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Featured Application: The understanding of the connection between information and life could be 

proven crucial in our understanding of the brain and how it functions. Information processing takes 

place probably on all levels of living processes, that is, from the molecular to the macroscopical 

levels. Therefore, we have attempted to present some considerations and controversies on the topics 

of information and life along with some applications on how this can be applied to brain-related or 

brain-similar systems. 

Abstract: Information is probably one of the most difficult physical quantities to comprehend. This 

applies not only to the very definition of information, but also to the physical entity of information, 

meaning how can it be quantified and measured. In recent years, information theory and its function 

in systems has been an intense field of study, due to the large increase of available information 

technology, where the notion of bit dominated the information discipline. Information theory also 

expanded from the “simple” “bit” to the quantal “qubit”, which added more variables for consid-

eration. One of the main applications of information theory could be considered the field of “auton-

omy”, which is the main characteristic of living organisms in nature since they all have self-sustain-

ability, motion and self-protection. These traits, along with the ability to be aware of existence, make 

it difficult and complex to simulate in artificial constructs. There are many approaches to the con-

cept of simulating autonomous behavior, yet there is no conclusive approach to a definite solution 

to this problem. Recent experimental results have shown that the interaction between machines and 

neural cells is possible and it consists of a significant tool for the study of complex systems. The 

present work tries to review the question on the interactions between information and life. It at-

tempts to build a connection between information and thermodynamics in terms of energy con-

sumption and work production, as well as present some possible applications of these physical 

quantities. 
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1. Introduction 

Natural sciences are based on the principle of observation and description. In partic-

ular, this does not only rely on the motif of observation/description but also on the attempt 

to describe the phenomenon with a generalized law. Laws (or theories) have the property 

of being able to predict a phenomenon; that is, based on the present state it is possible to 

define, within an amount of certainty, the future conditions [1]. On the other hand, bio-

logical systems are very complicated to describe and thus it is very difficult to pose gen-

eralized theories or mathematical formulations. A possible explanation for the diverse be-

havior of similar biological systems is that they receive different information from their 

surroundings (there is no better way to state this observation than through the words of 

Erwin Schrödinger, who dealt with this subject in his work “What is life? The Physical Aspect 

of the Living Cell”. In his own words: “…The reason for this was not that the subject was simple 

enough to be explained without mathematics, but rather that it was much too involved to be fully 

accessible to mathematics. Another feature which at least induced a semblance of popularity was 

the lecturer’s intention to make clear the fundamental idea, which hovers between biology and 

physics, to both the physicist and the biologist. For actually, in spite of the variety of topics involved, 

the whole enterprise is intended to convey one idea only—one small comment on a large and im-

portant question. In order not to lose our way, it may be useful to outline the plan very briefly in 

advance. The large and important and very much discussed question is: how can the events in space 

and time which take place within the spatial boundary of a living organism be accounted for by 

physics and chemistry? The preliminary answer which this little book will endeavor to expound 

and establish can be summarized as follows: the obvious inability of present-day physics and chem-

istry to account for such events is no reason at all for doubting that they can be accounted for by 

those sciences…” In the same work, Schrödinger continues “Was it absolutely essential for the 

biological question to dig up the deepest roots and found the picture on quantum mechanics? The 

conjecture that a gene is a molecule is today, I dare say, a commonplace. Few biologists, whether 

familiar with quantum theory or not, would disagree with it. On p. 47 we ventured to put it into 

the mouth of a pre-quantum physicist, as the only reasonable explanation of the observed perma-

nence. The subsequent considerations about isomerism, threshold energy, the paramount role of the 

ratio W:kT in determining the probability of an isomeric transition—all that could very well be 

introduced to our purely empirical basis, at any rate without drawing on quantum theory. Why 

did I so strongly insist on the quantum-mechanical periods for the point of view, though I could 

not really make it clear in this little book and may well have bored many a reader? Quantum me-

chanics is the first theoretical aspect which accounts from first principles for all kinds of aggregates 

of atoms actually encountered in Nature…”) [2]. Received information procures changes in 

all systemic levels of the biological system; that is, on the sub-molecular, molecular, cellu-

lar, tissue and organism levels. 

