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Abstract

Susceptibility to severe illness from COVID-19 is anticipated to be associated with cigarette 

smoking as it aggravates the risk of cardiovascular and respiratory illness, including infections. 

This is particularly important with the advent of a new strain of coronaviruses, the severe acute 

respiratory syndrome coronavirus (SARS-CoV-2) that has led to the present pandemic, 

coronavirus disease 2019 (COVID-19). Although, the effects of smoking on COVID-19 are 

less described and controversial, we presume a link between smoking and COVID-19. Smoking 

has been shown to enhance the expression of the angiotensin-converting enzyme-2 (ACE-2) and 

transmembrane serine protease 2 (TMPRSS2) key entry genes utilized by SARS-CoV-2 to 

infect cells and induce a ‘cytokine storm’, which further increases the severity of COVID-19 

clinical course. Nevertheless, the impact of smoking on ACE-2 and TMPRSS2 receptors 

expression remains paradoxical. Thus, further research is necessary to unravel the association 

between smoking and COVID-19 and to pursue the development of potential novel therapies 

that are able to constrain the morbidity and mortality provoked by this infectious disease. 

Herein we present a brief overview of the current knowledge on the correlation between 

smoking and the expression of SARS-CoV-2 key entry genes, clinical manifestations, and 

disease progression. 
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immunodeficiency virus 1; hrsACE2: human recombinant soluble ACE-2; IFN: Interferons; 

IPF: Idiopathic pulmonary fibrosis; IR: Ionizing radiation; JNK: c-Jun N-terminal 

kinase; MERS: Middle-East respiratory syndrome; MCN: Mucin; R0: R-nought; nAChR: α7 

nicotinic acetylcholine receptor; NO: Nitric oxide; RAS: Renin-angiotensin; RR: Relative risk; 

SARS-CoV-2: Severe acute respiratory syndrome coronavirus; TJP3: Tight junction protein 3; 

TMPRSS: Transmembrane serine protease

Introduction 

The current outbreak of a novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-

2) causes a severe respiratory illness called coronavirus disease 2019 (COVID-19). SARS-

CoV-2 is an enveloped RNA virus with high zoonotic potential. Genetic analysis revealed that 

SARS-CoV-2 belongs to the Betacoronavirus genus and the Sarbecovirus subgenus, indicating 

that it originated from the bat coronavirus (BatCoV RaTG13) [1]. The initial epidemic, which 

began in Wuhan, China, continued seeding secondary chains through international travel and 

propagated to over 180 countries and territories [2]. As of October 2020, more than 34 million 

confirmed cases have been reported, including over one million deaths, with a rising number of 

cases reported in India, the United States, and Brazil [3]. SARS-CoV-2 is an extremely 

contagious infection with interpersonal transmission by aerosols and fomites; the virus remains 

environmentally active in the atmosphere and on surfaces for several days [4]. These features 

make it possible for the virus to spread rapidly and cause a global pandemic.

The outbreak was initially presented in the form of pneumonia of unknown etiology. As the 

epidemic evolved into a global pandemic, it became clear that the SARS-CoV-2 infection 

contributes to multi-organ disease, with a high incidence of acute respiratory distress syndrome 

(ARDS) and digestive tract complications [5]. SARS-CoV-2 has a broad spectrum of clinical 

manifestations ranging from asymptomatic to multi-organ dysfunction [6]. The disease is 

graded into mild, moderate, severe, and critical, depending on the severity of the presentation, 

while the most common symptoms include fever, cough, diarrhea, and fatigue [6]. Based on the 

R-nought (R0) values, it is considered that SARS-CoV-2 is more contagious than previous 

coronavirus pandemics (SARS or MERS) [7, 8]. Certain population segments are at a higher 

risk of fatality, including the elderly, immunocompromised, comorbid patients, and smokers [9, 
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10]. In general, smokers are more likely to get respiratory diseases than non-smokers [11]. 

Smokers also have twice the risk of acquiring influenza infection, tuberculosis, and bacterial 

pneumonia [12, 13]. A meta-analysis revealed that 22% (n = 31/139) of current smokers and 

46% (n = 13/28) of ex-smokers had severe complications, including ARDS [14]. However, 

relative risk (RR) analysis showed that current smokers were 1.45 times more likely than 

former and never-smoker patients to have severe complications [14-16]. Nevertheless, the role 

of smoking in COVID-19 remains controversial [14, 17, 18]. This review will focus on the 

relationship between smoking and receptors of SARS-CoV-2 and impact on COVID-19 leading 

to tissue damage and diseases especially in the lungs.

