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ABSTRACT

Al-Emadi, Sara, A., Masters : January: 2021, Master of Science in Computing

Title: DDI: Drones Detection and Identification using Deep Learning Techniques

Supervisor of Thesis: Dr. Abdulla Al-Ali.

Drones are becoming increasingly popular not only for recreational purposes but in

day-to-day applications in engineering, medicine, logistics, security and others. Besides

their useful applications, an alarming concern in regards to the physical infrastructure

security, safety and privacy arose due to the potential of their use in malicious activities.

To address this problem, wework towards the proposed solution by the following twofold

contribution, first we propose a novel solution that automates the drone detection and

identification processes using drone’s acoustic features with different deep learning

algorithms. However, the lack of acoustic drone datasets hinders the ability to implement

an effective solution. Therefore, we aim to fulfil this gap by introducing a hybrid drone

acoustic dataset composed of recorded drone audio clips and artificially generated drone

audio clips using a state of the art deep learning model known as the Generative

Adversarial Network. Furthermore, we examine the effectiveness of using drone audio

with different deep learning algorithms, namely, the Convolutional Neural Network, the

Recurrent Neural Network and the Convolutional Recurrent Neural Network in drone

detection and identification. Moreover, we investigate the impact our proposed hybrid

dataset has on drone detection. The second contribution is laying the foundation for

the next step of the anti-drone proposed system which is focused around swarm drones

localisation and tracking using data fusion of audio and radio frequency signals using
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deep learning techniques. This is made possible through the design of a novel swarm of

drones simulator. Our findings prove the advantage of using deep learning techniques

with acoustic data for drone detection and identification while confirming our hypothesis

on the benefits of using the Generative Adversarial Networks to generate real-like drone

audio clips with an aim of enhancing the detection of new and unfamiliar drones.
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CHAPTER 1: INTRODUCTION

In recent years, drones, also known as Unmanned Aerial Vehicles (UAVs), became

significantly popular due to the rapid technical enhancements in both, their hardware:

by equipping them with cameras and audio recording technologies; as well as their

software: by providing the support of autonomous flying and human tracking capabil-

ities. Initially, drones were mainly used for cinematography and recreational purposes,

however, their usage has been extended to automate day-to-day operations such as veg-

etation monitoring [1], various wildfire mapping applications [2], precision agriculture

[3] and flying over dangerous and out of reach areas for search and rescue missions

[4]. Besides their useful applications, their use in malicious activities to invade privacy,

security and safety regulations was alarmingly increasing. In recent events, a number

of drone attacks on Gatwick airport led to the closure of the airport for a few days in an

attempt to detect and impede manually the drones’ malicious missions [5]. The closure

had affected thousands of passengers and implied a significantly high financial costs [6].

Another incident was reported in which an explosive equipped drone was hovering over

a great crowd in a formal occasion in Venezuela, targeting a high profile personnel and

the general public. In this incident, the drone dropped a number of attached explosives

randomlywhich, consequently, injured civilians on scene [7]. Furthermore, UAV attacks

could potentially have a negative global impact such as the recent UAVs attacks on the

Khurais oilfield and the processing plant at Abqaiq, both operated by Aramco of Saudi

Arabia, causing large fires that halted their operation. This attack led to a decrease of

5.7 million barrels in crude oil production which contributed to an increase of 15% in

the price of crude oil globally [8][9].

In addition to the safety issues associatedwithmalicious drones’ activitiesmentioned

1



above, drones are also being utilized to violate security measures. Such a violation has

been witnessed in an incident where smugglers flew drones with illegal drugs and cell

phones over prison facilities [10]. Moreover, the drone violations extends to participate

in disrupting sports events by flying illegally over football stadiums [11].

Similarly, privacy concerns arose with the malicious use of drones as it was reported

in multiple incidents, where drones were used to spy and record videos and audio clips

of people in their private properties [12][13][14].

Hence, in order to secure physical premises against malicious drone attacks, a

typical approach is to design an anti-drone system that is composed of multiple stages

as illustrated in Fig.1.

Detection Identification
Localisation 
and Tracking

Impede mission

Figure 1. Anti-drone system

In the first stage, the presence of a drone within a restricted area is detected. Next,

the system identifies whether the drone is authorised or unauthorised through analysing

its characteristics using parameters such as the drone’s type or model. Then, the system

should be able localise and track the drone. In the final process, the system impedes

the drone’s mission using different conventional mechanisms such as shooting drones

using guns [15], nets [16], a laser beam [17], disrupting the drone’s localization system

[18] or interfering with transmission signals between the controller to hĳack the drone

and land it safely [19]. However, the traditional techniques used in implementing an

anti-drone systems are mainly designed around the final stage of impeding the drone’s
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missionwhile being heavily dependent onmanual human resources to detect and identify

drones. This increases the operational cost and leaves room for human errors. Therefore,

this work provides a novel solution to automatically detect and identify drones using

acoustic fingerprints and expand the solution by laying the foundation for the next step

of the anti-drone proposed system which is focused around swarm drones localisation

and tracking using data fusion of audio and radio frequency signals through a novel

design of a novel swarm of drones simulator. Therefore, this solution overcomes the

current limitations of the conventional anti-drone systems.

In literature, various techniques exists to detect the presences of drones, such as:

• Visual Analysis: this approach uses videos or image recognition techniques to

detect drones. Although these methods have proven their effectiveness in an ideal

environment scenarios, their performance are heavily affected by different external

factors, such as weather conditions, dust, fog or rain, as well as by other flying

objects that might look like a drone, e.g. birds. Besides their susceptibility to the

issue of occlusion[20].

• Radar: approaches like a GSMpassive coherent location system [21] and a digital

TV based bi-static radar [22] are used to detect drones using Radar systems.

Although radars are highly effective for detecting large flying bodies, they are

not useful for detecting drones. This is due to the drones’ feature of having

low radar cross section. In addition to flying at low altitudes with low speed in

comparison to larger aircrafts [20]. Moreover, since radar systems operate at a

high electromagnetic energy continuously, they might be unsuitable and illegal

to operate in urban areas [20]. Also, radar systems are considered expensive to
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deploy [23].

• Radio-Frequency (RF) [24] [25]: this technique requires a live communication

of RF signals between the drone and it’s controller in order to detect the pres-

ence of the drone accurately. However, in scenarios where autonomous drones

(preprogrammed and doesn’t require an on-going communication) are being used

in malicious activities, the RF based system will fail to detect the presence of

the drone. Furthermore, in some areas, implementing an RF system might not

be applicable such as in military areas and airports. Additionally, this detection

approach is subject to high RF noise omitted from other devices present in an

area [20] which contributes in decreasing the Signal-to-Noise Ratio (SNR) [23].

Hence, leading to a significant deterioration of the performance of the RF based

detection system. Nevertheless, the RF technique have several advantages such

as being cheap and accurate where deployed [26]. Therefore, we put forward the

hypothesis that through data fusion mechanism, the RF signals gathered through a

passive multi-receiver system coupled with other drone features such as acoustics,

we believe that the performance of the RF based solution can be further enhanced

and useful for detection, localisation and tracking of large number of drones. This

solution is further discussed in Chapter 7.

1.1. Motivation

To address the current limitation of the drone detection systems discussed above, this

study seeks to overcome the constraints of the drone detection techniques by introducing

an autonomous system that, in addition to detecting, is able to identify drones based on

their acoustic signatures using different Deep Learning (DL) techniques, namely the
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Convolution Neural Networks (CNN), the Recurrent Neural Network (RNN) and the

Convolutional Recurrent Neural Network (CRNN), such that no human intervention is

needed. However, the following two challenges are faced by researchers in the field of

drone audio analysis:

1. Lack of large acoustic drone datasets which are needed to train the DL algorithms

effectively.

2. Most drone datasets only cover a few types of drones. Hence, not covering all

types and models of drones available weakens the detection process and makes it

more vulnerable to unfamiliar drone types.

To overcome these obstacles, we utilize the Generative Adversarial Network (GAN)

[27], a state-of-art DL technique for artificial data generation to generate a large artificial

drone acoustic dataset with the aim of improving the detection of drone presence.

Furthermore, we aim to extend this study by establishing the foundations of a new

methodology of localization and tracking of unauthorized swarm of drones within a

restricted area. The approach would provide an end to end solution by combining the

data acquired from different sources such as acoustic features through the drones’ sound

waves and the RF signals capture by a grid of receivers. To achieve this aim, we propose

a novel design of swarm of drones simulator that would mimic the swarm of drone’s

behaviour in terms of mobility and physical layer characteristics.

1.2. Research Questions

This thesis seeks to answer the following key questions:
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1. How do deep learning algorithms perform in detecting the presence of a drone

using it’s acoustic features?

2. How effective deep learning algorithms are in differentiating and identifying

between different types of drones using their acoustic features?

3. How feasible is the integration of an artificially generated dataset with recorded

drone dataset in enhancing the drone detection performance?

4. Is it possible to create a swarms of drones simulator that would simulate the

physical layer communication of a large number of simultaneouslymoving drones.

1.3. Contribution

To answer the research questions mentioned above, we aim through this thesis to:

• Evaluate the effectiveness of the selected DL algorithms in drone detection and

identification based on specific evaluation metrics such as accuracy, F1 score,

precision and recall, while providing the computational time required to train and

test the models proposed.

• Examine the validity and efficacy of combining an artificially generated datasets

with a recorded drone audio dataset in enhancing the drone detection process

through a comparison with a only recorded drone dataset.

• Provide an open-source drone audio dataset with recorded and artificial drone

audio to be further utilized by the research community in order to fulfill the

shortage of drone training dataset for DL models.
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• Provide an open-source swarms of drones simulator that is able to generate RF

based dataset of dynamic swarm mobility patterns while accommodating various

physical layer communication models to be used in training ML/DL and can be

enhanced by the research community.

1.4. Document Overview

The rest of the thesis is organized as follows: Chapter 2 introduces the fundamental

concepts and the background information which the solution proposed is based on.

Followed by Chapter 3 which explores the literature and the state-of-art solutions. A

description of the proposed framework, datasets and the neural networks architectures

are presented in Chapter 4. Chapter 5 discusses the setup of the different experiments

carried out through this work. Whereas, in Chapter 6 the experimental results of

the drone detection and identification approaches are presented and analyzed. Prior

concluding, Chapter 7 provides an overview of the simulator architecture, design and

functionality. Finally, the thesis closes with a conclusion in Chapter 8.
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CHAPTER 2: BACKGROUND

This chapter presents an overview of the fundamental concepts that are being utilised

in the formulation of the proposed solution. Starting with Section 2.1 that introduces

the spectrograms. Followed by Section 2.2 which provides a general introduction of

DL. Moving on to discussing each of the different deep learning techniques selected

in subsections 2.2.1 to 2.2.4. Finally, closing this chapter with an explanation of the

performance evaluation criteria selected for the solution proposed in Section 2.3.

2.1. Spectrograms

Spectrograms offers a way of visualising a spectrum of frequencies with respect to

time through a 2-Dimensional (2D) plot in which the frequency is defined in the y-axis,

the time element through the x-axis and the amplitude of the signal is represented in the

intensity of the colour in a heat map like fashion. An example is shown in Fig. 9 in

Section 4.3.1.2.

Moving forward, spectrograms were the choice of dataset representation used in the

experiments for classification carried out through this thesis as described in Section

4.3.1.2. Whereas, audio waves are used to train GAN.

2.2. Neural Networks

The traditional Machine Learning (ML) approaches in image recognition domain

depend on hand-designed feature extraction methodology in which the information is

selected based on the relevance. On a later stage, a classifier is used to categorise

the resulting feature vectors into classes [28]. Although traditional ML could provide

reasonable outcomes, it is considered time-consuming and not very accurate in more
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complex scenarios. Therefore, multilayer Neural Network (NN) became an attractive

solution in image recognition domain due their ability of learning high dimensional,

extremely complex and nonlinear mapping from collections of data [28]. Although

this could be achieved through the conventional Fully-Connected (FC) feedforward NN,

there are several drawbacks to this type of NNs:

1. Given that in an image classification problem, an image usually has a very large

number of pixels, to be used as input variables, which implies that in case of FC

network, the first layer would have a very large number of parameters to train and

the growth in the number of parameters would also occur in the next layers of the

network leading to an increase in the capacity of the system such that in order

for the model to have an acceptable performance and avoid fast overfitting, a very

large training set would be required.

