{n+1}\right)+G\left(a_{n}, a_{n+1}, a_{n+1}\right)\right)\right]^{r_{4}} \\
= & {\left[\psi\left(G\left(a_{n}, a_{n}, a^{\star}\right)\right)\right]^{r_{1}}\left[\psi\left(G\left(a_{n}, a_{n+1}, g a^{\star}\right)\right)\right]^{r_{2}+r_{3}} } \\
& \times\left[\psi\left(G\left(a_{n}, a_{n+1}, a_{n+1}\right)\right)\right]^{2 r_{4}} \\
\leq & {\left[\psi\left(G\left(a_{n}, a_{n}, a^{\star}\right)\right)\right]^{r_{1}}\left[\psi\left(G\left(a_{n}, a_{n+1}, a^{\star}\right)\right)\right]^{r_{2}+r_{3}} } \\
& {\left[\psi\left(G\left(a^{\star}, a^{\star}, g a^{\star}\right)\right)\right]^{r_{2}+r_{3}}\left[\psi\left(G\left(a_{n}, a_{n+1}, a_{n+1}\right)\right)\right]^{2 r_{4}} . } \tag{2.10}
\end{align*}
$$

Now, substituting (2.10) in (2.7) we get that

$$
\begin{align*}
\psi\left(G\left(a^{\star}, a^{\star}, g a^{\star}\right)\right) \leq & \psi\left(G\left(a^{\star}, a^{\star}, a_{n+1}\right)\right)\left[\psi\left(G\left(a_{n}, a_{n}, a^{\star}\right)\right)\right]^{r_{1}}\left[\psi\left(G\left(a_{n}, a_{n+1}, a^{\star}\right)\right)\right]^{r_{2}+r_{3}} \\
& {\left[\psi\left(G\left(a^{\star}, a^{\star}, g a^{\star}\right)\right)\right]^{r_{2}+r_{3}}\left[\psi\left(G\left(a_{n}, a_{n+1}, a_{n+1}\right)\right)\right]^{2 r_{4}} } \tag{2.11}
\end{align*}
$$

Hence,

$$
\begin{align*}
1 \leq\left[\psi\left(G\left(a^{\star}, a^{\star}, g a^{\star}\right)\right)\right]^{1-r_{2}-r_{3}} \leq & \psi\left(G\left(a^{\star}, a^{\star}, a_{n+1}\right)\right)\left[\psi\left(G\left(a_{n}, a_{n}, a^{\star}\right)\right)\right]^{r_{1}} \\
& {\left[\psi\left(G\left(a_{n}, a_{n+1}, a^{\star}\right)\right)\right]^{r_{2}+r_{3}}\left[\psi\left(G\left(a_{n}, a_{n+1}, a_{n+1}\right)\right)\right]^{2 r_{4}} . } \tag{2.12}
\end{align*}
$$

By taking the limit as $n \rightarrow \infty$ and using (2.4), $\left(\psi_{2}\right)$, Proposition 1.3 and the convergence of a_{n} to a^{*} in the above equation we get that

$$
\begin{equation*}
\psi\left(G\left(a^{\star}, a^{\star}, g a^{\star}\right)\right)=1 \tag{2.13}
\end{equation*}
$$

which implies by $\left(\psi_{1}\right)$ that $G\left(a^{\star}, a^{\star}, g a^{\star}\right)=0$ and so $g a^{\star}=a^{\star}$. Thus, a^{\star} is a fixed point of g.
Finally to show the uniqueness, assume that there exist $a^{\prime} \neq a^{\star}$ such that $a^{\prime}=g a^{\prime}$. By $\left(G_{2}\right)$,

$$
G\left(a^{\prime}, a^{\prime}, a^{\star}\right)=G\left(g a^{\prime}, g a^{\prime}, g a^{\star}\right)>0 .
$$

Thus, by (2.1) we get

$$
\begin{aligned}
\psi\left(G\left(a^{\prime}, a^{\prime}, a^{\star}\right)\right)= & \psi\left(G\left(g a^{\prime}, g a^{\prime}, g a^{\star}\right)\right) \leq\left[\psi G\left(a^{\prime}, a^{\prime}, a^{\star}\right)\right]^{r_{1}}\left[\psi\left(G\left(a^{\prime}, g a^{\prime}, g a^{\star}\right)\right)\right]^{r_{2}} \\
& \times\left[\psi\left(G\left(a^{\prime}, g a^{\prime}, g a^{\star}\right)\right)\right]^{r_{3}}\left[\psi\left(G\left(a^{\prime}, g a^{\prime}, g a^{\prime}\right)+G\left(a^{\prime}, g a^{\prime}, g a^{\prime}\right)\right)\right]^{r_{4}}, \\
= & {\left[\psi\left(G\left(a^{\prime}, a^{\prime}, a^{\star}\right)\right)\right]^{r_{1}}\left[\psi\left(G\left(a^{\prime}, a^{\prime}, a^{\star}\right)\right)\right]^{r_{2}}\left[\psi\left(G\left(a^{\prime}, a^{\prime}, a^{\star}\right)\right)\right]^{r_{3}} } \\
& \times\left[\psi\left(G\left(a^{\prime}, a^{\prime}, a^{\prime}\right)+G\left(a^{\prime}, a^{\prime}, a^{\prime}\right)\right)\right]^{r_{4}}, \\
= & {\left[\psi\left(G\left(a^{\prime}, a^{\prime}, a^{\star}\right)\right)\right]^{r_{1}+r_{2}+r_{3}}, }
\end{aligned}
$$

which leads to a contradiction because $r_{1}+r_{2}+r_{3}<1$. Therefore, g has a unique fixed point. The following result is a direct consequence of Theorem 2.2 by taking $\psi(t)=e^{\sqrt{t}}$ in (2.1).

Corollary 2.3. Let (X, G) be a complete G-metric space and $g: X \rightarrow X$ be a mapping. Suppose that there exist positive real numbers $r_{1}, r_{2}, r_{3}, r_{4}$ with $0 \leq r_{1}+3 r_{2}+r_{3}+2 r_{4}<1$ such that

$$
\begin{align*}
\sqrt{G(g a, g b, g c)} \leq & r_{1} \sqrt{G(a, b, c)}+r_{2} \sqrt{G(a, g a, g c)}+r_{3} \sqrt{G(b, g b, g c)} \\
& +r_{4} \sqrt{G(a, g b, g b)+G(b, g a, g a)} \tag{2.14}
\end{align*}
$$

for all $a, b, c \in X$. Then g has a unique fixed point.
Remark 2.4. Note that condition (2.14) is equivalent to

$$
\begin{aligned}
G(g a, g b, g c) \leq & r_{1}^{2} G(a, b, c)+r_{2}^{2} G(a, g a, g c)+r_{3}^{2} G(b, g b, g c) \\
& +r_{4}^{2}[G(a, g b, g b)+G(b, g a, g a)] \\
& +2 r_{1} r_{2} \sqrt{G(a, b, c) G(a, g a, g c)}+2 r_{1} r_{3} \sqrt{G(a, b, c) G(b, g b, g c)} \\
& +2 r_{1} r_{4} \sqrt{G(a, b, c)[G(a, g b, g b)+G(b, g a, g a)]} \\
& +2 r_{2} r_{3} \sqrt{G(a, g a, g c) G(b, g b, g c)} \\
& +2 r_{2} r_{4} \sqrt{G(a, g a, g c)[G(a, g b, g b)+G(b, g a, g a)]} \\
& +2 r_{3} r_{4} \sqrt{G(b, g b, g c)[G(a, g b, g b)+G(b, g a, g a)]} .
\end{aligned}
$$

Next, in view of Remark 2.4 and by taking $r_{2}=r_{3}=r_{4}=0$ in Corollary 2.3, we obtain the following corollary.
Corollary 2.5. Let (X, G) be a complete G-metric space and $g: X \rightarrow X$ be a mapping. Suppose that there exist positive real numbers $0 \leq r_{1}<1$, such that

$$
\begin{equation*}
G(g a, g b, g c) \leq r_{1}^{2} G(a, b, c) \tag{2.15}
\end{equation*}
$$

for all $a, b, c \in X$. Then g has a unique fixed point.
Finally, by taking $\psi(t)=e^{\sqrt[n]{t}}$ in (2.1) , we get the following corollary.
Corollary 2.6. Let (X, G) be a complete G-metric space and $g: X \rightarrow X$ be a mapping. Suppose that there exist positive real numbers $r_{1}, r_{2}, r_{3}, r_{4}$ with $0 \leq r_{1}+3 r_{2}+r_{3}+2 r_{4}<1$, such that

$$
\begin{aligned}
\sqrt[n]{G(g a, g b, g c)} \leq & r_{1} \sqrt[n]{G(a, b, c)}+r_{2} \sqrt[n]{G(a, g a, g c)}+r_{3} \sqrt[n]{G(b, g b, g c)} \\
& +r_{4} \sqrt[n]{G(a, g b, g b)+G(b, g a, g a)}
\end{aligned}
$$

for all $a, b, c \in X$. Then g has a unique fixed point.
Remark 2.7. By specifying $r_{i}=0$ for some $i \in\{1,2,3,4\}$ in Remark 2.4 and Corollary 2.6 we can get several results.

Example 2.8. Let $X=[0, \infty)$ and the G-metric $G_{m}(a, b, c)=\max \{|a-b|,|b-c|,|a-c|\}$. Define $g: X \rightarrow X$ by $g(x)=\frac{\chi}{8}$ and $\psi(t)=e^{\sqrt{t}}$. Then clearly all conditions of Theorem 2.2 are satisfied with $r_{i}=\frac{1}{\sqrt{8}} ; i=1,2,3,4$, and $x=0$ is a unique fixed point of g.

