
QATAR UNIVERSITY  

COLLEGE OF ENGINEERING 

TURBULENCE MODELING AND VALIDATION TO PREDICT VELOCITY 

PROFILES IN CLOSE-COUPLED FIVE-GORE ELBOWS 

BY 

MOHAMMED KARBON 

 

 

 

 

 

 

 
 
 

A Dissertation Submitted to  

the College of Engineering 

in Partial Fulfillment of the Requirements for the Degree of      

Doctorate of Philosophy in Mechanical Engineering  

 
 
 
 
 

 January   2021 

 
© 2021 Mohammed Karbon. All Rights Reserved. 

 



ii 

 

COMMITTEE PAGE 

 

The members of the Committee approve the Dissertation of 

Mohammed Karbon defended on Tuesday, 01/12/2020. 

 

 
 
 

Prof. Ahmad Sleiti 

 Thesis/Dissertation Supervisor 
 
 

  
Prof. Faris Tarlochan 

 Committee Member 
 
 

 
Prof. Samer Ahmed  

Committee Member 
 
 

 
Prof. Mohamed Al-Khawaja 

Committee Member 

 
 

Prof. Riyadh Al-Raoush  

Committee Member 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Approved: 

 
Khalid Kamal Naji, Dean, College of Engineering   

 



iii 

 

ABSTRACT 

KARBON, MOHAMMED, A, Doctorate : January : 2021, 

Doctorate of Philosophy in Mechanical Engineering  

Title: Turbuelence Modeling and Valication to Predict Velocity Profiles in Close-

Coupled Five-Gore Elbows 

Supervisor of Dissertation: Prof. Ahmad K Sleiti. 

This research work aims to validate advanced turbulence modeling techniques 

used to predict complex flows in close-coupled five-gore elbows and similar complex 

geometries using data from 2016 ASHRAE RP-1682 (Study to Identify CFD Models 

for Use in Determining HVAC Duct Fitting Loss Coefficients). The study in question 

conducted experimental measurements of friction factor, pressure loss coefficient, and 

detailed velocity profiles in two close-coupled five-gore elbows.  

Using this data, this research will test the validity of specific CFD models in the 

case of turbulent flow in a Z-shape duct. The models, namely Reynolds Stress Model, 

Large Eddy Simulation, ζ-f Model and Wall-Modeled Large Eddy Simulation 

(WMLES) are analyzed, validated and compared using experimental data from 

ASHRAE RP-1682 [1], [2] and [3]. The effect of separation distance (Lint/D) is also 

investigated; to assess and identify the capabilities and limitations of each turbulence 

model in predicting such complex flow; and to probe the influence of the numerical 

grid size and quality on the accuracy of the CFD predictions. The study is 

comprehensively discussing the framework of the current LES model with an eddy 

viscosity subgrid-scale model. 

The dissertation focused on the issues encountered by RSM in properly 

capturing flow behavior dominated by flow separations. The LES simulation has shown 

some limitations in the flow separation and re-attachment regions. This dissertation 
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finds that the turbulent kinetic energy production in ζ equation of ζ-f model is 

reproduced much more easily and accurately than with other models. Mean velocity 

gradient as well as local turbulent stress terms are also much easier to resolve properly. 

The ζ-f model was found to be both more efficient in terms of computational power and 

better able to predict the mean flow velocity profile results than the RSM model, despite 

both models being coupled steady-state RANS models. ζ-f model also performed better 

in the numerical resolution of flow separation and re-attachment regions compared to 

the RSM model. WMLES model is employed to investigate the SGS model impact on 

the small eddies dissipated from the large eddies. Moreover, WMLES model produces 

much better results than the LES model with much less computational time, however 

the SGS viscosity give further undesired damping effect to the flow energy. 
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CHAPTER 1: INTRODUCTION 

 

1.1 Background 

Since 1988 experimental work such as ASHRAE: RP-551 [4], RP-690 [5], RP-

1319 [6], RP-1488 [6], RP-1606 [7] contributed to the creation of the duct fitting 

database [8]. The research in the database is freely available to the public. Until RP-

1493 [9] was published, Direct Numerical Simulations (DNS) to predict duct flow, as 

compared to empirical tests, were not as studied in the literature. RP-1493 focused on 

validating Computational Fluid Dynamics (CFD) and its ability to estimate pressure 

loss coefficients. Direct numerical methods promised to cut costs of instruments and 

equipment setups essential for experimental pressure loss coefficient measurements. 

Unfortunately, RP-1493 found that numerical results predictions at that time failed to 

achieve 15% accuracy. There are few studies that showed similar results, including A. 

K. Sleiti et al. [10], Liu et al. [11], Manning et al. [12], and Gutovic et al. [13].  

The review of the literature published by well-known researchers around the 

world reveals that there are limited number of papers that study flow turbulence in Z-

shaped duct flows. Moreover, the studies available to the public are inadequate in their 

treatment of turbulent or transient flow in Z-shaped ducts. In [1], [3], Salehi et al. 

investigated the turbulent flow in different duct shapes (e.g., Z and U) and presented 

numerical and experimental results for both ducts. Their research concluded that 

turbulence modeling approaches used to estimate the accuracy of the turbulence flow 

showed inconsistent or incorrect trends. A. K. Sleiti et al. published another paper on 

the Z-shaped duct [2]. They contrasted the computed profiles of velocity to LES and 

RSM anticipation when it comes to the investigation of separation distance impact. 

RSM modeling anticipated the velocity tendencies precisely (under 15% error).  Large-
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eddy simulation was not able to anticipate the velocity tendency and magnitude. 

The challenge and opportunity of correctly predicting the Z-shaped duct remain 

open, and therefore, this thesis is to document and report how to address this issue with 

the state-of-the-art CFD methodology. 

Rutten et al. [14] analyzed turbulent flows numerically in a couple of 90° bends 

with 2 and 3 as their ratios of curvature, employing large-eddy simulation. Djebedjian 

et al. [15] investigated 2D and 3D U-bend ducts with mild and strong curvatures using 

Realizable k-ε (RKE), standard k-ε, shear-stress transport (SST) k-ω, and 

renormalization group (RNG) k-ε, along with RSM. These studies determined that, all 

models except the standard k-ε model over-predicted the reattachment. The results 

obtained using the RSM and the RNG k-ε models were satisfactory at the recirculation 

regions. However, the computational time they required was on the higher side. Several 

scientists employed LES, RANS, and DNS models to scrutinize the flow features in 

ducts with curvature in their shapes.  However, less attention has been given to the 

studies related to Z-shaped ducts at varying separation distances. 

Turbulent flow existing in Z-shaped ducts is complex which means it requires 

comprehensive scrutiny and investigation. Experimental research [1] revealed that the 

flow in Z-shaped ducts has a strong separation distance function, which means that 

further is required in order to better understand the complex behavior of  turbulence. 

This dissertation examines turbulence modeling in Z-shaped ducts using wall-modeled 

large-Eddy simulation (WMLES), RSM, LES, and ζ-f model. 

The importance of ducts for large sectors of engineering and technology cannot 

be overstated. Ducts are crucial elements of contamination control systems, gas 

cleaning processes, air ventilation systems and aerosol sampling and filtration. Ducts 

are an integral part of heating, ventilation, air conditioning and in transportation of 
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water, gases, and oils. In the recent decade, the study of ducts has become the center of 

research in the design of the aircraft engine, to make it more efficient and with fewer 

emissions. The understanding of ducts provides an opportunity to make solar energy 

more efficient.  

In these industries, the sound understanding of ducts, the laminar and turbulent 

flow which they produce, as well as of particle deposition is crucial for obtaining 

results. That is why some of the ducts which find the most common industrial use, such 

as the S-shaped, Z shaped, V-ribbed triangular-shaped, horizontal and vertical ducts are 

extensively studied in the recent literature [16]. Computational fluid dynamics (CFD) 

is vital instrument in the study and the design of efficient duct applications. It can be 

used in simulations of particle distribution in horizontal duct flow [17], to analyze the 

impact of gas-particle flows [18] and in the design of S-shaped ducts [19]. These 

operations enable the production of more efficient duct applications, which enable 

greater productivity and efficiency of the entire system.  

In the recent decade, extensive research has been made by scientists to design 

effective aircraft systems for maximum efficiency and fewer emissions. Some 

researchers proposed to split the entire engine into smaller parts and then redesign each 

part independently [20]. However, the drawback of that approach was the risk of sub-

optimal design when different parts are designed in isolation [20].  Hence, the design 

of the intermediate compressor duct system became the center of study. Cited as its 

advantage is the relatively bulk fluid flow over large radial offset in small spacing 

without the separation of the [21].  There have been very few studies that reported on 

the applications of S-shaped ducts in the behavior of various kind of fluids. Britchford 

et al [22] performed several experiments via CFD calculations on clean annular flow in 

S-shaped ducts. The main goal of their research was the study of flow physics and 
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behavior. As an inlet boundary condition, they applied a precisely developed duct flow 

system for the said type of duct.  Bailey et al [23] proposed that the pressure gradient 

that develops at inner duct casing can be lowered if realistic inlet boundary conditions 

are used in the design the boundary layer. Hence, the risk of separation is decreased 

which allows a shorter duct.  

A study on S-shaped compressor transition duct design presented an 

optimization method which involved using uniform design of the duct in combination 

with response surface methodology as well as a genetic algorithm [24]. This approach 

demonstrated that this optimization can be used in the design of turbofan engines. The 

simulation and designing of S-shaped duct diffuser for aircraft with the help ANSYS 

fluent simulation software, a key resource in CFD [25]. The paper studied baseline 

clean duct configuration and the aerodynamic interface plane (AIP). The results showed 

that the installation of AIP rake legs installed inside the S-duct has a very slight effect 

on the airflow and thus, the performance of the duct was enhanced. The C-ducts are 

also widely used in the aircraft industry. In combustors, ventilation ducts and wind 

tunnels and in the internal cooling systems of gas turbines. The flow through the straight 

ducts is relatively easy and there is less pressure drop as compared to the flow-through 

curved and bend ducts [26].  

The duct and piping systems with many cutting and wide-angled shapes are used 

in HVAC systems, installed heat exchangers and in the transportation of water, gases, 

and oils.  

The Z-shaped ducts are a vital part of nearly every air-conditioning and 

ventilation system. However, the literature on turbulent flow in the Z-shaped ducts is 

relatively scarce. The studies which examined it as well as those which examined 

turbulent flow in U-shaped ducts, both experimentally and numerically, showed that 
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the RSM models were best to calculate the fluid flows and pressure loses at the elbows 

and bends.  

Multiple researchers conducted studies on both static and dynamic flow in duct 

geometries with various bens, curvatures, angles. A study explored the flow of turbulent 

and laminar at 90 degrees bend and a 3.7 ratio of curvature using the experimental 

method [27]. The effects of curvature ratio were studied by [28] where experimental 

analysis was conducted on water flow in elbows at different curvature ratios. The 

experiment suggested that as the curvature ratio increased, the boundary layer 

separation was observed [29]. CFD was also used in the optimization of annular S-

shaped ducts by identifying design factors which contribute to optimal performance 

[30]. The study revealed that single-objective optimization for exit flow uniformity and 

energy loss minimization is not possible, so a multi-objective solution was presented. 

The final design was able to reduce the pressure drop by 15.6% and radial exit velocity 

to 34.2% when compared with baseline design. Another study optimized S-shaped 

ducts using computational design [31]. A free-form-deformation technique was used to 

manage the geometry of the ducts, while a steady state CFD simulation was used to 

analyze the flow. The result was a 14% drop in pressure and an improvement in flow 

smoothness by 71%, a significant improvement compared to conventional techniques.   

 

1.2 Problem Statement 

The research on turbulent flow through curved ducts still leaves many questions 

to be answered, particularly in non-conventional duct shapes such as the Z shape. The 

physics of the phenomena in question are not yet clearly understood. To understand the 

turbulence behavior systematically, significant research work is required. A 

comprehensive study on turbulent flow in non-conventional ducts could greatly 
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enhance the available knowledge of this important field of study. Rigorous validation 

of numerical simulation methods is crucial for their improvement and, in time, wider 

application in industry.  The cost-saving potential of valid simulations is tremendous.  

To that end, a wide range of design parameters need to be studied. This thesis addresses 

these problems. This research will study and compare how different numerical models 

predict the various turbulence flows in Z-shaped ducts. Below are some of the main 

problems found and reported in a literature review for the following turbulence models: 

 Reynolds stress model: The model is based on steady-state RANS relations, 

which assumes steady-state turbulent flow [32] and minimum temporal 

effect. The performance of the RSM model is adequate within the boundary 

layer. However, it shows excessive diffusion in separated regions [33]. 

 Large-eddy simulation (LES) and wall-modeled LES  models: These 

models experience robustness issues in predicting flow separation in the 

reattachment regions [32]. 

 ζ-f model: This model requires a UDF code integration for the applied 

geometry, which is not an easy task to do if the proposed research work has 

more than one geometry to be analyzed.  

 

1.3 Methodology 

In this dissertation, turbulence modelling issues related to Z-shaped ducts are 

studied and analyzed using RSM, LES, -f model, and WMLES. It is widely recognized 

that the exactness of results obtained by direct numerical simulation for turbulent flow 

via curved ducts rests on the accurate estimation of characteristic transition of 

boundary-layer. In the RSM, the turbulence redistribution is modeled closer to the 

boundary wall by considering more flow physics, which is also important during the 
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transition process.  

Conversely, for computing the flow field, the numerical stability along with 

robustness of -f models is better than the classical turbulence model. The novel eddy-

viscosity model is formulated by making changes in the elliptical relaxation method to 

solve the equation of steady-state transport. In the standard 𝑘 − 휀 model, turbulent 

kinetic energy 𝑘 is implemented, whereas in -f models velocity scales ratio, zeta () 

is used to assess eddy viscosity. is defined by 𝜐2̅̅ ̅/𝑘 where 𝜐2̅̅ ̅ represents the “wall-

normal” velocity scale. The 𝑓 term in -f models represent an elliptic function, 

generally solved by the elliptic equation. It is used to parameterize an effect on 

boundary layer walls, named anisotropic wall effects. 𝜐2̅̅ ̅ also denotes the velocity 

variation common to the streamlines. The novel concept was introduced to better utilize 

the scaling for appropriate representation of turbulent transports’ damping 

characteristics. 

  

1.4 Thesis Scope 

The principal objective of the present study is to perform qualitative and 

quantitative comparison of different turbulence models to identify the model best suited 

for Z-shaped duct flow patterns.  This thesis includes studying and analyzing a detailed 

velocity profile predicted from several turbulence models and subsequently validated 

with the use of available experimental data. The code development involved in setting 

up the methodology of performing the simulation is documented and presented in this 

thesis. The thesis scope also includes a detailed methodology presentation on how to 

construct a suitable mesh for the Z-shaped duct application and identify numerical 

schemes for implementation.  
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1.5 Novelty and Contributions of the Research 

The current thesis aims at researching the turbulence modeling methods for 

predicting the airflow pattern of the Z-shaped ducting application. The current state 

of knowledge of implementing a turbulence model to capture wall-bounded flow 

physics such as ducting application is not well established and mostly fails to achieve 

satisfactory accuracy. The author will conduct a series of turbulence models, namely 

RSM, LES, -f, and WMLES models, to address the difference in accuracy and 

computing efficiency. The results documented here will lay important support to the 

current knowledge and expand research in this area. 

The present thesis offers a detailed analysis and validation of the numerical 

approach in the Z-shaped duct airflow pattern assessment. The motivation for carrying 

out such a study is well summarized by A. K. Sleiti et al. [10]. In particular, the current 

two-equation and LES models do not sufficiently address the accuracy of the Z-

shaped duct. This thesis discusses in detail and lays out the best-practice LES setup to 

improve accuracy prediction and explore other alternatives focused on the Z-shaped 

duct. This thesis contributes to the following: 

1. Mesh requirement for modeling Z-shaped duct 

2. Implementation of the Reynolds stress model (RSM) and its numerical 

schemes to the Z-shaped duct 

3. Implementation of large-eddy simulation (LES) and corresponding 

numerical schemes to the Z-shaped duct 

4.  Development of custom user-defined function (UDF) script for -f 

turbulence model to the Z-shaped duct 

5. Implementation of wall-modeled large-eddy simulation (WMLES) to 

the Z-shaped duct 
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CHAPTER 2: LITERATURE REVIEW 

 

As industrial applications for the duct and pipe systems are manifold, studies on 

laminar flow are abundant in the existing literature. However, less-attention is given to 

the more complex turbulent flow, as well as to non-conventional duct shapes such as 

the Z shape. 

The methods employed by researchers for determining the pressure loss 

coefficient include various two-equation methods and the Reynolds stress model. The 

two-equation methods include the standard 𝑘 − 𝜔, 𝑘 − 휀, RNG 𝑘 − 휀 , realizable 𝑘 −

휀, and SST 𝑘 − 𝜔 models [34], [35]. Several studies conclude that trends predicted by 

two-equation models are consistently inaccurate, whereas RSM, when used with 

enhanced wall treatment, predicted the loss coefficients of elbow correctly, with error 

below 15%.  

The literature studies various duct geometries with curvatures. Weske [36] 

examined the distribution of velocity at the openings of elbow ducts of various cross-

sectional shapes used in aircraft. These ducts were round, square, elliptical, and 

rectangular, with Reynolds number ranging from 0.2 to 0.6x106. His research found 

that if the ratio of bend curvature radius to pipe diameter is lesser than 1.5, local flow 

separation happens downstream the pipe bend, and flow becomes unsteady. Al-Rafai 

et al. [37] also conducted a laser Doppler anemometry (LDA) experiment and 

simulation to study the contribution of the curvature ratio on airflow turbulence in a 

circular pipe at Reynolds number of 34,000. The numerical modeling was performed 

using commercial software PHOENICS. They simulated two bend versions through the 

standard k- model. The data leads to a conclusion that with the smaller bend version, 

the secondary flow appears closer to the bend-pipe wall, with radial orientation of the 



10 

 

bend curvature. Such secondary flow is also more prevalent. Their numerical results 

correlate to the experiment and show that the secondary flow consists of two counter-

rotating vortices. It is believed that this happens because of the imbalance present 

between the gradient of pressure and the centrifugal force closer to the 90° bend 

curvature location. 

Several studies have investigated the 90° bend duct with different curvature 

ratios. In [38], Taylor et al. conducted an experiment to investigate the laminar and 

turbulent in the 90° bend duct. The values of boundary layers at the inlet have showed 

higher values of secondary velocity. While comparing the model with fully developed 

inlet flow, they found that, for complete flow development, the boundary layer 

thickness is important. Sudo et al. [39]–[41] worked on square-sectioned 90° bend ducts 

with curvature ratios of 3.7 and 4. The results on both velocities (i.e., mean and 

fluctuating), along with Re stresses in the pipe cross-section, were obtained by 

revolving a probe using the hot-wire technique. The results showed that the primary 

and secondary velocity flowed along the Re stress distributions. The results showed 

that due to small curvature ratio values, boundary layer separation was not present at 

the bend. To understand the significance of the curvature ratio for boundary layer 

separation, Ono et al. [42] examined the flow of water through two elbows with ratios 

of curvature (δ) of 2 and 3, respectively. The elbows in question were of different 

length, with Reynolds number (Re) of 1.8 × 105 and 5.4 × 105, respectively. 

Moreover, PIV (fast particle image velocimetry) was employed to determine the field 

velocity. Similarly, Tan et al. [43] conducted an independent experiment with a 

different curvature ratio. In their study, a novel four-vortex structure was used. The 

results showed that increasing curvature ratio results in boundary layer separation. 

Tunstall and Harvey [44] discovered a secondary flow pattern different from the 
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classical twin vortex pattern at Reynolds number of 4x104.  The secondary flow pattern 

was dominant, and the circulation axis was either in clockwise or anti-clockwise 

orientation. The new flow pattern was unsteady, and it changed directions at low-

frequency time scales. The method is explained with turbulent flow produced in the 

upstream flow and the asymmetry of the inner wall separation. In [45], [46], Hellstrom 

et al. studied the behavior of a flow field within an elbow.  The curvature ratio was kept 

at δ=2 and the Reynolds number between 2×104 and 1.15x105. The researchers used the 

POD (proper orthogonal decomposition) method to analyze the data and observed that 

the highly energetic structure of flow was a swirl switching structure instead of well-

known Dean motion. The swirl switching structure was a bimodal cell with a random 

direction of rotation.  

Tanaka [54] worked to develop a comprehensive understanding of vibration and 

pressure drop in bend pipes. The work involved a numerical study of pipes with elbows 

of different curvature radii and diameters as well as pipes of two different lengths. 

These elbow pipe structures were numerically studied at different turbulent flow 

conditions based on different Reynolds numbers. Simulations showed that the turbulent 

flow induces unsteady flow inside the short elbow pipe. These same results were also 

obtained when the experimental setup was tested for the same turbulent flow conditions. 