Therefore, as anticipated, biological sciences are considered as “accidental sciences” 

in contrast to the most “classical” natural sciences such as mathematics, physics and chem-

istry [3]. What is actually suggested is that the “special features of biology as a field are 

apparent rather than actual because rather than being accidental, biological phenomena 

are more likely subject to informational rather than physical laws” [3]. Thus, this is in 

agreement with our opening clause suggesting that “biology is ultimately markedly dif-

ferent from physics, insofar as we understand physics as having laws” [3]. 

On one hand, current technologies allow the investigation of biological systems 

down to the level of molecular visualization as e.g., proteins, and on the other hand allow 

the immense investigation of expression parameters such as genes, proteins, etc. The po-

tential currently provided by high-throughput methodologies of biological systems ex-

ceeds our capacity in understanding these data. This fact has always been the main prob-

lem in biology, since most descriptions of its phenomena can, and are, almost exclusively 

contemplative. Thus, prediction of the future states of a biological system still remains 

elusive. To make this a bit plainer, we will give a very simple example. Suppose we study 

the presence of a protein in a cell type, under a given condition (e.g., the effect of a growth 

factor in time). Suppose also that we can detect the protein and measure its levels (X) at a 
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given time (t), that is, we know Xt. Our question is whether we can accurately predict 

protein levels at time t + 1, i.e., Xt+1. The answer to this question is no, since the only way 

to do this is to approximate. That is, we can calculate the probability that Xt+1 takes certain 

values. Following the previous example, we could pose the same problem for a cell pop-

ulation. Suppose also that we can know the cell population of a system (N) at a given time 

(t), i.e., we know Νt. Our question is whether we can accurately predict the cell population 

at time t + 1, i.e., Νt+1. The answer to this question is also elusive, since we are not in a 

position to predict the cell population in the future. 

The aforementioned examples show that there is no way of describing a biological 

system, just as we do with natural systems. This is the reason why a cellular system will 

behave differently in Athens as compared to a cellular system in New York. The differ-

ences will not be drastic, but if we place both systems at the same time and under the same 

initial conditions we will not have the same proliferation. The reason for this is most likely, 

that the two systems during their progression, i.e., their proliferation, will receive differ-

ent stimuli, i.e., information, from the environment and will respond dynamically. It is this 

dynamic reaction in biological systems that leads them to exchange information and en-

ergy with their environment and, therefore, guides their trajectory. 

1.1. The Basic Principles of Information 

According to Aristotle’s book Physica, the purpose of natural science is the explana-

tion of natural phenomena and the investigation of their etiology. In the 20th century, 

Bohr described the understanding of physics based on empirical evidence from observa-

tion and experimentation. Observation and further description is the principal motif of 

science, leading to the stipulation of laws or theorems, for the prediction of a phenome-

non. Moreover, based on Bohr’s principle of complementarity, it is known that items could 

be analyzed in terms of contradictory properties (for an example: light behaving as a wave 

or a stream of particles), and investigates the causality of inspected phenomena. In that 

way, the ability to predict a phenomenon, i.e., determine its present and future condi-

tions/positions based on the previous and present ones, remains elusive. In order to un-

derstand this statement, we could reformulate Galileo’s experiment; a rock will fall in the 

same way if it falls from heights across different geographic locations of the Earth (in par-

ticular, the speed of an object falling from a height h, is given by the formula 2u gh

, where u is the object’s speed before it touches the ground, g is the gravity acceleration 

and h is he height from which the object is falling). If the height is given, we can easily 

predict the object’s trajectory of fall, its velocity and acceleration [1]. However, the same 

does not apply for the same cell line growing under the same initial conditions in two 

different parts. This is due to differences in the surroundings. Therefore, biological sys-

tems are complex and, thus, it is challenging to form generalized theories or mathematical 

formulations for them. We can thus attribute the complexity of biological systems in the 

receipt of different information from their environment [4]. 