3 Fixed Point Results on $\boldsymbol{G}_{\boldsymbol{b}}$-Metric Spaces

In this section, using the concepts of G_{b}-metric space which was introduced by Aghajani et al. [31] we establish some new fixed point results in this setting.

Definition 3.1. [31] Let X be a nonempty set and $s \geq 1$ be a given real number. Suppose that $G_{b}: X \times X \times X \rightarrow$ $[0, \infty)$ be a function satisfying the following properties
$\left(G_{b} 1\right) \quad G_{b}(u, v, w)=0$ if $u=v=w$,
(Gb2) $0<G_{b}(u, u, v)$ for all $u, v \in X$ with $u \neq v$,
$\left(G_{b} 3\right) G_{b}(u, u, v) \leq G_{b}(u, v, w)$ for all $u, v, w \in X$ with $v \neq w$,
$\left(G_{b} 4\right) G_{b}(u, v, w)=G_{b}(p\{u, v, w\})$, where p is a permutation of u, v, w (symmetry),
$\left(G_{b} 5\right) G_{b}(u, v, w) \leq s\left(G_{b}(u, c, c)+G_{b}(c, v, w)\right)$ for all $u, v, w, c \in X$ (rectangle inequality).
Then the function G_{b} is called a generalized b-metric, or a G_{b}-metric on X, and the pair (X, G) is called a G_{b} metric space.

It is clear that the class of G_{b}-metric spaces is effectively larger than that of G-metric spaces given in [1]. Indeed, each G-metric space is a G_{b}-metric space with $s=1$.

Definition 3.2. [31] A G_{b}-metric space is said to be symmetric if $G_{b}(u, v, v)=G_{b}(v, u, u)$ for all $u, v \in X$.
Proposition 3.3. [31] Let X be a G_{b}-metric space. Then for each $u, v, w, c \in X$ it follows that:
(1) If $G_{b}(u, v, w)=0$ then $u=v=w$,
(2) $G_{b}(u, v, w) \leq s\left(G_{b}(u, u, v)+G_{b}(u, u, w)\right)$,
(3) $G_{b}(u, v, v) \leq 2 s G_{b}(v, u, u)$,
(4) $G_{b}(u, v, w) \leq s\left(G_{b}(u, c, w)+G_{b}(c, v, w)\right)$.

Definition 3.4. [31] Let $\left(X, G_{b}\right)$ be a G_{b}-metric space, and $\left(a_{n}\right)$ be a sequence in X. Then we say that $\left(a_{n}\right)$ is G_{b}-convergent to $a \in X$ if $\lim _{n, m \rightarrow \infty} G_{b}\left(a, a_{n}, a_{m}\right)=0$, that is, for any $\epsilon>0$, there exists $N \in \mathbb{N}$ such that $G_{b}\left(a, a_{n}, a_{m}\right)<\epsilon$, for all, $n, m \geq N$. We call x the limit of the sequence and write $a_{n} \rightarrow a$ or $\lim _{n \rightarrow \infty} a_{n}=a$.

Proposition 3.5. [31] Let $\left(X, G_{b}\right)$ be a G_{b}-metric space. The following statements are equivalent:
(1) $\left(a_{n}\right)$ is G_{b}-convergent to a.
(2) $G_{b}\left(a_{n}, a_{n}, a\right) \rightarrow 0$ as $n \rightarrow+\infty$.
(3) $G_{b}\left(a_{n}, a, a\right) \rightarrow 0$ as $n \rightarrow+\infty$.
(4) $G_{b}\left(a_{n}, a_{m}, a\right) \rightarrow 0$ as $n, m \rightarrow+\infty$.

Definition 3.6. [31] Let X be a G_{b}-metric space. A sequence $\left(a_{n}\right)$ is called a G_{b}-Cauchy sequence if for any $\epsilon>$ 0 , there is $N \in \mathbb{N}$ such that $G_{b}\left(a_{n}, a_{m}, a_{l}\right)<\epsilon$ for all $n, m, l \geq N$, that is $G_{b}\left(a_{n}, a_{m}, a_{l}\right) \rightarrow 0$ as $n, m, l \rightarrow+\infty$.

Proposition 3.7. [31] Let $\left(X, G_{b}\right)$ be a G_{b}-metric space. The following statements are equivalent:
(1) $\left(a_{n}\right)$ is G_{b}-Cauchy sequence. (2) $G_{b}\left(a_{n}, a_{m}, a_{m}\right) \rightarrow 0$ as $n, m \rightarrow+\infty$.

Definition 3.8. [31] A G_{b}-metric space X is called G_{b}-complete if every G_{b}-Cauchy sequence is G_{b}-convergent in X.

Lemma 3.9. Let X be $a G_{b}$-metric space with $s \geq 1$. If a sequence $\left(a_{n}\right) \subseteq X$ is G_{b}-convergent, then it has a unique limit point.

Very recently, Ahmad et al. [27] studied JS-contraction and considered a new set of real functions, say Ω. They replaced condition $\left(\psi_{3}\right)$ by another condition called $\left(\Theta_{3}\right)$.

Applying this condition we can have a new range of functions. Thus, consistent with Ahmad et al. [27] we denote by Ω the set of all functions $\theta:[0, \infty) \rightarrow[1, \infty)$ satisfying the following conditions:
$\left(\Theta_{1}\right): \theta$ is nondecreasing and $\Theta(t)=1$ if and only if $t=0$;
$\left(\Theta_{2}\right)$: for each sequence $\left\{t_{n}\right\} \subseteq(0, \infty), \lim _{n \rightarrow \infty} \theta\left(t_{n}\right)=1$ if and only if $\lim _{n \rightarrow \infty} t_{n}=0$;
$\left(\Theta_{3}\right): \theta$ is continuous.
Example 3.10. [27] Let $\theta_{1}(t)=e^{\sqrt{t}}, \theta_{2}(t)=e^{\sqrt{t e^{t}}}, \theta_{3}(t)=e^{t}, \theta_{4}(t)=\cosh t$ and $\theta_{5}(t)=1+\ln (1+t)$ for all $t>0$. Then $\theta_{1}, \theta_{2}, \theta_{3}, \theta_{4}, \theta_{5} \in \Omega$.

Remark 3.11. [27] Note that the conditions $\left(\psi_{3}\right)$ and $\left(\Theta_{3}\right)$ are independent of each other. Indeed, for $p \geq 1$, $\theta(t)=e^{t^{p}}$ satisfies the conditions $\left(\psi_{1}\right)$ and $\left(\psi_{2}\right)$ but it does not satisfy $\left(\psi_{3}\right)$, while it satisfies the condition $\left(\Theta_{3}\right)$. Therefore $\Omega / \subseteq \Psi$. Again, for $a>1$, $m \in\left(0, \frac{1}{a}\right), \theta(t)=1+t^{m}(1+[t])$, where $[t]$ denotes the integral part of t, satisfies the conditions $\left(\psi_{1}\right)$ and $\left(\psi_{2}\right)$ but it does not satisfy $\left(\Theta_{3}\right)$, while it satisfies the condition $\left(\psi_{3}\right)$ for any $r \in\left(\frac{1}{a}, 1\right)$. Therefore $\Psi / \subseteq \Omega$. Also, if we take $\theta(t)=e^{\sqrt{t}}$, then $\theta \in \Psi$ and $\theta \in \Omega$. Therefore $\Psi \cap \Omega /=\emptyset$.

Definition 3.12. [4] Let $g: X \rightarrow X$ and $\alpha: X \times X \times X \rightarrow[0, \infty)$. Then g is called α-admissible if for all $u, v, w \in X$ with $\alpha(u, v, w) \geq 1$ implies $\alpha(g u, g v, g w) \geq 1$.

Definition 3.13. Let $g: X \rightarrow X$ and $\alpha: X \times X \times X \rightarrow[0, \infty)$. Then g is called rectangular- α-admissible if

1. g is α-admissible,
2. $\alpha(u, c, c) \geq 1$ and $\alpha(c, v, w) \geq 1$ implies that $\alpha(u, v, w) \geq 1$
where $u, v, w, c \in X$.
Lemma 3.14. Let g ba a rectangular α-admissible mapping. Suppose that there exist $a_{0} \in X$ such that $\alpha\left(a_{0}, g a_{0}, g a_{0}\right) \geq 1$. Define the sequence $a_{n}=g^{n} a_{0}$. Then

$$
\alpha\left(a_{m}, a_{n}, a_{n}\right) \geq 1, \text { for all } m, n \in N \text { with } m<n
$$

Proof. Let $a_{n}=g^{n} a_{0}$ and assume that $n=m+k$ for some integer $k \geq 1$. Since $\alpha\left(a_{0}, g a_{0}, g a_{0}\right) \geq 1$ and g is α-admissible, then

$$
\alpha\left(a_{1}, a_{2}, a_{2}\right)=\alpha\left(a_{1}, g a_{1}, g a_{1}\right)=\alpha\left(g a_{0}, g^{2} a_{0}, g^{2} a_{0}\right) \geq 1
$$

Continuing this process we get that $\alpha\left(a_{m}, a_{m+1}, a_{m+1}\right) \geq 1$. Similarly we have

$$
\alpha\left(a_{m+1}, a_{m+2}, a_{m+2}\right) \geq 1
$$

Hence, by rectangular α-admissible we have $\alpha\left(a_{m}, a_{m+2}, a_{m+2}\right) \geq 1$, now repeating the same process we get that $\alpha\left(a_{m}, a_{n}, a_{n}\right)=\alpha\left(a_{m}, a_{m+k}, a_{m+k}\right) \geq 1$.