In Tanaka’s [54] work, the formation of flow separation as well as the secondary flow 

development were observed in long elbows. These phenomena were shown to be highly 

influenced by the curvature radius of the elbow and its upstream velocity profiles. This 

flow separation and the secondary flow development were also observed in short elbow 

pipes. However, the flow pattern in the post-critical region of short elbow pipe was not 

mostly dependent on the Reynolds number of the flow, but rather on the interaction 

between eddy motion and unsteady secondary flow. 
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Kim [55] studied, both experimentally and numerically, the turbulent flow 

within a 90-degree-bend pipe as shown in Figure 1, with the hopes of determining the 

best turbulent flow model for the fluid.  The mesh of the pipe cross-section used is an 

unstructured quadrilateral cell with 152,150 individual hexahedral cells at high Re 

values and 562,080 cells for the low Re values as in Figure 2. The value of Y+ non-

dimensional distance to the wall of the pipe, both using friction velocity calculations 

for the near wall were within the range of 20 to 50 for a wall function and is less than 

1 without wall function. Figure 3 demonstrates the streamwise velocity profiles near to 

the pipe elbow of the numerical results of Sudo et al. for the standard k-ε model. These 

models were selected based on the experimental data available. To select the best 

turbulent model, a quantitative assessment model was used. According to the results of 

that study, RNG k-Ԑ turbulence model provides the best predictions for estimating both 

the primary and the secondary stream-wise velocity as well as the swirl velocity 

profiles. Kim [55] used the RNG k-Ԑ model to predict the flow dependency on Reynolds 

number after pipe elbow section. Results of experimental as well as numerical 

simulations show that a strong relationship exists between Reynolds numbers at values 

of 50,000 to 200,000 and the stream-wise velocity profile. When swirling intensity, 

which was defined by Kim [55] as the area average tangential velocity, was observed 

for the same Reynolds number and at the same experimental conditions. Results showed 

that the swirl intensity is not strongly predicted by the Reynolds number. This work 

shows that after the elbow section of the pipe, the swirl velocity depends highly on the 

radius of curvature of the pipe bend; the swirl disappears faster as the curvature radius 
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increases.  

 

Figure 1. Computational geometry used in the simulation of flow in pipe with a 90° 

bend 

 

 

Figure 2. Computational mesh near pipe exit studied by Kim [55] 

 

 

Figure 3. Streamwise velocity profiles results studied by Sudo et al. [40] 

Rohrig [56] conducted a research which used numerical computation to analyze 

turbulent flow within a pipe with a 90
o elbow. In this research a detailed numerical 
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study was done to compare the RANS (Reynolds-averaged Navier-Stokes) model and 

the wall-resolved eddy simulation model LES as tools for predicting turbulent flow of 

fluid inside a bend pipe. The computational grid and its cross-section are presented in 

Figure 4. While simulating the turbulent flow using the RANS equation, the researcher 

applied both the near-wall second-moment closure model, and the basic k-Ԑ turbulence 

model for low Reynolds numbers. The study demonstrated that wall-resolved eddy 

simulation model LES provides much better results than the RANS model, but these 

better approximations come at the cost of more computational time. Work by Rohrig 

[56] shows that it is possible to capture the location of secondary vortices and accurately 

predict flow velocity at the elbow. The strong pressure gradient causes the acceleration 

and deceleration of flow, which further affects the underlying turbulence. 

 

Figure 4. Two-dimensional slices of the computational grid for the geometry in the 

symmetry plane of the pipe bend and its cross-section by Rohrig [56] 

Carlsson [57] studied turbulent flow in a 90°-bend pipe, aiming to uncover the 

origin of the swirl switching phenomena. A numerical model was set up to simulate the 

fluid flow inside the bend pipe, with LES as the basic model. Results showed that two 

different swirl switching phenomena occur at the pipe elbow section. One is called low-
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frequency switching, and the other is called high-frequency switching. Both phenomena 

have their own origin. Simulations demonstrated that the high-frequency swirl 

switching could be highly influenced by the sharp bends which are intrinsic to the pipe 

bend. Low-frequency swirl switching was found to depend more on the upstream pipe 

bend length. It was also showed to be more powerful when the pipe curvature radius 

increases. This increase in strength continues all the way to a sharpest bend, at which 

point high-frequency swirl switching has more influence than the low-frequency 

switching. Carlsson [57] concludes that the high frequency in swirl switching may be 

caused by the strong backflow of fluid, which is generated at the pipe bend and is 

extended out of the pipe. He therefore recommended that the pipe length beyond the 

bend should be studied to find its effect on the high-frequency swirl switching 

phenomena. 

In a numerical study, Wang [58] employed a large-eddy simulation to calculate 

and model the instant flow field in the right-angle elbow pipe in HTR-PM. The 

properties of the instant turbulent flow region under the control of boundary layer 

separation as well as secondary flow have been analyzed by evaluating the instant 

pressure details at different measurement points, as well as the velocity magnitude field 

at the cross-sectional elbow area. LES and RANS methods as well as simulations were 

used to analyze the complex behavior of flow in a 90° elbow to acquire details on 

turbulence. Results showed that the instant flow field was globally asymmetrical. The 

Dean Vortex structure and magnitude along with the small size eddies changed with 

time and caused flow field asymmetry. Counter-rotational forces and small and large 

eddies occurred in the area adjacent to the intrados. Flow patterns were disrupted by 

turbulent upstream distortion and the interplay of secondary flow with boundary layer 

separation. The comparatively smaller speed as well as pressure gradients in the fluid 
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next to the extrados lead to the homogeneous flow patterns on the outer semicircle at 

cross-sections. 

Dutta’s [59] studied flow separation and reattachment at different Reynolds 

stress numbers by computational modeling in the case of the 90° pipe bend. For this 

end, the researcher used the k-ε turbulence model. In the same experiment Dutta also 

collected experimental data for velocity profile including flow fluctuations on 

separation and reattachment points for varying Reynolds numbers in the central 

symmetry plane at different locations of the bend. A structured mesh in three 

dimensions was implemented consisting of hexahedron elements validated by a grid 

independence study shown in Figure 5. Similar mesh topology is constructed and will 

be used for this dissertation research. 

 

 

Figure 5. Computational grid of 90deg round pipe studied by Dutta [59] 

The authors reported that the mean axial velocity profiles normalized with the 

air speed inlet at the inner core area show some deviation when compared to 

experimental data, and this is preliminary due to the pressure change. Simulations 

showed primary and secondary flow phenomena in distinct areas of the pipe bend, 

which illustrates the separation region as well as the velocity field.  The numerical study 

demonstrated that the boundary layer separation with a small curvature ratio can indeed 

be easily observed at the bend. Velocity vector distribution explains the secondary 



17 

 

motion, evidently generated by the fluid movement from the bend’s internal to external 

wall, resulting in the separation of the flow. The results also demonstrated that, when 

the Reynolds number is increased, the fully developed velocity profile at the region of 

the inner pipe core recovers by deceleration. Therefore, it was hypothesized that pipe 

curvature effects reduce in magnitude when Reynolds number increases. The study 

showed that the separation point travels upstream while the reattachment point moves 

more downstream when Reynolds number increases. Flow separation produced in the 

region of bend at the inner core was due to the formation of the low-velocity area. The 

peak value of velocity and its location was observed to be the same, while the peak 

value was measured away from the wall surface for only maximum Reynolds numbers. 

Three flow motions were observed at the downstream of the bend, including 

complexity, unsteadiness, and coherent flow nature. 

Baramili [60] studied flow-induced vibration in elbowed piping systems using 

experimental methods. A turbulent duct flow environment was created using a closed 

water loop system with a transparent elbow attached. Data of flow dynamics was 

recorded using particle image velocimetry. Pressure on wall sections was recorded and 

calculated using the partial least squares regression (PLSR) method. POD was 

calculated discretely for specific pipe sections. Results showed that the POD technique 

turned seemingly random pipe turbulences into coherent structures as the fluid (water 

in this study) passed through the elbow joints. The characteristics of the main flow 

frameworks were related to fluctuations in wall pressure. Nevertheless, this connection 

was only established in the study zone and with significant time intervals. Nonetheless, 

a relationship was established among the patterns of wall pressure and the key flow 

systems using PLSR. Various time delays have found to be very useful in enhancing 

the quality of estimations. A velocity field prediction yielded a positive result as the 
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complexities of larger systems were replicated accurately. 

Wang [61] investigated the unsteady fluid motion downstream in the 90° bend 

by way of Direct Numerical Simulation. An inflow turbulent condition was created 

using the recycling technique. Wang combined a long straight pipe in the downstream 

of the bend with a fixed Reynolds number and bend curvature. The diameter of the pipe 

was fixed. Numerous techniques were used to record low oscillations of downstream 

values, along with their frequency. Researchers believed that single-point velocity and 

stagnation point movement were not reliable for determining the frequency of swirl-

switching. The fluctuations of the longitudinal pressure against the wall of the pipe and 

a half-sided mass flow rate were used as an indicator of the unpredictable downstream 

flow movements of the bend. The swirl-switching phenomenon was modeled using 

DNS. The value of the Reynolds number was set as 5300, and the bend curvature as 

0.4. The unsteady oscillation of dean vortices was examined from the data inferred from 

the DNS bend pipe. The stagnation points are seen to be difficult to locate, so the exact 

condition relies on the range of the measurements. PSD and time series study of velocity 

variations along the symmetry axis clearly demonstrate that there are several dominant 

frequencies in the stream, different in specific flow regions. The experiment 

demonstrated that the oscillations of the force are amplified by the bend. Horizontal 

force oscillation and mass flow rate oscillation were shown to be interrelated. It was 

also observed that incorporated flow measures demonstrated more steadiness than 

single-point measurements. The whole analysis illustrates the significance of 

understanding global frequency determination procedures and partially addresses some 

of the data divergences in the publications. Table 1 summarizes the recent literature on 

turbulence modelling of curved ducts. 
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Table 1. Summarized Literature on Turbulence Modelling of Curved Ducts 

 

Tanaka [55] tested the performance of the LES technique with the standard 

Smagorinsky model for elbow geometries with different curvature ratios elbow 

geometries at Reynolds numbers from 500 up to 1.47x107. LES was able to simulate 

unsteady flow characteristics in the small elbow. The large-scale eddy motion was 

computed using the pressure fluctuation generation mechanism.  

Liu et al. [56] showed the latest applications of LES. In their study, the 

interaction of cavitating flow over a hydrofoil was examined by aid of LES with a 

modified cavitation model. Moreover, they introduced a model for predicting pressure 

fluctuation that showed effective results. The mean average velocities obtained by 

Reference Re δ = Rc/D Model 

Rutten et al. (2005) [14] 

2 × 104,   

1 × 104, 

2.7 × 104  

1, 3 
LES exclusive of SGS 

modeling 

Tanaka et al. (2012) [47] 

5 × 102,  

5 × 104, 

5 × 106 

1, 2 
LES including 

Smagorinsky SGS 

Kim et al. (2014) [48] 

5.08 × 104,  

1.0 × 105, 

2.03 × 105 

3 
RANS (k-ε and k-ω 

models) 

Rohrig et al. (2015) [49] 
1.4 × 104, 

3.4 × 104 
1.58 

RSM along with LES 

Smagorinsky SGS, and 

RANS model 

Carlsson et al. (2015) [50] 3.4 × 104,   1.56 
LES with no SGS 

modeling 

Wang et al. (2016) [51] 4.4 × 104 1.5 RANS and LES 

Dutta et al. (2016) [52] 
1 × 105, 

1 × 106 
1 k − ε model 

Baramili et al. (2018) [53] 
5.6 × 105 

 
1.50 k − ε model 

Wang et al. (2018) [54] 5.3 × 103 1.25 
Direct numerical 

simulation 
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experiment and predicted by LES were quite similar, and overall experimental results 

were consistent with numerical results. 

Saito [57] addressed the effect of wall surface roughness and high Re within the 

LES framework. A wall model corrected for roughness is implemented, where the 

developed information is transferred to the outer LES with the help of stretched vortex 

SGS model. LES is used to understand the flow dynamics of the channel over smooth 

as well as rough regimes. Numerical results confirmed experimental observations of 

logarithmic behavior.  

As discussed earlier, the study of turbulent flow is difficult and requires a 

comprehensive and thorough analysis. In [3], it is explained that separation distance is 

strongly associated with turbulent flow. Hence, new pertinent literature is required to 

understand turbulence behavior. For this specific purpose, in this study, certain 

turbulence modelling concerns are discussed using different numerical modeling 

approaches.  
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CHAPTER 3: TURBULENCE MODELING APPROACH AND GOVERNING 

EQUATIONS 

 

3.1 Governing Equations 

Fluid dynamics seeks primarily to determine fluid motion properties such as the 

velocity field in each domain. The basic fluid dynamic equations that govern such 

motion can be obtained from both momentum and continuity equations.  

 

3.2 Continuity Equation 

The continuity equation can be written using the Einstein notation as follows: 

𝜕𝜌

𝜕𝑡
+

𝜕(𝜌𝑢𝑖)

𝜕𝑥𝑖
= 0 

     (1)                     

 

Where 𝑢𝑖is fluid velocity component in Cartesian axis 𝑥𝑖 

The above equation is derived from the fact that the fluid mass is always 

conserved in a fluid system regardless of the system geometry or flow direction. The 

equation assumes there is no external body force. For incompressible flow, fluid density 

is assumed constant ( = constant) and independent from space and time; therefore, the 

equation reduces to: 

 𝜕𝑢𝑖

𝜕𝑥𝑖
= 0 

                        (2) 

3.3 Momentum Equation 

The law of conservation of momentum states, in brief, that the momentum of an 

isolated system is constant. The momentum equation can be described using index 

notation as: 
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 𝜕(𝜌𝑢𝑖)

𝜕𝑡
+

𝜕(𝜌𝑢𝑖𝑢𝑗)

𝜕𝑥𝑗
+

𝜕𝑃

𝜕𝑥𝑖
−

𝜕𝜏𝑖𝑗

𝜕𝑥𝑗
= 0 

              (3) 

Where 𝑡 is time, P is pressure and 𝜏𝑖𝑗is Reynolds stress. Reynolds stress is defined as 

the transport of i-component momentum of fluid in j direction or vice versa. 

The above equations are in Cartesian coordinates, and together they form the 

famous Navier-Stokes (NS) equations, which form the basics of fluid mechanics. Using 

the numerical method, it is possible to solve this PDE (partial differential equation) 

formulation of the Navier-Stokes equations. 

 

3.4 Turbulence Models 

Turbulent flow is accompanied by an unsteady eddy flow motion with wide-

ranging scales structures superimposed on a slow time-varying or steady mean flow. 

Compared to laminar conditions, these eddies are responsible for much higher rates of 

mass and momentum transport in the fluid. At a high Reynolds number (Re), eddy 

scales can show a particularly high range. Typically, the ratio between the finest scale 

and the largest scale can be in the order of √𝑅𝑒 based on velocity gradients. The finest 

eddies have the highest energy dissipation rate. That is why it is challenging to compute 

turbulent flow numerically. A practical numerical methodology to compute turbulent 

flow must resolve all flow structures within this range. At a moderate Reynolds number, 

the flow can feasibly be resolved at the finer scales. However, very high Reynolds 

numbers still pose challenges to today’s largest supercomputers. The experimental 

setup faces a similar challenge, as extremely small measurement volumes are required, 

as well as the ability to measure over large fluid zones relative to the overall flow-field 

domain. 
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In 1895, Osborne Reynolds [58] introduced the notion of decomposition of each 

variable included in the flow, to obtain an average as well as a fluctuating component. 

By averaging the governing equations, novel equations are reformulated with a distinct 

mean flow part that can relate to the corresponding part of the fluctuating motion.  

 𝑄(𝑥, 𝑦, 𝑧, 𝑡) = �̅�(𝑥, 𝑦, 𝑧, 𝑡) + 𝑄′(𝑥, 𝑦, 𝑧, 𝑡) (4)                          

Where 𝑄 is flow variable, 𝑄′is fluctuating part and �̅� is mean part defined by 

 

�̅� =
1

𝑁
∑ 𝑄𝑛

𝑁

𝑛=1

 

                   (5)                          

The quantity 𝑁 represents the total flow, realizations based on the number of times of 

ensemble.  

An ensemble averaged NS equation is reformulated as follows by substituting 

Reynolds decomposition (4) into                      (2) and               (3): 

 𝜕�̅�𝑗

𝜕𝑥𝑗
= 0 

 

           (6) 

 𝜕(�̅�𝑖)

𝜕𝑡
+

𝜕(�̅�𝑖�̅�𝑗)

𝜕𝑥𝑗
= −

1

𝜌

𝜕�̅�

𝜕𝑥𝑖
+ (

𝜇

𝜌
)

𝜕2�̅�𝑖

𝜕𝑥𝑗𝜕𝑥𝑗
−

𝜕𝑈𝑖
′𝑈𝑗

′̅̅ ̅̅ ̅̅

𝜕𝑥𝑗
 

 

Where 
𝜕

𝜕𝑡
 is called the local derivation with respect to time,  𝜌 is fluid density, 𝑃is fluid 

pressure, 𝜇 is fluid viscosity coefficient, the mean velocities �̅�𝑖 are determined by 

ensemble averaging. 𝑈𝑖
′ denotes the turbulence fluctuating part of the velocity. 

For incompressible flow, the convective term is the only nonlinear term in the 

governing equation. Also, the only term which involves flow variable fluctuations is 

the Reynolds stress term. The Reynolds stress term is an effective turbulent stress term, 

described by the following equation: 

 𝜏𝑖𝑗|𝑡𝑢𝑟𝑏𝑢𝑙𝑒𝑛𝑡 = 𝜌𝑈𝑖
′𝑈𝑗

′̅̅ ̅̅ ̅̅                             (7)                          
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The components τij of the Reynolds stress tensor are defined in equation     (7) 

and it needs correlation. This approach does not require resolving the entire unsteady 

flow motion. It is generally considered difficult to solve Reynolds stress as an equation 

as it is constituted by a set of unknown. The key to turbulence modeling is in finding 

numerical formulations that can be applied to link the Reynolds stress with the mean 

flow. In other words, it is a mathematical problem to find an enclosure solution for 

equation     (7).  

Generally speaking, if the flow is in free shear flow condition, the laminar stress 

term in equation     (7), (
𝜇

𝜌
)

𝜕2�̅�𝑖

𝜕𝑥𝑗𝜕𝑥𝑗
 can be treated in simple form by neglecting the 

viscous term in the momentum equation altogether. However, this simplification is 

inapplicable for wall-bounded flow conditions. In a wall-bounded flow situation, the 

Reynolds stress in equation     (7) is dominantly found clear of the wall. Approaching 

the wall region, local flow velocity variations are gradually damped to zero. Moreover, 

viscous stress term is generally considered responsible for wall-bound friction.   

There are different types of turbulence models. In this section, the following 

models are discussed: LES, RSM,  휁 − 𝑓 model (two-equation model), and WMLES. 

All these four numerical models have their unique advantages as well as disadvantages. 

In practice, LES is found to be useful for resolving large-scale unsteady flow motions. 

RSM is found useful for steady-state flow conditions. Steady flow implies no large-

scale motion. The Reynolds stress term is modeled using the RSM approach. Like 

RSM, the two-equation model also treats the flow motion as steady-state. As opposed 

to RSM, the Reynolds stress term is largely based on Boussinesq eddy viscosity. The 

turbulence viscosity is modeled with the two-equation model.  
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3.5 Boussinesq Eddy Viscosity Model 

As mentioned previously, for wall-bounded flow application, the closure 

problem requires a numerical solution by solving the Reynolds stress equation. The first 

numerical formulation was suggested by J. Boussinesq in 1877 [59] using the concept 

of eddy viscosity. The formulation later became known as the Boussinesq model. The 

model relates Reynolds stress to the mean flow. Based on Boussinesq  assumption [59], 

the viscous stress tensor can be expressed by the following formulation: 

 
𝜏𝑖𝑗|𝑡𝑢𝑟𝑏𝑢𝑙𝑒𝑛𝑡 = 𝜇 [(

𝜕𝑈𝑗

𝜕𝑥𝑖
+

𝜕𝑈𝑖

𝜕𝑥𝑗
) −

2

3
𝛿𝑖𝑗

𝜕𝑈𝑘

𝜕𝑥𝑘
] 

         (8)                          

Where 𝛿𝑖𝑗 represents Kronecker delta, defined as 1, if 𝑖 = 𝑗 and 0 otherwise.  

Equation         (8) can be related to the Reynolds stress equation by the following. 