In the mid 1940s, Wiener (1948), was one of the first authors to describe information 

as “information is neither matter nor energy” [5]. Later on, several works have empha-

sized the role of information in diverse disciplines, such as molecular biology, economics, 

linguistics and chemical kinetics [6]. Another definition, proposed for information, came 

from Ashby (1957), who referred to information as the measure of variety in a system 

indicating the distinct elements in it [7]. Erwin Schrödinger in his book What is life? The 

Physical Aspect of the Living Cell tried to answer some of the basic questions about life. More 

accurately, he attempted to reason with the matter without the use of mathematics, but 

with the logic of a physicist. The main objective of his book is not only the different topics 

in life, but mostly to formulate one idea for the important questions about living organ-

isms. Schrödinger questions: “How can the events in space and time, which take place within 

the spatial boundary of a living organism, be accounted for by physics and chemistry?” In this 
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work, he attempts to combine the essential biological questions with the basics of quan-

tum mechanics and concludes that, as the gene is the core element for the creation of a 

human being, so the molecule is for matter. This observation is actually the main key of 

his whole theory that he develops in order to outline the significance of quantum mechan-

ics, because from his point of view science passes from merely observation to the essence 

of his work. Quantum mechanics is the first theoretical aspect which accounts from first 

principles for all kinds of aggregates of atoms actually encountered in Nature…” [2]. 

Information in its broader sense has several levels of organization. The first level con-

cerns the data, which are defined as the primary data, the observations and measurements 

produced by a system and are intended for analysis and processing, with the aim to be 

converted to useful information for decision-making, or to draw useful conclusions [8]. 

Alternatively, data could be considered as a set of objective events, observations, or activ-

ities that are recorded and stored, but not organized in such a way that they acquire some 

particular significance. Data can be in various forms. They can be numerical, alphanu-

meric, shapes, images, sounds, etc. Examples of such records are the temperature changes 

in one year, the meteorological observations of an area for a certain period of time (date, 

temperature, humidity, sunshine, etc.), the altitude of a geographical area, the number of 

users who wrote the word “flu” in social media, etc. Within a system, data can be inserted 

through paper or electronic form, language, image or audio, stored on various storage 

media and produce within a system a sufficient bulk able to be converted into infor-

mation. Although raw data are not particularly important, they have the characteristic 

that their collection is relatively simple and can be easily transmitted and stored in an 

electronic database. When data acquire a measuring unit, it is then that they become useful 

information. Finally, information can be processed in order to become knowledge, which 

is the level that living organisms use [9]. 

Information theory focuses on the valuation (quantification), storage and corre-

spondence (communication) of any sort of data. Shannon in 1948, in his landmark paper 

“A Mathematical Theory of Communication” [10], proposes a theory about information 

that includes a transmitter and a receiver for the encoding of every information-message. 

In this article, the basic elements of communication are described according to the general 

Shannon diagram and have five key points: (a) an information source, that produces a 

message; (b) a transmitter, that has the ability to recreate a message as a signal; (c) the 

signal is sent through the channel; (d) the receiver, that mainly transforms the signal he 

receives, from the channel into the message that was intended to transfer, and (e) finally 

the destination which can be a person or a machine for whom the primary message was 

intended (Figure 1). 

 

Figure 1. Diagrammatical representation of information theory. 
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1.2. Shannon’s Information 

Information is probably one of the most complex scientific aspects. In 1948 Shannon 

published a study entitled “A Mathematical Theory of Communication” [11], which focused 

on the various ways of information encoding from a transmitter to a receiver. The main 

idea of this seminal work was to link information with probability. In this fundamental 

work, Shannon mainly used the concept of probability theory in information. If ZL is the 

set of all “words” of a length L for a finite alphabet Z, then each “word” w is a possible 

message sent by an information source, and consists of a “stationary stochastic process” 

[12]. Thus, if P(w) is defined as the probability for a word w to be sent as a message the 

information it contains under Shannon’s information definition is: 

2( ) : log ( )I w P w   (1)

In that sense Shannon introduced the term of “informational source” as a pair (X,p), 

where X is a finite set of objects and p is the probability function assigning to every x X
the probability p(x) of occurrence. This approach had as a consequence the definition of 

the average quantity of an information source (X,p), which is defined as: 

( , ) ( ) log ( )
x X

H X p p x p x


   (2)

The H(X,p) function is also called the entropy function, where the total entropy can 

be described: 

,
0

n

j j i
i

H H


   (3)

The first applications of his theory included the computation of Channel Capacity 

with the induction of information to bits, which is the abbreviation for “binary digit” [9]. 

Bits can exist in two states, which can be abstractly represented by the digits 0 and 1. In 

that sense every information can be described as the combination of binaries. 