2. As a consequence of the previous point, a large memory requirement to store all of

the parameters generated in (1) and computational power would be needed [28].

Hence, it might be infeasible to train such network on normal hardware machines.

3. Another drawback of using FC networks for image or speech recognition applica-

tions is that it does not accommodate for invariance with respect to translations of

local distortions of the input data [28]. That is, if a pattern emerges in one part of

the image and showed up in another part in a later example, the FC network will

not be able to recognise the pattern. Instead it has to re-learn the entire image or

time-frequency representation of audio [29].

Hence, in this work, we have selected other types NNs, namely: CNN, RNN and

CRNN that were designed to overcome the drawbacks of the conventional FC network.
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2.2.1. Convolutional Neural Network

Originally, CNN was designed to provide an alternative solution that offers a higher

performance than the conventional FC NNs specifically for image recognition applica-

tions. The two well-known characteristics of CNNs that contributes in achieving such

outstanding performance in comparison to the conventional FC networks are:

1. The patterns learnt by CNN are said to be translation invariant[29]. Typically, FC

NNs are only capable of learning global patterns from the input feature spaces,

that is, the pattern learnt involves all the pixels of an image. Furthermore, learning

the global features means that if a pattern located in specific position of an image

is learned by the model and then appeared in another location of a later image

the whole image must be re-learned by the model. To overcome this limitation,

CNNs were designed to, specifically, learn local patterns. In this case, if a pattern

located in specific position of an input image was learned by the model, CNN will

be able to recognise this pattern even if it appears in another location of a later

image. Therefore, CNN is considered data efficient given that it requires fewer

training examples to generalise well [29]. An example of local features could be

illustrated as corners and edges in an image.

2. CNN learn the spatial hierarchies of pattern[29]. This means that in the first layer,

the model would learn the small details in an image, for example all horizontal

lines within an image. Then, in the second layer, it would learn the larger patterns

made up of features of the previous layer, and so on. Hence, one can conclude that

CNN learns efficiently and gradually, starting from the simple features to more

complex ones.
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Fig.2 illustrates a typical CNN architecture. Usually a CNN model is built using a

combination of different types of layers, including:

• Convolution Layer (Conv): This layer extracts features from its input through

the convolution operation.

• Pooling Layer (Pool): This layer is responsible for subsampling the input with the

aim of reducing the computational requirements, memory usage through reducing

the number of parameters. Hence, reducing the possibility of overfitting. Unlike

Conv, Pool does not effect the weights of the neurons, it rather aggregate the input

using an aggregation function such as the maximum or mean, commonly known

as MaxPooling or AveragePooling respectively.

• Fully-Connected Layer (FCL): Conventionally, the last few layers of the CNN

are fully connected. As the name implies, all neurons in the consequent FCLs are

connected such that it calculates the probability of the output being in a certain

class based on all the computations from the previous layers. Thus, producing an

output from a global perspective, that is, taking the whole input into consideration

in the classification process.

y

Combination	of	Convolution	and	Pooling	layers Fully	connected
layers OutputInput	image

Figure 2. Representation of a general CNN architecture
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2.2.2. Recurrent Neural Network

The input in FC and CNN networks is traditionally processed independently of

the past and future inputs and therefore they are considered a field of NNs with no

memory capabilities. However, in audio and speech recognition applications, there

is a distinct relation between the current input and the proceeding events. To make

use of this relation, the development of RNN came into play. RNN is a well-known

Deep Neural Network (DNN) for detecting and classifying sequential and temporal data.

Major applications of RNN lie in speech recognition [30] and video activity recognition

domain [31] where the internal memory characteristic of RNN enables it to recall the

features. A typical representation of RNN’s architecture is illustrated in Fig. 3 where x

is the input at every time instant, a is the activation parameter and y being the output.

x<1> x<2> x<3>

a<0> ...

y

x<t>

a<1> a<2> a<3> a<t-1>

Figure 3. Representation of the RNN architecture

A simple RNN architecture suffers from the concept of vanishing gradient [29][32],

which means it becomes harder for the model to remember and maintain information

over long time sequences. To solve this issue, an enhancedRNNarchitecture called Long

Short-Term Memory (LSTM) was designed by the authors in [33] to store information
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through extended time sequences. This is made possible through introducing memory

cells, which mainly comprises of: the input gate, the forget gate and the output gate [34].

These parameters are used to calculate the memory cell state. Another advantage of the

LSTM is having better performance, faster convergence and ability to detect long-term

dependencies in the data [29] in comparison to the simple RNN. Fig. 4 illustrated a

simple LSTM example where x is the input at every time instant, a is the activation

parameter, memory cell state is denoted as c and y being the output. Initially, a<0> is

set to zeros or very small random variables. Then, the output of LSTM cell t-1, a<t-1>,

c<t-1>, are fed as an input to LSTM cell at t along with input x<t>. Hence, the output

uses the previous events, which can go further back to c<0>, in the prediction process.

x<1> x<2> x<3>

a<0>
...

y

x<t>

a<1> a<2> a<3> a<t-1>

c<1> c<2> c<3> c<t-1>

LSTM 
Cel l

LSTM 
Cel l

LSTM 
Cel l

LSTM 
Cel l

c<0>

Figure 4. Representation of the RNN-LSTM architecture

Taking the advantage of this unique characteristic of LSTM, in this thesis, the

performance of RNN-LSTM is investigated in detecting whether capturing time-based

dependencies improves classification performance.

2.2.3. Convolutional Recurrent Neural Network

CRNN is a hybrid architecture made up of CNN and RNN layers [35]. One of the

main features of this DL architecture is that it combines the unique characteristics of
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CNN, through the utilization of the local temporal or spatial association using the CNN

layers, as well as takes advantages of RNN characteristic of finding the global temporal

dependencies between the different features [36]. In this thesis, we explore the feasibility

of the CRNN architecture proposed in [36] for drone detection and identification. Fig. 5

illustrates the general components of CRNN, starting with a single CNN layer, followed

by a series of RNN layers with Gated Recurrent Unit (GRU) as the base cell instead of

LSTM unit and a FC layer which is implemented to obtain the output.

...CNN 
layer

RNN 
layer

FC 
Layer

RNN 
layer

y

Figure 5. Representation of the CRNN architecture

2.2.4. Generative Adversarial Network

The concept ofGANswas first introduced by the authors in [27], where they proposed

an unsupervisedmodel build using twodifferent types of neural networks: theGenerative

model (G) and the Discriminative model (D). (D) can be any NN classifier such as FC,

CNN, RNN, etc. Whereas, (G) is a specifically designed NN model for generating

new set of synthetic data based on the training dataset fed to it. Fig. 6 demonstrates

the procedure undertaken by GAN to generate real-like dataset. Both of these models

work to fine-tune their parameters using backpropagation in order for the output of the

generative model to sound or look more realistic. The basic idea is that G will generate

14



fake data in attempts to fool D into classifying them as real data. When D classifies the

fake data as fake, it penalises G, this is achieved through a signal which is redirected to

G from D using the backpropagation.

When it comes to training GAN, the first step is feeding a known dataset of pure

drone audio and random noise as an initial input to D, in which it achieves reasonable

classification performance in differentiating between the drone audio samples and the

noise samples. Then, G starts by generating data which are initially random. As the

training progresses for both models, the performance of both models improves. G

generates better data samples based on the successful attempts of fooling D.

Generator

Discr iminator Output: (Real, Fake)

Random input

,
Fake 
data

Real 
data

Figure 6. Representation of the GAN procedure

2.3. Performance Evaluation Criteria

Four conventional evaluation metrics, namely: accuracy, F1_score, precision and

recall, were selected to evaluate the performance of NN models discussed above. Each

of these metrics are calculated using the values of True Positive (TP) , True Negative
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(TN), False Positive (FP) and False Negative (FN) which were calculated during the

testing phase and represented using the confusion matrix. Table 1 illustrates the general

confusion matrix for a binary classification problem.

Table 1. Binary Classification Confusion Matrix

Predicted

Positive Negative

Actual
Positive TP FN

Negative FP TN

Each of the selected metrics would provide certain insights on performance of the

model which will enhance the evaluation procedure. A short description of each is

indicated below:

• Accuracy: is the measurement of the ratio of correct predictions to total number

of predictions. In a binary classification this can be calculated as:

Accuracy =
TP + TN

TP + TN + FP + FN
(2.1)

• Precision: is the ratio of the correctly predicted examples to the overall posi-

tively predicted examples. This means a model with high precision is able to

identify majority of the predicted examples correctly. This relation is illustrated

mathematically in Equation 2.2 below:

Precision =
TP

TP + FP
(2.2)
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• Recall: this metric provides an overview on the sensitivity of the model. That is,

the ratio of the positive examples which was correctly identified as positive to the

overall positive examples. Equation 2.3 describes this relation further:

Recall =
TP

TP + FN
(2.3)

• F1 score: Using precision and recall, the fourth evaluation metric is calculated

using Equation 2.4:

F1 score = 2 · Recall · Precision

Recall + Precision
(2.4)

F1_score is used to show the overall performance of the model in terms of both

precision and recall. The advantage of using the F1_score is that it is capable

of measuring the overall performance of a model. Moreover, F1 score takes into

consideration the distribution of data and the scenario of uneven classes.
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CHAPTER 3: RELATED WORK

This chapter presents an overview of previous research on drone detection and

identification using audio features in Sections 3.1 and 3.2 respectively. Furthermore,

Section 3.3 reviews the latest literature on utilizing GAN in synthetic data generation. In

each of these sections, a thorough explanation of the advantages and limitations of each

of the solutions described in the literature is provided. Furthermore, a brief explanation

is presented on how the solution proposed in this thesis is expected to overcome each of

the shortcomings.

3.1. Drone Detection

Several researchers focused their studies on drone detection using audio character-

istics. A research was undertaken by the authors in [37], in which a new methodology

through using Digital Signal Processing (DSP) to detect the presence of drones in an

area was proposed. Similarly, in the study conducted by the authors in [38], a new

technique of drone detection was implemented by combining DSP with ML algorithms

such as the Support Vector Machine (SVM) algorithm. It was reported by the authors

the effectiveness of using SVM in drone detection which have yielded high accuracy,

yet, the research was limited to explicit background sounds. Moreover, SVM requires

manual extraction and optimization of hand-crafted features to fine tune the model,

which is an additional step to the classification solution. From this perspective, DL

models have the capability to surpass these shortcomings and eliminate the additional

steps required in the conventional ML algorithms by providing an end to end training

of the model autonomously [39]. Following this vein, an approach was brought forward

in [40] to target drone detection using DSP along with two MLalgorithms, the Plot-
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ted Image Learning (PIL) and the K-Nearest Neighbor (KNN). While the algorithms

demonstrated their effectiveness and detection ability, yet, the overall accuracy of KNN

algorithm reported was remarkably low. The authors argued that this is due to the limi-

tation imposed by the design of the proposed solution and the fact that KNN lacks the

ability of building hierarchies of internal representation which could aid in classifying

of similar targets . Another shortcoming is derived from the fact that PIL requires a large

amount of pre-stored images datasets with a consistently varying background noises to

avoid biases and overfitting the noise, thus deploying such a solution in real environment

is challenging.