 
−𝜌𝑈𝑖

′𝑈𝑗
′̅̅ ̅̅ ̅̅ = 𝜇𝑡 [(

𝜕𝑈𝑗

𝜕𝑥𝑖
+

𝜕𝑈𝑖

𝜕𝑥𝑗
) −

2

3
𝛿𝑖𝑗

𝜕𝑈𝑘

𝜕𝑥𝑘
] −

2

3
𝜌𝛿𝑖𝑗𝑘 

         (9)                          

Where turbulent kinetic energy 𝑘 is defined as: 

 
𝑘 =

1

2
(𝑈𝑖

′2̅̅ ̅̅̅ + 𝑈𝑗
′2̅̅ ̅̅̅ + 𝑈𝑘

′ 2̅̅ ̅̅ ̅) 
        (10)                         

In the momentum equation               (3), viscosity is replaced by effective 

viscosity using the Boussinesq hypothesis: 

 𝜇𝑒𝑓𝑓 = 𝜇 + 𝜇𝑡         (11)                         

Where  is the physical or molecular viscosity and t is the turbulent viscosity due to 

turbulence mixing enhancement. The t viscosity property assumes that turbulent 

structures exhibit isotropic characteristics. This also implies that the turbulence 

viscosity has no direction but only a value at a point-wise location. t value is also 

required by another model.  
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3.6 Prandtl’s Mixing Length Hypothesis 

Using the kinetic theory of gases, Prandtl [60] used the equation  (11) to model 

the molecular and turbulence viscosity. Prandtl mixing length hypothesis describes the 

corresponding viscosity using the following analogy:  

 
𝜇 =

1

3
𝜌ℓ𝑓𝑉𝑚 

        (12)                         

 𝜇𝑡 = 𝜌ℓ𝑚𝑉𝑡         (13)                         

Where ℓ𝑓 is the mean free path of the gas, ℓ𝑚 is the mixing length of the gas, 𝑉𝑚is 

molecule velocity and 𝑉𝑡 is the turbulence velocity scale. 

For internal pipe flow application, Prandtl’s model assumes that turbulence 

viscosity can be modeled using equation     (13), 𝜇𝑡~ 𝜌ℓ𝑚𝑉𝑡. The turbulence 

fluctuations in the pipe are assumed to be relatively weak compared to mean velocity, 

say 0.01 ≤
𝑉𝑡

𝑈
≤ 0.15. It is observed that the mixing length of the gas can be related to 

the flow length scale in the pipe or the distance from the pipe wall. In experiment, it is 

found that turbulence flow mixing length (ℓ𝑚) in round pipe is proportional to 
𝐷

4
. 

Therefore, based on Prandtl’s model, it is possible to make a good estimation of 

turbulence viscosity, 𝜇𝑡 = 𝜌(0.1𝑈)(0.25𝐷). Furthermore, the effective turbulence 

flow Reynolds number can be estimated with the following: 

𝑅𝑒𝑒𝑓𝑓 =
𝜌𝑈𝐷

𝜇𝑡
=  

𝜌𝑈𝐷

0.025𝜌𝑈𝐷
= 40 

The effective Reynolds number is useful in identifying augmentation due to turbulence, 

which is not accounted for when using standard Reynolds numbers. 
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3.7 Direct Numerical Simulation (DNS) 

To simulate turbulent flow, one of the most precise methods available is DNS. 

In DNS, the numerical grid considered needs to be fine enough to resolve even the 

smallest eddies. However, due to its high computational cost, the use of DNS is 

uneconomical for most engineering problems. For that reason, the RANS method is 

more widely used. The RANS method, while requiring less computational resources is 

unable to predict several complex flows, such as separation of flow, stagnation point 

flow, and curvature effects. The LES method, introduced by Smagorinsky [61], is 

capable of resolving large-scale vortices. It also parameterizes small-scale ones, which 

makes it more accurate than the RANS model. Computational expenses associated with 

LES generally fall between those of RANS and DNS. LES may not require meshes as 

fine as those present in DNS, but the grid must be better than that used for RANS 

computations. Hanjalic et al. [62] and Popovac and Hanjalic [63] presented a RANS 

model called 휁 − 𝑓 model, which is an important part of this study. The model by 

Hanjalic et al. is developed by using elliptic relaxation, discovered by Durbin. The 

purpose of the model is to solve transport equations for velocity scale ratios. It presents 

a comprehensive treatment of the wall-bounded conditions, which is used in RANS 

computation of heat transfer and turbulent flow. The computations with coarse and fine 

meshes are consistent with the experimental data. Therefore, this method is best suited 

for complex domain computations in industrial flow. In the following subsections, an 

overview of the turbulence modeling approaches implemented in this work is given.  

 

3.8 휁 − 𝑓 Model 

The 휁 − 𝑓 model yields promising outcomes for several flows, particularly for 

separated flow. It is consisting of four transport equations, one for each of 𝑘, 휀, 휁 𝑎𝑛𝑑 𝑓 
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parameters (14)–(17).  

∂𝜌𝑘

𝜕𝑡
+

𝜕(𝜌𝑢𝑗𝑘)

𝜕𝑥𝑗
= 𝑃 − 𝜌𝜖 +

𝜕

𝜕𝑥𝑗
[(𝜇 +

𝜇𝑡

𝜎𝑘
)

𝜕𝑘

𝜕𝑥𝑗
] (14)  

∂𝜌휀

∂𝑡
+

∂(𝜌𝑢𝑗휀)

∂𝑥𝑗
=

𝐶𝜀1𝑃 − 𝐶𝜀2𝜌휀

𝑇
+

∂

∂𝑥𝑗
[(𝜇 +

𝜇𝑡

𝜎𝜀
)

∂휀

∂𝑥𝑗
] (15) 

∂𝜌휁

𝜕𝑡
+

𝜕(𝜌𝑢𝑗  휁)

𝜕𝑥𝑗
= 𝜌𝑓 −

ζ

𝑘
𝑃 +

𝜕

𝜕𝑥𝑗
[(𝜇 +

𝜇𝑡

𝜎𝜁
)

𝜕휁

𝜕𝑥𝑗
] (16) 

𝐿2∇2𝑓 − 𝑓 = 𝐿2
𝜕

𝜕𝑥
(

𝜕𝑓

𝜕𝑥𝑗
) − 𝑓 =

1

𝑇
(𝐶1 − 1 + 𝐶2′

𝑃

𝜌𝜖
) (휁 −

2

3
) (17) 

Where k is turbulent kinetic energy,  is turbulent dissipation, 휁 is normalized wall 

normal velocity scale, f is elliptical function, P is turbulent kinetic energy production, 

T is Kolmogorov time scale, 𝐶1, 𝐶2′, 𝐶𝜀1, 𝐶𝜀2 are closure coefficients 

The biggest advantage of 휁 − 𝑓 model is that the turbulent kinetic energy 

production term, P can be accurately computed from velocity gradient and turbulent 

stress (𝜏𝑖𝑗) as defined by the following equation.   

𝑃 = 𝜏𝑖𝑗

𝜕𝑢𝑖

𝜕𝑥𝑗
 (18) 

𝜏𝑖𝑗 = 𝜇𝑡 (2𝑆𝑖𝑗 −
2

3

𝜕𝑢𝑘

𝜕𝑥𝑘
𝛿𝑖𝑗) −

2

3
𝜌𝑘𝛿𝑖𝑗 (19) 

𝑆𝑖𝑗 =
1

2
(

𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
) (20) 

where 𝑆𝑖𝑗is strain-rate tensor 

Turbulent eddy viscosity (𝜇𝑡) is computed by imposing Kolmogorov time scale 

and length scale as the lower bounds from Durbin realizability constraints [64]. The 

following equations (21)-(23) are used. 

𝜇𝑡 = 𝜌𝐶𝜇휁𝑘𝑇 (21) 
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𝑇 = 𝑚𝑎𝑥 [𝑚𝑖𝑛 (
𝑘

휀
,

0.6

√6𝐶𝜇|𝑆|휁
) , 𝐶𝑇 (

𝑣

휀
)

1 2⁄

] (22) 

𝐿 = 𝐶𝐿𝑚𝑎𝑥 [𝑚𝑖𝑛 (
𝑘3 2⁄

휀
,

𝑘1 2⁄

√6𝐶𝜇|𝑆|휁
) , 𝐶𝜇 (

𝑣3

휀
)

1 4⁄

] (23) 

Where L is Kolmogorov length scale, 𝑣 is kinematic viscosity, 𝐶𝜇, 𝐶𝑇, 𝐶𝐿 are closure 

coefficients. The closure coefficients are given by the following: 

𝐶𝜇 = 0.22, 𝜎𝑘 = 1.0, 𝜎𝜀 = 1.3, 𝜎𝜁 = 1.2 

𝐶1 = 1.4, 𝐶2
′ = 0.65, 𝐶𝑇 = 6, 𝐶𝐿 = 0.36 

𝐶𝜀1 = 1.4[1 + (0.012/휁)], 𝐶𝜀2 = 1.9, 𝐶𝜂 = 85 

(24) 

Originally, the 휁 − 𝑓 was based on the model suggested by Durbin [64], known 

as 𝑣2 − 𝑓 model. Durbin’s models are based on the notion of elliptic relaxation that 

facilitates the solution of transport equations. 

The current work uses a newly formulated 휁 equation presented in (25). 

𝐷휁

𝐷𝑡
= 𝑓 −

휁

𝑘
𝛲 +

𝜕

𝜕𝑥𝑘
[(𝑣 +

𝑣𝑡

𝜎𝜁
)

𝜕휁

𝜕𝑥𝑘
] + 𝑋 

(25) 

𝑋 =
2

𝑘
(𝜈 +

𝜈𝑡

𝜎𝜁
)

𝜕휁

𝜕𝑥𝑘

𝜕𝑘

𝜕𝑥𝑘
 

(26) 

Where 
𝐷

𝐷𝑡
 is material derivative, X is cross diffusion term, 𝜎𝜁 is closure coefficient.  

The actual implementation will omit cross diffusion term, X above since it is 

insignificance. Compared to the 𝑣2 − 𝑓 model, the 휁 − 𝑓 model yields better results as 

휁 can be computed more efficiently. The term 𝑃 in equation (25) stands for turbulent 

kinetic energy production and it is easy to accurately reproduce. Similarly, terms such 

as velocity gradient and turbulent stress are resolved more accurately in the 휁 − 𝑓 

model. Due to these advantages, the 휁 − 𝑓 model provides benefits of robustness and 

improved efficiency in terms of computational expenses, which is the primary objective 

of this study. 
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3.9 Large-Eddy Simulation Model (LES) 

The LES model is the preferred method for modeling flow at a high Reynolds 

number and complex geometry for projects in which DNS simulation costs are 

prohibitive [65]. The first LES technique was proposed by Deardorff [66] in 1970. The 

flow-field is filtered so the large or resolved-scale field becomes the local average of 

the global field. Filtered velocity can be expressed as: 

 
𝑢�̅�(𝑥) = ∫ 𝐺(𝑥, 𝑥′)𝑢𝑖(𝑥′)𝑑𝑥′ 

(27)                         

Where bar symbol denotes the filtered field, prime symbol denotes the sub-filtered 

field, G is filtering function or convolutional kernel introduced by Leonard. 

In LES, sub-grid-scale (SGS) stress tensor 𝜏𝑖𝑗 can be acquired by the filtering 

process, which is defined in equation (28).  

𝜏𝑖𝑗 = 𝜌𝑢𝑖𝑢𝑗̅̅ ̅̅ ̅ − 𝜌𝑢�̅�𝑢�̅� (28) 

The appropriate modelling of SGS stress relies on certain critical assumptions. 

For this reason Smagorinsky [61] suggested using Boussinesq’s hypothesis given in 

equation (29): 

𝜏𝑖𝑗
𝑠 −

1

3
𝜏𝑘𝑘

𝑠 𝛿𝑖𝑗 = 𝜇𝑡 (
𝜕𝑈𝑗

𝜕𝑥𝑖
+

𝜕𝑈𝑖

𝜕𝑥𝑗
) = 2𝜇𝑡𝑆𝑖𝑗

̅̅̅̅  (29) 

Where 𝜇𝑡 represents the SGS eddy viscosity,  𝜏𝑘𝑘
𝑠   is the isotropic section in the SGS 

stresses, 𝑆𝑖𝑗
̅̅̅̅  represents the strain rate tensor in resolved scales, 𝐿𝑠 represents the mixing-

length for SGS, 𝐶𝑠 represents the Smagorinsky constant while ∆ represents the local 

grid scale. 

𝜇𝑡 = 𝜌𝐿𝑠
2|𝑆̅| 

|𝑆̅| ≡ √2𝑆�̅�𝑗𝑆�̅�𝑗 

𝐿𝑠 = 𝐶𝑠∆ 

 

(30) 
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∆= (∆𝑥 ∆𝑦 ∆𝑧)
1
3 

It should be noted that  𝜏𝑘𝑘
𝑠   needs to be included in the filtered static pressure. 

Smagorinsky borrowed the concept of the “mixing-length model” from the RANS 

model and used it to determine eddy viscosity. 

 The Smagorinsky model has some significant shortcomings. Firstly, the 𝐶𝑠 

value is flow-dependent, and several values are reported in the literature, ranging from 

𝐶𝑆 = 0.065 (Moin and Kim, 1982 [67]) to 𝐶𝑆 = 0.250 (Jones and Wille, 1996 [68]). 

The value is therefore not actually a constant, as it is treated by the model. Moreover, 

this model is very dissipative and is not suitable for processes like boundary layer 

transition. A novel model, now known as the dynamic Smagorinsky-Lilly Model 

tackles those concerns by calculating the 𝐶𝑠 using resolved eddies of the flow [69]. By 

computing the model coefficient dynamically, the new model could overcome the 

drawback of existing sub-grid scale stress models. Lilly [70] further improved the 

dynamic Smagorinsky model by using the least-squares technique. This technique 

enables the reduction of resolve stress assumption difference, which makes the model 

more suitable for practical applications.  

Similarly, by considering the influence of rotation rate tensor of resolve eddies 

along with strain rate tensor, Nicoud and Ducros (1999) presented another sub-grid 

scale model [71]. The model calculates the eddy viscosity using the formula shown in 

(31).   

𝜇𝑡 = 𝜌∆𝑠
2

(𝑆𝑖𝑗
𝑑 𝑆𝑖𝑗

𝑑 )3 2⁄

(𝑆�̅�𝑗𝑆�̅�𝑗)5 2⁄ + (𝑆𝑖𝑗
𝑑 𝑆𝑖𝑗

𝑑 )5 4⁄
 

                   

(31) 

∆𝑠= 𝐶𝑤𝑉1 3⁄ , 𝐶𝑤 = 0.325 

𝑆𝑖𝑗
𝑑 =

1

2
(�̅�𝑖𝑗

2 + �̅�𝑗𝑖
2 ) −

1

3
𝛿𝑖𝑗�̅�𝑘𝑘

2  

 

(32) 
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�̅�𝑖𝑗 =
𝜕𝑢�̅�

𝜕𝑥𝑗
 

�̅�𝑖𝑗
2 = �̅�𝑖𝑘�̅�𝑘𝑗 

𝑆�̅�𝑗 =
1

2
(
𝜕�̅�𝑖

𝜕𝑥𝑗
+

𝜕�̅�𝑗

𝜕𝑥𝑖
) 

Where 𝑆𝑖𝑗
𝑑  is symmetric part of the squared velocity gradient tensor, 𝛿𝑖𝑗is Kronecker 

symbol, 𝐶𝑤 is WALE constant, V in the model represents computational cell volume.  

The model accurately predicts near-wall behavior of eddies (i.e., asymptotic in 

nature), which is why it was named wall-adapting local eddy-viscosity (WALE) model. 

Precise representation of flow the near-wall region helps in determining wall-bounded 

turbulent flow. 

3.10 Wall-Modeled LES Model 

Although the LES decreases the computational grid concerning the DNS 

method, a literature survey shows that it still requires a very fine mesh to simulate 

conventional turbulent flows. The following equation shows the ratio of computational 

cells number for LES and DNS:  

𝑁𝐿𝐸𝑆

𝑁𝐷𝑁𝑆
≈ (

0.4

𝑅𝑒𝜏
1 4⁄

) (33) 

Where NLES represents number of grids in LES model and NDNS is number of grids 

required for DNS, Re is Reynolds number based on wall shear stress. 

Table 2 compares the required computational grid for the DNS and the LES for 

a channel flow with a characteristic length of H. As can be seen, for practical flows 

with Reynolds number of at the order of 105, LES requires 108 computational cells, 

which still is very high. To circumvent the limitations of LES Reynolds number scaling, 

Shur et al. [72] introduced the wall-modeled LES (WMLES) approach which is 

classified in the hybrid RANS-LES category. WMLES simulates the main flow with 
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LES while employing the RANS approach in the buffer layer (log-law layer). Table 3 

represents the computational cell number ratio for LES and WMLES approaches. The 

table shows that WMLES decreases the mesh cells and, consequently, the 

computational cost of simulation. [73] 

 

Table 2. Computational Grid Comparison for DNS and LES 

ReH Reτ NDNS NLES 

12,300 360 6.7E6 6.1E5 

30,800 800 4.0E7 3.0E6 

61,600 1,450 1.5E8 1.0E7 

230,000 4,650 2.1E9 1.0E8 

 

Table 3. Computational Grid Comparison for LES and WMLES 

Reτ NLES NWMLES 
NLES

NWMLES
 

500 5.0E5 5.0E5 1 

1E3 1.8E6 5.0E5 1E1 

1E4 1.8E8 5.0E5 4E2 

1E5 1.8E10 5.0E5 4E4 

 

3.11 Reynolds Stress Model (RSM) 

RSM is useful in modeling flow with non-isotropic characteristics. In a 

mathematical framework, it states: 

 
𝜏𝑖𝑗|𝑡𝑢𝑟𝑏𝑢𝑙𝑒𝑛𝑡 ≠ 𝜇 [(

𝜕𝑈𝑗

𝜕𝑥𝑖
+

𝜕𝑈𝑖

𝜕𝑥𝑗
) −

2

3
𝛿𝑖𝑗

𝜕𝑈𝑘

𝜕𝑥𝑘
] 

 (34)                          

The non-isotropic flow characteristics appear in flow through square and non-

circular channels, or channels with curved cross-sections. They also occur in complex 

flow with a strong rotational effect. The transport equation for the model was developed 

by Chou (1945) [74] and it goes as follows: 
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 𝜕

𝜕𝑡
(𝜌 ⋅ 𝑈𝑖

′𝑈𝑗
′̅̅ ̅̅ ̅̅ ) +

𝜕

𝜕𝑥𝑖
(𝜌 ⋅ 𝑈𝑖 ⋅ 𝑈𝑖

′𝑈𝑗
′̅̅ ̅̅ ̅̅ )

= 𝐷𝑖𝑗 − 𝜌 ⋅ [𝑈𝑖
′𝑈𝑘

′̅̅ ̅̅ ̅̅ ̅
𝜕𝑈𝑗

𝜕𝑥𝑘
+ 𝑈𝑗

′𝑈𝑘
′̅̅ ̅̅ ̅̅ ̅ ⋅

𝜕𝑈𝑖

𝜕𝑥𝑘
] + Φ𝑖𝑗 − 휀𝑖𝑗 

(35)                          

Where Φ𝑖𝑗 is pressure strain term, 𝐷𝑖𝑗 is turbulent diffusion term 휀𝑖𝑗 is dissipation term. 

The first term at the left of the equation represents the unsteady part. The term 

following it represents convection. First term on the right denotes diffusion, whereas 

the other terms are in the order as follows: production, redistribution, and dissipation. 

The above equation can be interpreted as the rate at which Reynolds stress changes 

together with the transmission of Reynolds stress by convection equals the transmission 

of Reynolds stress by diffusion plus the rate at which the Reynolds stress is produced 

plus the transmission of Reynolds stress due to the interaction of turbulent pressure-

strain plus the transport of Reynolds stress (due to rotation) plus the rate at which the 

Reynolds stress dissipates. To solve this PDE, pressure strain terms need to be modelled 

in association with the dissipation term, as these terms are open and require closure 

models. On the other hand, the production term is closed and can be directly evaluated 

without explicit modeling. The disadvantage of RSM is its computational expense due 

to seven extra PDE that need to be solved. The production term in equation (35) can be 

written as  −𝜌 ⋅ [𝑈𝑖
′𝑈𝑘

′̅̅ ̅̅ ̅̅ ̅ 𝜕𝑈𝑗

𝜕𝑥𝑘
+ 𝑈𝑗

′𝑈𝑘
′̅̅ ̅̅ ̅̅ ̅ ⋅

𝜕𝑈𝑖

𝜕𝑥𝑘
] represents the mean velocity gradient motion 

which acts opposite to the Reynolds stress. This term considers the kinetic energy 

transfer from mean flow to the fluctuation’s velocity components. It is responsible for 

sustaining the energy transfer from large to small-scale eddies in turbulent flow.  This 

is the only term in the RSM transport equation that is closed and can be evaluated 

directly, without a model. Table 4 compares the models used in this research in terms 

of their advantages, and their disadvantages. 
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Table 4. Performance Comparision of the Turbuelnce Models 

Model Advantages Disadvantages 

RSM 

Exceptional modeling of 

complex flow phenomena, 

acceptable cost 

Low performance in predicting 

flow separations and re-

circulating flows 

LES Acceptable performance 
Higher cost and requires more 

time than other models 

ζ-f 
Exceptional performance, 

low cost 

Requires modeling for each 

application use 

WMLES Fair performance, low cost 

Cannot predict transition to 

turbulent flow as they assume 

developed turbulence 
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CHAPTER 4: MODELING OF FLOW PHENOMENA IN Z-SHAPED AND 

HIGHLY CURVED DUCTS 

 

Turbulent flow in a Z-shaped ducts is not exhaustively studied in the literature. 