Further on, bits can be used to implement information by means of a semiconductor, 

magnets, condensers and so on. In general, information can be divided in three main pro-

cesses: (a) Storage, (b) Transmittance and c) Processing [10,11]. Moreover, information 

should have a content, some sort of meaning that will make sense to the receiver (seman-

tics) [13] and finally, a critical aspect of information theory is the transmission. This in-

cludes several discrete stages, which are: a) the message, which includes the information 

per se, b) the transmitter, c) the encoder, which transforms the information into bits, d) 

the channel of information transmittance, e) the decoder, which decodes the digital infor-

mation, f) the receiver (also called the destination) and g) the noise source, which is be-

yond the control of the transmittance process and interfered with the information (Table 

1). 

Table 1. The process of transmission plays an important role in establishing the terms of 

information theory. The present table shows the key elements involved. 

 Stage Description 

1 The message Includes the information itself 

2 
The transmitter 

(source) 
It is the sender of the message 

3 The encoder 
The encoder represents the message in a sequence of bits (or 

other symbols) based on a rule 

4 The channel is the conduit for information 

5 The decoder 
reverses the process of encoding the message and represents the 

message in a format understandable to the recipient 
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6 
The receiver (desti-

nation) 
It is the recipient and the signifier of the message 

7 The noise source 

It is the environment of the system and is a factor that is beyond 

our control. It is a cause of information degradation. We believe 

that it interferes with the information as it spreads through the 

transmission channel. 

Entropy in Shannon’s Information 

The most basic concept of classical information theory is that of Shannon entropy 

[11,13]. This quantity is related to the information load of measuring the value of a random 

variable X. In a sense, entropy measures the uncertainty we have about predicting the 

value of X before observation. Thus, in the literature entropy is also referred to as an un-

certainty measure. The importance of entropy as an information load is fundamental to 

applications because its value determines the minimum amount of information we need 

to retain from a message in order to be able to reproduce the original information. This 

result is included in Shannon’s Noiseless Coding Theorem [14,15], which is fundamental 

to information theory. Essentially, the concept of entropy comes to answer the basic ques-

tion that has to do with how much natural resources we need to consume in order to 

manage some information. The importance of entropy as an information load is funda-

mental to applications because its value determines the minimum amount of information 

we need to retain from a message in order to be able to reproduce the original information. 

This result is included in Shannon’s Noiseless Coding Theorem [14,15], which is funda-

mental to information theory. Essentially, the concept of entropy comes to answer the 

basic question that has to do with how much natural resources we should consume in 

order to manage some information [9]. 

1.3. Quantum Information 

In 1989, John Archibald Wheeler tried to unify the concept of information with phys-

ics and quantum theory [16]. Its basic definition was “…every physical quantity, every 

‘it’, derives its ultimate significance from bits, binary yes-or-no indications…”. This state-

ment was summarized in the phrase “’it’ from ‘bit’”. Wheeler’s study included evidence 

from Bohr’s position on information, who argued that quantum mechanics and relativity 

lead us to abandon the shackles of the world’s visual perception, and that what seemed 

particularly important was language (linguistics). In simpler terms, Bohr said that regard-

less of any physical condition, people need a language to communicate, any form of lan-

guage either vocal or visual [17]. As aforementioned, language (more generally commu-

nication) is the toolbox through which the experience is perceived as well as its analysis. 

Beyond that, however, Wheeler described bits as the “quantum of reality”, in his own 

words “…I suggest that we may never understand this strange thing, the quantum, until we 

understand how information may underlie reality. Information may not be just what we ‘learn’ 

about the world. It may be what ‘makes’ the world. An example of the idea of ‘it’ from ‘bit’: when a 

photon is absorbed, and thereby ‘measured’—until its absorption, it had no true reality—an 

unsplittable bit of information is added to what we know about the world” and ”…at the same 

time, that bit of information determines the structure of one small part of the world. It ‘creates’ the 

reality of the time and place of that photon’s interaction…” [18]. 

Quantum information matches digital information and bit, where the unit of measure-

ment is the “qubit”. Quantum information differs from classical information in many critical 

aspects. In digital information, the values that a system can take are two and are distinct, 0 

and 1. In the case of quantum information, the “qubit” and is a continuous variable, de-

scribed by the direction of a vector in a sphere termed as the Bloch’s sphere (Figure 2). 