Now, we are ready to state our main theorem in this section.
Theorem 3.15. Let $\left(X, G_{b}\right)$ be a G_{b}-complete metric space with $s>1$. Let $\alpha: X \times X \times X \rightarrow(0, \infty)$ and g be a rectangular α-admissible mapping. Suppose that there exist $\theta \in \Omega$ and $r \in(0,1)$ such that

$$
\begin{equation*}
\frac{1}{3 s^{2}} G_{b}(u, g u, g u) \leq G_{b}(u, v, w) \Rightarrow \alpha(u, v, w) \theta\left(s^{2} G_{b}(g u, g v, g w)\right) \leq[\theta(M(u, v, w))]^{r} \tag{3.1}
\end{equation*}
$$

for all $u, v, w \in X$ with at least two of $g u, g v$ and $g w$ being not equal, where

$$
M(u, v, w)=\max \left\{\begin{array}{c}
G_{b}(u, v, w), \frac{G_{b}(u, g u, g u) G_{b}(u, g v, g w)+G_{b}(v, g v, g w) G_{b}(v, g u, g u)}{1+s\left[G_{b}(u, g u, g w)+G_{b}(v, g v, g w)\right]}, \\
\frac{G_{b}(u, g u, g u) G_{b}(u, g v, g w)+G_{b}(v, g v, g w) G_{b}(v, g u, g u)}{1+G_{b}(u, g v, g w)+G_{b}(v, g u, g w)}
\end{array}\right\} .
$$

Also, suppose that the following assertions hold:
(i) There exists $a_{0} \in X$ such that $\alpha\left(a_{0}, g a_{0}, g a_{0}\right) \geq 1$.
(ii) For any convergence sequence $\left\{a_{n}\right\}$ to a with $\alpha\left(a_{n}, a_{n+1}, a_{n+1}\right) \geq 1$ for all $n \in \mathbb{N} \cup\{0\}$, we have $\alpha\left(a_{n}, a, a\right) \geq$ 1 for all $n \in \mathbb{N} \cup\{0\}$.
Then g has a fixed point.
(iii) Moreover, if for all $u, v \in \operatorname{Fix}(g)$ implies $\alpha(u, v, v) \geq 1$, then the fixed point is unique where Fix $(g)=\{u$: $g u=u\}$.

Proof. Let $a_{0} \in X$ be such that $\alpha\left(a_{0}, g a_{0}, g a_{0}\right) \geq 1$. Define a sequence $\left\{a_{n}\right\}$ by $a_{n}=g^{n} a_{0}$ for all $n \in \mathbb{N}$. Since g is an α-admissible mapping and $\alpha\left(a_{0}, a_{1}, a_{1}\right)=\alpha\left(a_{0}, g a_{0}, g a_{0}\right) \geq 1$, we deduce that $\alpha\left(a_{1}, a_{2}, a_{2}\right)=$ $\alpha\left(g a_{0}, g a_{1}, g a_{1}\right) \geq 1$. Continuing this process, we get that $\alpha\left(a_{n}, a_{n+1}, a_{n+1}\right) \geq 1$ for all $n \in \mathbb{N} \cup\{0\}$. Without
loss of generality, we assume that $a_{n} \neq a_{n+1}$ for all $n \in \mathbb{N} \cup\{0\}$. We shall proceed in proving the theorem using the following two steps.

Step 1: We shall show that $\lim _{n \rightarrow \infty} G_{b}\left(a_{n+1}, a_{n}, a_{n}\right)=0$.
Now,

$$
\begin{align*}
& =\max \left\{\begin{array}{c}
G_{b}\left(a_{n-1}, a_{n}, a_{n}\right), \\
\frac{G_{b}\left(a_{n-1}, a_{n}, a_{n}\right) G_{b}\left(a_{n-1}, a_{n+1}, a_{n+1}\right)+G_{b}\left(a_{n}, a_{n+1}, a_{n+1}\right) G_{b}\left(a_{n}, a_{n}, a_{n}\right)}{1+s\left[G_{b}\left(a_{n-1}, a_{n}, a_{n+1}\right)+G_{b}\left(a_{n}, a_{n+1}, a_{n+1}\right)\right]}, \\
\frac{G_{b}\left(a_{n-1}, a_{n}, a_{n}\right) G_{b}\left(a_{n-1}, a_{n+1}, a_{n+1}\right)+G_{b}\left(a_{n}, a_{n+1}, a_{n+1}\right) G_{b}\left(a_{n}, a_{n}, a_{n}\right)}{1+G_{b}\left(a_{n-1}, a_{n+1}, a_{n+1}\right)+G_{b}\left(a_{n}, a_{n}, a_{n+1}\right)}
\end{array}\right\} \\
& =\max \left\{\begin{array}{c}
G_{b}\left(a_{n-1}, a_{n}, a_{n}\right), \\
G_{b}\left(a_{n-1}, a_{n}, a_{n}\right) \frac{G_{b}\left(a_{n-1}, a_{n+1}, a_{n+1}\right)}{1+S\left[G_{b}\left(a_{n-1}, a_{n}, a_{n+1}\right)+G_{G}\left(a_{n}, a_{n+1}, a_{n+1}\right)\right]}, \\
G_{b}\left(a_{n-1}, a_{n}, a_{n}\right) \frac{G_{b}\left(a_{n-1}, a_{n+1}, a_{n+1}\right)}{1+G_{b}\left(a_{n-1}, a_{n+1}, a_{n+1}\right)+G_{b}\left(a_{n}, a_{n}, a_{n+1}\right)}
\end{array}\right\} \tag{3.2}
\end{align*}
$$

But, from $\left(G_{b} 3\right)$, we have $G_{b}\left(a_{n-1}, a_{n+1}, a_{n+1}\right) \leq G_{b}\left(a_{n-1}, a_{n}, a_{n+1}\right)$, and so

$$
\frac{G_{b}\left(a_{n-1}, a_{n+1}, a_{n+1}\right)}{1+s\left[G_{b}\left(a_{n-1}, a_{n}, a_{n+1}\right)+G_{b}\left(a_{n}, a_{n+1}, a_{n+1}\right)\right]} \leq 1
$$

also

$$
\frac{G_{b}\left(a_{n-1}, a_{n+1}, a_{n+1}\right)}{1+G_{b}\left(a_{n-1}, a_{n+1}, a_{n+1}\right)+G_{b}\left(a_{n}, a_{n}, a_{n+1}\right)} \leq 1
$$

Therefore, $M\left(a_{n-1}, a_{n}, a_{n}\right)=G_{b}\left(a_{n-1}, a_{n}, a_{n}\right)$.
Since $\alpha\left(a_{n}, a_{n+1}, a_{n+1}\right) \geq 1$ for each $n \in \mathbb{N} \cup\{0\}$ and $\frac{1}{3 s^{2}} G_{b}\left(a_{n-1}, g a_{n-1}, g a_{n-1}\right) \leq G_{b}\left(a_{n-1}, a_{n}, a_{n}\right)$, as a result by (3.1) we have

$$
\begin{align*}
\theta\left(G_{b}\left(a_{n}, a_{n+1}, a_{n+1}\right)\right) & =\theta\left(G_{b}\left(g a_{n-1}, g a_{n}, g a_{n}\right)\right) \\
& \leq \alpha\left(a_{n-1}, a_{n}, a_{n}\right) \theta\left(s^{2} G_{b}\left(g a_{n-1}, g a_{n}, g a_{n}\right)\right), \\
& \leq\left[\theta\left(M\left(a_{n-1}, a_{n}, a_{n}\right)\right)\right]^{r}, \\
& =\left[\theta\left(G_{b}\left(a_{n-1}, a_{n}, a_{n}\right)\right)\right]^{r} \\
& <\theta\left(G_{b}\left(a_{n-1}, a_{n}, a_{n}\right)\right) . \tag{3.3}
\end{align*}
$$

Therefore, we have

$$
1<\theta\left(G_{b}\left(a_{n}, a_{n+1}, a_{n+1}\right)\right) \leq\left[\theta\left(G_{b}\left(a_{n-1}, a_{n}, a_{n}\right)\right)\right]^{r} \leq \cdots \leq\left[\theta\left(G_{b}\left(a_{0}, a_{1}, a_{1}\right)\right)\right]^{r^{n}}
$$

Taking limit as $n \rightarrow \infty$, we get

$$
\lim _{n \rightarrow \infty} \theta\left(G_{b}\left(a_{n}, a_{n+1}, a_{n+1}\right)\right)=1
$$

This gives us, by $\left(\theta_{2}\right)$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} G_{b}\left(a_{n}, a_{n+1}, a_{n+1}\right)=0 \tag{3.4}
\end{equation*}
$$

But $G_{b}\left(a_{n+1}, a_{n}, a_{n}\right) \leq 2 s G_{b}\left(a_{n}, a_{n+1}, a_{n+1}\right)$, therefore

$$
\begin{equation*}
\lim _{n \rightarrow \infty} G_{b}\left(a_{n+1}, a_{n}, a_{n}\right)=0 \tag{3.5}
\end{equation*}
$$

Step 2: We shall prove that the sequence $\left\{a_{n}\right\}$ is a G_{b}-Cauchy sequence. Suppose on the contrary that $\left\{a_{n}\right\}$ is not a G_{b}-Cauchy sequence. Then there exists $\varepsilon>0$ for which we can find two subsequences $\left\{a_{m_{i}}\right\}$ and $\left\{a_{n_{i}}\right\}$ of $\left\{a_{n}\right\}$ such that n_{i} is the smallest index for which

$$
\begin{equation*}
n_{i}>m_{i}>i \text { and } G_{b}\left(a_{m_{i}}, a_{n_{i}}, a_{n_{i}}\right) \geq \varepsilon \tag{3.6}
\end{equation*}
$$

This means that

$$
\begin{equation*}
G_{b}\left(a_{m_{i}}, a_{n_{i}-1}, a_{n_{i}-1}\right)<\varepsilon \tag{3.7}
\end{equation*}
$$

By using (3.6) and ($G_{b} 5$), we get

$$
\varepsilon \leq G_{b}\left(a_{m_{i}}, a_{n_{i}}, a_{n_{i}}\right) \leq s G_{b}\left(a_{m_{i}}, a_{m_{i}+1}, a_{m_{i}+1}\right)+s G_{b}\left(a_{m_{i}+1}, a_{n_{i}}, a_{n_{i}}\right) .
$$