Flow in curved ducts is characterized by particularly complex behavior. Turbulence in 

flow through the duct can be dramatically affected by streamline curvature. For 

example, the flow field is destabilized by a concave curvature, leading to greater 

intensity of turbulence as well as its scale. Convex curvature, on the other hand, leads 

to a more stable flow field, a lessening of turbulence mixing, lower Reynolds shear 

stress as well as less kinetic energy [75]. Even in simpler curved ducts, such as the 

elbow draft tube which only has one elbow, very complex flow is present. It is a flow 

that is a result of the combined effects of flow and curvature, swirling flow and adverse 

pressure gradient diffuser flow [76]. The internal fluid flow field in a highly curved 

wall-bounded pipe such as the Z-shaped duct is further complicated by the presence of 

a centrifugal force at both upstream and downstream turning radius sections. Highly 

curved wall shape changes the flow field inside the duct in several ways. These effects 

include; (1) viscous effect due to no-slip boundary condition; (2) blocking effect due to 

wall suppression in normal direction; (3) effect of shearing mechanism on turbulent 

production; (4) surface roughness effect; and (5) effect of wall reflection due to 

redistribution of stress components [1], [77], [78], [79], [80], [81]. 

 

4.1 Viscous effect due to no-slip boundary condition 

The no-slip boundary condition, or the no velocity offset boundary condition is 

present when the speed of fluid touching the wall is the same as the velocity of the 

boundary. This means that the velocity of the fluid in contact with the solid boundary 
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tends to zero, due to surface friction. The hypothetical distance in the boundary layer 

where velocity reaches zero relative to the velocity of the boundary is called the slip 

length. The slip length dependents only on the fluid characteristics and the solid 

boundary, as well as their interactions, and can therefore be determined experimentally, 

at least in theory. One of the earliest approaches to estimate the slip boundary condition 

was proposed by Pearson and Petrie, which made slip velocity a function of wall shear 

stress, using empirical data. Newer research proposed a polymer network model to 

account for the dynamic slip velocity [82]. 

 

4.2 Blocking effect due to wall suppression in normal direction 

Blocking effects of the wall are a result of its non-slippery and impermeable 

characteristics, which cause fluctuations of parallel velocity as well as a suppression of 

perpendicular velocity fluctuations. Blocking effects on intersecting walls cause 

pressures in the surfaces near the elbow increase relative to that near the regions where 

the wall is orientated in one direction. The higher pressure directs fluids above the wall 

away from the elbow bend. Stemming from the wall blocking effect, stagnation points 

of flow, known as splats, can form. These stagnation points are formed as an effect of 

the fluid impinging the wall. Research shows that these splats may cause problems for 

wall-bound large eddy simulation predictions. These splats can also have an effect on 

turbulence intensities [83].  

 

4.3 Modeling Wall-Surface Roughness Effects 

The surface coarseness has an important effect on the flow for highly curved 

ducts due to the mass transfer on the walls and induced drag resistance. In this study, 

the wall is treated as smooth. The wall shear stress is modeled such that it progresses 
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along the fluid flow through a viscous sub-layer. The configuration of velocity 

fluctuations in the viscous sub-layer is like the one described in Couette flow condition, 

where 𝑈 = 𝑢𝜏
2𝑦/𝜐. The thickness of the sublayer is expressed as 𝛿𝑙𝑎𝑚 = 𝐶𝑣𝑢𝜏

2, where 

the constant, C is the velocity value just before it becomes nonlinear. A. K. Sleiti [84] 

reported that 𝐾𝑆
+ = 𝜌𝐾𝑆𝑢∗/𝜇, where KS is the physical roughness height. Moreover, he 

observed that 𝐾𝑆
+ falls under three different regimes as follows; hydro-dynamically 

smooth with 𝐾𝑆
+ ≤ 2.25, for transitional the 𝐾𝑆

+ is between 2.25 and 90 i.e. (2.25 <

𝐾𝑆
+ ≤ 90), and for completely rough when (𝐾𝑆

+ > 90) [84]. The FLUENT solver 

computes the function of the dimensionless roughness height ΔB for each regime using 

the formulas proposed by Cebeci and Bradshaw [85] and it is shown in equation 36 

below. In hydraulically smooth walls the viscous sublayer is fully established, while in 

transitional roughness regime the roughness elements are a bit thicker than viscous 

sublayer so it disturbs it, however, in the fully rough flows the sublayer is destroyed 

and viscous effects are insignificant. [86] 

𝑢𝑝𝑢∗

𝜏
𝜌

=
1

𝑘
ln (𝐸

𝜌𝑢∗𝑦𝑝

𝜇
) − ∆𝐵 

(36) 

𝑢∗ = 𝐶𝜇

1
4𝑘

1
2 

(37) 

∆𝐵 =
1

𝑘
𝑙𝑛𝑓𝑟 

(38) 

Where 𝑢𝑝 is friction velocity, 𝑢∗is non-dimensional velocity, 𝜏 is wall shear stress, 𝑦𝑝 

is wall coordinate or distance to the wall, B is intercept or addictive constant in log-law, 

C is, fr is roughness function that determines the intercept shift depends on roughness 

effect, k is  Von Karman constant. 
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4.4 Near-Wall Treatment 

In this work, enhanced near-wall treatment method was implemented in the 

model. This method is useful for resolving the near-wall viscosity affected region. This 

region also includes a viscous sub-layer. That approach is sometimes called the “Low-

Reynolds Modeling”. That is because most computational studies of near-wall 

turbulence were based on Direct Numerical Simulation (DNS), which constrains the 

range of Reynolds numbers significantly. In fact, most simulations treated near-wall 

turbulence in simple flows (planar channels) and at low Reynolds numbers. Compared 

to the standard wall function, near-wall treatment shows improved shear stress results 

near the grid refinement wall region in the wall-normal direction even at y+ < 10 [1]. 

A study done by A. K. Sleiti [84] demonstrated the effectiveness of the standard wall 

function. The performance of enhanced near-wall treatment with the use of a joined 

two-layer model of wall functions is summarized as follows. 

Using standard wall function in the near-wall treatment method gives 

advantages of saving computational resources and is thus economical. However, it was 

reported that it is not recommended for low-Re flow in a small gap and not 

recommended for acute pressure gradients heading toward boundary layer separations 

or for turbulent flow that exhibits strong body forces [84]. The combined two-layer 

model is used accompanied by enhancing the near-wall treatment approach, where the 

ε and the µ are specified using the initial two layers. Here, µ represents the turbulent 

viscosity. The recommended near-wall mesh consideration is 𝑦+ = 1. Nevertheless, 

𝑦+ < 4 − 5 is acceptable and can be adopted. A minimum of 10 cells is essential inside 

the near-wall region influenced by the viscosity (Rey<200) [84]. 
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4.5 Secondary Flow Effects 

Flow of fluids passing through a curved duct is different at a fundamental level 

from flow through a straight passage. The cause for this distinction lies in secondary 

flow which is generated by centrifugal forces which occur in flow through a curved 

duct. These centrifugal forces create a lateral pressure gradient which causes the 

creation of secondary counter-rotating vortices [87]. In general, the secondary flow 

effects can be classified into two types. The first type is generated by the inviscid effect. 

The second type is generated by Reynolds stress. The inviscid effect causes secondary 

flow when the span-wise pressure gradient appears during mean flow. Reynolds stress 

type secondary flow is induced by turbulence, near the duct turning corner [1]. These 

two categories of steady secondary currents in fluid flows are identified by Prandtl [88]. 

Since secondary flows are under the influence of the gradients of Reynolds stresses, it 

is impossible to capture them using an isotropic eddy-viscosity model [84].     

 

4.6 Effects of Curvature 

Flow in highly curved ducts with turning radiuses on a higher side leads to a 

linear pressure gradient. Near the duct centerline, the fluid with high momentum tends 

to drift outwards. The reverse flow is developed along the wall, due to momentum 

balance.  The curved shape of the duct, via the centrifugal forces, creates a pair of 

vortices counter-rotating in relation to each other. At certain conditions, more pairs of 

vortices can appear concave wall in the duct. These additional vortices are commonly 

known as the Dean vortices. These vortices cause instability in the hydrodynamic 

configuration of the flow system, at the base secondary flow. The number of these 

ancillary Dean vortices falls under the influence by the shape of the ducts, that is their 

aspect ratio [87]. 
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 The Dean number parameter measures the curvature effect corresponding to 

fluid viscosity [1]. 𝐷𝑒 = 𝑅𝑒(𝐷ℎ/𝑅)1/2 where R is the curvature radius and Dh is the 

pipe diameter. The Dean number provides insight of flow stability. According to 

Rayleigh’s criteria, when critical the Dean number is exceeded, the flow is considered 

unstable. In the case of the bend pipe the inner side (convex) is stable, and the outer 

side (concave) is unstable. Since flow stability is affected by fluid viscosity, it is 

important to include this effect in the turbulence modeling [84]. 

 

4.7 Effects of Separation Distance 

Lateral separation distance between upstream and downstream turning corners 

in the Z-shaped duct influences duct flow in a way to induce restriction in the vertical 

pipe. The restriction is influenced by downstream turning corner distance. A study was 

made in this research to determine the effects of separation distances on turbulence 

model. In LES model, separation distance did impact how accurately LES can predict 

the flow in close-coupled five-gore elbows in a Z-shape configuration. LES predicted 

flow velocity profiles more accurately at a separation distance of ten than at a smaller 

separation distance of two [89], as shown in Figure 6 and Figure 7. 
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Figure 6. Mean flow velocity profiles at x/D = 1 for L/D = 2 

 

 EW NS 

L/D=10 

  

Figure 7. Mean flow velocity profiles at x/D = 1 for L/D = 10 

 

4.8 Rotational Effects 

The rotational effects generate centrifugal (𝑓𝑖
𝑐𝑒) and Coriolis forces (𝑓𝑖

𝑐𝑜) [84] 

that are expressed in the following equations:  

𝑓𝑖
𝑐𝑒 = −𝜌휀𝑘𝑙𝑚Ω𝑗Ω𝑙𝑥𝑚                                                                           (39) 

𝑓𝑖
𝑐𝑜 = −2𝜌휀𝑖𝑗𝑘Ω𝑗𝑈𝑘                                                                               (40) 

Where Ω𝑗 is angular velocity vector, 휀 is tensor 

Pallares and Davidson [90], investigated the relationship between the Prandtl 

secondary current flow and Reynolds stresses induced flows (the 2nd kind) using the 
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LES model. They found that the increase in the rotational numbers leads to the 

dissipation of the vortices near the corners. They have also found that the cross-stream 

secondary motions are influenced by the Coriolis force [84]. Research showed that the 

RSM model allows for better prediction than the isotropic two-equation models. 

Researchers suggested that that the RSM can perform well when the effects of both the 

rotation, the streamline curvature and the anisotropy on flow dynamics need to be 

considered, without requiring any explicit modeling. RSM performed well even at high 

rotational numbers (up to 1.29) and high-density ratios (up to 0.4) [91]. The study also 

found that high levels of rotation cause linear increases in four-side-average Nusselt 

number area. Another study found that centripetal forces that are associated with the 

rotation directly influence both the mean motion and the turbulent fluctuations in the 

flow. These forces operate as to induce a secondary motion and influence the turbulence 

by modifying the pressure strain [92].  

 

4.9 Reynolds stress model for Z-shaped ducts 

The RSM is a result of a calculation of individual Reynolds stresses which are 

used to resolve the Reynolds-averaged momentum equation. RSM does not use the 

eddy viscosity approximation. Instead, it solves the Reynolds stress tensor equations 

directly, which allows it to have potential to predict complex flows with evident 

anisotropic effects. The downside to RSM is that solving the equations is complex, and 

requires relatively more computational power and time and can result in problems in 

convergence. Another limitation of the RSM is that several variables needed for its 

resolution are unknown, and therefore need to be estimated to resolve the model, which 

can generate errors.  

In another study [93] Reynolds stress model was used to predict the turbulent 
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flows in ducts with strong convex and concave curvature. The author indicated that the 

turbulence complexity generated in these ducts would require a model which 

capabilities are above the standard eddy viscosity models. Reynolds stress model fits 

that criteria, and once incorporated in a Navier-Stokes procedure, it gave satisfactory 

results [87]. The model predicted the relevant phenomena in the 180° duct, including 

the sharp increase of turbulence at the region near the concave wall, the significant 

diminishment of turbulence at the convex wall region as well as the downstream 

separation of the convex wall which follows [93].  

The findings show that Reynolds stress model has the required capabilities for 

modeling turbulent flow through complex curvatures, such as z-shaped duct, well. 

However, its cost limits its use in practical applications.  

 

4.10 Large eddy simulation model for Z-shaped ducts 

Large eddy simulation model decomposes the variables included in flow 

phenomena into, on the one hand, a large-scale component and on a small-scale 

component on the other. The decomposition is achieved by a filtering operation. This 

is so that only the large eddies, which strongly depend on flow characteristics, need to 

be resolved using numerical methods. To model the fine scale turbulence, a subgrid 

scale model is used. Large eddy simulation model demonstrated good accuracy and 

stability in curved ducts. Several studies showed that the numerical results obtained by 

large eddy simulations were in good agreement with experimental data available, 

making large eddy simulation a suitable method for predicting complex flow, such as 

that in curved ducts [94]. The performance of large eddy simulation was tested both 

against flow field data, as well as against the effects of the inclination angle, which has 

important implications for industrial applications. Researchers also investigated the 



45 

 

performance of large eddy simulations in highly curved ducts (180° bend), and 

compared the different components of the method [95]. These conditions require 

special consideration in developing the proper large eddy simulation, so that the 

complex flow modeling can accurately reflect real experimental data. They concluded 

that, to accurately model the flow in a curved duct, real inflow and outflow boundary 

conditions have to be used [95]. It is difficult to achieve real inflow and outflow 

boundary conditions since unsteady flows in vortices need to pass the boundary with 

little disturbance and reflection. The large eddy simulation also requires that a time 

dependent velocity field, with all three velocity components, is accurately specified, 

which can be a cause of errors. All these findings show that large eddy simulations are 

an appropriate, but not best tool for modeling turbulent flow through complex 

curvatures, such as the z-shaped duct.  

  

4.11 ζ-f model for Z-shaped ducts 

ζ-f model has been derived from the Reynolds stress transport model by 

Hanjalić and his associates. It is a modified 𝑣2̅̅ ̅ − 𝑓 model which does not suffer from 

a need of multiple iterations for convergence. It depends on the turbulence kinetic 

energy production, which can be reproduced more easily than the dissipation used for 

𝑣2̅̅ ̅ − 𝑓 model. It also uses a “cross diffusion” term which is used to accurately represent 

and model near-boundary conditions. It has a better numerical stability than the V2F 

model and does not require an intermittency function. The ζ-f model has an advantage 

in computational time and cost when compared to the Reynolds stress model, while its 

results are similar to those of the RSM.  [96].  

The ζ-f model can predict complex transitional flows present in the Z-shaped 

ducts, and its lower cost and computational time make it a promising model for 
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industrial application.  

 

4.12 Wall-modeled Large Eddy Simulations model for Z-shaped ducts 

Recently, numerous wall modeling approaches have been implemented to make 

modeling for industrial applications practical. Most of these models are various 

developments of the wall-stress model. In this approach, inner boundary section is not 

directly computed. Instead, it is replaced by an equal momentum exchange. The equal 

momentum exchange with the wall is achieved with the use of a boundary condition. 

An empirical wall model is then implemented to estimate wall friction using flow 

information transferred downstream from the wall. That way wall friction does not need 

to be examined or computed directly. Afterwards, the obtained data on wall friction is 

used as an input in the WMLES model, as a Neuman boundary condition with 

fluctuating velocity near the wall region, but never penetrate it [97]. There are several 

WMLES models in the literature, as the model can be changed depending on the 

complexity of required calculations in each setup. This gives it flexibility which is 

critical for industrial use. However, in flows through complex curvatures, such as the 

Z-shaped duct, the advantages are less evident, since the complexity of the turbulent 

flow is more difficult to represent. Research has found that the WMLES model can 

accurately predict transient velocity profile of turbulent flow, but exhibits some errors 

when approximating friction magnitude and friction angle when using the initially 

established streamwise direction [97]. The model needs to be improved further to allow 

for reliable use in the modeling of complex flow. 

 

4.13 RSM, LES, ζ-f and WMLES models in Z-shaped ducts 

 

The following will be an overview of various models used in this study and an 
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analysis of their relative advantages and disadvantages in relation to predicting 

turbulent flow phenomena in a Z-shaped duct. All models show promising results, and 

RSM and ζ-f being exceptionally promising and showing substantially more accurate 

results. However, while the implementation of Reynolds stress model is relatively 

expensive and with high cost of computation and required time, ζ-f can achieve similar 

results at significantly lower cost. That makes ζ-f model promising for industrial 

applications.  
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CHAPTER 5: NUMERICAL APPROACH AND BOUNDARY CONDITIONS  

 

5.1 Discretization 

The Navier-Stokes partial differential equation is numerically resolved with the 

help of the control volume technique, mainly implemented for integrating governing 

equations applied to individual control scheme. The software used for this purpose is 

commercial software called Ansys [98].  

 

5.2 Second-order Upwind Schemes 

ANSYS Fluent stores the flow variable at the cell centers numerically. 

However, the convection terms in the governing equation require the face values of the 

cell. Therefore, the upwind scheme is implemented. The upwind scheme determines 

the face value from upstream of the cell (or “upwind”) comparable to the trend of 

normal velocity. The upwind arrangement is one of the most stable and simplest 

discretization schemes. The drawback of such a scheme is that it is found to be more 

dissipative depending on the flow of physics. The second-order upwind arrangement is 

more accurate than the first-order arrangement. 

 

5.3 Momentum Equation Discretization 

To discretize the momentum equation, x, y, and z spaces are used. Co-located 

schemes are used by the software ANSYS Fluent. These schemes store pressure and 

velocity at the cell centers. In Fluent, the momentum equation is numerically solved 

based on velocity and pressure discretization.  
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5.4 Pressure Interpolated Scheme 

When discretizing the momentum equation, face pressure values are determined 

using the pressure interpolated scheme. The momentum equation coefficients are used 

to achieve the interpolation. This scheme works well for smooth gradients between cell 

centers. However, the interpolation fails when the neighbor control volumes have large 

gradients. A cell velocity overshoot or undershoot occurs because of this interpolation 

discrepancy.  

 

5.5 Continuity Equation Discretization 

 With the help of Fluent software, equations of continuity and momentum are 

resolved sequentially by means of a segregated solver. An algorithm called SIMPLE 

(Semi-Implicit Method for Pressure-Linked Equation) is implemented to solve the 

continuity equation by introducing pressure. 

 

5.6 Pressure-Velocity Coupling Approach 

 Another approach used to predict incompressible flow. To enforce the mass 

conservation, a SIMPLE algorithm is applied so it can determine the pressure field by 

computing both velocity and pressure corrections iteratively. Other pressure-velocity 

algorithms include SIMPLE (SIMPLE-Consistent) and PISO (Pressure-Implicit with 

Splitting of Operators).  

 

 

5.7 Multigrid Method 

 To solve for the pressure variable, it is essential to use the Multigrid Method 

when conducting matrix operations. In Fluent, both algebraic type multigrid (AMG) 
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and full-approximation storage (FAS) type multigrid are available. The global (low 

frequency) error is found to be reduced by using the Multigrid method with sequentially 

coarsening meshes.  

 

5.8 Experimental Data and Setup 

This study uses data from A. K. Sleiti and Salehi et al. (2017) [1] to validate 

results obtained from numerical methods. To study the pressure losses and velocity 

profiles related to round five-gore elbows, the experimental setup given in Error! 

Reference source not found. is implemented. ASHRAE provides a standard to 

measure the pressure loss along with the present volumetric flow rate. The 

measurements on the ductwork and fittings are done to be consistent with the ASHRAE 

standard 120-2008. After measuring pressure loss through elbows, several tests 

specifically devised for assessing the friction factor in remaining pipes were conducted. 