SARS-CoV-2 and its key entry genes

The Latin word “corona” ascended from the crown-like appearance of the coronavirus 

structural images. The large type 1 transmembrane spike (S) glycoproteins attribute to the 

virus's corona shape. The S glycoprotein comprises two distinct functional domains (S1 and 

S2) that are assumed to mediate host cell binding, membrane fusion, and virus entry [19]. The 

S1 domain contains receptor-binding sites for angiotensin-converting enzyme-2 (ACE2) and is 

responsible for virus entry into host cells [20]. The S2 domain enables the fusion of the virus 

membrane and the host cell, essential for cell infiltration [21]. 

There is still a limited understanding of the pathogenic pathways of SARS-CoV-2. Viral 

particles infiltrate the host respiratory epithelial cell through metallopeptidase cell 

identification. Host cell enzymes must cleave the S glycoprotein at two different sites for 

coronaviruses to enter target cells, thereby presenting potential drug targets. Several host 

enzymes are known to activate SARS-CoV-2, including cathepsin L, furin, and transmembrane 

serine protease 2 (TMPRSS2), TMPRSS4, TMPRSS11A, and TMPRSS11D [22]. However, 

TMPRSS2 and furin play key roles in the proteolytic activation of SARS-CoV-2 [23]. Furin and 

TMPRSS2 are essential enzymes for S protein's cleavage at the S1/S2 and the S2′ sites, 

respectively [23]. Bestle et al. [23] have shown that TMPRSS2 is necessary for SARS-CoV-2 S 

glycoprotein priming through in-vitro TMPRSS2 knockdown in human epithelial cells. 

Similarly, they revealed that synthetic furin inhibitors strongly blocked the transmissibility of 
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SARS-CoV-2 in lung epithelial cells and that more potent antiviral effects were obtained by 

combining TMPRSS2 and furin inhibitors [23].

SARS-CoV-2 host moiety, the ACE2 receptors, are essential for marinating human’s body 

homeostasis, including membrane trafficking, the renin-angiotensin (RAS), and cardiovascular 

systems [24-26]. ACE2 is widely expressed in all tissues with relatively higher expression in 

the respiratory system, including type I and type II alveolar cells, the central nervous system, 

the cardiovascular system, kidneys, and the gastrointestinal tract [27]. ACE2 acts as a key 

regulator of RAS, primarily by transforming Ang (angiotensin) I to Ang 1–9 and Ang II to Ang 

1–7 [28]. ACE2 activity occurs in various lung diseases, including lung injury and fibrosis, 

pulmonary hypertension, and ARDS [29]. More recently, the role of ACE2 in COVID-19 

pathogenesis has gained considerable attention due to its critical link with immunity, 

inflammation, the digestive tract, and cardiovascular diseases. SARS-CoV-2 binding affinity 

for ACE2 correlates with the viral replication rate, transmissibility, and disease severity [30]. 

ACE2 and viral S protein interactions are considered a promising therapeutic target for vaccine 

production [31]. 

We performed a comprehensive literature search using the PubMed/MEDLINE/ database to 

explore papers published until 31 January 2021. We used the following keywords: COVID-19, 

SARS-CoV-2, smoking, ACE2, TMPRSS2, furin, and treatment. Retrieved publications were 

selected independently for their relevance and contribution; literature search was constrained 

by study subjects (in-vitro, in-vivo, humans) and language (English). Furthermore, references 

retrieved from articles and those from recent reviews of smoking and COVID-19 were 

analyzed. This review also includes publications focusing on epidemiology and clinical 

characteristics of COVID-19, the association of smoking with COVID-19, in addition to the 

management and therapeutic options for COVID-19.

Smoking as a risk factor for COVID-19

Smoking is an established risk factor for several cardio-metabolic and respiratory diseases, 

including chronic obstructive pulmonary disease (COPD) and bronchial asthma [32]. Smoking 

tobacco promotes exposure to several toxic chemicals, including 1,3-butadiene, benzene, and 
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NO2 [33]. It can induce inflammation of the respiratory tract, allergy, permeability of epithelial 

cells, mucus formation, and impair mucociliary clearance [34]. 