Taking the upper limit as $i \rightarrow \infty$ and using (3.5) we get

$$
\begin{equation*}
\frac{\varepsilon}{s} \leq \lim _{i \rightarrow \infty} \sup G_{b}\left(a_{m_{i}+1}, a_{n_{i}}, a_{n_{i}}\right) \tag{3.8}
\end{equation*}
$$

Notice that from (3.3) and (θ_{1}), we get

$$
\begin{equation*}
G_{b}\left(a_{n}, a_{n+1}, a_{n+1}\right) \leq G_{b}\left(a_{n-1}, a_{n}, a_{n}\right) \text { for all } n \in \mathbb{N} \tag{3.9}
\end{equation*}
$$

Suppose that there exists $i_{0} \in \mathbb{N}$ such that

$$
\frac{1}{3 s^{2}} G_{b}\left(a_{m_{i_{0}}}, g a_{m_{i_{0}}}, g a_{m_{i_{0}}}\right)>G_{b}\left(a_{m_{i_{0}}}, a_{n_{i_{0}}-1}, a_{n_{i_{0}}-1}\right)
$$

and

$$
\frac{1}{3 s^{2}} G_{b}\left(a_{m_{i_{0}}+1}, g a_{m_{i_{0}}+1}, g a_{m_{i_{0}}+1}\right)>G_{b}\left(a_{m_{i_{0}}+1}, a_{n_{i_{0}}-1}, a_{n_{i_{0}}-1}\right)
$$

Then from $\left(G_{b} 5\right)$, (3.9) we have

$$
\begin{align*}
G_{b}\left(a_{m_{i_{0}}}, a_{m_{i_{0}}+1}, a_{m_{i_{0}}+1}\right) & \leq s\left[G_{b}\left(a_{m_{i_{0}}}, a_{n_{i_{0}}-1}, a_{n_{i_{0}}-1}\right)+G_{b}\left(a_{n_{i_{0}}-1}, a_{m_{i_{0}+1}}, a_{m_{i_{0}}+1}\right)\right] \\
& \leq s\left[G_{b}\left(a_{m_{i_{0}}}, a_{n_{i_{0}}-1}, a_{n_{i_{0}}-1}\right)+2 s G_{b}\left(a_{m_{i_{0}+1}}, a_{n_{i_{0}}-1}, a_{n_{i_{0}}-1}\right)\right] \\
& \leq s\left[\frac{1}{3 s^{2}} G_{b}\left(a_{m_{i_{0}}}, g a_{m_{i_{0}}}, g a_{m_{i_{0}}}\right)+\frac{2 s}{3 s^{2}} G_{b}\left(a_{m_{i_{0}}+1}, g a_{m_{i_{0}}+1}, g a_{m_{i_{0}}+1}\right)\right] \\
& =\left[\frac{1}{3 s} G_{b}\left(a_{m_{i_{0}}}, a_{m_{i_{0}}+1}, a_{m_{i_{0}}+1}\right)+\frac{2}{3} G_{b}\left(a_{m_{i_{0}+1}}, a_{m_{i_{0}}+2}, a_{m_{i_{0}}+2}\right)\right] \\
& \leq\left(\frac{1}{3 s}+\frac{2}{3}\right) G_{b}\left(a_{m_{i_{0}}}, a_{m_{i_{0}+1}}, a_{m_{i_{0}+1}}\right) \\
& <G_{b}\left(a_{m_{i_{0}}}, a_{m_{i_{0}+1}}, a_{m_{i_{0}+1}}\right),(\text { since } s>1) \tag{3.10}
\end{align*}
$$

which is a contradiction. Hence, either

$$
\frac{1}{3 s^{2}} G_{b}\left(a_{m_{i}}, g a_{m_{i}}, g a_{m_{i}}\right) \leq G_{b}\left(a_{m_{i}}, a_{n_{i}-1}, a_{n_{i}-1}\right)
$$

or

$$
\frac{1}{3 s^{2}} G_{b}\left(a_{m_{i}+1}, g a_{m_{i}+1}, g a_{m_{i}+1}\right) \leq G_{b}\left(a_{m_{i}+1}, a_{n_{i}-1}, a_{n_{i}-1}\right)
$$

holds for all $i \in \mathbb{N}$. First suppose that

$$
\begin{equation*}
\frac{1}{3 s^{2}} G_{b}\left(a_{m_{i}}, g a_{m_{i}}, g a_{m_{i}}\right) \leq G_{b}\left(a_{m_{i}}, a_{n_{i}-1,} a_{n_{i}-1}\right) \tag{3.11}
\end{equation*}
$$

From the definition of $M(u, v, w)$ and using (3.5) and (3.7) we have
$\lim _{i \rightarrow \infty} \sup M\left(a_{m_{i}}, a_{n_{i}-1}, a_{n_{i}-1}\right)$

Note that, $m_{i} \neq n_{i}-1$, as otherwise $G_{b}\left(a_{m_{i}}, a_{n_{i}-1}, a_{n_{i}-1}\right)=0$ and so, by (3.11)

$$
G_{b}\left(a_{m_{i}}, a_{m_{i}+1}, a_{m_{i}+1}\right)=G_{b}\left(a_{m_{i}}, g a_{m_{i}}, g a_{m_{i}}\right)=0
$$

which contradicts our assumption that $a_{n} \neq a_{n+1}$ for all $n \in N$. Hence, $\alpha\left(a_{m_{i}}, a_{n_{i}-1}, a_{n_{i}-1}\right) \geq 1$. Based on the assumption (3.11), $\left(\theta_{1}\right), \alpha\left(a_{m_{i}}, a_{n_{i}-1}, a_{n_{i}-1}\right) \geq 1$, (3.8), (3.1) and the above inequality, we obtain that

$$
\begin{aligned}
\theta\left(s^{2} \cdot \frac{\varepsilon}{s}\right) & \leq \alpha\left(a_{m_{i}}, a_{n_{i}-1}, a_{n_{i}-1}\right) \theta\left(s^{2} \cdot \lim _{i \rightarrow \infty} \sup G_{b}\left(a_{m_{i}+1}, a_{n_{i}}, a_{n_{i}}\right)\right) \\
& =\alpha\left(a_{m_{i}}, a_{n_{i}-1}, a_{n_{i}-1}\right) \theta\left(s^{2} \cdot \lim _{i \rightarrow \infty} \sup G_{b}\left(g a_{m_{i}}, g a_{n_{i}-1}, g a_{n_{i}-1}\right)\right) \\
& \leq\left[\theta\left(\lim _{i \rightarrow \infty} \sup M\left(a_{m_{i}}, a_{n_{i}-1}, a_{n_{i}-1}\right)\right)\right]^{r} \leq[\theta(\varepsilon)]^{r},
\end{aligned}
$$

which implies that $\theta(s \varepsilon) \leq[\theta(\varepsilon)]^{r}$, a contradiction. Now suppose that

$$
\begin{equation*}
\frac{1}{3 s^{2}} G_{b}\left(a_{m_{i}+1}, g a_{m_{i}+1}, g a_{m_{i}+1}\right) \leq G_{b}\left(a_{m_{i}+1}, a_{n_{i}-1}, a_{n_{i}-1}\right) \tag{3.12}
\end{equation*}
$$

holds for all $i \in \mathbb{N}$. Further, from (3.6) and using ($G_{b} 5$), we get

$$
\begin{aligned}
\varepsilon \leq G_{b}\left(a_{m_{i}}, a_{n_{i}}, a_{n_{i}}\right) & \leq s G_{b}\left(a_{m_{i}}, a_{m_{i}+2}, a_{m_{i}+2}\right)+s G_{b}\left(a_{m_{i}+2}, a_{n_{i}}, a_{n_{i}}\right) . \\
& \leq s^{2} G_{b}\left(a_{m_{i}}, a_{m_{i}+1}, a_{m_{i}+1}\right)+s^{2} G_{b}\left(a_{m_{i}+1}, a_{m_{i}+2}, a_{m_{i}+2}\right) \\
& +s G_{b}\left(a_{m_{i}+2}, a_{n_{i}}, a_{n_{i}}\right) .
\end{aligned}
$$

Taking the upper limit as $i \rightarrow \infty$, and using (3.5) we get

$$
\begin{equation*}
\frac{\varepsilon}{s} \leq \lim _{i \rightarrow \infty} \sup G_{b}\left(a_{m_{i}+2}, a_{n_{i}}, a_{n_{i}}\right) \tag{3.13}
\end{equation*}
$$

Also, from ($G_{b} 5$), we get

$$
G_{b}\left(a_{m_{i}+1}, a_{n_{i}-1}, a_{n_{i}-1}\right) \leq s G_{b}\left(a_{m_{i}+1}, a_{n_{i}}, a_{n_{i}}\right)+s G_{b}\left(a_{n_{i}}, a_{n_{i}-1}, a_{n_{i}-1}\right)
$$

Taking the upper limit as $i \rightarrow \infty$, and using (3.5) and (3.7) we get

$$
\begin{equation*}
\lim _{i \rightarrow \infty} \sup G_{b}\left(a_{m_{i}+1}, a_{n_{i}-1}, a_{n_{i}-1}\right) \leq s \varepsilon \tag{3.14}
\end{equation*}
$$