Lately, the effectiveness of implementing solutions based on the DL algorithms

has been observed in audio applications, a famous example is the speech recognition

[41][42]. However, at the time of writing this thesis, little is known about the utilization

of DL techniques in drone detection using drone’s acoustic features, in fact, to our best

knowledge, the only study found in this field was in [43]. The authors have opted to

using the Gaussian Mixture Models (GMM), RNN and CNN for this application. The

authors have designed and examined the different machine and DL models to come to a

conclusion that RNN has outperformed, in terms of F1 score, the other two algorithms.

3.2. Drone Identification

In regards to the identification aspect of the anti-drone systems, the authors in

[44] conducted a remarkable research in which they have utilized DL techniques for

non-verbal audio identification. In their research, they studied and examined the imple-

mentation of using DL techniques for bird species identification which showed that such

mechanism when used to identify bird species based on their acoustic signatures would
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yield promising results. Being inspired by their work, in this work, we aim to design a

drone detection and identification solution using DL techniques, explicitly: CNN, RNN

and CRNN, using recorded drone datasets. We extend our study to investigate what

role, if any, the introduction and usage of an artificial datasets generated through GAN

plays on improving the overall performance of the DL models as well as to verify if the

artificially generated data will be good enough to fulfil the shortage gap of drone audio

datasets.

3.3. Data Generation using GANs

Recently, GANs have been used extensively in generating new images and photos

of people, these images resemble a combination of features extracted from a variety of

real human photos and in some cases, these photos have been modified by the GAN

algorithm, through changing the hair colour or adding accessories to the human photo

for example, to produce new real-like human photos [45]. Similarly, in [46], the authors

introduced a new method of generating drums and piano-like audio clips using GAN

models through two methods, WaveGAN and SpecGAN. In the former, audio examples

are fed as an input to the GANmodel, while the latter converts the audio to spectrograms

and feed the generated images as inputs to the GANmodel. Qualitatively, they evaluated

the output of both experiments through human experts, in which the listeners preferred

the WaveGAN audio clips over those generated through SpecGAN. To the best of our

knowledge, there has been no prior literature that implements GAN architecture to

generate drone like audio to enhance detection of drones which we introduce in our

work.
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CHAPTER 4: PROPOSED FRAMEWORK

In this chapter, we discuss our proposed solution, startingwith a thorough explanation

of the designed research framework in Section 4.1, followed by the description of the

DL algorithms used throughout this work in Section 4.2, and finally we breakdown our

proposed drone audio datasets in Section 4.3 which we are releasing to the public and

can be found in [47] and [48].

Research Framework

Experiment A
Without GAN

Experiment B 
With GANDataset

(1) Comparison of CNN 
performance on

- RG 
- Output of (A-3)

(1) Evaluating performance 
for detection using R2

- CNN
- RNN
- CRNN

R2 R4 RG(3) Evaluating CNN 
performance on 

R4

(2) Evaluating performance 
for identification using R2
- CNN
- RNN
- CRNN

Figure 7. High level design of the proposed framework. Where R2 dataset consists of
the recorded audio of two drones, R4 dataset consists of the recorded audio of 5 drones,
one of which is reserved for testing purposes, and RG dataset is a hybrid dataset of GAN
generated dataset and R4.

4.1. Research Framework

Fig.7 below illustrates the design of the experiments that will be carried out through-

out this research. In order to implement the proposed solution using DL techniques,

large amount of drone audio data were required. However, due to various reasons such

as privacy, there were no public drone audio dataset available for this application in
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literature as of the time of writing this thesis. Hence, in experiments A.1 and A.2, we

have created our own drone audio dataset by acquiring, through audio recording using a

microphone, more than 1300 audio clips of drone sounds. These clips can be found in

[47]. Moreover, to mimic real life scenarios, we have used the publicly available noise

datasets [49] and [50] to artificially augment the drone audio clips with noise. The main

purpose of the artificial augmentation is to measure the feasibility of the system in a

noisy environment. In addition to training the DL algorithms, CNN, RNN and CRNN,

on the augmented sound clips, we have dedicated a portion of the dataset to include

pure noise, silence and pure drone audio clips in order to ensure that the system will

be able to detect and identify the drone’s sound from similar noises in an environment.

Throughout this work, we will be referring to this dataset as R2 as it consist of audio

clips of two drones.

We further expand, through this study, our dataset to incorporate other types of

drones with an aim of consequently increasing the diversification of the dataset. The

new drone audio clips were collected from a variety of open-source YouTube [51]

drone videos [52]–[57]. We cleaned and preprocessed the acquired audio clips using

similar techniques as those used for R2, to produce an enhanced drone audio dataset

that incorporates five distinct drones, four of which are used in the training of the DL

classifier and the remaining one drone is reserved for the testing phase. Hence, this

dataset is referred to as R4. Then, by conducting experiment A.3, we evaluate the

performance of CNN on the enhanced dataset.

By expanding the R2 dataset to R4 we aim to increase the diversification of the

dataset. We speculate that the added drone types will ensure that the artificial dataset

generated from the GAN model through experiment B is less biased towards a specific
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drone type. The dataset generated through the GAN model using R4 is referred to RG

given that it is made up of recorded and GAN generated drone audio clips.

In experiment B.1, we evaluate CNN performance on the RG dataset in order to

establish whether adding an artificial dataset to recorded drone audio dataset would

improve the overall performance of the model by comparing the outcomes of this

experiment to those found in experiment A.3.

4.2. Deep Learning Algorithms

To implement the drone detection and identification solution, we have used the open-

source code available in [36] to build our RNN, CNN and CRNN models. This code is

an enhanced version of TensorFlow’s open-source tutorial [41]. In our implementation,

the default values were used for the models’ architectures and hyperparameters per the

original authors’ setup. However, it is important to note that we have modified the code

to suit our application by incorporating the validation termination condition (further

discussed in Section 5). Furthermore, given that an essential part of designing the drone

detection is to bridge the gap of the shortage of drone acoustic dataset, we will attempt,

in this work, to build a system based on GANs to generate new artificial drone audio

clips using a slightly modified version of the WaveGAN code in [46]. The selection

of WaveGAN over SpecGAN in our solution was based on the recommendation and

comparative study outcome provided in [46].

4.3. Dataset

In this section, we will explore the different types of datasets created as part of the

solution proposed through this work. Starting with the R2 dataset breakdown in Section
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4.3.1, followed by the R4 dataset in Section 4.3.2 and concluding this section with RG

dataset 4.3.3.

4.3.1. R2: Recorded Drone Audio Dataset

4.3.1.1. Data Acquisition

To acquire the drone’s audio, we have recorded, using amicrophone embeddedwithin

a smart-phone, the sound generated by the drone’s propellers while flying and hovering

in a quiet indoor environment. This enabled us to publish the dataset publicly without

breaching any privacy regulations. Furthermore, we acquired a balanced number of

audio clips per drone with equivalent time intervals to ensure that the audio clips will be

equivalently randomwhen fed to the algorithm to avoid any biases. This process yielded

in a total audio clip of 11 minutes and 6 seconds per drone formatted in MPEG-4 audio

format (m4a) with a sampling rate of 44.1KHz and bitrate of 64Kbps.

4.3.1.2. Data Preprocessing

In order to prepare the audio files for the selected DNNs, firstly, we reformatted the

output audio clips produced from the microphone’s recording and the background noise

clips by converting audio file type to WAVE, sampling rate to 16KHz, bitrate to 16Kbps

and the channel to mono to ensure consistency.

Secondly, we divided the formatted audio files into multiple short (one second) seg-

ments by specifying the time intervals at which the audio clip will be segmented, this

will enable the DL algorithm to optimize the training of the model for real-time deploy-

ment in which the time required for the detection and identification is critical. Hence, to

investigate whether the size of the audio segment affects the overall performance of the
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classifier, we have experimented with multiple segment sizes such as one, two and five

second segments. Based on our heuristic observations, we deduced that the one second

segmentation was sufficient.

One possible way to train ML or DL algorithm on audio input is by converting

the audio clips into spectrograms [41]. Various features are then extracted from the

generated spectrograms by the algorithm to train the DL models. To illustrate the

outcome of this process, Fig.8 represents a one second example of a drone’s audio.

Whereas, Fig.9 represents an audio clip of a random noise such as a person typing.

Figure 8. Example of drone noise in spectrogram representation

Figure 9. Example of other noise in spectrogram representation
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4.3.1.3. Data Augmentation

Since the application of drone detection and identification could be deployed in areas

with a variety of background noises, we have approached the problem by introducing a

method of augmentation, in which a real-life background noise is overlapped with the

drone audio without any modification on the actual audio features, such as the amplitude

or the frequency of the audio clip. Particularly, we have used the background noise from

the publicly available dataset [49] [50]. However, it was rather important to reformat

the audio clips acquired from these datasets as discussed in Section 4.3.1.2 to ensure

the consistency of the audio files. Using this mechanism enabled us to mimic real-life

scenarios.

4.3.1.4. Data Labeling

We have collected our drone acoustic data for two commercially available drones,

Bebop and Mambo, manufactured by Parrot. This leaves us with R2 dataset, which

represent those two drones. For the identification problem, we have labelled our dataset,

[47], simply as Unknown for other noises in an environment, Bebop as the first drone

andMambo representing the second drone. The distribution of audio clips acquired per

label is represented in Table 2.

Table 2. Data per label

Type of Records
Drone Original Augmented Total
Bebop 331 335 666
Mambo 331 335 666
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Similarly, for the detection aspect of this system, we have combined the data collected

for both Bebop and Mambo drones as one entity and labelled it as drone and any other

audio clip was labelled as not a drone.

4.3.2. R4: Enhanced Recorded Drone Audio Dataset

As discussed in the introduction of Chapter 4.1, we expanded our drone dataset

which initially consisted of two drones to incorporate other types of drones from a

variety of manufacturers to be be used in the drone detection experiment. The drone

audio clips were collected from a variety of open-source YouTube drone videos [51] in

both indoor and outdoor environments [52]–[57]. The additional drones selected are:

• 3DR Solo

• DJI Phantom 4

• AR Drone

The selection of acquiring drone audio in two different locations, indoor and outdoor

environment, was considered mainly to avoid the data augmentation process mentioned

in Section 4.3.1 above. We have manipulated the raw videos by, firstly, converting them

into audio files. Secondly, we selected the relevant sections from the entire audio for this

application. Finally, we divided, cleaned and preprocessed the collected drone audio

clips using the same techniques as those used for R2 in Section 4.3.1 to produce the final

R4 dataset, which stands for four recorded drone audio dataset. The addition of these

drones contributes in increasing the diversity of the R2 dataset in order to be used later

on in the production of a hybrid version of the dataset using GANs.
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To better understand the behaviour of the classification models on different com-

binations of drones, where some might be more difficult to detect than others due to

their audio features’ nature, we have divided our recorded drone audio dataset into five

different groups referred to as D experiments, each with a different combination of

drones illustrated in Table 3. In every experiment, a single unseen drone was not used

in the training phase of the classifiers. The audio clips of the unseen drone is left for an

exclusive testing in order to observe if the models can generalise well beyond the four

drones seen during the training phase.

Table 3. Enhanced Drone Audio Dataset

Drone Type
Experiment

D1 D2 D3 D4 D5
Bebop Unseen X X X X

DJI Phantom 4 X Unseen X X X

3DR Solo X X Unseen X X

Mambo X X X Unseen X

AR Drone X X X X Unseen

In each of the D experiments, the seen drones were grouped together and labelled as

drone and the same noise audio clips mentioned in Section 4.3.1 above were used and

labelled as not a drone.