Robust evidence indicates that the risk of Mycobacterium tuberculosis infection is almost 

doubled by smoking-induced immune suppression. Likewise, the risk of influenza, mycoplasma 

pneumoniae, legionella, and pneumococcal infections is 3-5 times higher in smokers. [35]. 

However, literature on the role of smoking in the pathogenesis of previous coronavirus 

outbreaks (Middle Eastern respiratory syndrome coronavirus (MERS) and severe respiratory 

syndrome coronavirus (SARS)) is scarce. One study from the Republic of Korea, based only on 

twenty-six samples, showed that smoking increased the risk of death in MERS patients [36]. 

Although data is sparse for COVID-19 cases, we have summarized available data comparing 

disease fatality in smokers and non-smokers (Table 1). 

Table 1: Smoking and COVID-19

City/Country
Reported 

cases (%)
Smoking history

Co-

morbidity 

(%)

Mortality 

(%)
Reference

Severe cases

n (%)

Mild cases

n (%)

Wuhan/China
140

(100%)
2/58 (3.4%) 0/82 (0%)

90 

(64.3%)
-- [37]

Sindh/Pakistan
382 

(41.5%)

Positive correlation with 

disease severity and death

Positive 

correlation
2.8% [38]

China
1590 

(100%)
111/1590 (7%)

399 

(25%)
-- [39]
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Wuhan/China
191 

(100%)

5/54 (9%) of 

dead

6/137 (4%) 

of survivors
--

54 

(28.2%)
[40]

Wuhan/China
78 

(100%)
3/11 (27.3%) 2/67 (3%)

29 

(37.1%)

2 

(2.5%)
[41]

Chongqing/China
133 

(100%)

58/65 

(89.71%)

61/68 

(89.23%)

133 

(100%)
-- [42]

China
1099 

(100%)

29/172 

(16.9%)

108/913 

(11.8%)

261 

(23.7%)

15 

(1.4%)
[43]

Wuhan/China
41 

(100%)
0/13 (0%) 3/28 (11%)

13 

(32%)

6 

(15%)
[44]

Several COVID-19 cohort studies analyzed the impact of smoking on disease incidence, 

comorbidity, and mortality, the results are summarized in Table 1. The studies either reported a 

correlation between smoking and COVID-19 severity or divided cohorts into mild and severe 

cases, with percentages of smokers in each group. According to Ujjan et al. [38], there is a 

correlation between smoking and disease severity, with all deceased patients (2.8%) being 

smokers. Similarly, Zhou et al [40] studied 191 inpatients, 54 of whom died while in the 

hospital and 137 of whom were discharged. They found that dead patients had a greater 

smoking tendency than recovering ones. Although several studies found a link between disease 

severity and smoking [41, 45], few found no difference or a negative correlation between 

smoking and COVID-19 severity [42, 44]. 

Zhao et al. (2020) conducted a meta-analysis of seven studies analyzing the association of 

COVID-19 fatality with smoking. The authors found that smoking doubled the risk of severe 

COVID‐19 [46]. Similarly, a meta-analysis of 13 published Chinese studies found that age over 

65, male gender, and smoking were risk factors for disease progression in COVID-19 patients 

[47]. Another meta-analysis conducted by Patanavanich and Glantz (2020) showed a significant 
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association between smoking and the progression of COVID-19 [48]. Moreover, another study 

showed that being a smoker or former smoker was a greater risk factor for a severe COVID-19 

infection (OR = 1.96, CI = 1.36 - 2.83) and posed a greater likelihood of a more critical 

condition (OR = 1.79, CI = 1.19 - 2.70) [32].

However, on the contrary, studies have demonstrated a lack of association between smoking, 

COVID-19, and the severity of COVID-19 disease. In contrast, studies carried out in China 

reported only 25% of the COVID-19 patients to be smokers [15, 39, 49-51], in Italy, as low as 

15% of COVID-19 patients were former smokers [52].  

Impact of Smoking on the expression of SARC-CoV-2 key entry genes  

Chronic smokers or prolonged exposure to smoke tends to display several co-morbidities, 

including emphysema, atherosclerosis, and immune dysregulation [53], which further enhances 

COVID-19 progression.