From the definition of $M(u, v, w)$ and using (3.5) and (3.14), we have

$$
\begin{aligned}
& \lim _{i \rightarrow \infty} \sup M\left(a_{m_{i}+1}, a_{n_{i}-1}, a_{n_{i}-1}\right)= \\
& \quad \lim _{i \rightarrow \infty} \sup \max \left\{\begin{array}{c}
G_{b}\left(a_{m_{i}+1}, a_{\left.n_{i}-1, a_{n_{i}-1}\right),}\left\{\begin{array}{c}
\\
\frac{G_{b}\left(a_{m_{i}+1}, a_{m_{i}+2}, a_{m_{i}+2}\right) G_{b}\left(a_{m_{i}+1}, a_{n_{i}}, a_{n_{i}}\right)+G_{b}\left(a_{n_{i}-1}, a_{n_{i}}, a_{n_{i}}\right) G_{b}\left(a_{n_{i}-1}, a_{m_{i}+2}, a_{m_{i}+2}\right)}{1+s\left[G_{b}\left(a_{m_{i}+1}, a_{m_{i}+2}, a_{n_{i}}\right)+G_{b}\left(a_{n_{i}}, a_{n_{i}}, a_{n_{i}}\right)\right]}, \\
\frac{G_{b}\left(a_{m_{i}+1}, a_{m_{i}+2}, a_{m_{i}+2}\right) G_{b}\left(a_{m_{i}+1}, a_{n_{i}}, a_{n_{i}}\right)+G_{b}\left(a_{n_{i}-1}, a_{n_{i}}, a_{n_{i}}\right) G_{b}\left(a_{n_{i}-1}, a_{m_{i}+2}, a_{m_{i}+2}\right)}{1+\left[G_{b}\left(a_{m_{i}+1}, a_{n_{i}}, a_{n_{i}}\right)+G_{b}\left(a_{n_{i}-1}, a_{m_{i}+2}, a_{n_{i}}\right)\right]},
\end{array}\right\} \leq s \varepsilon .\right.
\end{array}\right.
\end{aligned}
$$

Note that, $m_{i}+1 \neq n_{i}-1$, as otherwise

$$
G_{b}\left(a_{m_{i}+1}, a_{n_{i}-1,} a_{n_{i}-1}\right)=0
$$

and so, by (3.12) $G_{b}\left(a_{m_{i}+1}, a_{m_{i}+2}, a_{m_{i}+2}\right)=G_{b}\left(a_{m_{i}+1}, g a_{m_{i}+1}, g a_{m_{i}+1}\right)=0$, which contradicts our assumption that $a_{n} \neq a_{n+1}$ for all $n \in N$. Hence, $\alpha\left(a_{m_{i}+1}, a_{n_{i}-1}, a_{n_{i}-1}\right) \geq 1$.

Based on the assumption (3.12), (θ_{1}), $\alpha\left(a_{m_{i}+1}, a_{n_{i}-1}, a_{n_{i}-1}\right) \geq 1$, (3.13), (3.1) and the above inequality we obtain that

$$
\begin{aligned}
\theta\left(s^{2} \cdot \frac{\varepsilon}{s}\right) & \leq \alpha\left(a_{m_{i}+1}, a_{n_{i}-1}, a_{n_{i}-1}\right) \theta\left(s^{2} \cdot \lim _{i \rightarrow \infty} \sup G_{b}\left(a_{m_{i}+2}, a_{n_{i}}, a_{n_{i}}\right)\right) \\
& =\alpha\left(a_{m_{i}+1}, a_{n_{i}-1}, a_{n_{i}-1}\right) \theta\left(s^{2} \cdot \lim _{i \rightarrow \infty} \sup G_{b}\left(g a_{m_{i}+1}, g a_{n_{i}-1}, g a_{n_{i}-1}\right)\right) \\
& \leq\left[\theta\left(\lim _{i \rightarrow \infty} \sup M\left(a_{m_{i}+1}, a_{n_{i}-1}, a_{n_{i}-1}\right)\right)\right]^{r} \leq[\theta(s \varepsilon)]^{r},
\end{aligned}
$$

a contradiction. Therefore, in all cases $\left\{a_{n}\right\}$ is a G_{b}-Cauchy sequence, thus by G_{b}-completeness of X yields that $\left\{a_{n}\right\}$ is G_{b}-convergent to a point $a^{\star} \in X$. By an argument similar to that in (3.10), we get either

$$
\frac{1}{3 s^{2}} G_{b}\left(a_{n}, g a_{n}, g a_{n}\right) \leq G_{b}\left(a_{n}, x^{\star}, a^{\star}\right)
$$

or

$$
\frac{1}{3 s^{2}} G_{b}\left(a_{n+1}, g a_{n+1}, g a_{n+1}\right) \leq G_{b}\left(a_{n+1}, a^{\star}, a^{\star}\right)
$$

holds for all $n \in \mathbb{N}$. First, suppose that

$$
\frac{1}{3 s^{2}} G_{b}\left(a_{n}, g a_{n}, g a_{n}\right) \leq G_{b}\left(a_{n}, a^{\star}, a^{\star}\right)
$$

Now,

$$
M\left(a_{n}, a^{\star}, a^{\star}\right)=\max \left\{\begin{array}{c}
G_{b}\left(a_{n}, a^{\star}, a^{\star}\right), \frac{G_{b}\left(a_{n}, g a_{n}, g a_{n}\right) G_{b}\left(a_{n}, g{ }^{*}, g a^{*}\right)+G_{b}\left(a^{*}, g a^{*}, g a^{*}\right) G_{b}\left(a^{*}, g a_{n}, g a_{n}\right)}{1+s\left[G_{b}\left(a_{n}, g a_{n}, g a^{*}\right)+G_{b}\left(a^{*}, g a^{*}, g a^{*}\right)\right]}, \\
\frac{G_{b}\left(a_{n}, g a_{n}, g a_{n}\right) G_{b}\left(a_{n}, g a^{*}, g a^{*}\right)+G_{b}\left(a^{*}, g a^{*}, g a^{*}\right) G_{b}\left(a^{*}, g a_{n}, g a_{n}\right)}{1+\left[G_{b}\left(a_{n}, g a^{*}, g a^{*}\right)+G_{b}\left(a^{*}, g a_{n}, g a^{*}\right)\right]}
\end{array}\right\}
$$

So, $\lim _{n \rightarrow \infty} M\left(a_{n}, a^{\star}, a^{\star}\right)=0$. Hence from (3.1) and assertion (ii) of the theorem, we have

$$
\begin{aligned}
1 \leq \theta\left(G_{b}\left(g a_{n}, g a^{\star}, g a^{\star}\right)\right) & \leq \theta\left(s^{2} G_{b}\left(g a_{n}, g a^{\star}, g a^{\star}\right)\right) \\
& \leq \alpha\left(a_{n}, a^{\star}, a^{\star}\right) \theta\left(s^{2} G_{b}\left(g a_{n}, g a^{\star}, g a^{\star}\right)\right) \\
& \leq\left[\theta\left(M\left(a_{n}, a^{\star}, a^{\star}\right)\right)\right]^{r}
\end{aligned}
$$

for all $n \in \mathbb{N}$. Taking the limit as $n \rightarrow \infty$, in the above inequality we get that

$$
\lim _{n \rightarrow \infty} \theta\left(G_{b}\left(g a_{n}, g a^{\star}, g a^{\star}\right)\right)=1
$$

This implies by $\left(\Theta_{1}\right)$ that

$$
\lim _{n \rightarrow \infty} G_{b}\left(g a_{n}, g a^{\star}, g a^{\star}\right)=0
$$

Hence, $g a^{\star}=\lim _{n \rightarrow \infty} g a_{n}=\lim _{n \rightarrow \infty} a_{n+1}=a^{\star}$. Thus, we deduce that $g a^{\star}=a^{\star}$.
Now if

$$
\frac{1}{3 s^{2}} G_{b}\left(a_{n+1}, g a_{n+1}, g a_{n+1}\right) \leq G_{b}\left(a_{n+1}, a^{\star}, a^{\star}\right)
$$

holds, then by repeating the same process as above we can get $g a^{\star}=a^{\star}$. Therefore, we proved that a^{\star} is a fixed point of g.

Now to prove uniqueness, suppose there exist $u, v \in \operatorname{Fix}(g)$ with $u \neq v$, that is $u=g u$ and $v=g v$. Therefore by (iii), $\alpha(u, v, v) \geq 1$ and so, by (3.1) and ($G_{b 2}$) we have

$$
0=\frac{1}{3 s^{2}} G(u, g u, g u) \leq G(u, v, v)
$$

and

$$
\begin{aligned}
\theta\left(G_{b}(u, v, v)\right) & \leq \alpha(u, v, v) \theta\left(s^{2} G_{b}(g u, g v, g v)\right) \\
& \leq[\theta(M(u, v, v))]^{r} \\
& =\left[\theta\left(G_{b}(u, v, v)\right)\right]^{r} \\
& <\theta\left(G_{b}(u, v, v)\right)
\end{aligned}
$$

Thus the contradiction implies that the fixed point is unique.

Theorem 3.16. Let $\left(X, G_{b}\right)$ be a G_{b}-complete metric space with $s>1$. Let $\alpha: X \times X \times X \rightarrow(0, \infty)$ and g be a rectangular α-admissible mapping. Suppose that there exist $\theta \in \Omega$ and $r \in(0,1)$ such that

$$
\begin{equation*}
\frac{1}{3 s^{2}} G_{b}(u, g u, g u) \leq G_{b}(u, v, w) \Rightarrow \alpha(u, v, w) \theta\left(s^{2} G_{b}(g u, g v, g w)\right) \leq[\theta(M(u, v, w))]^{r} \tag{3.15}
\end{equation*}
$$

for all $x, y, z \in X$ with at least two of $g x, g y$ and $g z$ being not equal, where

$$
M(u, v, w)=\max \left\{G_{b}(u, v, w), \frac{G_{b}(u, g u, g u) G_{b}(v, g v, g w)}{1+G_{b}(u, v, w)}, \frac{G_{b}(u, g u, g u) G_{b}(v, g v, g w)}{1+G_{b}(g u, g v, g w)}\right\}
$$

Also, suppose that the following assertions hold:
(i) There exists $a_{0} \in X$ such that $\alpha\left(a_{0}, g a_{0}, g a_{0}\right) \geq 1$.
(ii) For any convergent sequence $\left\{a_{n}\right\}$ to a with $\alpha\left(a_{n}, a_{n+1}, a_{n+1}\right) \geq 1$ for all $n \in \mathbb{N} \cup\{0\}$, we have $\alpha\left(a_{n}, a, a\right) \geq 1$ for all $n \in \mathbb{N} \cup\{0\}$.
Then g has a fixed point.
(iii) Moreover, if for all $u, v \in \operatorname{Fix}(g)$ implies $\alpha(u, v, v) \geq 1$, then the fixed point is unique where $\operatorname{Fix}(g)=\{u ; g u=u\}$.