To ensure uniform inlet flow, the entrance of the ductwork was connected to a bell 

mouth. For the elbows, a fixed turning radii value (i.e., 1.5) was used. Upstream and 

downstream duct lengths were 1.2 m each. The intermediate length for closed couple 

elbows was changed from 0 𝑚 𝑡𝑜 3.05 𝑚. The intermediate length was measured 

starting from exit up to the entrance plane of the upstream and downstream, 

respectively. 

To provide the air flow through the test equipment, a 30 hp fan was used. The 

details of measured values at the test was used to estimate the volume flow rate. A 

multiple-nozzle chamber was employed, and for pressure loss measurement, a liquid-

filled micro-manometer with the accuracy of ±0.025 mm was used. It was also used to 

measure the nozzle pressure at the test section. Electric manometers with the measuring 

accuracy of ±0.025 mm was used to quantify the upstream as well as downstream static 



51 

 

gage pressure. The flow rate was controlled with the use of a VFD. A mercury 

thermometer with a precision of ±0.6°C (1°F) was placed in the nozzle chamber, to 

measure air temperature. Similarly, ambient air temperature for dry and wet bulb was 

measured with a psychrometer. To measure ambient pressures, a Fortin-type barometer 

was used. For each test apparatus, eight test points were obtained, and all were evenly 

spaced over the test range.  

Velocity profile measurements for Z-shaped ducts with intermediate section 

lengths and apparatus arrangement on the 305 mm diameter equipment were taken 

using a five-hole probe. For the first elbow, on the upstream, a traverse plane was 

placed, and another was placed at the downstream of the second elbow. Both planes 

were placed exactly at one duct diameter, upstream or downstream. At several locations 

in the straight sections, thorough velocity profile measurements were done. The 

locations of these profiles are given in Table 5 with their corresponding intermediate 

lengths. 𝑥 𝐷.⁄  Initially, the placement of a five-hole probe was done at the centerline; 

afterward, it was changed with respect to radial increments of 25.4 𝑚𝑚 as Figure 9 (b) 

shows. The placement of sensing tip of the five-hole probe on the duct centerline was 

done with an accuracy of ±1.25 𝑚𝑚. Air velocities in each implemented transverse 

were determined in two equally perpendicular planes that separated the cross-sectional 

area of the duct into further parts (i.e., four quadrants). 
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Figure 8. Experimental Set-up of Measuring Pressure Loss for Close-Coupled Elbow 

Z-Configuration [1] 

 

5.9 Computational Domain and Boundary Conditions 

Figure 9 shows a Z-shaped duct with a diameter equal to 304.8 mm. The 

geometry of the given Z-shaped duct consisted of three parts. The first part is a pipe 

inlet with a 15D horizontal section, a vertical section with separation distance, and a 

pipe outlet with a 10D horizontal section. For the vertical section, the gap between two 

elbows was investigated using a different methodology, using five instances of L/D 

value (i.e., L/D = 2, 4, 6, 8, and 10). L represents the separation distance length, and D 

represents the pipe diameter. For the boundary condition at pipe inlet, the value was an 

experimental Reynolds number (Re) and was tuned to velocity inlet wit Re = 3.5 ×

105. The outlet boundary condition was posited as a pressure outlet. To develop the 

flow completely inside the duct, its entrance was extended. It was assumed that the 

walls of the duct were at the non-slip condition. To develop the computational grid 

where the cell type is hexahedral, a commercial software called ANSYS Fluent was 
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used. From Figure 10, in bending geometry, the mesh was further refined by 30%. 

Similarly, to keep y+ as low as possible, the mesh was also refined, particularly at the 

near-wall region. 

(a) 

 

(b) 

 

Figure 9. Computational domain of curved ducts. 

 

Table 5. Intermediate Length and Measurement Location for Velocity Profile Test 

Section 

Intermediate Length of the Section (𝐿𝑖𝑛𝑡/𝐷) Location for Measurement (𝑥/𝐷) 

4.36 1 

6.40 1,3 

8.36 1,3,5 

10.42 1,3,5,7 

12.40 1,3,5,7,9 
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Figure 10. Computational grid of curved ducts. 

 

5.10 Turbulence Modeling Considerations 

The simulation of the Z-shaped duct in this study employs four turbulence 

models: 휁 − 𝑓 model, RSM, LES, and WMLES. Detailed approach for the turbulence 

models explained below. These turbulent models are essential for this research as flow 

swirling behavior due to vortices generation are highly dependent on the modeling 

framework in the turbulence model itself.   
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5.10.1 Numerical approach for the 𝜻 − 𝒇 model 

The ζ-f model is not included in FLUENT ANSYS by default and the UDF 

script code was applied for the Z-shaped geometry. The C is similar to 𝑣2̅̅ ̅ − 𝑓 model 

given in [64], [99]. Based on Durbin’s realizability constraints, the parameter values 

are suggested for numerical stability. 

To interface the novel turbulence model with the Fluent solver, a UDF script 

was written and is available in Appendix B. The developed ζ-f model in this research 

is never examined for the applications of Z-shaped duct configurations. Equations (16) 

to (23) represent the function of transport equations that include 𝑘, 𝑣2and 𝑓 are 

explained in the UDF script. The Modified Fluent flow variables are modified and 

defined using DEFINE_ADJUST macro. The macro was executed at every iteration 

before solving the transport equation. 

The source term for every equation is reorganized and defined in the 

DEFINE_SOURCE function as Table 6. The diffusion coefficient for each UDS is also 

reorganized and defined in the DEFINE_DIFFUSIVITY function as  

Table 7. Diffusion Coefficient of UDSs for the ζ-f Model 

k equation ε equation ζ equation f equation 

μ +
μt

σk
 μ +

μt

σϵ
 μ +

μt

σς
 1  

 

Table 8. Flux Terms of UDSs for the ζ-f Model 

k equation ε equation ζ equation f equation 

ρuj ρuj ρuj 0 

 

. The flux terms are defined in Error! Reference source not found..  

The DEFINE_ADJUST function is a general function to define any other 
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parameters that have no predefined function in the Fluent. In the present UDF, the time 

scale T, length scale L, turbulent viscosity vt, strain rate S, and user-defined memories 

(UDMs) are defined in the DEFINE_ADJUST function.  

  

Table 6. Source Terms of UDSs for the ζ-f Model 

k equation ε equation ζ equation f equation 

P − ρε 
Cε1 − Cε2ρε

T
 ρf −

ζ

k
P −

1

L2
[f +

1

T
(C1 − 1 + C2

P

ρε
) (ς −

2

3
)] 

 

Table 7. Diffusion Coefficient of UDSs for the ζ-f Model 

k equation ε equation ζ equation f equation 

μ +
μt

σk
 μ +

μt

σϵ
 μ +

μt

σς
 1  

 

Table 8. Flux Terms of UDSs for the ζ-f Model 

k equation ε equation ζ equation f equation 

ρuj ρuj ρuj 0 

 

In addition, the following constants are used for this research study. 

Table 9. Constants 

Cμ Cs1 Cs2 c1 C2 σk σε Cξ Cζ CL Cη 

0.22 1.4(1+0.012/ζ) 1.9 0.4 0.65 1 1.3 1.2 6.0 0.36 85 

 

5.10.2 Numerical approach for the Reynolds Stress Model 

In this section, linear pressure strain model is selected along with the curvature 

correction and enhanced-wall treatment. Due to the increase in the velocity, kinetic 

energy is produced that affects the concave wall. The wall functions need to be used to 

simulate flows approaching the boundary layer region. To reach the required near-wall 
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region 𝑦+, a different method can be used where near-wall mesh can be further refined. 

The configuration of every turbulence model is specified in terms of  𝑦+ values. To 

approximate the velocity profile shapes following equations are used, where  𝑦+ is near-

wall region and 𝑢𝜏 is friction velocity. 

 

𝑦+ =
𝜌𝑤𝑢𝜏𝑦

𝜇𝑤
   (41) 

 𝑢𝜏 = √
𝜏𝑤

𝜌𝑤
 

 

(42) 

5.10.3 Numerical approach for the Large-Eddy Simulation and Wall Modeled Large-

Eddy Simulation models 

In this study, to perform the CFD simulations, ANSYS fluent solver was used. 

The spatial domain was discretized using the finite volume (FVM) method. The discrete 

counterparts of the pressure equation and momentum equation were done with the help 

of the standard scheme and with accurate schemes of the second order, respectively. 

Furthermore, a second-order accurate arrangement was also employed for temporal 

discretization. To ensure convergence, residuals of the momentum equation were 

moderated to< 10−4, scalar values were restricted to< 10−6, and the time-step with 

the value of 10−5 sec was employed for advancing the LES solution.  

This study also employed the dynamic Smagorinsky-Lilly sub-grid scale 

model. At the beginning of the simulation, the number of iterations per time step (∆𝑡) 

used was exactly 100, which was then gradually reduced to 15 iterations per ∆𝑡. The 

reason for the gradual decrease was to converge the solution at each ∆𝑡 because of NS 
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equations. To ensure the numerical solutions is converged, mass flow conservation is 

monitored by using total mass flow measured at inlet and outlet surfaces. 

5.11 Mesh Independent Study 

In this section, numerical results obtained by varying the resolution of the mesh 

to the computational domain are given. The reason for using various mesh resolutions 

was to ensure the accurate resolution of flow inside the pipe and to sufficiently capture 

the physics associated with the fluid flow. The near-wall y+ is a non-dimensional 

criterion to determine whether the flow is resolved well near inside the boundary layer 

region for the wall-bounded flow. The y+ value was identified as the critical parameter 

for inflation meshing requirements, as y+ values would determine whether the first cell 

lies inside the laminar sub-layer or logarithm region.   

The optimal mesh resolution is critical as it is used in multiple simulations. 

Therefore, an independent mesh analysis was used for achieving a rougher converged 

mesh, to save computational time. If a finer mesh utilized for this purpose, the results 

would have been like those with the rougher converged mesh. However, that procedure 

would have been more computationally demanding and more time consuming. The 

optimal mesh resolution depends on the evaluation of earlier numerical results of rough 

converged mesh. The final optimal mesh obtained from this process must be suitable to 

resolve the physics of the flow. Figure 11 shows that in the bending geometry, the mesh 

is 30% more refined than the bulk mesh region. To keep the value of 𝑦+minimum, the 

mesh is also refined at the near-wall region. 
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Figure 11. Mesh resolutions for duct wall 

 

 

 

5.11.1 Mesh refinement study for LES and WMLES 

The convergence analysis of mesh is important, because resolved variables are 

filtered, which means that the filter is changing for each mesh. Fine mesh together with 

precise time steps are important for the proper resolution of the eddies using LES. 

Moreover, the fraction of 𝑘 directly resolved is determined by mesh resolution. The 

peak of 𝑘 is usually observed at the integral length scale 𝑙0. Therefore, resolving this 

scale in all directions is important for determining an eddy with a certain length scale 

∆= 𝑙
2⁄ .  This study aims to resolve 80% of k, which means that eddies with a larger 

size than half the size of 𝑙0 need to be resolved. For this purpose, 5-cells were located 

across 𝑙0 and contours with the ratio 10 ∆⁄  were plotted. To identify the regions that are 

not so well resolved, the upper values of 10 ∆⁄  were removed. In addition, the regions 

closer to the elbow that are under-resolved were re-meshed. 

To resolve the smaller eddies in LES, the wall-normal as well as wall-parallel 

spacing was reduced. By reducing the spacing, the grid points density increases in all 
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directions while moving toward the wall. For this reason, LES wall functions were 

considered here, and the mesh resolution at near wall was taken as 10. SGS WALE 

model was implemented to achieve accurate levels of SGS viscosity. 

5.11.2 Mesh refinement study for Reynolds stress and ζ-f models  

For all cases, the range of y+ lie between 0.6 and 1. At section x/D  =  5, the 

results of turbulent kinetic energy (k) were examined at the duct centerline x/D  =  0. 

Table 10 demonstrates the results of the examined turbulent kinetic energy (k) for 

different grid sizes. Here, the medium mesh was adopted instead of the fine mesh 

because the acceptable tolerance for turbulent kinetic energy (k) falls in the (±2%) 

range, and because the number of individual cells in the medium mesh was smaller than 

2.1 × 106, hence, it requires less computational time. 

Table 10. Results for Independent Mesh Analysis 

Mesh The approximate number of cells (× 106) TKE (k) (m/s)2 

Coarse 1.4 2.281 

Medium 2.1 3.695 

Fine 4.2 3.715 
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CHAPTER 6: RESULTS AND DISCUSSIONS  

 

6.1 ζ-f and RSM Model Results for Turbulence Modeling 

In this section, the validation of LES prediction is presented and evaluated against 

the experimental data. The distribution of mean flow velocity is given in Figure 12 to 

Figure 16. To represent the normalized mean flow, for each section, the local mean 

velocity is normalized at the centre. The locations are represented by normalized radial 

locations, with 0 representing the centre of the section and 1 representing the inner wall 

of the duct. For each profile, at each section, the ES (East-West) and NS (North-South) 

direction lines are used. As mentioned in earlier sections, in a Z-shaped duct, five cross-

sections are used for numerical analysis: x/D=1, 3, 5, 7, and 9.   

Section x/D=1 corresponds to the section after the first elbow. According to fluid 

mechanics principles, when the flow makes its first turn, because of local flow 

separation, the distribution of flow velocity is highly non-uniform. For this reason, the 

flow pattern is asymmetric in the EW direction. Outward (negative) radial locations 

showed higher velocity whereas inner (positive) radial location showed lower 

velocities. The velocity of mean flow decreases because of flow separation and 

increases because of flow reattachment. 

Figure 12 shows the outcomes of the velocity profiles compared to experiment. 

Figure 12 (a) shows the profile in the EW direction and Figure 12 (b) shows the profile 

in the NS direction. In this section at x/D=1, both the velocity profiles behave 

differently can be explained by the presence of Dean vortices. The Dean vortices push 

the flow from East towards the West or outer radial wall leads to asymmetrical velocity 

profile about r/D=0 location. This phenomenon is originated from flow experiencing 

large centrifugal force when turning around the elbow. Such Dean vortices is essentially 

a pair of counter-rotating vortices and therefore each individual secondary vortex show 
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symmetrical pattern in N-S direction.  

Both Figure 12 (a) and (b) have shown ζ-f model predicts better than RSM. Figure 

12 (a) shows that the RSM predicted values were slightly under-predicted in the flow 

separation region at r/D near 0 to 1. For example the velocity ratio is around 0.6 at 

r/D=0.5 location based on experimental measurement whereas the RSM predicted flow 

velocity ratio is 0.4 at the same location. It is expected the swirling dominates in this 

flow separation region and the RSM failed to accurately capture the turbulent length 

scale and eddy viscosity. For the reattachment region from r/D=-1 to 2, both RSM and 

ζ-f predictions are found to be in good agreement with experiment. Figure 12 (b) shows 

that the results for NS direction velocity profiles from both ζ-f and RSM models were 

consistent with experimental data. 

  

(a) (b) 

Figure 12. Velocity profiles (normalized) for RSM and ζ-f models at section x/D=1: (a) 

E-W (East-West) orientation (b) N-S (North-South) orientation 

In the straight pipe section, the flow is in transition from a non-uniform to a 

uniform pattern. The duct sections discussed are analyzed for different locations x/D=3, 

5, and 7 on the straight pipe. 

Normalized velocity profiles at section x/D=3 are given in Figure 13. Figure 13 

(a) shows the E-W results predicted by ζ-f model are consistent with experimental data. 
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RSM results are better in the inboard wall and over-predicts at the outboard wall. For 

example, at r/D=-0.7, experimental velocity ratio is 1.37 whereas RSM predicts 1.45 at 

the location. Figure 13 (b) shows the velocity profiles in N-S direction predicted by ζ-f 

model are in better agreement to experiment compared to RSM model. 

 

  

(a) (b) 

Figure 13. Velocity profiles (normalized) for RSM and ζ-f models at section x/D=3: (a) 

E-W (East-West) orientation (b) N-S (North-South) orientation 

Normalized velocity profiles for both directions at section x/D=5 are shown in 

Figure 14. That is: 𝐸𝑊 (𝑧) and 𝑁𝑆 (𝑦). The figure shows that the flow physics captured 

by ζ-f and RSM is satisfactory. 
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(a) (b) 

Figure 14. Velocity profiles (normalized) for RSM and ζ-f models at section. 𝑥 𝐷⁄ = 5: 

(a) E-W (East-West) orientation (b) N-S (North-South) orientation 

Downstream in the straight pipe section, velocity profiles become highly 

uniform. This can be attributed to the fully turbulent flow development. The results 

related to section x/D=7 are presented in Figure 15. Figure 15 (a) shows that at an inner 

radial location, the prediction of both turbulent models is closer to experimental results. 

However, that is not the case for outer radial location, where the ζ-f model slightly 

under-predicted the local flow velocity while RSM slightly over-predicted the profiles 

at the same location. Figure 15 (b) shows that ζ-f model consistently over-predicted 

velocity profiles while RSM results are inconsistent manner indicating some over-

preditions and some under-predictions. 
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(a) (b) 

Figure 15. Velocity profiles (normalized) for RSM and ζ-f models at section. 𝑥 𝐷⁄ = 7: 

(a) E-W (East-West) orientation (b) N-S (North-South) orientation 

Figure 16 shows outcomes for normalized mean flow velocity profiles for 

section x/D=9. Here, for outer radial location (r/D=-0.2 to 0.99), the RSM results 

constantly over-predicted in both 𝐸𝑊 and 𝑁𝑆 directions, whereas the ζ-f model results 

are relatively more accurate. The over-predicted results can be attributed to the 

mathematical errors that occurred during resolving upstream flow structures.  

 

 
(a) (b) 

Figure 16. Mean x velocity results of the experiment and studied turbulence models 

(i.e.,  ζ-f and RSM) at  𝑥 𝐷⁄ = 9: (a) E-W (East-West) orientation (b) N-S (North-South) 

orientation 
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The mean velocity contours are at different x/D fluid planes are created as 

shown in Figure 17.  The velocity vectors are added to demonstrate the flow directivity. 

At x/D=0, adverse pressure gradients are clearly seen to form near the wall leads to 

local flow circulation bubble as indicated in blue. Further downstream near after first 

elbow bend at x/D=1, Dean vortices are formed as results of deflection of high-speed 

upstream flow experience centrifugal force. The Dean vortices is a pair of counter-

rotating vortices behaves in unstable manner as shown in Figure 17.  The ζ-f model is 

able to capture the swirling of such Dean vortices structures. The size of Dean vortices 

can be identified from the contour at x/D=3 as it shows the vortices are diminishing 

with velocity recovery. At x/D=5, the vortices are disappeared, and velocity vector 

becomes weak in radial direction as flow is now dominated by axial component 

indicating flow is moving downstream along the pipe. These uniform patterns sustain 

until flow reaches fluid plane at x/D=10. At x/D=10, flow experiences adverse pressure 

gradients near the pipe wall. It is expecting that such adverse pressure is responsible for 

inducing flow separation and swirling near second elbow.  

 

 
 

x/D=0 x/D=1 
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x/D=3 x/D=5 

  

x/D=7 x/D=9 

 

 

x/D=10  

Figure 17. Mean velocity contour at different x/D fluid planes based on ζ-f model 
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In a nutshell, both ζ-f as well as RSM turbulence models together with steady-

state RANS solution exhibited realistic outcomes. Both the models displayed accuracy 

in handling turbulence flow related structures. The ζ-f model shows superior behavior 

in terms of computational efficiency. The attributes of the ζ-f model related to 

efficiency and accuracy have made this model widely used in dealing with wall-

bounded turbulent flow issues. Predictions linked to the slow separation region and the 

reattachment region are studied thoroughly along with the flow mixing regions. Results 

confirm that the ζ-f model can yield a more accurate result. Flow separation bubble size 

and the length of reattachment are both estimated quite accurately. Also, the average 

flow velocity distribution is on the same line in NS and EW directions. The crucial flow 

mechanism, which plays a central part in guiding downstream flow development, is the 

vortex shedding in the flow separation region along with the geometries of bending 

elbow. Turbulent eddy dissipation downstream along with the structures that contribute 

to flow mixing creates complicated flow mechanisms that exhibit highly non-

homogeneous and non-isotropic characteristics. The ζ-f model, which is currently used 

in the present research study, was not tested for the Z-shaped pipe before this study. 

Hence, this study can pave the way for further implementation of the ζ-f model. 

RSM predictions exhibited improved accuracy but showed some 

inconsistencies in the results. This is because the RSM model is proficient only at the 

inner side of the boundary and exhibits higher diffusion in the wall-bound region. 

6.2 Turbulence Modeling Results Using the LES Model 

In this section, various duct lateral separation distances L/D are found to be 

correct when the values are L/D=2, 4, 6, 8, 10. The number of fluid sectional planes is 

changed in accordance with various L/D values in each configuration. As an example, 

the longest configuration with L/D=10 had five sections and that leads to x/D=1, 3, 5, 
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7, 9. However, the velocity profile data is not accessible at different section 

simultaneously and is accessible at a single section only when L/D=2 (smallest 

configuration). The section before the first 90° elbow turn is termed as “inlet.” 