As qubit’s nature is the elementary unit of information, the Heisenberg Uncertainty 

Principle applies (“In quantum mechanics, the uncertainty principle (also known as Hei-

senberg’s uncertainty principle) is any of a variety of mathematical inequalities asserting 
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a fundamental limit to the precision with which the values for certain pairs of physical 

quantities of a particle, such as position, x, and momentum, p, can be predicted from initial 

conditions. Such variable pairs are known as complementary variables or canonically con-

jugate variables and, depending on interpretation, the uncertainty principle limits to what 

extent such conjugate properties maintain their approximate meaning, as the mathemati-

cal framework of quantum physics does not support the notion of simultaneously well-

defined conjugate properties expressed by a single value. The uncertainty principle im-

plies that it is in general not possible to predict the value of a quantity with arbitrary cer-

tainty, even if all initial conditions are specified” (from https://en.wikipedia.org/wiki/Un-

certainty_principle#cite_note-Sen2014-1, accessed on 16 October 2020).) [19]. Thus, it is 

impossible to measure the value of the elementary unit accurately. In addition, a qubit 

cannot be translated into bits, due to the non-teleportation theorem (“In quantum infor-

mation theory, the no-teleportation theorem states that an arbitrary quantum state cannot 

be converted into a sequence of classical bits (or even an infinite number of such bits); nor 

can such bits be used to reconstruct the original state, thus ‘teleporting’ it by merely mov-

ing classical bits around. Put another way, it states that the unit of quantum information, 

the qubit, cannot be exactly, precisely converted into classical information bits. In crude 

terms, the no-teleportation theorem stems from the Heisenberg uncertainty principle and 

the Einstein–Podolsky–Rosen paradox: although a qubit can be imagined to be a specific 

direction on the Bloch sphere, that direction cannot be measured precisely; if it could, the 

results of that measurement would be describable with words, i.e., classical information. 

If it were possible to convert a qubit into classical bits, then a qubit would be easy to copy 

(since classical bits are trivially copy-able)” (from https://en.wikipedia.org/wiki/No-tele-

portation_theorem, accessed 20 October 2020).). Although this theorem holds, it is possi-

ble to move qubits from one physical entity to another via quantum teleportation. The 

qubit cannot be copied or deleted. It cannot be delivered to more than one recipient. A 

qubit can be changed by applying linear transformations and/or quantum gates to it, the 

analog of logical circuits in digital information. Qubits can be synthesized and result in 

digital sets. Quantum information can be transferred to a communication channel, like the 

classic example of communication channels. The simplest quantum system is described in 

a complex two-dimensional vector space (2-D Hilbert space C2) [9]. 

 

Figure 2. Bloch’s sphere is a geometrical representation of a two-level quantum mechanical sys-

tem, the qubit. The vector   takes values between 0  and 1 . 
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If we define an orthogonal reference system in a Hilbert space and let 0  and 1  

be two constant vectors, then any state of the system can be expressed as a linear combi-

nation of these vectors such as | 0 1    , where α and β are complex numbers 

and must satisfy the condition 
2 2 1   . If those conditions hold then   is said 

to be normalized. The conditions 0  and 1  are also referred to as computational basis 

states. 

It is useful to make a comparative presentation of the quantum bit with the classic 

bit. The bit can only exist in one of the discrete states 0 and 1 at a time. In contrast, qubit 

has a continuous state space and can exist in any state that can be described by the com-

plex numbers a and b. In the case of bit we can always be sure if our system is in state 0 or 

1. On the contrary, for a qubit we cannot say with certainty which of the two states it is in. 

For example, if we have only one qubit, we can in no way make a measurement that will 

tell us if our system was in state 0 or the state before the measurement [9]. Determining 

the initial state, however, it is statistically possible if we have a large number of similar 

initial states. The difference between qubits and classic bits becomes more apparent when 

we have to compare systems with more bits. Two classic bits can be found in four different 

states: 00, 01, 10 and 11. In the case of two qubits, any linear combination of the four base 

vectors is possible. This means that the two qubits can be found even in states of complete 

quantum correlation or otherwise in states that are entangled. Such situations are all four 

Bell states: qubits are useful in the theoretical understanding of the meaning of infor-

mation, in finding practical methods of its representation and in its processing. Therefore, 

the elementary unit of quantum information should be able to change its state and is 

adapted based on specific mechanisms so that it can store and process information. The 

mathematical representation of these mechanisms of change (transformations) is done 

with the help of linear operators. The four basic transformations are the following (Pauli 

operators): The transformations of one qubit or more are called quantum gates in the lan-

guage of information theory in correspondence with the logic gates of classical theory. 