4.3.3. RG: Hybrid Drone Audio Dataset

To generate the artificial drone audio dataset we have implemented a GAN model

based onWaveGAN architecture described in [46]. We fed the algorithm with long pure

drone audio clips which were, explicitly, recorded in an indoor environment for each of
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D experiments mentioned in Section 4.3.2 above. It is important to note that in every

D experiment, the unseen drone was not exposed to the training of the GAN model

nor in the training phase of the classifiers. After training, the GAN model generated

200 artificial drone audio clips with a duration of one second each. Figures 10 to 13

shows the training of each GAN model in each of the D partitions. Moreover, we have

used the loss function as calculated in [46]. The termination of the training was based

on heuristic observation at the instance where both the discriminative model and the

generative model loss converges.
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A sample output of the artificial drone audio generated through theGAN is illustrated

in Fig.15a. As it can be observed, the synthetic audio’s spectrogram looks very similar

in terms of features to the one of the recorded drone audio shown in 15b. Whereas, it is

distinctly different to the other noise audio clip illustrated in 15c.

(a) Example of GAN generated drone audio in D2

(b) Actual drone audio

(c) Other noise

Figure 15. Audio clips comparison in spectrogram representation

Furthermore, we have carried out human-hearing tests with a number of volunteers to

test how different the GAN generated audio clips are in each partition. It was concluded

that a distinguishable difference was recognised in the sound generated for each of the

D partition. Those artificially generated audio clips were then combined with R4 drone

dataset resulting in what we refer to as RG, which stands for recorded and GAN drone

dataset. Table 4 shows the proportion of each in the RG dataset.

32



Table 4. RG Drone Audio Dataset

Audio Type
Experiment

D1 D2 D3 D4 D5
Recorded Drone Clips 868 1331 1248 868 1288
GAN Drone Clips 200 200 200 200 200
Total 1068 1531 1448 1068 1488

Moreover, each set of the recorded drone clips and GAN drone clips for every D

experiment illustrated in Table 4 were grouped together and labelled as drone and the

same noise audio clips mention in Section 4.3.1 above were used and labelled as not a

drone.
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CHAPTER 5: EXPERIMENTAL SETUP

This chapter presents an explanation of the experiments setup carried throughout

this thesis. It begins by describing the experimental setup of drone detection and

identification using R2 dataset experiments, also known as A.1 and A.2 in Fig.7 of

Section 5.1. This is followed by Section 5.2, which provides a description of the

experimental setup of drone detection using R4 and RG datasets experiments, indicated

as A.3 and B.1 in Fig.7.

5.1. Experiments A.1-2: Drone Detection and Identification using R2 Dataset

As already noted in Fig.7, we started our experiments by investigating the perfor-

mance of the DL models in drone detection and identification as shown in A.1 and A.2

parts of the diagram in Fig.7. This means that our initial experiment was divided into

two categories, the first, A.1, being the binary classification experiment in which we

assess the DL algorithms in their ability to detect whether a drone is present or not.

Hence, we have defined this experiment to handle two use-cases, which are either (a) a

drone was detected or (b) no drone in the area.

The second category, A.2, is the multi-class classification experiment, where we

measure the performance of the DL algorithms to identify which type of drone was

detected. In this experiment, there exists three distinct labels, namely Bebop, Mambo

and other Unknown noises, to identify drones based on their type as mentioned in

Section 4.3.1.4.

The details of the environment setup at which we deployed the algorithms, trained

the models and carried out the experiments are indicated in Table 5.
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Table 5. Experiments A.1-2 Environment Setup Details

Operating system Ubuntu 18.04-Linux
CPU Intel(R) Xeon(R) x86_64 CPU E5-2695 v4 @ 2.10GHz
Number of CPU 36
Framework/APIs Python 2.7 and Google TensorFlow API

It is important to emphasise that the three main objectives we are attempting to

achieve through these experiments are, firstly, we are interested in investigating the

performance of the binary classification aspect of the problem and comparing the results

with the literature. Secondly, we aim at observing and evaluating the outcome of the

multi-class identification classification aspect of the problem and show the best algorithm

out of the three algorithms implemented, namely; CNN, RNN and CRNN, using the

different evaluation metrics. Finally, we aim to answer the question of which algorithm

has the lowest training and evaluation time.

In order to accomplish these objectives, we have chosen to evaluate and compare

the different algorithms based on their accuracy, F1_score, precision and recall metrics

as mentioned in Section 2.3. Additionally, we have also considered the computational

time (CPU time) required to train and test the model as an attribute in evaluating the

performance of the models.

Furthermore, we have experimented with several combinations for the ratio of train-

ing to testing datasets and we have deduced from those experiments that the variance of

this ratio had minor effect on the overall performance of the model. Therefore, given

that the difference is negligible, we opted to use the typical combination of 70:30.

Moreover, we have defined the distribution of the labelled data for the binary clas-

sification as well as the multi-class identification problem as presented in Table 6. The
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values of these parameters are defined as a result of handful of experiments in which

we have observed the model’s output by looking at the F1_Score and the accuracy

in the validation phase and systematically tuned these parameters to find the optimal

distribution of the dataset. Also, the optimal learning rate found was 0.01.

Table 6. Details on Data Distribution

Criteria Parameter
Unknown audio files 50%
Binary Classification Problem
Drone audio files 50%
Multi-class Classification Problem
Drone 1 - Bebop 25%
Drone 2 - Mambo 25%

5.2. Experiment A.3 and B.1: Drone Detection using R4 and RG Datasets

In this experiment we aim to determine whether adding artificially generated drone

audio-like data to our recorded drone data has an effect on the detection performance.

More specifically, would the integration of GAN generated drone audio dataset improve

the performance of a DL classifier. Our hypothesis is that the hybrid dataset would add

a generalization element which will, consequently, have a positive impact on the overall

performance of the classifier.

To train the CNN classifier on the R4 dataset as mentioned in experiment A.3 of

Fig.7 for the seen drones experiment, while excluding the unseen drone, the dataset

distribution in Table 7 was used.
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Table 7. R4 Drone Audio Dataset

Data Type Training Validation Testing

Percentage
80%

20%
70% 30%

Table 8 shows the individual proportions of the RG dataset for each of the D experi-

ments conducted in B.1 experiment in an unseen drone scenario.

Table 8. RG Drone Audio Dataset

Experiment Training Testing
Training Validation
70% 30%

D1 83% 17%
D2 82% 18%
D3 81% 19%
D4 83% 17%
D5 82% 18%

In order to implement the experiments proposed in this section, an environment

setup as shown in Table 9 was used in the training, validation and testing phases of the

DL models.

Table 9. Experiments A.3 and B.1 Environment Setup Details

Operating System Ubuntu 18.04-Linux
GPU Nvidia Titan V
CPU Intel(R) Xeon(R) x8664 CPU E5-2695 v4 @2.10GHz
Number of CPU 36
Framework/APIs Python 3.7 and Google TensorFlow APIs
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CHAPTER 6: PERFORMANCE EVALUATION AND DISCUSSION

Using the experimental setup discussed in the previous chapter, in this chapter, the

experiments are carried out and a detailed discussion on the performance of the proposed

solutions are presented for drone detection and identification using R2 dataset in Section

6.1, drone detection solution using R4 Dataset in Section 6.2 and the performance of

the drone detection solution using R4 Vs. RG dataset in Section 6.3.

6.1. Experiments A.1-2: Drone Detection and Identification using R2 Dataset

In order to ensure that every algorithm is performing at its optimum,we have carefully

chosen the steps below to define the termination condition of the training phase:

1. Executing the algorithm with a very large number of training steps.

2. At an interval of 100 steps, the trained model is tested on the validation-set and

the accuracy is calculated and recorded.

3. We compare the new accuracy of the validation-set with the best accuracy achieved

so far.

4. If the accuracy did not improve over three successive validation tests, we test the

trained model on the testing-set and report the observed results.

An example of training and validation of CRNN in a single run for the binary

classification are illustrated in Fig.16. It can be observed from the graphs that the

termination condition selects the model at the best validation accuracy. Hence, the

training can terminate before the model overfits the data. The same can be observed

in the example of the multi-class classification training and validation phases for and

CRNN in Fig.17.
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Figure 16. Example of the training and validation phases of CRNN for binary classifi-
cation in a single run
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Figure 17. Example of the training and validation phases of CRNN for multi-class
classification in a single run

Given that the training, validation and testing datasets were shuffled randomly at the
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start of every execution of learning, we repeated each experiment ten times. Hence, the

values discussed in Section 6.1.1 and Section 6.1.2 represent the average results of the

ten runs.

6.1.1. A.1: Drone detection: Binary classification results

In this experiment, we have examined the effectiveness of our proposed system

in detecting drones using their acoustic signatures. We have calculated the evaluation

metrics for the three different models in addition to the corresponding standard deviation

values for the 10 runs as illustrated in Table 10 below.

Table 10. Detection Results

EvaluationMetric RNN CNN CRNN
CPU-Time (s) 333.45±60.90 957.33±320.01 487.53±178.75
Accuracy (%) 75.00±6.60 96.38±0.69 94.72±1.36
Precision (%) 75.92±10.30 96.24±0.81 95.02±1.14
Recall (%) 68.01±7.59 95.60±0.84 93.08±1.98
F1-score (%) 68.38±8.16 95.90±0.78 93.93±1.61

It can be deduced from Table 10 that CNN have outperformed RNN with a relative

improvement of 21.38% in accuracy, 20.32% in F1 score, 20.32% in precision and

27.59% recall. However, the average overall training time required for CNN to yield

such precise results was much higher in comparison to RNN. Whereas, it was observed

that RNN had the lowest training time and overall performance among the three model.

Additionally, the performance of CRNN in all evaluation criteria was better than RNN. It

is important to take into consideration that the nature of RNN algorithm is best suited for
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sequential data. Even though, CRNN did not perform better than CNN, the difference

between the performance of both models was negligible, in which CNN have shown an

improvement of 1.66% in accuracy, 1.98% in F1 score, 1.21% in precision and 1.98%

in recall, yet, CRNN was noticeably faster than CNN by 49.07%. This is an interesting

finding because it can guide practitioners to consider the model with a lower training

time without sacrificing the performance of the model.

In addition to evaluating the performance of the three different models we proposed

to detect drones, we aimed to compare the output of the system with similar implemen-

tations from the literature. As of the time of writing this thesis, only one source [43]

was found that targets the same problem using sound detection approach.

The results found in detecting drones using our approach contrasts with the results

found in the literature by the authors in [43]. The authors of [43] noted that RNN

have achieved the best performance in comparison to CNN. Whereas our results do not

support their observation. In fact, we have deduced from our experimental results that

CNN have outperformed RNN remarkably. There are a number of factors which might

have contributed to the difference of the outcomes between the two approaches such as

tuning the algorithm parameters by the authors on the testing-set directly rather than

using a validation-set to serve this purpose. Moreover, the discrepancies in our findings

can be attributed to the difference of the models’ architecture and design parameters

such as the number of the convolutional layers used in the CNN algorithms in both

applications. Due to the lack of availability of their training and testing datasets, we

were not able to perform a direct comparison between the results of both approaches.

Although the results yielded from our proposed experiment do not align with those

found by the authors [43], it can nevertheless be concluded that both approaches agreed
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on the great effectiveness of using DL in drone detection using acoustic features.

6.1.2. A.2: Drone identification: multi-class classification results

The main goal of this experiment is to examine the effectiveness of the DL methods

in identifying drones based on their acoustic signatures. We have used the evaluation

metrics mentioned in Section 2.3 to examine the performance of the three models in

the multi-class problem. Moreover, it is worth mentioning that the final results were

calculated by taking the macro-average over all the classes in the experiment. The

overall results of the evaluation metrics are presented in Table 11.