Hung et al. [54] found that exposure to smoke increased the pulmonary activity of ACE2 and 

that ACE2 knockout mice had significant pulmonary inflammation and distress in response to 

cigarette smoke. Smoking increased pulmonary JNK, p38, and ERK1/2 levels, indicating that 

ACE2 expression caused by smoking promotes inflammation and lung injury [54]. Similarly, 

smoking-induced abnormal expression of the ACE2 pathway is associated with blood gas 

changes, lung inflammation, edema, and injury [55]. The nitrogen dioxide present in cigarette 

smoke enhances the binding of ACE2 to its receptor up to 100 times by stimulating ACE 

enzyme activity [33]. Radzikowska et al. (2020) reported that smoking, asthma, obesity, and 

hypertension could elevate ACE2 expression in the bronchial biopsy, bronchioalveolar lavage, 

or blood samples [56]. Similarly, Brake et al. (2020) reported that smoking upregulates ACE2 

receptor expression in COVID-19 patients [57]. Further, studies have found elevated 

expression of ACE2 and TMPRSS2 in several groups of patients with chronic obstructive 

pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF) [53, 58-62]; both 

expressions significantly correlated with previous cigarette exposure [58, 63, 64]; COPD is 

considered a major risk factor for COVID-19 [65, 66]. 
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However, ACE2 expression was not altered in patients with asthma or pulmonary sarcoidosis 

[53, 67, 68]. On the contrary, Matusiak and Schürch [69] conducted a study in asthmatic 

patients and found loss of ACE2 expression in nasal epithelium and increased TMPRSS2 

expression in bronchi and central airways. Similarly, Liu et al. (2020) recorded that plasma 

ACE2 level of COVID-19 patients was significantly elevated and correlated linearly with viral 

load and lung injury [70]. Another study by Leung et al. (2020) analyzed ACE2 expression in 

the small airway epithelia of COPD patients and indicated that smoking frequency positively 

correlates with ACE2 gene expression, which was higher in current smokers compared to 

never-smokers [71]. Since ACE2 is considered an interferon-stimulated gene [72], 

corticosteroids can be attributed to one of the possible reasons for the loss of ACE2 expression 

in patients with asthma. However, no significant difference was found in furin expression in 

both asthmatics and healthy individuals [69]. Furthermore, in-vivo studies also showed 

unaltered ACE2 expression in a mouse model of cystic fibrosis as well as in mice exposed to 

several carcinogens (arsenic, ionizing radiation (IR), and 1,3-butadiene) [53, 73-76].

Halwani et al. [58] used public gene expression datasets to compare the expression of ACE2 

and TMPRSS2 in blood samples from children and adults and found no significant difference 

between them. There was also no difference in the expression of ACE2 and TMPRSS2 in COPD 

and diabetic patients, while there was an increase in both enzymes' expression in hypertensive 

patients [58]. However, in asthmatic patients, only ACE2 expression was elevated [58]. 

Additionally, the expression of ACE2 and TMPRSS2 was lower in children's airways than 

smokers and patients with COPD, suggesting a plausible reason for the difference in the 

severity of COVID-19 disease among different groups of patients [58].

A recent study by Cai et al. [77] analyzed transcriptomic data sets regarding the association 

between smoking and the expression of SARS-CoV-2 receptors, ACE2, TMPRSS2, and furin in 

lung tissues. They found an upregulation of ACE2 expression in smokers compared to non-

smokers with a 25% increase in lung tissue expression [77]. Another study analyzed ACE2 in 

both mice and human lung tissues and found enhanced expression of ACE2 in smokers than 

non-smokers [53]. Cigarette smoke exposure increased ACE2 expression in mice by 80 percent. 