Similarly, “outlet” is the section after the second 90° elbow turn. In detail analyses of 

all these sections are presented below with various L/D values. Figure 18 to Figure 20 

will discuss results based on Re=2.4x105
 for L/D=8 configuration. Figure 21-Figure 27 

will discuss mean velocity results based on higher Reynolds number at 3.5x105 at 

different L/D configurations. Another study of higher Reynolds number at 4.5 x105 for 

L/D= 4 configuration shown in Figure 28 and Figure 29. 

 

6.2.1 Re=2.4x105 

Section x/D=1: After First Elbow: 

Figure 18 shows the velocity profile at x/D=inlet for at L/D=4 configuration at 

Re=2.4x105. The corresponding inlet velocity is 9 m/s. The predicted LES velocity 

exhibits fully developed turbulent flow with sharp velocity gradients developed from 

the wall which represents the boundary layer. Outside the boundary layer, the velocity 

is uniform in along E-W and N-S directions.  
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(a) (b) 

Figure 18. Velocity profiles (mean flow) at x/D=inlet for L/D=4 configuration at 

Re=2.4x105: (a) E-W (East-West) orientation (b) N-S (North-South) orientation. 

 

𝑥 𝐷⁄ = 1 Section: After First Elbow: 

Figure 19 shows the velocity profile at x/D=1 for L/D=4 configuration at 

Re=2.4e5. The flow experience large centrifugal force when turning around elbow leads 

to flow being deflected towards West direction. Therefore, Figure 19 (a) shows 

asymmetrical pattern indicating Dean vortices formation. Dean vortices is a pair of 

counter-rotating vortices creates local swirling effect results of momentum deficit near 

inner radial location. Such phenomena are successfully captured by current LES 

simulation. Figure 19 (b) shows the N-S direction profile across the symmetrical Dean 

vortices structures. Therefore, the profile appears to be much more symmetrical than 

E-W direction. 
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(a) (b) 

Figure 19. Velocity profiles (mean flow) at x/D=1 for all 𝐿 𝐷⁄  configurations at 

Re=2.4x105. (a) E-W (East-West) orientation (b) N-S (North-South) orientation. 

 

𝑥 𝐷⁄ = 3 Section: In between Elbows: 

 

Figure 20 shows the velocity profile at x/D=3 for L/D=4 configuration at 

Re=2.4e5. The E-W profile consistently demonstrates similar asymmetrical distribution 

predicted by LES on both sides of the duct walls. The result indicate Dean vortices 

remain at x/D=3 location. The flow velocity distribution on N-S direction also shown 

less symmetrical due to some flow structures re-attachment occurs on the inner radial 

wall represented by the increased velocity ratio locally. 
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(a) (b) 

Figure 20. Velocity profiles (mean flow) at x/D=3 for all 𝐿 𝐷⁄  configurations at 

Re=2.4x105. (a) E-W (East-West) orientation (b) N-S (North-South) orientation. 

 

6.2.2 Re=3.5x105 

 “inlet” Section: 

The first section analyzed inside the duct is the “inlet” section. Such an “inlet” 

section signifies the plane prior to the first elbow transition. It is expected that the 

sectional velocity distributions exhibit a completely developed flow profile as in 

experimental conditions. It is worthwhile to note that all the duct entrance lengths used 

in the geometries are identical, although they differ in the L/D ratio. In general, both 

experimental and LES results show fully developed flow profile behavior as shown in 

Figure 21 below.  

The estimated mean LES flow velocity values at “inlet” sections closer to the 

center of duct are within 2% of the experimental values (remarkable results). Similarly, 

the estimated values directed towards the near-wall region are within 3% of the 

experimental values. Hence, it can be said that the current LES method can resolve the 
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near-center bulk flow structures in an outstanding manner. The only issue is the slight 

overshoot of the predicted values in a thin region between bulk flow and flow boundary 

layer. However, these small variations can be due to less precise methods for 

investigating differently sized eddy structures within the present model.  

 

 EW NS 

L/D=2 

 

 

L/D=4 

  

L/D=6 
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L/D=8 

  

L/D=10 

  

Figure 21. Velocity Profiles (mean flow) at x/D=”inlet” for all L/D configurations at 

Re=3.5x105. 

𝑥 𝐷⁄ = 1 Section: After First Elbow: 

The fluid plane after the first elbow is represented by 𝑥 𝐷⁄ = 1. The presence 

of reattachment and local flow separation regions when the flow makes the first turn at 

the elbow is predicted to make the flow velocity distributions highly non-uniform. As 

indicated in Figure 22 below, the flow pattern in the EW direction is highly asymmetric. 

Outward (negative) radial locations showed higher velocity in the region whereas inner 

(positive) radial location showed lower velocities. All 𝐿/𝐷 configurations exhibited 

similar patterns. It was also observed that the local reduction in the mean velocity of 

the flow happened within the separation region. Conversely, the increase of velocity 

happened inside the flow reattachment region. 

Notably, all profiles for 𝐿/𝐷 configurations exhibited a similar pattern, 

regardless of the geometries are different L/D dimensions. After the first elbow 

distribution, the flow structures are supposed to be largely dominated by the turning 
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radius of the elbow.  As the turning radius is similar for all 𝐿/𝐷 configurations, the 

velocity distributions are expected to remain unchanged. The overall trend shows that 

the LES predictions, for all 𝐿/𝐷 configurations, are quite like the experimental data 

with slight underpredictions of local separation regions. Moreover, the LES predictions 

for flow reattachment are found closer to 𝑟∗ = 0.2 − 0.99, whereas for the 

experimental data, it is near 𝑟∗ = 0.18 − 0.9. Conversely, the flow separation region 

shown by the lower velocity is near 𝑟∗ = −0.3 − 0. The transition region between flow 

separation and reattachment is also captured by LES consistently at a location where 

𝑟∗ = −0.4 𝑡𝑜 − 0.8. 

For 𝑁𝑆 profiles, the flow distribution resembles that of the inlet section. 

However, near the duct center, the flow velocities are significantly lower. That can be 

attributed to the loss of flow momentum. The overall trend shows that the LES 

predictions, for all 𝐿/𝐷 configurations, are very similar to the experimental results with 

slight under-prediction near flow separation regions. Decreased velocities are a result 

of the swirling effect which moves in the circumferential direction. 

A significantly finer mesh is required to resolve the smaller eddy structures and 

that the current mesh employed in the setup is insufficient to fully model all flow scales.  
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L/D=2 

 

 

L/D=4 

  

L/D=6 

  

L/D=8 
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L/D=10 

  

Figure 22. Velocity Profiles (mean flow) at x/D=1 for all 𝐿 𝐷⁄  configurations at 

Re=3.5x105. 

 

𝑥 𝐷⁄ = 3 and 𝑥 𝐷⁄ = 5 Sections: Upstream In between Elbows: 

When flow is transported along the straight pipe section, it is expected that flow 

distribution will transition from asymmetrical velocity profiles from upstream that are 

non-uniform in appearance toward more uniform patterns downstream. The following 

sections are analyzed at four different locations at 𝑥 𝐷⁄ = 3, 5, 7 𝑎𝑛𝑑 9 for different 

L/D configurations.  

 

 EW NS 

L/D=4 
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L/D=6 

  

L/D=8 

  

L/D=10 

  

Figure 23. Velocity Profiles (mean flow) at x/D=3 for all 𝐿 𝐷⁄  configurations at 

Re=3.5x105.  

 

Figure 23 and Figure 24 shows normalized velocity results for 𝑥 𝐷⁄ = 3 and 

𝑥 𝐷⁄ = 5, where 𝐿 𝐷⁄ > 4. For all 𝐿 𝐷⁄  configurations, the mean flow velocity 

distribution did not completely improve at the upstream flow separation. That fact can 

also be inferred from the deficit of local flow velocity closer to the value of  𝑟∗ = −0.8 



79 

 

to 0. The experimental flow distributions at 𝑥 𝐷⁄ = 5 are more symmetrical than flow 

distributions at𝑥 𝐷⁄ = 3. This is due to flow transition further downstream at𝑥 𝐷⁄ = 5, 

from a non-uniform to a uniform trend. As flow moves farther toward downstream of 

the pipe, the flow structures are anticipated to move closer to the wall again. As 

mentioned above, the experimental results showed local flow deficit; this deficit is also 

predicted by the LES in the same region. However, the current LES model 

underpredicts the results, and fails to accurately capture flow transitions. Similarly, at 

𝑥 𝐷⁄ = 3, more errors are found, as errors in upstream flow extend. 

For NS profiles, the flow distribution like the ones in 𝑥 𝐷⁄ = 1. From Figure 23 

and Figure 24, a peak can be observed between the wall and the pipe center. This peak 

is ascribed to the swirling effect in the flow. Similar results were found for LES and the 

experiments, where LES predictions are very close to the experimental distributions.  

 

 EW NS 

L/D=6 

  



80 

 

L/D=8 

  

L/D=10 

  

Figure 24. Velocity Profiles (mean flow) at x/D=5 for all 𝐿 𝐷⁄  configurations at 

Re=3.5x105.  

 

𝑥 𝐷⁄ = 7 and 𝑥 𝐷⁄ = 9  Sections:  

In the straight pipe, sections 𝑥 𝐷⁄ = 7  and 𝑥 𝐷⁄ = 9 are examined further 

downstream, as shown in Figure 25and  

Figure 26. Section 𝑥 𝐷⁄ = 9 is before the second elbow. Furthest downstream, 

for both sectional planes, the flow velocity is observed to be more uniform. Slightly 

more upstream, the turbulent flow is expected to be developed completely, which 

explains the uniformity in results. Similar results were observed regularly for all 𝐿 𝐷⁄  

configurations. The results of both LES estimates and the experiments agree for 𝐸𝑊 

and 𝑁𝑆 directions. Notably, some inconsistencies and over-predictions were found for 
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𝐸𝑊 profiles, probably due to errors generated further upstream. All things considered, 

the current comparison study, as indicated by 𝑁𝑆 profile, demonstrates that the LES 

methodology sufficiently resolves the flow structure on a large scale. 

 

 EW NS 

L/D=8 

  

L/D=10 

  

Figure 25. Velocity Profiles (mean flow) at x/D=7 for all 𝐿 𝐷⁄  configurations at 

Re=3.5x105.  
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 EW NS 

L/D=10 

  

 

Figure 26. Velocity Profiles (mean flow) at x/D=9 for at L/D=10 configurations at 

Re=3.5x105. 

 

“Outlet” Section: 

This sectional plane is located after the 90° elbow location. At this section, the 

flow velocity distributions show that negative radial locations have higher velocities in 

this region, whereas positive radial location have lower velocities. Lower velocities are 

ascribed to the existence a separation region in local flow near r*=0.2-0.9. All L/D 

configurations exhibited similar patterns. The results of both LES estimates and the 

experiments agree for 𝐸𝑊 and 𝑁𝑆 directions. The results for 𝐿 𝐷⁄ = 10 are found to 

be most satisfactory, whereas 𝐿 𝐷⁄ = 8 results are the least satisfactory. For both LES 

estimates and experimental results, the local flow separation is found closer to 𝑟∗ =

0.2 − 0.9. Local flow separation at this point is predictable, as the flow is turning at 

90°, as the swirling effect produces a local flow circulation.  

Conversely, 𝑁𝑆 profile is also confirmed in Figure 27 where the results of LES 

estimates and the experiments agree. It is worthwhile to note that the NS profile at the 

“outlet” section has also shown a similar distribution as the “inlet” section, indicating 
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flow is partially recovered to a completely developed flow profile in the direction of 

the outlet. 

 

 EW NS 

L/D=2 

  

L/D=4 

  

L/D=6 
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L/D=8 

  

L/D=10 

  

Figure 27. Velocity profiles (mean flow) at x/D=outlet for all 𝐿 𝐷⁄  configurations at 

Re=3.5x105. 

 

6.2.3 Re=4.5x105 

𝑥 𝐷⁄ = 1 Section: After First Elbow: 

Figure 28 below shows the velocity profiles for L/D= 4 configuration at x/D= 1 

location, the velocity inlet is 17 m/s. It can be observed at this location that the velocity 

is lower closer to the convex wall just after the elbow and is higher on the concave wall. 

This is preliminary due to the sharp bend with high air flow velocity resulting in flow 

swirling and separations. This pattern is also observed in the other configurations L/D's.  

In Figure 28 (b) at N-S direction, the velocity profile is almost symmetrical, and the 

velocity is observed to be slightly lower near to the duct center.  
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(a) (b) 

Figure 28. Velocity profiles (mean flow) at x/D=1 for L D⁄ = 4 configuration at 

Re=4.5x105. (a) E-W (East-West) orientation (b) N-S (North-South) orientation. 

 

𝑥 𝐷⁄ = 3 Section: In between Elbows: 

Figure 29 shows the velocity profile at x/D=3 for L/D=4 configuration at 

Re=4.5e5. The E-W profile consistently demonstrates similar asymmetrical distribution 

predicted by LES on both sides of the duct walls. The flow velocity distribution on N-

S direction shows symmetrical due to flow re-attachment. 
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(a) (b) 

Figure 29. Velocity profiles (mean flow) at x/D=3 for L D⁄ = 4 configuration at 

Re=4.5x105. (a) E-W (East-West) orientation (b) N-S (North-South) orientation. 

 

6.3 Results of Comparison of ζ-f, RSM, LES, and WMLES Models 

Section x/D=1: After First Elbow: 

The LES model significantly underpredicted the results in the flow reattachment 

region. Interestingly, results show that WMLES and ζ-f predictions are very close to 

each other. It should also be noted that LES seems unable to capture either flow 

separation or flow reattachment regions correctly, which could be due to mesh 

resolution. The mesh employed in the setup of this study could be insufficient to fully 

resolve all flow scales. 

 

Results of LES estimates and other experiments for all models are found to be 

in agreement, except the WMLES results, where LES estimates do not match those of 

the experiments, especially at around r/D=0.5 where they underpredict both in flow 

separation and reattachment regions. 
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(a) (b) 

Figure 30. Velocity profiles (normalized) for Ζ-F, RSM, LES, and WMLES models at 

𝑥/𝐷 = 1: (a) E-W (East-West) Orientation (b) N-S (North-South) Orientation 

 

Section between First and Second Elbows: 

Flow distribution near the straight pipe section is in transition from a non-

uniform to a uniform pattern. The duct sections discussed are analyzed for different 

locations (x/D=3,5 and 7) on the straight pipe. 

x/D=3: 

At 𝑥/𝐷 = 3, the normalized velocity profiles for all turbulence models are 

given in Figure 31. LES estimations for all models disagreed with the experimental 

results. Therefore, the LES model has consistently shown poor predictions for both 

reattachment and flow separation regions. 
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(a) (b) 

Figure 31. Velocity profiles (normalized) for Ζ-F, RSM, LES, and WMLES models at 

𝑥/𝐷 = 3: (a) E-W (East-West) Orientation (b) N-S (North-South) Orientation 

 

x/D=5: 

At 𝑥/𝐷 = 5, the normalized velocity profiles of ζ-f model and RSM model are 

consistent with the experiment. On the other hand, WMLES and LES model predictions 

do not agree so well. Figure 32 shows the velocity profiles for all turbulence model at 

this section. 
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(a) (b) 

Figure 32. Velocity profiles (normalized) for Ζ-F, RSM, LES, and WMLES models at 

𝑥/𝐷 = 5: (a) E-W (East-West) Orientation (b) N-S (North-South) Orientation 

 

x/D=7: 

In the NS direction, the numerical results obtained by the LES model agree 

closely with experimental data. Figure 33 demonstrates that both RSM and WMLES 

models over-predict the mean flow velocity. For the EW direction, the LES estimates 

disagree with experimental results for all discussed models, resulting in over-

predictions of the mean flow velocity. 
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(a) (b) 

Figure 33. Velocity profiles (normalized) for Ζ-F, RSM, LES, and WMLES models at 

𝑥/𝐷 = 7: (a) E-W (East-West) Orientation (b) N-S (North-South) Orientation 

 

  

(a) (b) 

Figure 34. Velocity profiles (normalized) for Ζ-F, RSM, LES, and WMLES models at 

𝑥

𝐷
= 9:  (a) E-W (East-West) Orientation (b) N-S (North-South) Orientation 

 

Section x/D=9: Before Second Elbow: 

For section x/D= 9, the outcomes for velocity profiles for normalized mean 

flow are shown in Figure 34. Here, for outer radial location, the RSM and WMLES 
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results are consistently over-predicted in both directions, whereas the ζ-f model results 

are comparatively better. The over-predictions for all turbulent models can be attributed 

to the mathematical errors that occurred during resolving upstream flow structures.  

 

6.4 Closure Coefficients Determination 

The turbulence modelling uses many different assumptions based on physics. 

Therefore, the diversity of turbulence model approaches makes it difficult to 

systematically determine closure coefficients. This can be achieved by setting the 

closure coefficient values to achieve good agreement with experimentally obtained 

data.   

Smagorinsky suggested a constant coefficient to use for isotropic turbulence 

using the Smagorinsky model [61]. Germano et al. [69] established a dynamic 

coefficient model to account for the spatial and temporal variations.  

All closure coefficients used in the current turbulent modelling research is based 

on empirical coefficients suggested from relevant research work performed by others. 

The values of these constants are derived from wide range of turbulent flow by using 

data fitting. The sensitivity study of these closure coefficients are not included in the 

scope of the current thesis. 

 

6.5 Adverse Pressure Gradient Flow 

Considering pipe flow over the elbow, the influence of pressure on the flow 

velocity is quite substantial. The fluid viscosity effect may increase shear stress, 

contributing to flow velocity reduction. This can be overcome with the negative 

(favourable) pressure gradient.  In contrast, positive (adverse) pressure gradient 

phenomena give rise to flow separation. 
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6.6 Results Comparison of LES and Experiment Using Enhanced Near-Wall 

Treatment and Standard Wall Functions Methods 

In general, standard wall functions can achieve reasonable accuracy both at high 

Reynolds number and simple wall-bounded flow conditions. The flow prediction 

accuracy using standard wall function suffers when the flow exhibits the following 

phenomena in which function limits are reached: 

 Boundary layer separation due to severe pressure gradient  

 Strong body force dominant flow such as buoyancy-driven flow 

 Massively transpiration flow effect through wall such as suction or 

blower 

 

6.7 Predicted Reynolds Shear Stress Components 

The results of turbulence momentum transport can be represented using 

Reynold shear stress components. These components are described as momentum flux 

with the following relationship to the fluctuating velocity components: 𝜏𝑅𝑥𝑧
= 𝜏𝑅𝑧𝑥

=

−𝜌𝑢′𝑤′̅̅ ̅̅ ̅̅ , 𝜏𝑅𝑦𝑧
= 𝜏𝑅𝑧𝑦

= −𝜌𝑣′𝑤′̅̅ ̅̅ ̅̅ , 𝜏𝑅𝑥𝑦
= 𝜏𝑅𝑦𝑥

= −𝜌𝑢′𝑣′̅̅ ̅̅ ̅̅ . 

 

6.8 Normal Reynolds Stress Components 

Normal Reynolds stresses can be described as 𝜏𝑅𝑥𝑥
= −𝜌𝑢′𝑢′̅̅ ̅̅ ̅̅ , 𝜏𝑅𝑦𝑦

= −𝜌𝑣𝑣′̅̅ ̅̅̅, 

𝜏𝑅𝑧𝑧
= −𝜌𝑤′𝑤′̅̅ ̅̅ ̅̅ ̅. The imbalance of normal stress is a feature of secondary flow 

generation in the fluid domain. 
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6.9 Pressure Loss Coefficient 

The total pressure loss across the Z-duct pipe is evaluated. Figure 35 shows the 

pressure loss coefficient obtained for 12” (305 mm) diameter Z-duct w/ close-coupled 

elbows configuration. The loss coefficient is plotted as a function of the separation 

distance L/D. The experiment data from ASHRAE RP-1682 [3] indicates pressure loss 

coefficient of around 0.21-0.26 with uncertainties around 0.011-0.019. Such 

measurement was performed with the upstream plane located before the first elbow and 

the downstream plane located after the second elbow.  These LES-based results are 

compared to experiment as shown in Figure 35. Such CFD fluid planes are chosen at 

the similar locations to experiment. The LES predicted pressure loss is found to agree 

well at L/D=4 – 8. However, the predicted results are much lower at L/D=2 and slightly 

higher at L/D=10. These under and over-predictions behaviors are likely deemed to 

insufficient resolved flow structures that are contributing to flow energy in the pipe. 