Table 11. Identification Results

EvaluationMetric RNN CNN CRNN
CPU-Time (s) 389.02±73.18 807.10±278.09 605.67±252.83
Accuracy (%) 57.16±11.33 92.94±11.89 92.22±1.03
Precision (%) 59.64±13.56 92.75±1.26 92.54±0.95
Recall (%) 57.16±11.27 92.63±1.32 92.23±1.03
F1-score (%) 55.62±13.53 92.63±1.32 92.25±1.01

Results that emerge from this experiment have shown that the results of both CNN

and CRNN are outstanding with accuracy, precision, recall and F1 score all above

90%. Moreover, we have observed that CNN have outstandingly outperformed RNN

by an improvement of 35.78% in accuracy, 37.01% in F1 score, 33.11% in precision

and 35.48% in recall. However, although RNN have shown the worst performance, it

converged faster than CNN by 51.80% and than CRNN by 35.77%. In addition, it can

be observed from the standard deviation values in Table 11 that RNN was the fastest
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to converge regardless of the difficulty of the dataset. Furthermore, it is suspected that

the weak performance of RNN algorithm was due to the nature of algorithm since it is

mainly based on time-dependent trend which is not the case in this experiment as the

audio clips used are of a short length in which they have a constant distance with less

variation over time.

Figure 18. CPU time Results

Moving on to the comparison between the performance of CNN and CRNN, we have

observed that CNN have also performed better than CRNN by 0.72% in accuracy, 0.39%

in F1 score, 0.21% in precision and 0.40% in recall. Although CNN have shown some

improvement in the performance, one can deduce from the standard deviation values

reported in Table 11 that the performance of CRNN is more robust in comparison to

the other algorithms regardless of the data fed to the algorithm. Moreover, CRNN was

significantly faster by 24.96% in execution time than CNN. This finding, as illustrated

in Fig.18, provides a conclusive support for the results found in Section 6.1.1, since
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in both detection and identification aspects of the problem, it had been observed that

practitioners can still utilize a model with significantly fast computational time without

jeopardizing the overall performance of the model.

In addition to the results presented in Sections 6.1.1 and 6.1.2, we have observed

that the system was able to identify different drones and other noises while maintaining

the precision in the evaluation metrics per label. Table 12 summarizes the average

performance of the 10 runs for each label in terms of F1 score for the CRNN model.

The results presented below suggest that the proposed method has the ability to adjust

its identification feature to accommodate more labels based on its application without

sacrificing or degrading the performance per label.

Table 12. F1 scores per label for CRNN

Label Unknown Bebop Mambo
F1 Score 92.766% 93.78% 90.192%

Based on the findings in this experiment, where CNN have outperformed while

being the most stable algorithm among the other two DL algorithms in drone detection

using acoustic features, we will proceed with CNN as our selected DL algorithm for

experiments A.3 and B.1.

6.2. Experiment A.3: Drone Detection using R4 Dataset

In this experiment, ten CNN models were trained on R4 dataset then tested in every

D partition using the testing dataset described in Section 5.2. The first testing dataset

included, exclusively, drones types that the model has seen during the training phase.
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Whereas, the second scenario consisted of the remaining previously unseen drone types

as the testing dataset. This type of testing was necessary in order to better understand

how the model performs when faced with a completely new drone which it was not

exposed to during the training phase. For this reason, we have extended our experiments

to study such behaviour. Furthermore, in order to ensure the optimal performance of

each CNN model, we have followed the same four steps mentioned in Section 6.1 that

defines the termination condition of training the model. The outcome of this series of

experiments is illustrated in Fig.19.
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Figure 19. The performance,in terms of recall, of the average CNN models trained on
the R4 drone dataset and tested on known (recorded) drone types (which the model has
seen during the training phase). Whereas, the yellow bars are when tested on new and
unfamiliar types of drones.

The results presented in Fig.19 clearly indicate that there is a negative performance

hit when the model is used to detect the presence of a drone it has never seen before
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(not included in the training set). Hence, it had been deduced from this experiment that

the findings are consistent with our initial problem statement. Therefore, in the next

experiment, B, we attempt to improve the performance of the CNN model on unseen

drone by using the hybrid dataset, RG.

6.3. Experiment B: Drone Detection using R4 Vs. RG Dataset

As observed from experiment A.3 previously, there is a noticeable degradation of

the CNN model performance when faced with an unseen drone, hence, what we aim for

by conducting this experiment is to investigate and understand whether a hybrid dataset

such as RG which consist of GAN generated drone-like audio and an actual recorded

drone would have an positive impact, if any, on the overall performance of the DL

models.

In order to guarantee the optimal performance of the CNNmodels, we have followed

the steps mentioned in Section 6.1 to terminate the training phase of the model. It is

important to note that, as of the time of writing this thesis, no work was found on using

GAN generated data to improve the performance of DL models in audio applications,

hence, we put forward a novel concept to explore.

Following our initial hypothesis in which we assume that the hybrid dataset RG

would improve a generalisation of our classifier, hence, it would improve the overall

performance of the classifier, we divided this experiment into two sections which enable

us to compare the performance of the CNN models trained on drone audio dataset

without GAN, using the R4 dataset, and with GAN generated audio dataset using RG

dataset.

In experiment A.3, we carried out the performance evaluation experiment of the
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CNN models on R4 dataset to acquire the performance of the CNN model for drone

detection through training and testing the proposed solution on R4 drone audio testing

dataset. The outcome of this experiment will be used in evaluating the performance of

the proposed hybrid RG dataset through a quantitative comparison.

Moreover, we have designed two scenarios for evaluating the CNN models on both

R4 and RG datasets; the first is where the drone detected is one of the seen drones in

which the performance of the model was examined on the same types of drones it was

exposed to throughout the training phase. Whereas, the second scenario is the detection

of an unseen drone; the drone type which was never used during the training phase.

In testing the performance on an unseen drone, we assessed the significance of using

the CNN models trained on the RG drone audio dataset to detect the new unseen drone

described in Table 3 in comparison to the CNN models trained on the R4.

To achieve this aim, we have carried out the experiment as demonstrated in Fig.20

where the following steps were carefully selected for each of the five D partitions:

1. Train a CNN model on the R4 dataset of the D partition

2. Train a CNN model on the RG dataset (composed of the selected R4 of the same

D partition and GAN generated from the same R4 dataset of the D partition)

3. Test the models trained in (1) on the seen drones testing set from the selected D

partition

4. Test the models trained in (1) using the unseen drone testing set in the selected D

partition

5. Repeat (3) and (4) for the models trained in (2)
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The above experiment is repeated for each of the D partitions ten times.

CNN

D1 D2 D3 D4 D5

R4 RG

Seen Unseen Seen Unseen

Figure 20. Breakdown of Experiment 2

Additionally, it is important to note that for drone detection application, the most

crucial evaluation metric is recall. As in typical intrusion detection scenario, false

positive predictions are tolerated more than false negatives; where drones pass by

undetected.

6.3.1. B.1: Drone Detection using RG Dataset

6.3.1.1. Testing on seen Drones

To asses whether the performance of CNN model would be improve when trained

using RG dataset and tested on the seen drones, we have conducted ten experiments for

each of the D as mentioned in the introduction of this section. The results in Table 13

show that the CNN model trained on the RG dataset have outperformed, in terms of

precision, the model trained on the R4 dataset with an increase of 0.49% in D1, 0.15% in

D2, 0.10% in D3, 0.27% in D4 and 0.64% in D5. The bold values in Table 13 illustrate

that, in addition to the fact that the model had better performance in terms of precision,
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the standard deviation is, also, lower.

Table 13. Seen Drones Experiment

Experiment
Performance of the CNN classifier
Precision Recall F1 Score Accuracy

D1
R4 0.9773±0.0100 0.9509±0.0189 0.9638±0.0113 0.8630±0.0171
RG 0.9821±0.0058 0.9111±0.0401 0.9448±0.0220 0.8269±0.0364

D2
R4 0.9883±0.0045 0.9636±0.0202 0.9756±0.0094 0.8740±0.0183
RG 0.9898±0.0040 0.9575±0.0378 0.9730±0.0194 0.8686±0.0343

D3
R4 0.9859±0.0050 0.9633±0.0171 0.9744±0.0085 0.8735±0.0155
RG 0.9869±0.0040 0.9450±0.0182 0.9654±0.0098 0.8569±0.0165

D4
R4 0.9884±0.0037 0.9815±0.0097 0.9849±0.0044 0.8908±0.0088
RG 0.9911±0.0025 0.9782±0.0102 0.9846±0.0051 0.8878±0.0092

D5
R4 0.9853±0.0044 0.9553±0.0130 0.9700±0.0058 0.8665±0.0118
RG 0.9916±0.0036 0.9401±0.0236 0.9649±0.0115 0.8527±0.0214

However, it can be deduced from this experiment that RG is not useful in the

application where the model was already exposed to the different drone types during

training given that it didn’t show any improvement in the other metrics, specifically

recall. In fact, the models trained on RG had worse performance, in terms of recall,

compared to those trained on R4 as illustrated in Fig.21. A more plausible explanation

for such behaviour would be that although the performance of the CNN classifier was

worst when trained on RG dataset and tested on seen drones, it is worth noting that the

performance degradation was very minor.
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Figure 21. The performance of the average CNN models trained R4 Vs. RG drone
dataset and tested on seen drones of in terms of recall.

6.3.1.2. Testing on unseen Drone

We aim through this experiment to improve the performance degradation of the

classifier when it is met with an unseen drone which was observed in Section 6.2

by training the CNN models on RG dataset. To examine the model’s performance,

we have tested the CNN models trained on the RG dataset and R4 dataset separately

using the unseen drone. This is done to evaluate the generalization capabilities of the

CNNmodels and whether the integration of artificial drone acoustic data would have any

positive effect on the overall performance of themodel in comparison to the observations

of seen drone experiment in Section 6.3.1.1. The results yielded from this experiment

are further illustrated in Table 14.

50



Table 14. Unseen Drone Experiment

Experiment
Performance of the CNN classifier
Precision Recall F1 Score Accuracy

D1
R4 0.9826±0.0055 0.8365±0.1097 0.8996±0.0685 0.7600±0.0996
RG 0.9861±0.0025 0.8455±0.1150 0.9059±0.0722 0.7682±0.1045

D2
R4 0.9790±0.0252 0.5287±0.2239 0.6602±0.1962 0.4792±0.2030
RG 0.9892±0.0124 0.6609±0.1807 0.7767±0.1462 0.5990±0.1638

D3
R4 0.9774±0.0106 0.6890±0.1347 0.8011±0.0915 0.6237±0.1219
RG 0.9836±0.0082 0.7047±0.0987 0.8172±0.0701 0.6379±0.0893

D4
R4 0.9363±0.0128 0.1860±0.0747 0.3045±0.0960 0.1690±0.0679
RG 0.9552±0.0198 0.2574±0.1824 0.3791±0.1912 0.2338±0.1657

D5
R4 0.9752±0.0128 0.4836±0.1421 0.6358±0.1128 0.4396±0.1292
RG 0.9882±0.0048 0.5521±0.1442 0.6980±0.1131 0.5019±0.1311

Our study reveals that in the situation where the drone is completely new to the

classifier, the average performance of the CNN model trained on the RG dataset has

outperformed, in all evaluation metrics, the average performance of the model that was

trained only on the R4 dataset as illustrated in Table 14. The shaded cells represent the

occurrences where the model trained on the RG drone dataset has higher performance

in comparison to the model trained on the R4 dataset in all fiveD experiments, whereas,

the bold text shows the improvement, if any, in the standard deviation and performance

for all four evaluation metrics.

In a similar vein, Fig.22 demonstrates the comparison between the average perfor-

mance ofCNNmodels trained onRGdrone audio dataset versus the average performance

of CNN model trained on R4 drone audio dataset, in terms of recall, when met with an

unseen drone. It can be observed from the graph that there was an noticeable improve-

ment in recall by 1.08% in D1, 25% in D2, 2.28% in D3, 38.39% in D4 and 14.16% in

D5. Furthermore, this suggests that the adding GAN generated dataset to the training of
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a model further enhances the performance of the model in comparison to the one trained

on the R4 drone dataset, particularly in recall due to the generalisation that GAN data

adds to the training. Also, this addition led to having a more diverse training dataset

which improved the generalisation. Hence, this is a clear demonstration that using GAN

in the hybrid dataset, RG, adds a significant improvement in detection of unseen drones

in comparison to unseen drone detection using the recorded drone data, R4. Thus, the

benefits of training CNN model on RG and using it in the unseen scenario outweigh the

costs in the seen scenario.
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Figure 22. The performance of the average CNN models trained R4 Vs. RG drone
dataset and tested on unseen drones of in terms of recall.