Proof. Let $a_{0} \in X$ be such that $\alpha\left(a_{0}, g a_{0}, g a_{0}\right) \geq 1$. Define a sequence $\left\{a_{n}\right\}$ by $a_{n}=g^{n} a_{0}$ for all $n \in \mathbb{N}$. Since g is an α-admissible mapping and $\alpha\left(a_{0}, a_{1}, a_{1}\right)=\alpha\left(a_{0}, g a_{0}, g a_{0}\right) \geq 1$, we deduce that $\alpha\left(a_{1}, a_{2}, a_{2}\right)=$ $\alpha\left(g a_{0}, g a_{1}, g a_{1}\right) \geq 1$. Continuing this process, we get that $\alpha\left(a_{n}, a_{n+1}, a_{n+1}\right) \geq 1$ for all $n \in \mathbb{N} \cup\{0\}$. Without loss of generality, assume that $a_{n} \neq a_{n+1}$ for all $n \in \mathbb{N} \cup\{0\}$. We shall show that $\lim _{n \rightarrow \infty} G_{b}\left(a_{n+1}, a_{n}, a_{n}\right)=0$. Now,

$$
\begin{align*}
M\left(a_{n-1}, a_{n}, a_{n}\right) & =\max \left\{\begin{array}{c}
G_{b}\left(a_{n-1}, a_{n}, a_{n}\right), \frac{G_{b}\left(a_{n-1}, g a_{n-1}, g a_{n-1}\right) G_{b}\left(a_{n}, g a_{n}, g a_{n}\right)}{\left.1+G_{b}\left(a_{n-1}\right), a_{n}, a_{n}\right)}, \\
\frac{G_{b}\left(a_{n-1}, g a_{n-1}, g a_{n-1}\right)}{1+G_{b}\left(g a_{n-1}, g G_{n}, g a_{n} g a_{n}, g a_{n}\right)}
\end{array}\right\} \\
& =\max \left\{\begin{array}{c}
G_{b}\left(a_{n-1}, a_{n}, a_{n}\right), \frac{G_{b}\left(a_{n-1}, a_{n}, a_{n}\right) G_{b}\left(a_{n}, a_{n+1}, a_{n+1}\right)}{1+G_{b}\left(a_{n-1}, a_{n}, a_{n}\right)}, \\
\frac{G_{b}\left(a_{n-1}, a_{n}, a_{n}\right) G_{b}\left(a_{n}, a_{n+1}, a_{n+1}\right)}{1+G_{b}\left(a_{n}, a_{n+1}, a_{n+1}\right)}
\end{array}\right\} \tag{3.16}
\end{align*}
$$

Since, $\frac{G_{b}\left(a_{n-1}, a_{n}, a_{n}\right)}{1+G_{b}\left(a_{n-1}, a_{n}, a_{n}\right)}<1$ and $\frac{G_{b}\left(a_{n}, a_{n+1}, a_{n+1}\right)}{1+G_{b}\left(a_{n}, a_{n+1}, a_{n+1}\right)}<1$. Therefore,

$$
M\left(a_{n-1}, a_{n}, a_{n}\right)=\max \left\{G_{b}\left(a_{n-1}, a_{n}, a_{n}\right), G_{b}\left(a_{n}, a_{n+1}, a_{n+1}\right)\right\}
$$

If $\max \left\{G_{b}\left(a_{n-1}, a_{n}, a_{n}\right), G_{b}\left(a_{n}, a_{n+1}, a_{n+1}\right)\right\}=G_{b}\left(a_{n}, a_{n+1}, a_{n+1}\right)$, then since $\alpha\left(a_{n-1}, a_{n}, a_{n}\right) \geq 1$ for each $n \in \mathbb{N}, \frac{1}{3 s^{2}} G_{b}\left(a_{n-1}, g a_{n-1}, g a_{n-1}\right) \leq G_{b}\left(a_{n-1}, a_{n}, a_{n}\right)$ and so by (3.15) we have

$$
\begin{align*}
\theta\left(G_{b}\left(a_{n}, a_{n+1}, a_{n+1}\right)\right) & =\theta\left(G_{b}\left(g a_{n-1}, g a_{n}, g a_{n}\right)\right) \\
& \leq \alpha\left(a_{n-1}, a_{n}, a_{n}\right) \theta\left(s^{2} G_{b}\left(g a_{n-1}, g a_{n}, g a_{n}\right)\right), \\
& \leq\left[\theta\left(M\left(a_{n-1}, a_{n}, a_{n}\right)\right)\right]^{r}, \\
& =\left[\theta\left(G_{b}\left(a_{n}, a_{n+1}, a_{n+1}\right)\right)\right]^{r} \\
& <\theta\left(G_{b}\left(a_{n}, a_{n+1}, a_{n+1}\right)\right) \tag{3.17}
\end{align*}
$$

which is a contradiction since $r \in(0,1)$. Thus, $M\left(a_{n-1}, a_{n}, a_{n}\right)=G_{b}\left(a_{n-1}, a_{n}, a_{n}\right)$.
The rest of the proof is the same as the proof of Theorem 3.15.

Analogously, we can prove the following theorem.
Theorem 3.17. Let $\left(X, G_{b}\right)$ be a complete G_{b} - metric space with $s>1$. Let $\alpha: X \times X \times X \rightarrow(0, \infty)$ and g be a rectangular α-admissible mapping. Suppose that there exist $\theta \in \Omega$ and $r \in(0,1)$ such that

$$
\frac{1}{3 s^{2}} G_{b}(u, g u, g u) \leq G_{b}(u, v, w) \Rightarrow \alpha(u, v, w) \theta\left(s^{2} G_{b}(g u, g v, g w)\right) \leq[\theta(M(u, v, w))]^{r}
$$

for all $u, v, w \in X$ with at least two of $g u, g v$ and $g w$ are not equal, where

Also, suppose that the following assertions hold:
(i) There exists $a_{0} \in X$ such that $\alpha\left(a_{0}, g a_{0}, g a_{0}\right) \geq 1$;
(ii) For any convergent sequence $\left\{a_{n}\right\}$ to a with $\alpha\left(a_{n}, a_{n+1}, a_{n+1}\right) \geq 1$ for all $n \in \mathbb{N} \cup\{0\}$, we have $\alpha\left(a_{n}, a, a\right) \geq 1$ for all $n \in \mathbb{N} \cup\{0\}$.
Then g has a fixed point.
(iii) Moreover, if for all $u, v \in \operatorname{Fix}(g)$ implies $\alpha(u, v, v) \geq 1$, then the fixed point is unique where $\operatorname{Fix}(g)=\{u ; g u=u\}$.

Now, we give an example to support Theorem 3.1
Example 3.18. Let $X=[0, \infty)$ and $G_{b}: X \times X \times X \rightarrow R$ be a G_{b}-metric space defined by $G_{b}(u, v, w)=$ $(|u-v|+|v-w|+|u-w|)^{2}$. Clearly $\left(X, G_{b}\right)$ is a complete G_{b}-metric space with $s=2$. Also let $r=\frac{3}{5}$ and define $g: X \rightarrow X, \alpha: X \times X \times X \rightarrow R$ and $\theta:[0, \infty) \rightarrow[1, \infty)$ by

$$
\begin{gathered}
g(x)= \begin{cases}\frac{x}{5}, & \text { if } x \in[0,1] \\
x^{2}, & \text { otherwise }\end{cases} \\
\alpha(u, v, w)= \begin{cases}1, & \text { if } u, v, w \in[0,1] \\
0, & \text { otherwise }\end{cases}
\end{gathered}
$$

and

$$
\theta(t)=e^{t}
$$

Assume that $\frac{1}{12} G_{b}(u, g u, g u) \leq G_{b}(u, v, w)$. If one of $u, v, w \notin[0,1]$, then $\alpha(u, v, w)=0$ and so, the conclusion of (3.1) is satisfied. If $u, v, w \in[0,1]$, then $g u, g v, g w \in[0,1]$ and $\alpha(u, v, w) \geq 1$ with $g u \neq g v \neq$ $g w$. Hence,

$$
\begin{aligned}
\alpha(u, v, w) \theta\left(4 G_{b}(g u, g v, g w)\right) & =e^{4\left(\frac{1}{5}(|u-v|+|v-w|+|u-w|)\right)^{2}} \\
& =e^{\frac{4}{25}(|u-v|+|v-w|+|u-w|)^{2}} \\
& \leq e^{(3 / 5)(|u-v|+|v-w|+|u-w|)^{2}} \\
& =\left(e^{(|u-v|+|v-w|+|u-w|)^{2}}\right)^{\frac{3}{5}} \\
& =\left(e^{G_{b}(u, v, w)}\right)^{\frac{3}{5}} \\
& =\left(\theta\left(G_{b}(u, v, w)\right)\right)^{\frac{3}{5}} .
\end{aligned}
$$