Quantum gates are generally unit transformations. Pauli transformations are an example 

of quantum gates. The X operator is often called the quantum not gate because it overlays 

the computer base vectors and. Operator Z is also known as phase flip gate because it 

holds that and. There are several reasons why we take qubit as the fundamental amount 

of quantum information. First of all, the qubit is the simplest quantum. Also, any finite 

dimensional quantum system can be described by an equivalent system consisting of a 

finite number of qubits. Of course, other basic information storage systems have been de-

vised, such as qutrits, similar to classic trits (three-state systems), but they can again be 

defined as a subsystem of qubits. For these reasons qubit has prevailed as the fundamental 

unit of quantum information. All of the above are differences between the two types of 

information, digital/classical and quantum. 

1.4. Information and Thermodynamics 

At this point another question arises and that is what is the connection between in-

formation and thermodynamics (the father of thermodynamics is considered to be the 

French physicist Nicolas Leonard Carnot (1 June 1796 - 24 August 1832†)); This question 

has been faced by Landauer, who states that “in order to completely delete an information, 

energy must be consumed” [20]. However, it is difficult to measure information directly and 

the proposed way is to define it through “ignorance” that is missing information. As pre-

viously stated, it is possible to define “ignorance” mathematically and thus information 

can be defined based on the difference of the level of “ignorance” before and after receiv-

ing information [6]. However, progress in this area and how they relate to biological phe-

nomena can be attributed to the two aforementioned major scientists: Max Karl Ernst Lud-

wig Planck (23 April 1858–4 October1947), father of quantum theory, and Erwin Rudolf 
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Josef Alexander Schrödinger (12 August 1887–4 January 1961†) father of quantum me-

chanics. With their work, the foundations for the coupling of biology and physics were 

essentially laid. In fact, for the first time, the relationship between thermodynamics and 

biological systems is discussed in such a way as to show that there is a clear connection 

which, however, was not and is not capable of being described with the existing mathe-

matical formalities. 

To better understand the aforementioned concepts, it is interesting to examine the 

relationship between thermodynamic equilibrium and cell proliferation and, therefore, 

proliferative dynamics. As is well known, biological systems receive stimuli from the en-

vironment, that is, information, and exchange energy and matter. We have already men-

tioned this before, and here we further specify it with reference to competition for energy 

resources. It is also known that biological systems are open, that is, they exchange energy 

and mass with their environment. Another fact that we know for sure is that they operate 

out of thermodynamic equilibrium. To put it simply, the cells of eukaryotic organisms 

operate at a lower ambient temperature (e.g., on a cool spring night), but often much 

higher (e.g., in a sauna). In both cases there is a way for the cells to maintain a constant 

body temperature and not equilibrate with their environment. This is an example of an 

operation out of thermodynamic equilibrium. Another example is the function of reaction 

enzymes as catalysts, which would not be possible in any other case. So, we could say that 

biological systems have three properties: they exchange energy and mass with their envi-

ronment, they compete for resources (mass, space and energy) and, therefore, they multi-

ply and in fact not erratically but in a coordinated way. These three phenomena may be 

formulated as a theorem but will not be the subject of the present work. 