This interesting finding appears to confirm our hypothesis that the integration of the

artificially generated dataset through GAN with an actual drone audio dataset does not
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only fulfil the gap of drone audio shortage but it also boosts the generalization of the

trained classifier for the cases of detecting completely new and unseen drones.

From Table 14, it is worth noting that the model trained on D1 distribution had

the best performance of around 90% in F1 score among the other experiments. This

suggests that if the model was trained on DJI Phantom 4, 3DR Solo, Mambo and

AR Drone, testing it on Bebop becomes a simple classification problem to the CNN

classifier. A further explanation to this performance is that the Bebop drone is of a

similar physical size to the majority of the drones used in the training phase. The inverse

of this performance was observed in D4 experiment, where Mambo drone was used in

testing the performance of the model. The experiment revealed that the CNN model

had the weakest performance in terms of recall, F1 score and accuracy. To understand

this behaviour, we have conducted human-hearing tests with a number of volunteers. It

was particularly noticeable that there was a significant difference in the sound generated

from the propellers of the Mambo drone, being the smallest in size, in comparison to

the other drones used in the training phase, to the human-ears. Hence, one can conclude

that the influence of the size of the drone on the performance of the CNN model is

indisputable and a variety of drone recordings from various drone sizes is needed to

further enhance the GAN model.

Concluding this chapter, we can say that in applications were it is expected to detect

explicit types of drones that are available to train the model on, using a recorded dataset

with those types of drones without GAN would be sufficient. However, in applications

where detection of any type of drone is required, a hybrid dataset with GAN would be

highly effective.
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CHAPTER 7: SWARM OF DRONES LOCALISATION AND TRACKING USING A

SIMULATOR GENERATED DATASET

Future research on drone detection and identification application using deep learning

might extend the proposed solution to address the problem associated with swarm of

drones attacks as swarm of drone attacks having recently been raising and are is expected

to increase dramatically with the development of their technology in near future [58].

Another interesting extension to this work could be the incorporation of other features,

such as RF, in addition to acoustic features in targeting more complex scenarios, such

as swarm of drones. Furthermore, this could provide a solution that is, in addition

to detecting and identifying unauthorised drones, is capable of real time tracking and

localising swarm of drones. Therefore, to move forward with this solution, we started the

first step by designing an RF based simulator, which we refer to as RF Drones Simulator

(RFDS), with the aim of generating a large RF based dataset that could be later used in

training the DL models later on.

An illustration of a scenario where swarm of drones are flying over a restricted

area is provided in Fig. 23. In order to better understand the behaviour of drones in

a swarm, we introduce the concept of drones’ clusters. In many different attacks or

applications, the swarm of drones are usually separated into clusters to extend the range

of the swarm or perform different mission simultaneously as observed in various Flying

Ad-hoc Networks applications [59]. An example of such scenario is when a cluster of

drones is assigned to launch an attack, whereas, another cluster would record, film and

stream the attack.
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Figure 23. Swarm of drones’ attack scenario in RFDS

To design the RFDS, we started with the assumption that each Cluster head (CH)

would initiate a communication with the Base Station (BS) through which the informa-

tion gathered from the cluster could be shared. Next, using passive RF Receiver (Rx)

nodes which are deployed within the premises of the restricted area, the communication

signals are received at each Rx and shared with a centralised unit for further analysis.

Moving on to the architecture of the simulator, Fig. 24 shows the high level system

architecture of the proposed RFDS.
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nodes

Simulation duration

Center coordinates 
of restricted area

Figure 24. High level design of the RFDS
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Initially, a number of parameters will set by the user and fed into the simulator. These

parameters can be selected based on the application requirements and can be defined as:

• Center coordinates of restricted area: initial latitude and longitude coordinates

of the center of a restricted area are required to specify the area which needs to be

secured from the swarm attack.

• Swarm Size: this parameters defines the total number of drones in the simulation

• Number of Clusters: Through this parameter, the total number of clusters in the

swarm mission is established

• RF channel model: Using this parameter, the wireless channel model can be

selected. E.g. The free space propagation model.

• Speed of drones: User can define average speed at which the drones are flying

using this parameter.

• Simulation duration: As the name suggests, this parameter is used to specify the

total duration of the swarm of drones mission simulation.

In the second stage, the simulator starts by generating the location of the CHs.

Followed by the generation of the location of all other drones locations within each

cluster with respect to its CH and the adjacent cluster. Afterwards, the simulator starts

to generate the mobility pattern for each drone in the simulation over the total duration

of the simulation (further details on the mobility pattern can be found in Section 7.1).

During the simulation and while the CHs are communicating with the BS, each of

the deployed Rx nodes passively listens to the communication and captures the Power

Received (Pr) from each communication at its end (a detailed description about the
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physical layer characteristic and assumptions can be found in 7.2). Then, the information

is collected at a center node where it is used to calculate the aggregate of the Pr at each

of Rx.

Finally, two sets of data as shown in Fig. 24 are produced through RFDS. A short

description of each is mentioned below.

1. Ground truth locations in longitude, latitude and altitude for each drone during the

mission. This can be used later on to verify the performance of the localisation

and tracking system.

2. The total Power Received (Pr) value capture at each Rx along the corresponding

latitude and longitude coordinates of the Rx. This dataset will be used to train the

DL algorithms in a later stage to aid in tracking and localising the drones.

Two examples demonstrating the RFDS in action are shown in Figs. 25 and 26. The

first scenario consist of a single drone in each cluster and the second is representing

three clusters each made up of six drones.

Figure 25. RFDS simulating three drones each at a different cluster
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Figure 26. RFDS simulating three clusters consisting of six drones each

7.1. Drone Swarms Mobility Pattern

The mobility pattern of the drones in RFDS is inspired by the Reference Point Group

Mobility (RPGM) model proposed by the authors in [60]. The authors have defined

the mobility pattern such that the targets move with respect to a reference node in

Random WayPoint Mobility (RWMP) pattern. However, the three main limitations of

the RPGM model if deployed for swarm of drones application are: (1)The proposed

system functions in 2-Dimensional plane, whereas, drones fly in a various altitudes. (2)

The RPGM model lacks the location aspect as it is not built based on any coordinate

system. (3)The RPGM model does not implement any collision detection or avoidance

mechanisms between different clusters nor between targets within the same cluster.

Hence, in order to overcome the limitations of the RPGMmodel, we built RFDS to take

into account the main characteristics of swarm of drones by incorporating the following
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features:

• We build a 3-Dimensional (3D) implementation of the system including the x

direction for the latitude, y direction for the longitude and z direction for the

altitude.

• We introduce CHs in each cluster and link the drones within the same cluster

formation to it.

• We include a collision detection and avoidance technique between drones within

the same cluster. That is, any drone, regardless of its altitude, would maintain

a minimum d distance to all other points in the x-y plane. Furthermore, at time

instance t, all new locations calculated will be checked against the location of

other drones in order to ensure that the random new location of a specific drone

is adhering to the collision avoidance criteria mentioned above. If a collision

between two drones has been detected, the coordinates of one of these drones will

be recalculated.

• We design the simulator such that each cluster would fly on a different altitude to

other cluster with a separation distance of n meters between them.

• Although a similar mobility model to the Random WayPoint Mobility (RWMP)

model is used for the underlying movement of the drones, the randomness per-

centage is significantly decreased and bounded such that it reflects real drone

movement. For example, instead of a drone moving from point at location (1,1) at

time t=1 and suddenly to location (2,4) at t=2, then, (-5,-10) at t=3, the movement

of the drone would happen gradually through a number of steps over a duration of

time in order to simulate real drone movement.
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7.2. Drone Swarms Physical layer design

In order to implement the physical layer communication between drones, we assume

that all drones have the same power transmission values Pt and are equipped with

isotropic antennas. From this perspective, RFDS attempts to calculate the Pl values

using the FSPL model. Next, using the Pl value calculated above and the pre-knowledge

of the Pt value, RFDS would calculate the Pr value at each Rx as formulated in Equation

7.1.

Pr(dBm) = Pt(dBm)− Pl(dB) (7.1)

Then, the total Pr values will be summed up for all drones at a specific time (t) in

each Rx, leaving us with the aggregate Pr value, referred to as PrTotal in Equation 7.2.

PrTotal
(dBm) =

d∑
i=1

(Pt(dBm)− Pl(i)(dB)) (7.2)

Where d is the total number of drones and i resembles a single drone instance.

A sample output of the simulation in Fig. 25 for 5 sensors out of 150 deployed is

shown in Table 15. The latitude, longitude and Pr values at each of sensor with respect

to time (t) is shown in each row.

Table 15. Sample of the dataset generated through RFDS simulator

Latitude Longitude t=1 t=2 t=3
40.714533 -74.00596881 -151.8464222 -153.1457417 -154.2472369
40.7144987 -74.00582933 -152.6936543 -153.6408505 -154.4193323
40.7144087 -74.00574313 -156.5094747 -157.143287 -157.6084363
40.7142976 -74.00574313 -160.9921942 -161.5058458 -161.8584282
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CHAPTER 8: CONCLUSION AND FUTURE WORK

In this thesis, we address the issue of illegal use of drones in malicious activities

by proposing a novel approach that automates the drone detection and identification

processes using the drone’s acoustic features with different DL algorithms. However,

the lack of acoustic drone datasets restricts the ability to implement an effective solution

using DL algorithms. Therefore, our work targets this gap by introducing a hybrid

drone acoustic dataset, RG, composed of recorded drone audio clips and artificially

generated drone audio clips using the Generative Adversarial Network (GAN). From the

experiments conducted throughout this work, it was found that CNN has outperformed

both RNN and CRNN in detecting and identifying drones of familiar, seen during

training, types of drones.

Furthermore, when presented with seen drones, the CNN classifier trained on the

recorded drone acoustic dataset, R4, outperformed the CNN classifier trained on RG

dataset. However, when met with completely new drone types, the classifier was less

effective and the classifier trained on RG dataset was outstandingly better. Thus, the

benefits of RG dataset in the unseen scenario outweigh the costs in the seen scenario.

The proposed approach of using GANs to generate real-like drone audio clips illus-

trates a promising way to fulfil the gap imposed by the lack of drone acoustic dataset

while also contributing to an improvement in classifier’s performance. These findings

are aimed to help the research community use GAN generated drone audio clips along

with recorded drone audio dataset, which we are releasing publicly, in various DL

applications for further analysis.

An interesting extension to this work could be the incorporation of other features,

such as RF, in addition to acoustic features in targeting more complex scenarios, such
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as swarm of drones. Furthermore, this could provide a solution that is, in addition

to detecting and identifying unauthorised drones, is capable of real time tracking and

localising a swarm of drones. As for the RFDS proposed in this work, we would

investigate the feasibility of using it for data fusionwith the aim of tracking and localising

malicious swarm of drones.

62



PUBLICATIONS

Parts of this thesis has been presented and published in IEEE International Wireless

Communications and Mobile Computing Conference in 2019 (IWCMC) [61]. Further-

more, an earlier version of this thesis has been submitted for a publication in [62].

63



REFERENCES

[1] J. A. J. Berni, P. J. Zarco-Tejada, L. Suarez, and E. Fereres, “Thermal and narrow-

band multispectral remote sensing for vegetation monitoring from an unmanned

aerial vehicle”, IEEE Transactions on Geoscience and Remote Sensing, vol. 47,

no. 3, pp. 722–738, Mar. 2009, issn: 0196-2892. doi: 10.1109/TGRS.2008.

2010457.