The over-predicted momentum deficits at L/D=10 could account of the results of 

slightly higher-pressure loss and vice versa for L/D=2.  
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Figure 35. Pressure loss performance for different L/D of 12in Z-duct configuration 

 

6.10 Turbulence Anisotropy 

In turbulence flow, the DNS studies reveal that the mean velocity gradient 

generates a large-scale anisotropic structure as it stretches and aligns with the high 

energy turbulent eddies. This mean flow distortion explains why most turbulent flows 

are anisotropic and its directional preference. 

 

6.11 Contours Plots of Mean Flow Velocity 

Generally, the information in the LES model consists of numerous flow 

variables. In this section, 2D contours of mean velocity magnitude with  𝑥 𝐷⁄  will be 

inlet followed by 1, 3, 5 and finally the outlet, for diverse L/D configurations are further 

analyzed. In the absence of experimental data to certify LES contours, the visualization 

of the footprint for the entire fluid planes becomes essential. In previous profiles, only 

parts of the planes were confirmed. 

Figure 36 presents the contours in mean velocity magnitude. In the case of the 
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inlet section, a uniform velocity distribution for different L/D configurations can be 

observed. However, at L/D =5, velocity distribution was greater in the lower region. As 

shown, the velocity magnitude is only 1–2 m/s apart, which means that the velocity 

gradient is relatively small. That is to be expected as the entrance lengths for all 

configurations are identical to the completely developed flow profile.   

At the x/D = 1 location, the velocity contours are observed to be asymmetrical 

in pattern and non-uniform. This may be a result of the existence of reattachment and 

local flow separation closer to the other side of the walls. Higher velocities are usually 

present within the outboard of the duct in flow reattachment. On the other hand, low 

velocities are present in the inboard sections of the duct in the flow separation region. 

For all 𝐿/𝐷 configurations, almost half of the duct circular is dominated by both flow 

regions. 

At the x/D = 3 section, the flow distribution of the straight pipe closer upstream 

is studied for all L/D configurations. Flow that recovered from the separation is shown 

in yellow. It is found that although the flow has recovered, it is still not closer to the 

required inlet velocity. Moreover, the swirling of flow around the straight pipe is 

observed. Flow structures in the pipe are likely an effect of this swirling effect.  

For the x/D = 5 section, located before the second elbow, the contour shows 

the flow distribution furthest downstream. Here, flow velocity is transitioning from the 

non-uniform upstream pattern to the uniform downstream pattern. In addition, the 

swirling effect is decreased. This flow distribution is found for all L/D configurations.  

In all L/D configurations, the contour figures for outlet showed highly non-uniform 

velocity distributions. In the region of local flow circulation, the flow velocities are 

found closer to the upper region. This happens because of flow separation at 90° elbow  

turn. 
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Figure 36. Mean velocity contours in m/s 

 

6.12 Turbulent Kinetic Energy (𝑘) Contours 

The components of instantaneous flow velocity 𝑢, 𝑣 and 𝑤 are decomposed 

such that: 𝑢 = �̅� + 𝑢′, 𝑣 = �̅� + 𝑣′ and 𝑤 = �̅� + 𝑤′ where mean flow quantities are 

represented by �̅� and �̅� and �̅� and fluctuating components by 𝑢′, 𝑣′ and 𝑤′. Equation 

(43) expresses the resolved turbulent kinetic energy (k) along with fluctuating 
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components. 

 𝑘 =
1

2
(𝑢′2̅̅ ̅̅ + 𝑣′2̅̅ ̅̅ + 𝑤′2̅̅ ̅̅ ̅)                                                                               (43) 

For different L/D configurations, the LES estimate of 𝑘 for cross-sectional 

planes is given in Figure 37. For all cases, it is evident from the figure that on the verge 

of the turning radius, the value of 𝑘 shows consistent tendency to increase. While 

approaching the second elbow, 𝑘 decreases gradually, and after near-corner transition, 

it increases once again. Due to the existence of turbulent mixing enhancement, sheared 

flow develops. When the value of 𝑘 is decreasing, viscous forces dissipate the large-

scale flow structures at the Kolmogorov scale. The 𝑘 is higher in region between elbows 

when L/D = 2.  It is mainly due to restricted vertical length in stream wise direction, 

which helps viscous dissipation.  

 

 

(a) L/D=2 (b) L/D=6 
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(c) L/D=8 (d) L/D=10 

 

Figure 37. Turbulent kinetic energy (k) per mass for all 𝐿/𝐷: (a) L/D=2 (b) L/D=6 (c) 

L/D=8 (d) L/D=10 

 

Equation (44) characterizes the turbulent kinetic energy and its production, 

transport, and dissipation terms. 

𝐷𝑘

𝐷𝑡
+ ∇ ∙ 𝑇′ = 𝑃 − 휀 

(44) 

where turbulence transport, production, and dissipation of k are represented by ∇ ∙

𝑇′, 𝑃 and respectively. 

Turbulent kinetic energy can be used to study each process managing turbulent 

flow motion. If 𝑘 increases near the elbow region, 𝑃 is expected to be greater than 

which means that there is more turbulence near the local boundary layer. Similarly, 

if the 𝑃 is less than , the boundary layer is less turbulent. 
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6.13 𝜆2-criterion Iso-Surfaces 

To visualize the turbulent flow structures in 3D, a post-processing technique 

using 𝜆2-the criterion can be used as shown in Figure 38.  𝜆2-criterion finds a local 

minimum for vortex pressure.  Moreover, the figure shows that the flow structures are 

dissipating downstream from the elbow. In that region, the viscous dissipations are very 

dominant compared to upstream, where turbulent production dominates. For this 

reason, the smaller eddies are found downstream. In the region upstream, large-size 

turbulent structures are found. Larger turbulent flow structures govern the swirling 

effects. Consequently, flow structures with higher velocity near the elbow are dominant 

closer to the near-wall region.  

 

 

Figure 38. 𝜆2-criterion iso-surfaces highlighted according to vorticity magnitude for 

L/D=10 
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6.14 Turbulence Modeling for Higher and Lower Re in the ζ-f Model 

  The flow pattern of fluid inside a Z shape pipe was recorded with ζ-f model for 

fluid velocities of 8 m/s and 18 m/s. The flow pattern of fluid was observed in EW and 

NS directions with a mean position at the piper center. The pipe length was divided into 

7 sections; inlet, x/D of 1, 3, 5, 7, 9, and outlet. Results obtained from the ζ-f model 

were presented in the dimensionless form using a graphical representation of a 

juxtaposition of radius and velocity. Simulation results for the velocities of 8 m/s and 

18 m/s show that at inlet the flow pattern of the fluid is the same in both EW and NS 

directions. Flow patterns in the area nominated as x/D = 1 show a very different profile 

for EW and NS direction when the fluid velocity at 8 m/s. The flow pattern of fluid 

does not change much in EW direction showing that this direction has very uniform 

flow fluid from inlet to the x/D = 1 while the NS direction displays a velocity drop near 

the mean section of the pipe. This drop of fluid velocity can be due to a drop in the 

momentum of fluid. Drop-in momentum itself can be due to the presence of a vortex in 

that region.  

 

 

(a) (b) 
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Figure 39. Velocity profiles (normalized) for ζ-f model at inlet (8 m/s): (a) E-W (East-

West) Orientation (b) N-S (North-South) Orientation 

 

(a) (b) 

 

Figure 40. Velocity profiles (normalized) for ζ-f model at inlet (18 m/s): (a) E-W (East-

West) Orientation (b) N-S (North-South) Orientation 

 

The comparison of the profile of flow of 18 m/s with the 8 m/s shows that the 

velocity of fluid does affect the flow pattern of fluid inside the pipe. As in 18 m/s, the 

fluid flow profile for x/D = 1 shows that in EW direction the flow is highly non-uniform 

as the graphical representation of the profile shows an asymmetrical curve. The curve 

has changed in shape in the positive radial direction while the negative radial direction 

remains the same. This asymmetrical curve of the fluid flow pattern also explains the 

presence of the reattachment and local flow separation region. The NS direction, in this 

case, does not show a changed profile as compared to that of the 8 m/s but the velocity 

drop near the mean position of the pipe is much larger in this case. This larger drop in 

fluid velocity shows that the fluid velocity has an impact on the fluid flow patterns 
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inside the pipe.  

 

(a) (b) 

Figure 41. Velocity profiles (normalized) for ζ-f model at section 𝑥/𝐷 = 1 (8 m/s): 

(a) E-W (East-West) Orientation (b) N-S (North-South) Orientation 

 

 

(a) (b) 

Figure 42. Velocity profiles (normalized) for ζ-f model at section 𝑥/𝐷 = 1 (18 m/s): 

(a) E-W (East-West) Orientation (b) N-S (North-South) Orientation 



103 

 

Comparing the fluid flow profile of x/D = 3 with x/D = 1 for the fluid velocity 

of 8 m/s show that even at that slow speed the fluid flow profile gets changed at every 

section of the pipe. As the graphs show the fluid flow profile at the section x/D = 3 

changes for EW direction and fluid flow is now slightly non-uniform as the graph shows 

some asymmetric shape. This asymmetrical curve of the fluid flow pattern also explains 

the presence of the reattachment and local flow separation region. In the NS direction, 

the flow of fluid is similar to that of the x/D = 1 as a drop of velocity near the mean 

position of the pipe but the drop magnitude and the largest recorded velocity are lower 

than that of the previously recorded. The decrease of fluid flow velocity is due to the 

drop in the momentum of fluid, where fluid momentum drop can be due to the presence 

of vortex at the same region. 

 

(a) (b) 

Figure 43. Velocity profiles (normalized) for ζ-f model at section 𝑥/𝐷 = 3 (8 m/s): (a) E-

W (East-West) Orientation (b) N-S (North-South) Orientation 
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(a) (b) 

Figure 44. Velocity profiles (normalized) for ζ-f model at section 𝑥/𝐷 = 3 (18 m/s): (a) 

E-W (East-West) Orientation (b) N-S (North-South) Orientation 

 

 

Similarly comparing the fluid flow profile of x/D = 3 with x/D = 1 for the fluid 

velocity of 18 m/s in Figure 42 and Figure 44 show that at high speed the fluid flow 

profile get changed at every section of the pipe and flow starts to get uniform in EW 

direction. Results clearly show that there is an increase in the uniformity of the flow of 

fluid as fluid moves from x/D = 1 to x/D = 3. The asymmetric shape of the graphic 

especially in the positive region of radius starts to get symmetric in the EW direction. 

In the NS direction, the two major changes were observed in this region. As the fluid 

moves further from x/D = 1 the decrease in the flow of fluid spread from the center to 

almost the entire radius in NS direction. As can be observed in graphs that the decrease 

in velocity of fluid start from the very beginning of the positive outer side of the radius 

and continues to increase till the center from where it starts to increase till it reaches its 

maximum value.  The second change was observed in maximum value fluid flow 

velocity which was reduced from about 1.25 to less than 1.15. Comparing the fluid flow 
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profile for both 8 m/s and 18 m/s shows that in 8 m/s the further movement of the fluid 

makes it a little non-uniform in EW direction while in 18 m/s the further movement of 

the fluid makes it slightly more uniform in EW direction.  

 

(a) (b) 

Figure 45. Velocity profiles (normalized) for ζ-f model at section 𝑥/𝐷 = 5 (8 m/s): 

(a) E-W (East-West) Orientation (b) N-S (North-South) Orientation  

 

(a) (b) 

Figure 46. Velocity profiles (normalized) for ζ-f model at section 𝑥/𝐷 = 5 (18 

m/s): (a) E-W (East-West) Orientation (b) N-S (North-South) Orientation 
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(a) (b) 

Figure 47. Velocity profiles (normalized) for ζ-f model at section 𝑥/𝐷 = 7 (8 m/s): 

(a) E-W (East-West) Orientation (b) N-S (North-South) Orientation 

 

 

(a) (b) 

Figure 48. Velocity profiles (normalized) for ζ-f model at section 𝑥/𝐷 = 7 (18 m/s): 

(a) E-W (East-West) Orientation (b) N-S (North-South) Orientation 
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Comparing the x/D = 5 of 8 m/s with x/D = 3 in Figure 43 and Figure 45 shows 

that the disturbance in the EW flow direction starts to decrease as the fluid passes from 

section 3 to section 5 of the pipe. As shown in the graphical representation of the EW 

direction the asymmetric line of radius against the velocity starts to decrease as 

compared to the previous one. This means that flow of fluid in EW direction becoming 

more uniform as the fluid moves further into the pipe. Comparing this graph with that 

of the 18 m/s velocity shows that at a higher velocity of the fluid same trend of increase 

in the uniformity of flow of fluid as it moves further into the pipe was observed. For 

the flow in NS direction, a new profile of fluid flow was observed which shows that the 

length of decreased fluid velocity was increasing. A graphical representation of the fluid 

flow inside the pipe shows that the reduced velocity area has increased and the 

magnitude of the peak value of the decreased velocity has increased. This new shape at 

x/D = 5 means that the vortex created in the previous section is expanding its area in 

further section but has less intensity and thus produce lesser decrease in velocity at the 

affected area. The graphical representation of radius against the velocity also shows 

that the maximum velocity of the fluid is this direction is also decreased as the 

maximum velocity of the fluid recorded in this section was reduced to below 1.12 

slightly less than the maximum velocity recorded in the last section of the pipe. 

Comparing the graph with that of the 18 m/s velocity shows that at a higher velocity of 

the fluid, the same trend of decrease in maximum velocity of the fluid with an increase 

in the magnitude of the peak a decreased velocity was observed . 

At a fluid flow velocity of 8 m/s, the flow pattern in EW direction and at section 

x/D = 7, and x/D = 9 of pipe shows that the more the fluid moves further into the pipe 

the flow pattern is becoming more uniform. As evident from the graphical 

representation in Figure 47 and Figure 49, the graph line is becoming more symmetric 
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as fluid moves further in the pipe from section x/D = 7 to x/D = 9, the same was also 

observed when fluid moves from x/D= 5 to x/D= 7. The reason behind this smooth and 

uniform flow along EW direction is that the initial disturbance created at the inlet starts 

to lose its impact as fluid move further along the length of the pipe. The disturbance 

created due to the reattachment and local flow separation at the initial section start to 

disappear in further sections of the pipe and thus making the flow of fluid more uniform 

and smoother in lateral sections of the pipe. As shown in Figure 48 and Figure 50, at 

fluid flow velocity of 18 m/s, the flow pattern in EW direction and at section x/D = 7, 

and x/D = 9 of pipe shows that the more the fluid move further into the pipe more 

uniform the flow pattern it will have but this conversion is much more effective and 

fast as compared to that of the 8 m/s. As can be seen in the graphical representation of 

the said section, the graph line is becoming more asymmetric when compared to the 

initial pipe section of x/D = 1 and x/D = 3. As fluid moves further in pipe from section 

x/D = 5 to x/D = 7 and then from x/D = 7 to x/D = 9 fluid flow pattern became smoother 

and uniform. The reason behind this smooth and uniform flow along EW direction is 

that the initial disturbance created at the inlet starts to lose its impact as fluid move 

further along the length of the pipe. The disturbance created due to the reattachment 

and local flow separation at the initial section start to disappear in further sections of 

the pipe and thus making the flow of fluid more uniform and smoother in lateral sections 

of the pipe. 
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(a) (b) 

Figure 49. Velocity profiles (normalized) for ζ-f model at section 𝑥/𝐷 = 9 (8 m/s): (a) 

E-W (East-West) Orientation (b) N-S (North-South) Orientation 

 

(a) (b) 

Figure 50. Velocity profiles (normalized) for ζ-f model at section 𝑥/𝐷 = 9 (18 m/s): (a) E-W 

(East-West) Orientation (b) N-S (North-South) Orientation 

Fluid flow patterns in NS direction for the fluid velocity of 8 m/s at different 

sections of pipe that is at x/D = 5, x/D = 7, and x/D = 9 were also analyzed. The result 
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show that the vortex that was created initially at the start of the pipe section x/D = 1 

and was having a significant effect till x/D = 3 starts to fade away at the start of the 

section x/D = 5 and flow continues to become more uniform till the last section of pipe 

that is x/D = 9. The process of transformation of fluid flow inside the pipe from a highly 

non-uniform and unsteady flow to a steady and uniform flow starts from x/D = 5 as 

shown in the graph. Initially, the decreased fluid velocity in the center region starts to 

recover and try to match with the maximum velocity of the fluid. This process continued 

for section x/D = 7 were very small differences remain between center region velocity 

and maximum velocity of the fluid present inside the fluid. When fluid moves further 

to the next section of x/D = 9 the decrease in velocity of the center region became equal 

to the maximum fluid velocity means there is no slower velocity present at this stage of 

the flow. Similarly, at a fluid velocity of 18 m/s, the flow pattern in NS direction and at 

section x/D = 7, together with x/D = 9 of pipe shows that the more the fluid moves 

further into the pipe more uniform the flow pattern it will have. The result show that 

the asymmetric graph due to unsteady and non-uniform flow that was created initially 

at the start of the pipe section x/D = 1 and was having a significant effect till x/D = 3, 

starts to get symmetric, steady, and uniform at the start of the section x/D = 5 and 

continue to become more uniform till the last section of pipe that is x/D = 9. At section 

x/D = 9 there are no local flow separation regions and no evidence of reattachment that 

were introduced initially in the flow at section x/D = 1.  
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CHAPTER 7: Conclusions 

7.1 Results for ζ-f and RSM models 

Results related to the ζ-f and RSM are presented in this section. Both above-

mentioned models are developed from steady-state RANS solutions. The results 

associated with the reattachment and flow separation regions are kept in focus. For the 

RSM model, simulated results disagree with experimental results. Moreover, RSM 

model is found lack of robustness in predicting mean flow velocity for different 

𝐿/𝐷 configurations. Within the flow separation region where swirling is dominant, 

RSM model under-predicts the flow velocity. In the flow re-attachment region, RSM 

exhibit higher inaccuracy behavior than ζ-f. In addition to these results, the mean flow 

velocity results are also calculated, and the results show that the predictions of the RSM 

model disagree with experimental results.  

In the next part of the study, the ζ-f model is studied for the Z-shaped duct. It 

should be noted that literature on the model in that conditions is limited. For the ζ-f 

model, a new UDF script was established. The reproduction of the process of 

production of turbulent kinetic energy in the ζ-f model is less difficult, and the accuracy 

of this reproduced energy proved to be excellent. The ζ-f model outperformed the RSM 

model, as its results were more in line with available experimental data. Moreover, the 

ζ-f model requires less computational data than the RSM model. In particular, the ζ-f 

model’s numerical results were much better suited for predicting wall-bound flow. 

The flow inside a Z shape pipe was analyzed for the two different velocities of 

8 and 18 m/s using the ζ-f model and the result concluded that the initial flow pattern 

of fluid is highly dependent on the fluid flow velocity. At both velocities, the fluid flow 

shows asymmetric flow in the EW direction and a drop of velocity in the central flow 

region in the NS direction. Both fluid flow patterns have different magnitude with 8 
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m/s having a flow pattern of lower magnitude. For both velocities when the asymmetric 

flow in EW direction and reduced velocity of the fluid in NS direction starts to convert 

to a symmetric flow and uniform velocity respectively as the fluid moves further into 

the pipe along the length of the pipe. The process of this conversion of flow from highly 

asymmetric and non-uniform to an asymmetric and uniform flow starts from section 

x/D = 5 and it ends at the last section of the pipe that is x/D = 9. 

7.2 Results for the LES Model 

Like with other models, the LES model results are juxtaposed with available 

experimental data, for Reynolds number (Re) = 3.5 ×104. Moreover, turbulent behavior 

over a varied range of 𝐿/𝐷 is also analyzed. The following are the results at 𝐿/𝐷 = 2, 

which represents the coupling of two elbows. 

 For mean flow velocity profiles, the LES predictions and experimental data 

show results in agreement for the considered range. of 𝐿/𝐷, and it is ascribed to well-

resolved flow structures that are large-scale. However, small over and underestimates 

at specific distances are observed while comparing the absolute values due to the 

restricted modeling approach for predicting eddies structures. 

 This study identifies significant flow turbulence characteristics at inlet section. 

These main features are categorized as reattachment and separation regions. 

 For L/D at x/D= 3 and 5 within the region of flow transition, inconsistencies 

were found to be more severe. Some inconsistencies or discrepancies were assumed to 

be originated from the numerical errors previously quantified based on velocity profile 

against experimental data. Both upstream x/D=1 and downstream x/D=3 have 

demonstrated under-predicted velocity profile issues and x/D=3 is found to be worse 

than x/D=1. Such numerical errors are deemed lack of proper modeling approach at the 
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upstream flow region. It is suggested that such problem can be solved by using a 

resolution with a finer mesh or by using spatial discretization of a higher order. This 

effort will help in attempt to properly resolve the local velocity gradients of structures. 

Moreover, by resolving upstream inconsistencies, the downstream duct flow precision 

can also be enhanced. 

The LES simulation results applied to the Z-shaped duct have shown some issues 

with robustness in accurately predicting the flow separation and reattachment regions. 