Similarly, exposure to smoke in human lung epithelial cells showed increased ACE2 expression 
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by 30-55% relative to non-smokers [53]. Smith et al. [53] identified ACE2 as an interferon-

stimulated gene in the lung epithelium's secretory cells. They indicated that SARS-CoV-2 

infections could produce positive feedback loops, further inducing ACE2 levels and allowing 

viral dissemination. Moreover, Cai et al. [77] examined the effects of smoking on the 

pulmonary expression of ACE2 in single bronchial epithelial cells. They found that smoking-

induced morphological changes in cells of the bronchial epithelium. ACE2 was also detected in 

secretory goblet cells in the airway of cigarette smokers [53, 77], whereas in non-smokers 

ACE2 was only expressed in alveolar type II cells [77, 78], suggesting elevated ACE2 

expression in smokers’ lungs as a plausible derivate of smoking-induced secretory cell 

hyperplasia. Furthermore, single-cell sequencing data showed that ACE2 levels were 

significantly associated with multiple mucin genes (MUC1, MUC4, MUC15 and MUC16) and 

other epithelial barrier associated genes (ALCAM, [79] CLDN7, [80] and TJP3 [81]) [53]. Also, 

gene ontology analysis showed that ACE2-associated transcripts correlate with genes 

regulating secretion, glycosylation and respond to toxic substances [82]. Besides, interferons 

induced significant ACE2 expression. Although IFN-α, IFN-β, and IFN-γ treatment-induced 

ACE2 expression in tracheal cells, only IFN-α and IFN-β altered ACE2 expression in small 

airway cells [53, 83, 84], suggesting that ACE2 expression can be plausibly induced by either 

viral infections or interferon treatment [53]. In comparison to non-smokers, the main 

facilitators of ACE2 receptor in smokers are ADAM17 [85], androgen receptor (AR) gene [86]. 

Another study looked at the relationship between ACE2 expression and various smoking 

methods and reported that smoking but not vaping increases ACE2 expression [87]. 

Furthermore, the study found that smoking nicotine and flavored e-cigarettes led to increased 

pro-inflammatory cytokine and inflammasome production [87]. Similarly, nicotine upregulates 

ACE2 expression [88] by the activation of α7 nicotinic acetylcholine receptor (nAChR) on 

bronchial epithelial cells [89, 90], suggesting that smokers are at a higher risk for SARS-CoV-2 

infection. Moreover, nitric oxide (NO) is also present in cigarette smoke and may impair 

immunity, raising the risk of SARS-CoV-2 infection [91]. Although studies have indicated NO 

as a risk factor for SARS-CoV-2 infection, the role of nicotine and NO in COVID-19 is 

controversial. In contrast, various studies indicated controversial data regarding the role of 

cigarette smoke regulation of ACE2 expression. An in-vitro study analyzed cigarette smoke's 
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effect on ACE2 expression using human bronchial epithelial cells (H292) by an air-liquid 

interface system [92]. The study demonstrated that cigarette smoke exposure induced loss of 

ACE2  mRNA expression and did not find any association between ACE2 expression and 

release of IL-6 from H292 cells exposed to smoke; thus, suggesting that loss of ACE2 in lung 

cells can be either under the direct effect of nicotine or, some other constituent in cigarette 

smoke [92]. Moreover, this study indicated that ACE2 mRNA levels correlates both in smokers 

and non-smokers and cigarette smoking acts selectively on the bronchial epithelium by 

inhibiting viral infection and stimulating other genes' expression that can activate several 

transcriptomic pathways [92]. In addition to mRNA levels, the study analyzed protein 

expression of ACE2 and reported inconsistency between mRNA and protein levels of ACE2; 

indicating the protein expression profile is plausibly related to the fact that enhanced mRNA 

expression can be a consequence of compensatory mechanism for the loss of ACE2 protein 

expression on the cellular membrane [92]. The study also suggests a plausible pharmaceutical 

role of nicotine in COVID-19 treatment [92]. Few studies showed that nicotine has anti-

inflammatory activity by reducing inflammation via nAChR α7 subunit on macrophages [17, 

51], thus, possibly adding a therapeutic value. Similarly, NO was shown to display beneficial 

effects as a pulmonary vasodilator [93] and reduced the risk of severe COVID-19 disease in 

smokers [94].

A previous study demonstrated higher ACE2 activity in male mouse kidneys and adipose 

tissues than female mice; however, the study did not report high ACE2 expression [95]. 