2. Information and Life 

All living organisms have three basic properties: a) they have a structure, which iso-

lates them from the environment (e.g., the cell membrane), b) they maintain a minimum 

of entropy (i.e., they operate out of thermodynamic equilibrium) [21] and c) (and most 

importantly) they are compatible with life. We emphasize point (c) in particular because 

even the pathology in an organism, caused by invaders such as bacteria or by cells of the 

same organism, such as neoplasms, is compatible with life. Living organisms have two 

more points that make them stand out. They can reproduce and receive information from 

the environment, which they store in the form of a genome. In a recent work it was sug-

gested that the concept of information at the biological level is intertwined with the ability 

to produce work (from biological systems) [22]. Although it is quite clear that the three 

elements of information, namely transmission, processing and storage are key compo-

nents for the preservation of life, the basic mechanisms and the role of information, remain 

unclear and subject of intensive study. This problem becomes even clearer by the fact that 

we cannot give an accurate and unique definition of biological information as well as its 

measurement. Many times, in order to bypass this “reef”, biological information is defined 

as a quantity, which is entailed within the biological system and its dynamics. In fact, this 

is considered to be true to such an extent that it is impossible to separate the two entities, 

the biological system (chemistry) and information [22]. 

Of particular interest is the fact that it is difficult to distinguish between what is in-

formation and what is not. Let us consider for example a closed cell system in vitro. The 

cells are in a culture medium, which provides nutrients and constant pH, and an incubator 

provides a constant temperature and oxygen. Assuming that cells are allowed to prolifer-

ate without any restrictions and constant nutrients concentrations, then this means that 

within a given period of time they will starve. Absence of nutrients is an environmental 

stimulus, which leads to a number of reaction mechanisms by the cell, which try to main-

tain their homeostasis and life. At the cellular and molecular levels, both genomic and 

non-genomic responses are likely to consist of information flowing from one direction to 
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another. The question, however, is whether the original condition of starvation is in turn 

information. 

2.1. The Old Problem of Maxwell’s “Demon” 

To better understand the meaning of information, we need to refer to Maxwell’s De-

mon. This is an imaginary experiment devised by James Clerk Maxwell and connects the 

concepts of information and entropy with energy. This hypothetical experiment was de-

signed to better understand and possibly ‘overturn’ the second law of thermodynamics 

which forbids the production of energy from scratch in a closed system. Maxwell first 

published his conception of this imaginary experiment in 1871 in his book Theory of Heat 

[23], in a section on the limits of the second law of thermodynamics. Maxwell’s term, ‘de-

mon’, is attributed to William Thompson. In the device of the experiment, a “being” ca-

pable of knowing at any time the speed and position of each molecule of a gas, in a con-

tainer divided into two parts, pulls and opens a door at will and allows the “cold” (low 

speed) and the “hot” (high speed) molecules to separate. The door is allowed to close 

immediately after the selective passage of each molecule and the spring returns to the 

demon the energy it expended to open it. In the end, without giving energy to the system, 

which is considered isolated from the environment, one side of the box appears with high-

speed particles, thus hot gas, and the other with low-speed particles, thus cold gas, (and 

possibly different pressure in one container from the other). This leads to an increase in 

the energy of the system, since we can combine the two heat tanks (left and right), with 

different temperatures, with a heat engine in order to produce work (Figure 3). 

However, the existence of a “being” with such characteristics, capable of performing 

all this information processing without wasting energy, at least as much as it produces by 

separating particles to hot and cold, proves impossible. To transform a disordered system 

(mixed molecules) to an ordered system (the molecules are organized spatially according 

to their velocities), that is, to obtain information (which describes a more organized sys-

tem) from the processing of the data of each molecule, requires energy expenditure. The 

increase in information, resulting from the description of a more organized system, is 

equivalent to a decrease in entropy, which is prohibited by the second law of thermody-

namics for a closed system. This experiment was given many interpretations and finally 

it turned out that the second law of thermodynamics applies. To be more precise, the de-

mon must waste energy to monitor and record all their molecules and velocities and de-

cide which is slow and which is fast as they are constantly exchanging energy with each 

other. It needs to constantly send messages to each molecule in order to return the coded 

information of their position and speed, or to be able with some series of measurements 

to be able to receive this information. This information must be stored and processed in 

order to decide when to open and close the door, for example it must be careful not to be 

a “fast” molecule near the door and in the direction of the “cold” container when it opens. 

 

Figure 3. Maxwell’s Demon. High-speed, thus high-energy, particles (red circles) and low-speed, thus low-energy, parti-

cles (blue circles) co-exist in two chambers in equilibrium, meaning that the total energy is the same in both chambers. A 
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demon can open the door in the center of the box and, therefore, separate the high-speed from the low-speed particles. 