Thus all conditions of Theorem 3.15 are satisfied and $x=0$ is the unique fixed point of g.
Corollary 3.19. Let $\left(X, G_{b}\right)$ be a complete G_{b}-metric space with $s>1$. Let $\alpha: X \times X \times X \rightarrow(0, \infty)$ and g be a rectangular α-admissible mapping. Suppose that there exist $\theta \in \Omega$ and $r, \delta, \beta, \gamma \in(0,1)$ with $\delta+\beta+\gamma<1$ such that

$$
\begin{aligned}
& \frac{1}{3 s^{2}} G_{b}(u, g u, g u) \leq G_{b}(u, v, w) \Rightarrow \alpha(u, v, w) \theta\left(s^{2} G_{b}(g u, g v, g w)\right) \\
\leq & {\left[\theta\left(\delta G_{b}(u, v, w)+\beta \frac{G_{b}(u, g u, g u) G_{b}(v, g v, g w)}{1+G_{b}(u, v, w)}+\gamma \frac{G_{b}(u, g u, g u) G_{b}(v, g v, g w)}{1+G_{b}(g u, g v, g w)}\right)\right]^{r} }
\end{aligned}
$$

for all $u, v, w \in X$ with at least two of gu, gv and gw being not equal. Also, suppose that the following assertions hold:
(i) There exists $a_{0} \in X$ such that $\alpha\left(a_{0}, g a_{0}, g a_{0}\right) \geq 1$;
(ii) For any convergent sequence $\left\{a_{n}\right\}$ to a with $\alpha\left(a_{n}, a_{n+1}, a_{n+1}\right) \geq 1$, for all $n \in \mathbb{N} \cup\{0\}$, we have $\alpha\left(a_{n}, a, a\right) \geq$ 1 for all $n \in \mathbb{N} \cup\{0\}$.
Then g has a fixed point.
(iii) Moreover, if for all $u, v \in \operatorname{Fix}(g)$ implies $\alpha(u, v, v) \geq 1$, then the fixed point is unique where $\operatorname{Fix}(g)=$ $\{u ; g u=u\}$.

Corollary 3.20. Let $\left(X, G_{b}\right)$ be a complete G_{b}-metric space with $s>1$. Let $\alpha: X \times X \times X \rightarrow(0, \infty)$ and g be a rectangular α-admissible mapping. Suppose that there exist $\theta \in \Omega$ and $r, \delta, \beta, \gamma \in(0,1)$ with $\delta+\beta+\gamma<1$ such that

$$
\begin{aligned}
\frac{1}{3 s^{2}} G_{b}(u, g u, g u) & \leq G_{b}(u, v, w) \Rightarrow \alpha(u, v, w) \theta\left(s^{2} G_{b}(g u, g v, g w)\right) \\
& \leq\left[\theta\binom{\delta G_{b}(u, v, w)+\beta \frac{G_{b}(u, g u, g u) G_{b}(u, g v, g w)+G_{b}(v, g v, g w) G_{b}(v, g u, g u)}{1+S G_{b}(u, g u, g w)+G b(v, g v, g w),}}{+\gamma \frac{G_{b}(u, g u, g u) G_{b}(u, g v, g w)+G_{b}(v, g v, g w) G_{b}(v, g u, g u)}{1+G_{b}(u, g v, g w)+G_{b}(v, g u, g w)}}\right]^{r}
\end{aligned}
$$

for all $u, v, w \in X$ with at least two of $g u, g v$ and $g w$ being not equal. Also, suppose that the following assertions hold:
(i) There exists $a_{0} \in X$ such that $\alpha\left(a_{0}, g a_{0}, g a_{0}\right) \geq 1$;
(ii) for any convergent sequence $\left\{a_{n}\right\}$ to a with $\alpha\left(a_{n}, a_{n+1}, a_{n+1}\right) \geq 1$, for all $n \in \mathbb{N} \cup\{0\}$, we have $\alpha\left(a_{n}, a, a\right) \geq$ 1 for all $n \in \mathbb{N} \cup\{0\}$.
Then g has a fixed point.
(iii) Moreover, iffor all $u, v \in \operatorname{Fix}(g)$ implies $\alpha(u, v, v) \geq 1$, then the fixed point is unique where Fix $(g)=\{u$; gu = $u\}$.

Corollary 3.21. Let $\left(X, G_{b}\right)$ be a complete G_{b}-metric space with $s>1$. Let $\alpha: X \times X \times X \rightarrow(0, \infty)$ and g be a rectangular α-admissible mapping. Suppose that there exist $\theta \in \Omega$ and $r, \delta, \beta, \gamma \in(0,1)$ with $\delta+\beta+\gamma<1$ such that

$$
\begin{aligned}
\frac{1}{3 s^{2}} G_{b}(u, g u, g u) & \leq G_{b}(u, v, w) \Rightarrow \alpha(u, v, w) \theta\left(s^{2} G_{b}(g u, g v, g w)\right) \\
& \leq\left[\theta\binom{\delta G_{b}(u, v, w)+\beta \frac{G_{b}(u, g u, g u) G_{b}(v, g v, g w)}{1+s\left[G_{b}(u, v, w)+G_{b}(u, g, v, g v)+G_{b}(v, g u, g u)\right]}}{+\gamma \frac{G_{b}(u, g v, v g) G_{b}(u, v, w)}{1+s G_{b}(u, g u, g u)+s^{2}\left[G_{b}(v, g u, g u)+G_{b}(v, g v, g v)\right]}}\right]^{r}
\end{aligned}
$$

for all $u, v, w \in X$ with at least two of $g u, g v$ and $g w$ being not equal. Also, suppose that the following assertions hold:
(i) There exists $a_{0} \in X$ such that $\alpha\left(a_{0}, g a_{0}, g a_{0}\right) \geq 1$;
(ii) For any convergent sequence $\left\{a_{n}\right\}$ to a with $\alpha\left(a_{n}, a_{n+1}, a_{n+1}\right) \geq 1$ for all $n \in \mathbb{N} \cup\{0\}$, we have $\alpha\left(a_{n}, a, a\right) \geq 1$ for all $n \in \mathbb{N} \cup\{0\}$.
Then g has a fixed point.
(iii) Moreover, if for all $u, v \in$ Fix (g) implies $\alpha(u, v, v) \geq 1$, then the fixed point is unique where Fix $(g)=\{u$; gu = $u\}$.

Taking $\theta(t)=e^{t}$ for all $t>0$, in the above corollaries we get the following new results.
Corollary 3.22. Let $\left(X, G_{b}\right)$ be a complete G_{b} metric space with $s>1$. Let $\alpha: X \times X \times X \rightarrow(0, \infty)$ and g be a rectangular α-admissible mapping. Suppose that there exist $\theta \in \Omega$ and $r, \delta, \beta, \gamma \in(0,1)$ with $\delta+\beta+\gamma<1$ such that

$$
\begin{aligned}
\frac{1}{3 s^{2}} G_{b}(u, g u, g u) & \leq G_{b}(u, v, w) \Rightarrow \ln \alpha(u, v, w)+s^{2} G_{b}(g u, g v, g w) \\
& \leq r\left[\delta G_{b}(u, v, w)+\beta \frac{G_{b}(u, g u, g u) G_{b}(v, g v, g w)}{1+G_{b}(u, v, w)}+\gamma \frac{G_{b}(u, g u, g u) G_{b}(v, g v, g w)}{1+G_{b}(g u, g v, g w)}\right]
\end{aligned}
$$

for all $u, v, w \in X$ with at least two of $g u, g v$ and $g w$ being not equal. Also, suppose that the following assertions hold:
(i) There exists $a_{0} \in X$ such that $\alpha\left(a_{0}, g a_{0}, g a_{0}\right) \geq 1$;
(ii) For any Convergent sequence $\left\{a_{n}\right\}$ to a with $\alpha\left(a_{n}, a_{n+1}, a_{n+1}\right) \geq 1$ for all $n \in \mathbb{N} \cup\{0\}$, we have $\alpha\left(a_{n}, a, a\right) \geq$ 1 for all $n \in \mathbb{N} \cup\{0\}$.
Then g has a fixed point.
(iii) Moreover, iffor all $u, v \in$ Fix (g) implies $\alpha(u, v, v) \geq 1$, then the fixed point is unique where Fix $(g)=\{u$; gu = u\}.

Corollary 3.23. Let $\left(X, G_{b}\right)$ be a complete G_{b} - metric space (with parameter $s>1$). Let $\alpha: X \times X \times X \rightarrow(0, \infty)$ and g be a rectangular α-admissible mapping. Suppose that there exist $\theta \in \Omega$, and $r, \delta, \beta, \gamma \in(0,1)$ with $\delta+\beta+\gamma<1$ such that

$$
\begin{aligned}
\frac{1}{3 s^{2}} G_{b}(u, g u, g u) & \leq G_{b}(u, v, w) \Rightarrow \ln \alpha(u, v, w)+s^{2} G_{b}(g u, g v, g w) \\
& \leq r\left[\begin{array}{c}
\delta G_{b}(u, v, w)+\beta \frac{G_{b}(u, g u, g u) G_{b}(u, g v, g w)+G_{b}(v, g v, g w) G_{b}(v, g u, g u)}{1+S\left(G_{b} u,(u, g u, g w)+G_{0}(v, g v, g w),\right.} \\
+\gamma \frac{G_{b}(u, g u, g u) G_{b}(u, g v, g w)+G_{b}(v v, g v, g w) G_{b}(v, g u, g u)}{1+G_{b}(u, g v, g w)+G_{b}(v, g u, g w)}
\end{array}\right]
\end{aligned}
$$

for all $u, v, w \in X$ with at least two of $g u, g v$ and $g w$ being not equal. Also, suppose that the following assertions hold:
(i) There exists $a_{0} \in X$ such that $\alpha\left(a_{0}, g a_{0}, g a_{0}\right) \geq 1$;
(ii) For any Convergent sequence $\left\{a_{n}\right\}$ to a with $\alpha\left(a_{n}, a_{n+1}, a_{n+1}\right) \geq 1$ for all $n \in \mathbb{N} \cup\{0\}$, we have $\alpha\left(a_{n}, a, a\right) \geq$ 1 for all $n \in \mathbb{N} \cup\{0\}$.
Then g has a fixed point.
(iii) Moreover, iffor all $u, v \in \operatorname{Fix}(g)$ implies $\alpha(u, v, v) \geq 1$, then the fixed point is unique where Fix $(g)=\{u$; gu = u.