[2] V. Ciullo, L. Rossi, T. Toulouse, and A. Pieri, “Fire geometrical characteristics es-

timation using a visible stereovision system carried by unmanned aerial vehicle”,

in 2018 15th International Conference on Control, Automation, Robotics and

Vision (ICARCV), Nov. 2018, pp. 1216–1221. doi: 10.1109/ICARCV.2018.

8581167.

[3] P. Katsigiannis, L. Misopolinos, V. Liakopoulos, T. K. Alexandridis, and G.

Zalidis, “An autonomous multi-sensor uav system for reduced-input precision

agriculture applications”, in 2016 24thMediterraneanConference onControl and

Automation (MED), Jun. 2016, pp. 60–64. doi: 10.1109/MED.2016.7535938.

[4] R. Tariq, M. Rahim, N. Aslam, N. Bawany, and U. Faseeha, “Dronaid : A smart

human detection drone for rescue”, in 2018 15th International Conference on

Smart Cities: Improving Quality of Life Using ICT IoT (HONET-ICT), Oct. 2018,

pp. 33–37. doi: 10.1109/HONET.2018.8551326.

[5] ’sustained’ drone attack closed gatwick, airport says, 2019. [Online]. Available:

https://www.bbc.com/news/business-47302902.

[6] Gatwick drone policing costs ’shocking’, 2019. [Online]. Available: https :

//www.bbc.com/news/uk- england- 47696499?intlink_from_url=

64

https://doi.org/10.1109/TGRS.2008.2010457
https://doi.org/10.1109/TGRS.2008.2010457
https://doi.org/10.1109/ICARCV.2018.8581167
https://doi.org/10.1109/ICARCV.2018.8581167
https://doi.org/10.1109/MED.2016.7535938
https://doi.org/10.1109/HONET.2018.8551326
https://www.bbc.com/news/business-47302902
https://www.bbc.com/news/uk-england-47696499?intlink_from_url=https://www.bbc.com/news/topics/cnx1xjxwp51t/gatwick-drone-shutdown&link_location=live-reporting-story
https://www.bbc.com/news/uk-england-47696499?intlink_from_url=https://www.bbc.com/news/topics/cnx1xjxwp51t/gatwick-drone-shutdown&link_location=live-reporting-story
https://www.bbc.com/news/uk-england-47696499?intlink_from_url=https://www.bbc.com/news/topics/cnx1xjxwp51t/gatwick-drone-shutdown&link_location=live-reporting-story


https://www.bbc.com/news/topics/cnx1xjxwp51t/gatwick-drone-

shutdown&link_location=live-reporting-story.

[7] J. P. Daniels, Venezuela’s nicolas maduro survives apparent assassination at-

tempt, Aug. 2018. [Online]. Available: https://www.theguardian.com/

world/2018/aug/04/nicolas-maduros-speech-cut-short-while-

soldiers-scatter.

[8] Saudi arabia oil facilities ablaze after drone strikes, 2019. [Online]. Available:

https://www.bbc.com/news/world-middle-east-49699429.

[9] F. Gardner, Saudi oil facility attacks: Race on to restore supplies, 2019. [Online].

Available: https://www.bbc.com/news/world-middle-east-49775849.

[10] Well-organised gang used drones to deliver drugs to inmates, court told. [Online].

Available: http://www.itv.com/news/2018-08-30/well-organised-

gang-used-drones-to-deliver-drugs-to-inmates-court-told/.

[11] Man fined after flying drones over premier league stadiums, 2019. [Online].

Available: https://www.bbc.com/news/uk-england-nottinghamshire-

34256680.

[12] M. Chen, San carlos woman says drone hovered near bedroom - and wouldn’t

go away, 2018. [Online]. Available: https://www.10news.com/news/san-

carlos- woman- says- drone- hovered- near- bedroom- wouldnt- go-

away.

[13] B. Steffen, Drone spotted hovering outside bedroom window, 2018. [Online].

Available: https://www.10news.com/news/drone-spotted-hovering-

outside-bedroom-window.

65

https://www.bbc.com/news/uk-england-47696499?intlink_from_url=https://www.bbc.com/news/topics/cnx1xjxwp51t/gatwick-drone-shutdown&link_location=live-reporting-story
https://www.bbc.com/news/uk-england-47696499?intlink_from_url=https://www.bbc.com/news/topics/cnx1xjxwp51t/gatwick-drone-shutdown&link_location=live-reporting-story
https://www.bbc.com/news/uk-england-47696499?intlink_from_url=https://www.bbc.com/news/topics/cnx1xjxwp51t/gatwick-drone-shutdown&link_location=live-reporting-story
https://www.theguardian.com/world/2018/aug/04/nicolas-maduros-speech-cut-short-while-soldiers-scatter
https://www.theguardian.com/world/2018/aug/04/nicolas-maduros-speech-cut-short-while-soldiers-scatter
https://www.theguardian.com/world/2018/aug/04/nicolas-maduros-speech-cut-short-while-soldiers-scatter
https://www.bbc.com/news/world-middle-east-49699429
https://www.bbc.com/news/world-middle-east-49775849
http://www.itv.com/news/2018-08-30/well-organised-gang-used-drones-to-deliver-drugs-to-inmates-court-told/
http://www.itv.com/news/2018-08-30/well-organised-gang-used-drones-to-deliver-drugs-to-inmates-court-told/
https://www.bbc.com/news/uk-england-nottinghamshire-34256680
https://www.bbc.com/news/uk-england-nottinghamshire-34256680
https://www.10news.com/news/san-carlos-woman-says-drone-hovered-near-bedroom-wouldnt-go-away
https://www.10news.com/news/san-carlos-woman-says-drone-hovered-near-bedroom-wouldnt-go-away
https://www.10news.com/news/san-carlos-woman-says-drone-hovered-near-bedroom-wouldnt-go-away
https://www.10news.com/news/drone-spotted-hovering-outside-bedroom-window
https://www.10news.com/news/drone-spotted-hovering-outside-bedroom-window


[14] Drone flies over macron’s holiday home in wake of maduro ’attack’, 2018. [On-

line]. Available: https://www.thelocal.fr/20180807/drone-flies-

over-macrons-holiday-home-in-wake-of-maduro-attack.

[15] E. Limer, How to shoot down a drone, Apr. 2018. [Online]. Available: http:

//tinyurl.com/p5zaso3.

[16] D. Sathyamoorthy, “A review of security threats of unmanned aerial vehicles and

mitigation steps”, The Journal of Defence and Security (In press), vol. 6, no. 2,

2015.

[17] R. Vander Schaaf, “What technologies or integrating concepts are needed for

the us military to counter future missile threats looking out to 2040?”, Ph.D.

dissertation, AIR WAR COLLEGE - AIR UNIVERSITY, 2014.

[18] T. E. Humphreys, “Statement on the security threat posed by unmanned aerial

systems and possible countermeasures”, 2015.

[19] J.-S. Pleban, R. Band, and R. Creutzburg, “Hacking and securing the ar. drone

2.0 quadcopter: Investigations for improving the security of a toy”, in Mobile

Devices and Multimedia: Enabling Technologies, Algorithms, and Applications

2014, International Society for Optics and Photonics, vol. 9030, 2014, p. 90300L.

[20] X. Shi, C. Yang, W. Xie, C. Liang, Z. Shi, and J. Chen, “Anti-drone system

with multiple surveillance technologies: Architecture, implementation, and chal-

lenges”, IEEE Communications Magazine, vol. 56, no. 4, pp. 68–74, Apr. 2018,

issn: 1558-1896. doi: 10.1109/MCOM.2018.1700430.

66

https://www.thelocal.fr/20180807/drone-flies-over-macrons-holiday-home-in-wake-of-maduro-attack
https://www.thelocal.fr/20180807/drone-flies-over-macrons-holiday-home-in-wake-of-maduro-attack
http://tinyurl.com/p5zaso3
http://tinyurl.com/p5zaso3
https://doi.org/10.1109/MCOM.2018.1700430


[21] B. Knoedler, R. Zemmari, and W. Koch, “On the detection of small uav using

a gsm passive coherent location system”, in Radar Symposium (IRS), 2016 17th

International, IEEE, 2016, pp. 1–4.

[22] Y. Liu, X. Wan, H. Tang, J. Yi, Y. Cheng, and X. Zhang, “Digital television

based passive bistatic radar system for drone detection”, in Radar Conference

(RadarConf), IEEE, 2017, pp. 1493–1497.

[23] M. M. Azari, H. Sallouha, A. Chiumento, S. Rajendran, E. Vinogradov, and S.

Pollin, “Key technologies and system trade-offs for detection and localization of

amateur drones”, IEEE Communications Magazine, vol. 56, no. 1, pp. 51–57,

Jan. 2018, issn: 1558-1896. doi: 10.1109/MCOM.2017.1700442.

[24] P. Nguyen, M. Ravindranatha, A. Nguyen, R. Han, and T. Vu, “Investigating

cost-effective rf-based detection of drones”, in Proceedings of the 2Nd Workshop

on Micro Aerial Vehicle Networks, Systems, and Applications for Civilian Use,

ser. DroNet ’16, Singapore, Singapore: ACM, 2016, pp. 17–22, isbn: 978-1-

4503-4405-0. doi: 10.1145/2935620.2935632. [Online]. Available: http:

//doi.acm.org/10.1145/2935620.2935632.

[25] P. Nguyen, H. Truong, M. Ravindranathan, A. Nguyen, R. Han, and T. Vu,

“Matthan: Drone presence detection by identifying physical signatures in the

drone’s rf communication”, in Proceedings of the 15th Annual International

Conference onMobile Systems, Applications, and Services, ACM, 2017, pp. 211–

224.

[26] S. Al-Emadi and F. Al-Senaid, “Drone detection approach based on radio-

frequency using convolutional neural network”, in 2020 IEEE International Con-

67

https://doi.org/10.1109/MCOM.2017.1700442
https://doi.org/10.1145/2935620.2935632
http://doi.acm.org/10.1145/2935620.2935632
http://doi.acm.org/10.1145/2935620.2935632


ference on Informatics, IoT, and Enabling Technologies (ICIoT), IEEE, 2020,

pp. 29–34.

[27] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,

A. Courville, and Y. Bengio, “Generative adversarial nets”, in Advances in Neu-

ral Information Processing Systems 27, Z. Ghahramani, M. Welling, C. Cortes,

N. D. Lawrence, and K. Q. Weinberger, Eds., Curran Associates, Inc., 2014,

pp. 2672–2680. [Online]. Available: http://papers.nips.cc/paper/5423-

generative-adversarial-nets.pdf.

[28] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied

to document recognition”, Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–

2324, 1998.

[29] F. Chollet, Deep Learning with Python, 1st. USA: Manning Publications Co.,

2017, isbn: 1617294438.

[30] A.Graves, A.-r.Mohamed, andG.Hinton, Speech recognitionwith deep recurrent

neural networks, 2013. arXiv: 1303.5778 [cs.NE].

[31] F. M. Noori, B. Wallace, M. Z. Uddin, and J. Torresen, “A robust human activity

recognition approach using openpose, motion features, and deep recurrent neu-

ral network”, in Scandinavian Conference on Image Analysis, Springer, 2019,

pp. 299–310.

[32] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependencies with

gradient descent is difficult”, IEEE Transactions on Neural Networks, vol. 5, no. 2,

pp. 157–166, 1994. doi: 10.1109/72.279181.

68

http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
https://arxiv.org/abs/1303.5778
https://doi.org/10.1109/72.279181


[33] S. Hochreiter and J. Schmidhuber, “Long short-term memory”, Neural computa-

tion, vol. 9, no. 8, pp. 1735–1780, 1997.

[34] S. Raschka and V. Mirjalili, Python machine learning: Machine learning and

deep learning with Python, scikit-learn, and TensorFlow 2. Packt Publishing Ltd,

2019.

[35] S. O. Arik,M. Kliegl, R. Child, J. Hestness, A. Gibiansky, C. Fougner, R. Prenger,

and A. Coates, Convolutional recurrent neural networks for small-footprint key-

word spotting, 2017. arXiv: 1703.05390 [cs.CL].