Similarly, another study also reported higher renal ACE2 activity in males compared to 

females; lower ACE2 activity in female kidneys was found to be due to the presence of E2 in 

the ovarian hormone [96]. However, the study reported no sex differences in ACE2 activity in 

the heart and lung [96, 97]. Moreover, research has demonstrated that sex hormones (androgens 

and estrogens) regulate the renin-angiotensin system [98-101]; while androgens increase 

plasma renin activity [98], estrogens reduce plasma renin activity [99]. Based on this, Majdic 

(2020) proposed that sex hormones can modulate ACE2 expression in the lung. Consequently, 

this could be one of the underlying factors for gender disparities in COVID-19 morbidity and 

mortality [102]. As published, the COVID-19 death rate was found to be dependent on sex; in 

China [103] and Italy [104], men's death rate was significantly higher than in women. ACE2 
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expression was significantly lower in female primary isolated human airway smooth muscle 

cells than males using western blot analysis [105]. Moreover, the study demonstrated that 

exposure to testosterone and estrogen significantly upregulated and downregulated ACE2 

expression, respectively [105].

Moreover, sex hormonal regulation was found to regulate ACE2 and TMPRSS2, resulting in 

differential gender susceptibility to COVID-19. While ACE2 expression increased in females 

either due to skewed chromosome X inactivation or by estrogens, reduced androgen levels in 

women resulted in low TMPRSS2 expression increasing its protective role against COVID-19 

development and progression [106]. This indicates that the role of sex hormones and 

chromosomes influence the discrepancy in the severity of COVID-19 infection between sexes, 

thus signifying the increased susceptibility to COVID-19 in men [106]. Recently, Chakladar 

and colleagues [86] found co-upregulation of both the SARS-CoV-2 receptors, ACE2 and 

TMPRSS2, in smokers compared with non-smokers. The study used gene set enrichment 

analysis (GSEA) and found the androgen signaling pathway pertinent to ACE2 and TMPRSS2 

expression [86]. Voinsky and Gurwitz [107] reported elevated TMPRSS2 expression in 

bronchial samples from smokers compared with non-smokers. Studies have shown that 

smoking enhances the androgen hormone levels [108], which increases the expression of ACE2 

and TMPRSS2 receptors [86, 109]. Along with the stimulation of the androgen signaling 

pathway, upregulation of the receptors also correlated with the central regulators' 

overexpression (HDAC6, CTNNB1, and SMARCA4) of the androgen pathways [86]. Increased 

TPMRSS4 expression in lung epithelial cells of smokers may be due to prolonged exposure to 

several compounds in tobacco smoke, including nicotine [110], acetaldehyde [111], and tar 

[112], resulting in oxidative stress and bronchial inflammation [113-115]. On the contrary, Cai 

et al. [77] did not find any correlation between smoking and TMPRSS2 expression. Similarly, 

another study found that smoke-exposure enhanced Cathepsin B, but not TMPRSS2 or 

Cathepsin L expression in the respiratory tract of mice and humans [53]. Moreover, analogous 

to lung epithelium, in smokers, ACE2 and TMPRSS2 expression was enhanced in the oral 

epithelium; thus, suggesting a high susceptibility of SARS-CoV-2 in oral epithelial cells [86].
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Based on the studies reported, it is controversial whether smoking increases or reduces the risk 

of contracting COVID-19. A study in Atlanta performed analysis across six acute care hospitals 

and associated outpatient clinics in 220 hospitalized and 311 non-hospitalized COVID-19 

patients and reported smoking was an independent risk factor for COVID-19 hospitalization 

[116]. Moreover, meta-analysis reported smokers to be at a higher risk of developing severe or 

progressive disease [117]. Unlike smoking, there is no data to support vaping prevalence in 

COVID-19 patients; nevertheless, it has been hypothesized that vaping could prime the lung for 

SARS-CoV-2 infection and correlate with worst outcomes, chiefly based on ancillary data on 

lung inflammatory processes described in in-vitro and in-vivo studies [118, 119]. However, 

epidemiological studies failed to report vaping habits in comparison to reports of smoking 

amongst hospitalized COVID-19 patients [120]. While, a study from the University of 

Stanford, based on a self-reported internet survey, revealed that use of e-cigarette increases the 

risk by five-fold of positive COVID-19 in comparison to never users [121], on the contrary, 

cross sectional self-reported surveys demonstrated lack of association between 

diagnosed/suspected COVID-19 among never, current, and ex-vapers [122, 123]. In addition, 

Farsalinos and colleagues reported that current smoking status was comparatively lower in 

COVID-19 patients; thus, indicating a protective role of smoking against COVID-19 [17]. 