Corollary 3.24. Let $\left(X, G_{b}\right)$ be a complete G_{b}-complete metric space with $s>1$. Let $\alpha: X \times X \times X \rightarrow(0, \infty)$ and g be a rectangular α-admissible mapping. Suppose that there exist $\theta \in \Omega$, and $r, \delta, \beta, \gamma \in(0,1)$ with $\delta+\beta+\gamma<1$ such that

$$
\begin{aligned}
\frac{1}{3 s^{2}} G_{b}(u, g u, g u) & \leq G_{b}(u, v, w) \Rightarrow \ln \alpha(u, v, w)+s^{2} G_{b}(g u, g v, g w) \\
& \leq r\left[\begin{array}{c}
\delta G_{b}(u, v, w)+\beta_{\frac{G_{b}}{1+s\left[G_{b}(u, v, w, g u, g u) G_{b}(v, g v, g w)\right.}}+\gamma \frac{\left.G_{b}(u, g v, g v)+G_{b}(v, g u, g u)\right]}{1+s G_{b}(u, g u, g u)+s^{2}[g v)\left(G_{b}(v, g u, g u)+G_{b}(v, g v, g v)\right]}
\end{array}\right]
\end{aligned}
$$

for all $u, v, w \in X$ with at least two of gu, gv and gw being not equal. Also, suppose that the following assertions hold:
(i) There exists $a_{0} \in X$ such that $\alpha\left(a_{0}, g a_{0}, g a_{0}\right) \geq 1$;
(ii) For any convergent sequence $\left\{a_{n}\right\}$ to a with $\alpha\left(a_{n}, a_{n+1}, a_{n+1}\right) \geq 1$ for all $n \in \mathbb{N} \cup\{0\}$, such that $a_{n} \rightarrow x$ as $n \rightarrow \infty$, we have $\alpha\left(a_{n}, a, a\right) \geq 1$ for all $n \in \mathbb{N} \cup\{0\}$.
Then g has a fixed point.
(iii) Moreover, if for all $u, v \in \operatorname{Fix}(g)$ implies $\alpha(u, v, v) \geq 1$, then the fixed point is unique where $F i x(g)=$ $\{u ; g u=u\}$.

Competing interests: The authors declare that they have no competing interests.

Authors' contributions: All authors contributed equally and significantly in writing this paper. All authors read and approved the final manuscript.

Acknowledgement: The authors sincerely thank the referees for valuable suggestions which improved the presentation of the paper.

References

[1] Mustafa Z., Sims B., A new approach to generalized metric space, J. Nonlinear Convex Anal., 2006, 7, 289-297
[2] Abbas M., Nazir T., Shatanawi W., Mustafa Z., Fixed and related fixed point theorems for three maps in G-metric spaces, Hacet. J. Math. Stat., 2012, 41, 291-306
[3] Aydi H., Postolache M., Shatanawi W., Coupled fixed point results for (ψ, ϕ)-weakly contractive mappings in ordered Gmetric spaces, Comput. Math. Appl., 2012, 63, 298-309
[4] Algamdi M. A., Karapinar E., G- $\beta-\psi$-contractive type mappings in G-metric spaces, Fixed Point Theory and Appl., 2013, 2013:123
[5] Chandok S., Mustafa Z., Postolache M., Coupled common fixed point results for mixed g-monotone mapps in partially ordered G-metric spaces, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys., 2013, 75, 13-26
[6] Mustafa Z., Common fixed points of weakly compatible mappings in G-metric spaces, Appl. Math. Sci., 2012, 6, 4589-4600
[7] Mustafa Z., Aydi H., Karapinar E., On common fixed points in G-metric spaces using (E.A) property, Computer and Mathematics with Application, 2012, 64, 1944-1956
[8] Mustafa Z., Khandagjy M., Shatanawi W., Fixed point results on complete G-metric spaces, Studia Sci. Math. Hungar., 2011, 48, 304-319
[9] Mustafa Z., Parvaneh V., Abbas M., Roshan J., Some coincidence point results for generalized-weakly contractive mappings in ordered G-metric spaces, Fixed Point Theory Appl., 2013, 2013:326
[10] Mustafa Z., Van T., Dung N., Two fixed point theorems for maps on incomplete G-metric spaces, Appl. Math. Sci., 2013, 7, 2271-2281
[11] Mustafa Z., Jaradat M., Jaradat H. M., A remarks on the paper "Some fixed point theorems for generalized contractive mappings in complete metric spaces", Journal of Mathematical Analysis, 2017, 8, 2, 17-22
[12] Mustafa Z., Jaradat M., Karapinar E., A new fixed point result via property P with an application, J. Nonlinear Sci. Appl., 2017, 10, 2066-2078
[13] Mustafa Z., Arshad M., Khan S., Ahmad J., Jaradat M., Common fixed points for multivalued mappings in G-metric spaces with applications, J. Nonlinear Sci. Appl., 2017, 10, 2550-2564
[14] Mustafa Z., Roshan J., Parvaneh V., Coupled coincidence point results for (ψ, φ)-weakly contractive mappings in partially ordered G_{b}-metric spaces, Fixed point Theory Appl., 2013, 2013:206, DOI: 10.1186/1687-1812-2013-206
[15] Mustafa Z., Roshan J., Parvaneh V., Existence of tripled coincidence point in ordered G_{b}-metric spaces and applications to system of integral equations, J. Inequal. Appl., 2013, 2013:453
[16] Pourhadi E., A criterion for the completeness of G-metric spaces, J. Adv. Math. Stud., 2016, 9, 401-404
[17] Rao K., Lakshmi K., Mustafa Z., Raju V., Fixed and related fixed point theorems for three maps in G-metric spaces, J. Adv. Stud. Topol., 2012, 3, 12-20
[18] Rao K., Lakshmi K., Mustafa Z., A unique common fixed point theorem for six maps in G-metric spaces, Int. J. Nonlinear Anal. Appl., 2012, 3, 17-23
[19] Shatanawi W., Bataihah A., Pitea A., Fixed and common fixed point results for cyclic mappings of Ω-distance, J. Nonlinear Sci. Appl., 2016, 9, 727-735
[20] Shatanawi W., Noorani MD., Alsamir H., Bataihah A., Fixed and common fixed point theorems in partially ordered quasimetric spaces, J. Math. Computer Sci., 2016, 16, 516-528
[21] Shatanawi W., Mustafa Z., Tahat N., Some coincidence point theorems for nonlinear contraction in ordered metric spaces, Fixed Point Theory Appl., 2011, 2011:68
[22] Shatanawi W., Pitea A., Ω-distance and coupled fixed point in G-metric spaces, Fixed Point Theory Appl., 2013, 2013:208
[23] Shatanawi W., Postolache M., Some fixed point results for a G-weak contraction in G-metric spaces, Abstr. Appl. Anal., 2012, Art. ID 815870
[24] Tahat N., Aydi H., Karapinar E., Shatanawi W., Common fixed points for single-valued and multi-valued maps satisfying a generalized contraction in G-metric spaces, Fixed Point Theory Appl., 2012, 2012:48
[25] Jleli M., Samet B., A new generalization of the Banach contraction principle, J. Inequal. Appl., 2014, 2014:38
[26] Hussain N., Parvaneh V., Samet B., Vetro C., Some fixed point theorems for generalized contractive mappings in complete metric spaces, Fixed Point Theory Appl., 2015, 2015:185
[27] Onsod W., Saleewong T., Ahmad J., Al-Mazrooei A., Poom Kumam, Fixed points of a Θ-contraction on metric spaces with a graph, Commun. Nonlinear Anal., 2016, 2, 139-149
[28] Ahmad J., Al-Rawashdeh A., Azam A., New Fixed Point Theorems for Generalized Contractions in Complete Metric Spaces, Fixed Point Theory Appl., 2015, 2015:80
[29] Ahmad A., Al-Rawashdeh A., Azam A., Fixed point results for $\{\alpha, \xi\}$-expansive locally contractive mappings, J. Inequal. Appl., 2014, 2014:364
[30] Al-Rawashdeh A., Ahmad J., Common Fixed Point Theorems for JS-Contractions, Bull. Math. Anal. Appl., 2016, 8, 12-22
[31] Aghajani A., Abbas M., Roshan J., Common fixed points of generalized weak contractive mappings in partially ordered G_{b} metric spaces, Filomat, 2014, 28, 1087-1101

[^0]: *Corresponding Author: Mohammed M.M. Jaradat: Department of Mathematics, Statistics and Physics, Qatar University, Doha-Qatar, E-mail: mmjst4@qu.edu.qa
 Zead Mustafa: Department of Mathematics, Statistics and Physics, Qatar University, Doha-Qatar, E-mail: zead@qu.edu.qa and Department of Mathematics, The Hashemite University, Zarqa- Jordan, E-mail: zmagablh@hu.edu.jo
 Sami Ullah Khan: Department of Mathematics, International Islamic University, H-10, Islamabad - 44000, Pakistan and Department of Mathematics, Gomal University D. I. Khan, KPK, Pakistan, E-mail: gomal85@gmail.com
 Muhammad Arshad: Department of Mathematics, International Islamic University, H-10, Islamabad - 44000, Pakistan, E-mail: marshad_zia@yahoo.com
 Jamshaid Ahmad: Department of Mathematics, University of Jeddah, P.O.Box 80327, Jeddah 21589, Saudi Arabia, E-mail: jamshaid_jasim@yahoo.com