[36] Y. Zhang, N. Suda, L. Lai, and V. Chandra, “Hello edge: Keyword spotting

on microcontrollers”, CoRR, vol. abs/1711.07128, 2017. arXiv: 1711.07128.

[Online]. Available: http://arxiv.org/abs/1711.07128.

[37] J. Mezei, V. Fiaska, and A. Molnar, “Drone sound detection”, in 2015 16th

IEEE International Symposium on Computational Intelligence and Informatics

(CINTI), Nov. 2015, pp. 333–338. doi: 10.1109/CINTI.2015.7382945.

[38] A. Bernardini, F. Mangiatordi, E. Pallotti, and L. Capodiferro, “Drone detection

by acoustic signature identification”, electronic imaging, vol. 2017, pp. 60–64,

2017.

[39] N. Takahashi, M. Gygli, and L. V. Gool, “Aenet: Learning deep audio features for

video analysis”,CoRR, vol. abs/1701.00599, 2017. arXiv: 1701.00599. [Online].

Available: http://arxiv.org/abs/1701.00599.

[40] J. Kim, C. Park, J. Ahn, Y. Ko, J. Park, and J. C. Gallagher, “Real-time uav sound

detection and analysis system”, in 2017 IEEE Sensors Applications Symposium

(SAS), Mar. 2017, pp. 1–5. doi: 10.1109/SAS.2017.7894058.

69

https://arxiv.org/abs/1703.05390
https://arxiv.org/abs/1711.07128
http://arxiv.org/abs/1711.07128
https://doi.org/10.1109/CINTI.2015.7382945
https://arxiv.org/abs/1701.00599
http://arxiv.org/abs/1701.00599
https://doi.org/10.1109/SAS.2017.7894058


[41] 2018. [Online]. Available: https://www.tensorflow.org/tutorials/

sequences/audio_recognition.

[42] X. L. xjli and Z. Z. zixuan, “Speech command recognition with convolutional

neural network”, 2017.

[43] S. Jeon, J.-W. Shin, Y.-J. Lee, W.-H. Kim, Y. Kwon, and H.-Y. Yang, “Empir-

ical study of drone sound detection in real-life environment with deep neural

networks”, CoRR, vol. abs/1701.05779, 2017. arXiv: 1701.05779. [Online].

Available: http://arxiv.org/abs/1701.05779.

[44] E. Sprengel, M. Jaggi, Y. Kilcher, and T. Hofmann, “Audio based bird species

identification using deep learning techniques”, in CLEF, 2016.

[45] T. Karras, S. Laine, and T. Aila, “A style-based generator architecture for gen-

erative adversarial networks”, CoRR, vol. abs/1812.04948, 2018. arXiv: 1812.

04948. [Online]. Available: http://arxiv.org/abs/1812.04948.

[46] C. Donahue, J. McAuley, and M. Puckette, “Adversarial audio synthesis”, in

ICLR, 2019.

[47] S.Al-Emadi, Saraalemadi/droneaudiodataset, 2018. [Online].Available:https:

//github.com/saraalemadi/DroneAudioDataset.

[48] ——, Saraalemadi/droneaudiodataset_r4rg, 2020. [Online]. Available: https:

//github.com/saraalemadi/DroneAudioDataset_R4RG.

[49] K. J. Piczak, “ESC: Dataset for Environmental Sound Classification”, in Pro-

ceedings of the 23rd Annual ACM Conference on Multimedia, Brisbane, Aus-

tralia: ACM Press, Oct. 13, 2015, pp. 1015–1018, isbn: 978-1-4503-3459-4. doi:

70

https://www.tensorflow.org/tutorials/sequences/audio_recognition
https://www.tensorflow.org/tutorials/sequences/audio_recognition
https://arxiv.org/abs/1701.05779
http://arxiv.org/abs/1701.05779
https://arxiv.org/abs/1812.04948
https://arxiv.org/abs/1812.04948
http://arxiv.org/abs/1812.04948
https://github.com/saraalemadi/DroneAudioDataset
https://github.com/saraalemadi/DroneAudioDataset
https://github.com/saraalemadi/DroneAudioDataset_R4RG
https://github.com/saraalemadi/DroneAudioDataset_R4RG


10.1145/2733373.2806390. [Online]. Available: http://dl.acm.org/

citation.cfm?doid=2733373.2806390.

[50] P. Warden, “Speech commands: A dataset for limited-vocabulary speech recog-

nition”, CoRR, vol. abs/1804.03209, 2018. arXiv: 1804.03209. [Online]. Avail-

able: http://arxiv.org/abs/1804.03209.

[51] (2019), YouTube, [Online]. Available: https://www.youtube.com.

[52] 3dr solo fly manual mode test. [Online]. Available: https://www.youtube.

com/watch?v=gHlF_EjbfvI.

[53] 3dr solo - unboxing, set up, first flight. [Online]. Available: https://www.

youtube . com / watch ? v = xRqwq - zDiXs & list = PLKrTJOW1plxiARpra -

Nn6cpF2S-SjwXaR&index=6&t=907s.

[54] How loud are they? mavic pro vs phantom 4 pro. [Online]. Available: https:

//www.youtube.com/watch?v=C5abCs5VHsE&t=72s+(3).

[55] Dji phantom4 indoor (living room) flight test pmode. [Online]. Available: https:

//www.youtube.com/watch?v=_P-8fI4m1Dc&list=PLKrTJOW1plxiARpra-

Nn6cpF2S-SjwXaR&index=3&t=0s%20(2).

[56] Ar.drone test flight. [Online]. Available: https://www.youtube.com/watch?

v=Uecpd7LRJRY&list=PLKrTJOW1plxiARpra-Nn6cpF2S-SjwXaR&index=

10&t=0s.

[57] Ar drone 2.0 indoor christmas flight. [Online]. Available: https : / / www .

youtube . com / watch ? v = mD6N _ vknSnk & list = PLKrTJOW1plxiARpra -

Nn6cpF2S-SjwXaR&index=10&t=6s.

71

https://doi.org/10.1145/2733373.2806390
http://dl.acm.org/citation.cfm?doid=2733373.2806390
http://dl.acm.org/citation.cfm?doid=2733373.2806390
https://arxiv.org/abs/1804.03209
http://arxiv.org/abs/1804.03209
https://www.youtube.com
https://www.youtube.com/watch?v=gHlF_EjbfvI
https://www.youtube.com/watch?v=gHlF_EjbfvI
https://www.youtube.com/watch?v=xRqwq-zDiXs&list=PLKrTJOW1plxiARpra-Nn6cpF2S-SjwXaR&index=6&t=907s
https://www.youtube.com/watch?v=xRqwq-zDiXs&list=PLKrTJOW1plxiARpra-Nn6cpF2S-SjwXaR&index=6&t=907s
https://www.youtube.com/watch?v=xRqwq-zDiXs&list=PLKrTJOW1plxiARpra-Nn6cpF2S-SjwXaR&index=6&t=907s
https://www.youtube.com/watch?v=C5abCs5VHsE&t=72s+(3)
https://www.youtube.com/watch?v=C5abCs5VHsE&t=72s+(3)
https://www.youtube.com/watch?v=_P-8fI4m1Dc&list=PLKrTJOW1plxiARpra-Nn6cpF2S-SjwXaR&index=3&t=0s%20(2)
https://www.youtube.com/watch?v=_P-8fI4m1Dc&list=PLKrTJOW1plxiARpra-Nn6cpF2S-SjwXaR&index=3&t=0s%20(2)
https://www.youtube.com/watch?v=_P-8fI4m1Dc&list=PLKrTJOW1plxiARpra-Nn6cpF2S-SjwXaR&index=3&t=0s%20(2)
https://www.youtube.com/watch?v=Uecpd7LRJRY&list=PLKrTJOW1plxiARpra-Nn6cpF2S-SjwXaR&index=10&t=0s
https://www.youtube.com/watch?v=Uecpd7LRJRY&list=PLKrTJOW1plxiARpra-Nn6cpF2S-SjwXaR&index=10&t=0s
https://www.youtube.com/watch?v=Uecpd7LRJRY&list=PLKrTJOW1plxiARpra-Nn6cpF2S-SjwXaR&index=10&t=0s
https://www.youtube.com/watch?v=mD6N_vknSnk&list=PLKrTJOW1plxiARpra-Nn6cpF2S-SjwXaR&index=10&t=6s
https://www.youtube.com/watch?v=mD6N_vknSnk&list=PLKrTJOW1plxiARpra-Nn6cpF2S-SjwXaR&index=10&t=6s
https://www.youtube.com/watch?v=mD6N_vknSnk&list=PLKrTJOW1plxiARpra-Nn6cpF2S-SjwXaR&index=10&t=6s


[58] M. Safi,Are drone swarms the future of aerialwarfare?, 2020. [Online].Available:

https://www.theguardian.com/news/2019/dec/04/are- drone-

swarms-the-future-of-aerial-warfare.

[59] S. Al-Emadi and A. Al-Mohannadi, “Towards enhancement of network com-

munication architectures and routing protocols for fanets: A survey”, in 2020

3rd International Conference on Advanced Communication Technologies and

Networking (CommNet), 2020, pp. 1–10.

[60] M. Khan, K. Heurtefeux, A.Mohamed, K. A. Harras, andM.M. Hassan, “Mobile

target coverage and tracking on drone-be-gone uav cyber-physical testbed”, IEEE

Systems Journal, vol. 12, no. 4, pp. 3485–3496, 2018.

[61] S. A. Al-Emadi, A. K. Al-Ali, A. Al-Ali, and A. Mohamed, “Audio based drone

detection and identification using deep learning”, in IWCMC 2019 Vehicular

Symposium (IWCMC-VehicularCom 2019), Tangier, Morocco, Jun. 2019.

[62] S. Al-Emadi, A. Al-Ali, and A. Al-Ali, “Audio based drone detection and iden-

tification using deep learning techniques with dataset enhancement through gen-

erative adversarial networks”, Submitted, 2020.

72

https://www.theguardian.com/news/2019/dec/04/are-drone-swarms-the-future-of-aerial-warfare
https://www.theguardian.com/news/2019/dec/04/are-drone-swarms-the-future-of-aerial-warfare

	DEDICATION
	ACKNOWLEDGMENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ACRONYMS
	Introduction
	Motivation
	Research Questions
	Contribution
	Document Overview

	Background
	Spectrograms
	Neural Networks
	Convolutional Neural Network
	Recurrent Neural Network
	Convolutional Recurrent Neural Network
	Generative Adversarial Network

	Performance Evaluation Criteria

	Related Work
	Drone Detection
	Drone Identification
	Data Generation using GANs

	Proposed Framework
	Research Framework
	Deep Learning Algorithms
	Dataset
	R2: Recorded Drone Audio Dataset
	Data Acquisition
	Data Preprocessing
	Data Augmentation
	Data Labeling

	 R4: Enhanced Recorded Drone Audio Dataset
	RG: Hybrid Drone Audio Dataset


	Experimental Setup
	Experiments A.1-2: Drone Detection and Identification using R2 Dataset
	Experiment A.3 and B.1: Drone Detection using R4 and RG Datasets

	Performance Evaluation and Discussion
	Experiments A.1-2: Drone Detection and Identification using R2 Dataset
	A.1: Drone detection: Binary classification results
	A.2: Drone identification: multi-class classification results

	Experiment A.3: Drone Detection using R4 Dataset
	Experiment B: Drone Detection using R4 Vs. RG Dataset
	B.1: Drone Detection using RG Dataset
	Testing on seen Drones
	Testing on unseen Drone



	Swarm of Drones Localisation and Tracking Using a Simulator Generated Dataset
	Drone Swarms Mobility Pattern
	Drone Swarms Physical layer design

	Conclusion and Future Work
	Publications
	References