Grid resolution is likely not fine enough to allow better filtering grids for smaller-scale 

eddies. If a finer mesh is applied, the filtering function should allow more scales to be 

resolved and is therefore expected to achieve higher accuracy.  
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CHAPTER 8:  Recommendations and Future Work 

 

The following are suggestions for future work to help improve numerical 

prediction accuracy related to completely developed Z-shaped duct flow at high Re 

conditions: 

To successfully deploy the LES model, a significant factor is suitable spatial 

resolution. The large-scale extremely anisotropic turbulent flow characteristics present 

in bulk flow must be fully resolved, while the sub-grid model is needed to resolve the 

near-wall region. With complex flow such as Z-shaped duct flow, small vortices present 

in near-wall regions contain highly turbulent energy and are hard to separate from a 

bulk flow based on length scale. It is therefore considered poorly suited for LES 

predictions if the grid solution is not applied in near wall-regions satisfactorily.  

The fine-scale structures in near wall region are found relatively isotropic, and 

such a sub-grid modeling approach remains open to be improved. The conventional 

eddy-viscosity model, such as the Smagorinsky model, which can represent such strain 

rate relationship is found to be overly dissipative. In addition, the constant obtained 

from the Smagorinsky model, originally endorsed based on a simple flow of decaying 

turbulence, is found not well suited for complex flow. In near-wall regions, the eddy 

viscosity does not disappear. To satisfy this condition, a damping function is currently 

employed. It is essential to study different types of damping function approaches such 

as two-point closures, dynamic models, structure function models, scale-similar and 

mixed models, deconvolution techniques, and truncated treatment. The new technique 

of ILES (implicit large-eddy simulation) relies on special numerical arrangement to 

provide dissipation of turbulent energy in the region where fine scale structures are not 

resolved.  
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APPENDIX B: USER DEFINED FUNCTION CODE 

  

#include "udf.h" 

#include "math.h" 

  

/* Turbulence model constants */                    

 // the constants of the zeta-f model and its respective values are declared 

const real C_MU=0.22; 

const real C_T=6.0; 

const real C_ETA=85.0; 

const real C_L=0.36; 

const real SIG_K=1.0; 

const real SIG_E=1.3; 

const real SIG_ZETA=1.2; 

const real CE_2=1.9; 

const real C_1=1.4; 

const real C_2=0.65; 

const real N_zeta=2.0; 

const real y_star_limit=30.0; 

const real C_MU_ke=0.09; 

  

/* C_R(C,t)=rho*/                                   

// It is not required to declare a value (rho) to the predefined macro C_R(c,t), because 

it already returns the fluid density value. But it is possible to do the opposite (e.g declare 

real rho(c,t) = C_R(c,t)). It is possible to use in the code the terminology "rho(c,t)" 



130 

 

instead of "C_R(c,t)". 

/* User-defined scalars */ 

enum  

  

// enum is used to replace the index i of the C_UDSI(c,t,i) macro (which in this UDF 

defines the turbulence scalars K, E, ZETA and F), in which i = (0,1,2,3,...). By using 

enum, the scalars numbers are replaced by the listed letters. Using it, the listed letters 

are used instead of numbers, making the code cleaner and easier to understand it. Also, 

it does not change anything on the ANSYS Fluent graphical interface. 

  

{ 

            K, 

            E, 

            ZETA, 

            F, 

            N_REQUIRED_UDS 

}; 

  

DEFINE_SOURCE(k_source, c, t, dS, eqn)                                                                    

    // DEFINE_SOURCE is a predefined macro to create a source term. In this case is 

the K equation source term, but we need to correctly select it to K in the graphical user 

interface. 

{ 

            real source;                                                                               

               // declaration of the variable "source" as a real. It is not necessary since the 



131 

 

DEFINE_SOURCE macro already returns a real value. 

  

            //dS[eqn]=-2* 

pow(C_R(c,t),2)*C_UDSI(c,t,K)*C_MU*C_UDSI(c,t,ZETA)/C_UDMI(c,t,0); 

            //source=C_UDMI(c,t,3) - 

pow(C_R(c,t),2)*pow(C_UDSI(c,t,K),2)*C_MU*C_UDSI(c,t,ZETA)/C_UDMI(c,t,0)

;      

  //  

            dS[eqn]= -C_R(c,t)/C_UDMI(c,t,1);                                                                         

  

// In this part we can set the source term derivative in respect to K (dS/dK). The 

production term depends on the turbulent viscosity which in turn depends on K. Thus, 

the derivative dS/dK does not consider the appearance of K in the production term, as 

it is set to 0. Also, the appearance of K will vary from point to point in the flow, once 

the Time scale T, defined as "C_UDMI(c,t,3)", has a MIN and MAX definition, making 

it sometimes independent and dependent on K. So, in such cases it is preferred to leave 

it a 0 value in the derivative and ANSYS Fluent handle it explicit. 

            source=C_UDMI(c,t,3) - C_R(c,t)*C_UDSI(c,t,K)/C_UDMI(c,t,1);                                              

  

// The source term of the K equation is defined by the variable source. 

            return source;                                                                                    

         

// The "source" variable is returned as the value of the DEFINED_SOURCE macro. 

Now ANSYS Fluent will understand it as the source term of the K equation. 

} 
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 DEFINE_SOURCE(e_source, c, t, dS, eqn)                                                                        

 // The above approach is repeated 

 { 

            real source;                                                                                            

  // The source variable is again declared as a real value. It can have the "source" name 

again because it is declared locally (inside the macro). 

            real CE_1;                                                                                             

  

   // The model "constant" CE_1 is declared inside the macro as a real value. Means it 

can only be called inside the macro. If it is used in another macro, Fluent will return 

an error. On the other hand, the constants values declared in lines 4-20 are declared 

globally and can be used by any macro presented in the code. 

  

            CE_1=1.4 * ( 1.0+0.012/C_UDSI(c,t,ZETA) );                                                                

  

// The CE_1 value is evaluated. 

  

            dS[eqn]= -CE_2*C_R(c,t)/C_UDMI(c,t,1); 

            source= (  CE_1*C_UDMI(c,t,3) - CE_2*C_R(c,t)*C_UDSI(c,t,E)  

)/C_UDMI(c,t,1);                            

  

 // The source variable is defined 

            return source;                                                                                         

  

   // The source variable value is returned as the value of the DEFINE_SOURCE macro. 
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} 

  

DEFINE_SOURCE(zeta_source, c, t, dS, eqn)                                                                                

  

   // Same above procedures apply here. 

  

{ 

            real source; 

            //real f; 

            //kf=C_UDSI(c,t,K)*C_UDSI(c,t,F); 

  

            dS[eqn]=-( C_UDMI(c,t,3)-(1-N_zeta)*C_R(c,t)*C_UDSI(c,t,E) 

)/C_UDSI(c,t,K); 

            source=C_R(c,t)*C_UDSI(c,t,F) - C_UDSI(c,t,ZETA)/C_UDSI(c,t,K) * ( 

C_UDMI(c,t,3)-(1-N_zeta)*C_R(c,t)*C_UDSI(c,t,E) ); 

            return source; 

} 

  

DEFINE_SOURCE(f_source, c, t, dS, eqn)                                                                               

        // // Same above procedures apply here. 

{ 

            real source, f_h; 

  

            f_h=(  ( C_1-1.0+C_2*C_UDMI(c,t,3)/(C_R(c,t)*C_UDSI(c,t,E)) )*( 

C_UDSI(c,t,ZETA)-2.0/3.0 ) + C_UDSI(c,t,ZETA)*(N_zeta-1.0)  )/C_UDMI(c,t,1); 
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            dS[eqn]=-1.0/SQR(C_UDMI(c,t,2)); 

            source=-( C_UDSI(c,t,F) + f_h )/SQR( C_UDMI(c,t,2) ); 

            return source; 

} 

  

DEFINE_DIFFUSIVITY(ke_zeta_f_diffusivity, c, t, eqn)                                                       

  

 // The predefined macro used to compute the diffusive term of the four turbulence 

equations. it only needs to return the diffusion coefficient, cause the Laplacian operator 

of each equation is implicit defined by the ANSYS Fluent solver. 

{ 

            real diff;                                                                                           

  

   // The declaration of the diff variable as a real value. Each diffusion coefficient will 

be stored in diff, and then it will be returned as the macro value. 

  

            switch (eqn)                                                                                          

  // The switch statement is used to define all diffusion coefficient of all turbulence 

equations inside just one DEFINE_DIFFUSIVITY macro. Otherwise we will need to 

create four define diffusivity macros, as was done for the source terms. However, this 

approach cannot be applied to source terms. 

            { 

                        case K:                                                                                 

  

            // In case you select the equation in which we will define the value of "diff" using 



135 

 

the declared values in "enum". 

  

                      diff=C_UDMI(c,t,0)/SIG_K+C_MU_L(c,t);                                                             

 

  // The diff returns the diffusion coefficient of the K equation (Equation 5) 

                        break;                                                                                            

  // A break is used to call another case, for the other 3 equations. 

                        case E: 

                       diff=C_UDMI(c,t,0)/SIG_E+C_MU_L(c,t); 

                        break; 

  

                        case ZETA: 

               diff=C_UDMI(c,t,0)/SIG_ZETA+C_MU_L(c,t); 

                        break; 

  

                        case F: 

                        diff=1.0;                                                                                    

  

       // In equation 8 the diffusion coefficient is the squared length scale (L^2), but in the 

UDF we divided the entire equation by (L^2), and it becomes 1. 

                        break; 

                         default: 

                        diff=0.0;                                                                                       

  

    // The default statement is not necessary. But it if the problem has more transport 
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equations (which it does not), its diffusion coefficient will be set to 0. 

  

            } 

            return diff;                                                                                          

   // Here the value of each diffusion coefficient is returned. 

} 

  

DEFINE_UDS_FLUX(user_flux, f, t, eqn)                                                                    

   // The convective term predefined macro (DEFINE_UDS_FLUX) is used to compute 

the convective term. This macro only returns the flux term, which is the mass flux 

(density*velocity though the cell faces). 

{ 

             switch (eqn)                                                                                      

      // The switch statement is also used 

            { 

                        case K: 

                        return F_FLUX(f,t);                                                                              

  

   // The F_FLUX(f,t) macro automatically returns the mass flux. 

                        break; 

  

                        case E: 

                        return F_FLUX(f,t); 

                        break; 

                        case ZETA: 
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                        return F_FLUX(f,t); 

                        break; 

  

                        case F: 

                        return 0.0;                                                                                       

  

   // The F equation do not have a convective term, so the flux must be set to be zero to 

cancel the term out. 

                        break; 

  

                        default: 

                        return 0.0;                                                                                 

         //  

            } 

} 

  

DEFINE_ADJUST(ke_adjust,domain)                                                                            

   // The adjust function is called by the solver at the beginning of each iteration (or 

time step) and it is used here to store flow variables values in the solver memory (which 

can be accessed in the post processing) and to relate flow variables. 

{ 

            Thread *t;                                                                                             

 

  // The thread is a mesh terminology used here to allow access to domain boundaries 

and to cell zones. It is declared inside the macro because it was not passed as an 
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argument, as it was for all above DEFINE macros. 

 

            cell_t c;                                                                                               

 // cell_t is used to access the cell centroids. It is also declared here just because it was 

not passed as an argument in the DEFINE_ADJUST macro. 

 

            real y_star, L, T, L01, T01, L_KOL, T_KOL, SR, L_relz, T_relz;                                        

   // Flow variables which will be used here are declared as real values. 

            real mu_t; 

  

            /* Set the turbulent viscosity */ 

            thread_loop_c(t,domain)                                                                              

    // Macro to loop the following operations in each domain cells 

                        if (FLUID_THREAD_P(t))                                                                          

     // Statement is used to guarantee the following loop will be only in fluid zones, 

excluding solid zones, if they exist. 

                        { 

                                    begin_c_loop(c,t)                                                                        

        // The loop will be done over cell centroids. All following operations will take 

place in all domain cells. 

                                    {                                               

                                                L_KOL=C_ETA*pow(   pow( 

C_MU_L(c,t)/C_R(c,t),3.0 )/C_UDSI(c,t,E)  , 0.25  );              

 

   // The values of the predeclared flow variables are evaluated 
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                                                T_KOL=C_T*sqrt( 

C_MU_L(c,t)/(C_R(c,t)*C_UDSI(c,t,E))); 

  

                                                L_relz=sqrt(C_UDSI(c,t,K))/( 

sqrt(6.0)*C_MU*SR*C_UDSI(c,t,ZETA) ); 

                                                T_relz=0.60/( sqrt(6.0)*C_MU*SR*C_UDSI(c,t,ZETA) 

); 

  

                                                //L01=MIN(  pow(C_UDSI(c,t,K),1.50)/C_UDSI(c,t,E) , 

L_relz ); 

                                                //T01=MIN(  C_UDSI(c,t,K)/C_UDSI(c,t,E) , T_relz ); 

                                        L01=pow(C_UDSI(c,t,K),1.50)/C_UDSI(c,t,E); 

                                                T01=C_UDSI(c,t,K)/C_UDSI(c,t,E); 

  

                                                L=C_L*MAX(L01 , L_KOL);                                                                    

 

   // The previous evaluated values are used to compute Length and Time scales 

(Equations 14 and 15) in all domain cells. 

                                                T=MAX(T01 , T_KOL); 

  

                                    

mu_t=C_R(c,t)*C_MU*C_UDSI(c,t,ZETA)*C_UDSI(c,t,K)*T;                                     

     // The turbulent viscosity is computed (Equation 13) 

                                                SR=Strainrate_Mag(c,t);                                                                   
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    // The ANSYS Fluent macro to compute the strain rate magnitude 

(Strainrate_Mag(c,t)) is allocated in SR. Now SR returns the flow strain rate mag. 

                                                C_K(c,t)=C_UDSI(c,t,K);                                                                      

 

 // C_K(c,t) and C_D(c,t) are predefined macros which return the value of the turbulent 

kinetic energy and dissipation rate, respectively. By the UDF implementation in the 

graphical interface, these values are not used since we are deactivating the turbulence 

equations. Only relating the user defined values of K and E with the Fluent defined 

values. This procedure will only affect the post-processing and it is not necessary. 

                                                C_D(c,t)=C_UDSI(c,t,E);                                                                       

  

                                                C_UDMI(c,t,0)=mu_t;                                                                    

       // The previously defined turbulent viscosity is stored in the memory. C_UDMI is a 

predefined macro used to store flow variables and made them available at the post-

processing. The stored variables can also be used in the code. 

                                                C_UDMI(c,t,1)=T;                                                                          

 

    // The time scale (Equation 14) is also stored. 

                                                C_UDMI(c,t,2)=L;                                                                                                            

 

  // Equation 15 too. 

                                                C_UDMI(c,t,3)=mu_t*SQR(SR);                                                              

 

     // Lastly the turbulence production. These 4 stored flow variables can be found in 

the Fluent post processing under the User Defined memory tab. 
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                                    } 

                                    end_c_loop(c,t) 

                        } 

} 

  

DEFINE_TURBULENT_VISCOSITY(user_mu_t,c,t)                                                                     

// In this line the turbulent viscosity value, calculated and stored inside the ADJUST 

macro is returned in the DEFINE_TURBULENT_VISCOSITY macro. In the solver, it 

will be summed to the molecular viscosity in the momentum equations, defining its 

diffusion coefficient. 

{ 

            return C_UDMI(c,t,0); 

} 

  

DEFINE_ON_DEMAND(rename_UDvars)                                                                           

     // The DEFINE_ON_DEMAND macro is used to change the scalars and memory 

names in the Fluent graphical interface. It does not affect the solution. According to 

the following command lines, at the interface, instead of seeing, for example, 'User 

Scalar 0' or 'User Memory 2', now we can see 'k' and 'Turbulent length scale', 

respectively. 

{ 

            Set_User_Scalar_Name(0,"UDS0: k"); 

            Set_User_Scalar_Name(1,"UDS1: e"); 

            Set_User_Scalar_Name(2,"UDS2: ZETA"); 
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            Set_User_Scalar_Name(3,"UDS3: f"); 

            Set_User_Memory_Name(0,"UDM0: Turbulent viscosity"); 

            Set_User_Memory_Name(1,"UDM1: Turbulent time scale"); 

            Set_User_Memory_Name(2,"UDM2: Turbulent length scale"); 

            Set_User_Memory_Name(3,"UDM3: mu_t*StrainRate"); 

} 

  

DEFINE_PROFILE(e_bc, t, position)                                                                        

     // This is the most complex part of the UDF, in which a DEFINE_PROFILE macro 

is used to specify a Neumann boundary condition as a function of the square distance 

from the wall (If the boundary condition is independent from flow variables, it can be 

defined via the graphical interface, as it is done for K and ZETA). 

{ 

            real dy;                                                                                                

  // dy is declared as real. dy is the distance from the wall to the first cell centroid next 

to it. It will be calculated inside the loop for every cell next to a wall. 

  

            face_t f;                                                                                               

  // face_t is used, as it is necessary to access face values and was not passed as an 

argument. 

            cell_t c0;                                                                                              

  // cell_t too. 

            Thread *t0=t->t0;                                                                                       

  

            real xw[ND_ND], xc[ND_ND], dx[ND_ND];                                                               
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      // The variables xw, xc and dx are declared as matrix by the macro [ND_ND]. They 

represent the wall coordinates; the cell coordinates next to the wall and the distance 

between them (dy = |(xw - xc)|). 

  

            begin_f_loop(f,t)                                                                                   

  

      // A face loop is used to do operations in every face of the wall boundary. 

            { 

                        c0=F_C0(f,t);                                                                                   

  

      // The cells that are next to wall are identified using the F_C0 macro and stored in 

c0. Basically, F_C0 macro identifies all cell centroids next to the select wall boundary. 

The wall boundary in which the DEFINE_PROFILE will be used is selected in the 

Fluent graphical interface. 

                        F_CENTROID(xw,f,t);                                                                             

  

      // The F_CENTROID macro stores the faces centroid coordinates (at the walls) in 

the xw matrix. 

                        C_CENTROID(xc,c0,t0);                                                                         

  

        // The C_CENTROID macro stores the cell centroids coordinates of the cells next 

to the wall in matrix xc. 

                        NV_VV(dx, =, xc, -, xw);                                                                      
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        // The distance between the centroids of the cells next to the wall and the face 

centroids at the wall is calculated using the NV_VV macro and in the dx matrix. NV_VV 

macro do the operation dy = xw - xc. 

                        dy=ND_MAG(dx[0], dx[1], dx[2]);                                                                  

  

     // The magnitude of dx, which is a matrix, is evaluated and stored in the dy variable. 

The values [0], [1] and [2] represent the directions x, y and z in the computational 

domain, respectively. 

  

            

F_PROFILE(f,t,position)=2.*C_MU_L(c0,t0)/C_R(c0,t0)*C_UDSI(c0,t0,K)/SQR(dy

);                         

 

 // Now the dy variable (which is the magnitude of the distance from the wall to the first 

cell next to it) can be used to evaluate the dissipation rate wall boundary condition 

(Equation 17). 

            } 

            end_f_loop(f,t) 

} 

DEFINE_PROFILE(f_bc, t, position)                                                                        

  

     // Same approach used in the dissipation rate boundary condition is used here for 

the f boundary condition (Equation 17). 

{ 

            real dy; 
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            face_t f; 

            cell_t c0; 

            Thread *t0=t->t0; 

            real xw[ND_ND], xc[ND_ND], dx[ND_ND]; 

  

            begin_f_loop(f,t) 

            { 

                        c0=F_C0(f,t); 

                        F_CENTROID(xw,f,t); 

                        C_CENTROID(xc,c0,t0); 

                        NV_VV(dx, =, xc, -, xw); 

                        dy=ND_MAG(dx[0], dx[1], dx[2]); 

                         

            F_PROFILE(f,t,position)=-

2.*C_MU_L(c0,t0)/C_R(c0,t0)*C_UDSI(c0,t0,ZETA)/SQR(dy); 

            } 

            end_f_loop(f,t) 

} [100], [101] 
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APPENDIX C: SUPPLEMENTAL MATERIAL - PRESSURE LOSS AS A 

FUNCTION OF SEPARATION DISTANCE 

 

 

Table 11. Pressure Loss as a Function of Separation Distance 

DP TP DP ST 

Mean 

TP at 

outlet 

Mean 

TP at 

inlet 

Mean DP 

at outlet 

Mean 

DP at 

inlet 

Mean 

SP at  

outlet 

Mean 

SP at 

inlet 

L/D 

19.53 20.65 104.74 124.26 104.60 103.48 0.14 20.79 2 

71.98 72.88 104.38 176.36 104.38 103.48 0.01 72.88 6 

97.13 98.17 104.52 201.66 104.51 103.48 0.01 98.18 10 

 

 

 

Figure 51. Differential mean total pressure (Pa) 
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Figure 52. Contour plots of instantaneous total pressure and mean total pressure (Pa) 

 