Although smoking may not plausibly enhance risk for developing COVID-19, the biological 

and inflammatory signaling cascade that occurs during SARS-CoV-2 infection can be 

potentially devastating for a smoker.

Possible Therapeutic Targets

Drugs including chloroquine and hydroxychloroquine are currently approved for malaria and 

autoimmune diseases. Several countries have widely used them for COVID-19 treatment [124, 

125]. However, due to their adverse side-effects, including a loss of vision, nausea, and 

cardiovascular complications, neither chloroquine nor hydroxychloroquine have been 

recommended in the clinical setting to treat COVID-19. It is shown that chloroquine and 

hydroxychloroquine exert their effect by accumulating in lymphocytes and macrophages, thus 

inhibiting pro-inflammatory cytokines secretion and activating anti-SARS-CoV-2 CD8+T-cells 

[126]. Several other immunomodulators and anti-inflammatory drugs are also being tested in 

clinical trials [127].
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On the other hand, novel therapeutic interventions are urgently needed to stop or slow down the 

virus's replication and spread. Many therapeutic options are currently being investigated apart 

from vaccine development, including drugs with distinct antiviral and immune-inflammatory 

properties [40, 128]. The efforts are directed to mask the COVID-19 functional receptors on 

human cells, ACE2 and TMPRSS2 [40, 128]. Several therapeutic strategies for COVID-19 have 

been recommended, including pre-existing medicines (chloroquine, hydroxychloroquine, 

remdesivir and lopinavir) for viral treatment, protein modeling, and genetic analysis using 

several computing techniques [129-133]. Camostat, the serine protease inhibitor, blocks 

both TMPRSS2 and TMPRSS4 and reduces influenza virus replication and cytokine production 

in primary cultures of human tracheal epithelial cells [134]. Therefore, camostat was proposed 

as a potential COVID‐19 therapeutic agent [135].

Reducing or quitting smoking can slow down the damage of the respiratory epithelial 

architecture [136], reduce secretory cell hyperplasia [137], and decrease ACE2 secretion by 

40% [53]. Soluble ACE2 is considered a plausible treatment option in cases where ACE2 is 

over-expressed in the airway's epithelium in smokers [138]. Monteil et al. [139] showed that 

human recombinant soluble ACE-2 (hrsACE2) reduced SARS-CoV-2 viral loads in infected 

Vero-E6 cells, kidneys, and vascular organoids. In Europe, hrsACE2 is under Phase 2 clinical 

trial (ClinicalTrials.gov NCTO4335136) as a therapeutic agent for COVID-19 [140]. However, 

the efficacy of such therapy in smokers and COPD patients who have elevated levels of ACE2 

needs to be determined. Moreover, use of therapeutics and dietary supplements to normalize 

NO levels in smokers should be considered to minimize the incidence of COVID-19 disease 

and its complications [91].

Investigations using in-vitro models and anti-retroviral drugs (lopinavir and ritonavir) are 

effective against human immunodeficiency virus 1 (HIV-1) infection, SARS-CoV, MERS-

CoV, and SARS-CoV-2 viruses [141, 142]. However, research has shown that neither lopinavir 

nor ritonavir improves symptoms compared to standard care in severe COVID-19 patients 

[143, 144]. However, a combination of lopinavir-ritonavir with oseltamivir showed complete 



15

recovery after COVID-19 pneumonia [145, 146]. On the other hand, remdesivir has been 

shown to effectively inhibit SARS-CoV-2 in in-vitro studies using Vero E6 cells [129, 147].

Summary and Outlook

Although smoking can enhance the expression of key entry genes of SARS-CoV-2 used for 

viral activation, the underlying mechanisms of tobacco-related upregulation of these receptors 

and the degree to which smoking affects infection susceptibility and clinical manifestations 

remain unknown. Future mechanistic studies are warranted to address these issues.
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 Summary of correlation between smoking and the expression of SARS-CoV-2 key entry 

genes, clinical manifestations, and disease progression

 Smoking-related cardiovascular and respiratory pre-conditions are anticipated risk factors 

for COVID-19

 The impact of smoking on ACE-2 and TMPRSS2 receptors expression is still 

controversial