After a while, the demon would have formed a new situation, where the high-speed particles would be prevalent in one 

chamber and the low-speed particles in the other. That way a box would have formed far from equilibrium, and in partic-

ular one chamber will be hotter than the other. 

One of the most famous answers to the problem was proposed in 1929 by Leó Szilárd 

[24] and later by Léon Brillouin [25]. According to their interpretation, since the demon 

and the particles interact, we must consider that the total entropy of the system is the 

combination of the entropy of both. The increase in the entropy of the demon from the 

measurement process would ultimately be greater than the decrease in the entropy of the 

particles, so that the total entropy would increase. Assuming that information transfer by 

molecules was performed by a reversible thermodynamic processes, Rolf Landauer ar-

gued in 1960 that the measurement process was possible without increasing entropy [20]. 

This reasoning would apply, provided that the information collected and stored is not 

erased, as any reduction in information equates to an increase in entropy. The final proof 

came in 1982 from Charles H. Bennett. Bennett showed that no matter how well prepared 

the demon was, he would eventually have no memory available to store and process the 

information he would receive, and would have to begin erasing some of the information 

he had previously collected to reuse the memory. Deleting information, however, is an 

irreversible process, which means that eventually the entropy would increase, that is, we 

would not be violating the second law of thermodynamics and producing energy from 

scratch. 

2.2. Information in the Cellular Context 

Based on these observations, we could postulate the following: to reduce entropy 

requires knowledge, i.e., information. Here, however, things are becoming more compli-

cated since we mentioned two concepts, knowledge and information. It is not enough for 

the Demon only to know that there are molecules present in the box, but he also must 

have knowledge of their properties. Similarly, a random series of letters on a board, could 

be information for an observing party, yet putting them in the correct order to form words 

is knowledge, that is, useful information. 

Similarly in a cellular system, if a random amino acid sequence is produced in the 

ribosomes, they will take such conformation in order to obtain a minimum energy level, 

however the amino acid sequence will bear no functional role in the cell. Therefore, the 

appropriate amino acid sequence must be formed. Perhaps, drawing a parallel between 

the Demon and the cell, we could say that the cell sorts the erratically “spoken” infor-

mation of the environment, since the variety of stimuli can be infinite, and responds in 

such a way as to maintain its homeostasis, spending energy. This principle, in fact, has 

been reported to be applicable as a generalized theory of planet Earth [26]. 

In addition, let us consider a more complex issue in biology, which is cancer. To date, 

it is not entirely clear why it appears and there are many theories about the mechanisms 

of carcinogenesis. In a recent study it was stated that carcinogenesis is directly related to 

thermodynamics and entropy [21]. The basic premise is that biological systems, in order 

to be thermodynamically stable (i.e., to function), must have the maximum (?) amount of 

information. For example, from prokaryotes to eukaryotes, information maximized as mi-

tochondria were added to the second, providing energy and autonomy. Therefore, the 

gradual transition from the healthy cell to the cancer cell represents the reverse process, 

where information is minimized, that is, we move on to what is called information destruc-

tion. This process takes place in discrete stages. The first is genomic instability, or genomic 

abnormalities. Accumulation of chromosomal and sequential mutations probably leading 

to neoplasms. The second is cellular instability, where the cancer cell differs both morpho-

logically and phenotypically from the normal cell and finally the inability to “process 

time”. Cancer cells are virtually immortal. In fact, it is believed that if they did not lead 

their host to death, they could live forever [21]. 
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At this point, however, some discrepancies arise. The above formulation for the na-

ture of cancer cells is directly related to our perception of the tumor cell. In the clinical 

setting, tumor cells are considered as a pathophysiological condition, where its presence 

is incompatible with life and therefore justifies the view of minimizing information. There 

is another view, however, which sees the tumor cell as an evolution of the normal cell. 

After certain stimuli, the cell comes to a “crossroad”, in which it has to choose between 

apoptosis and immortality, and in the case of tumors it chooses immortality. We would 

even dare to say that the cell passes from the “mortal” state that possesses and passes to 

another “higher” state, which is “immortality”. In addition, the progression of a tumor, 

after its appearance, signifies anything but lack of information. The homeostasis mecha-

nisms, the tumor cell acquires, are so powerful that it is able to overcome any attempt to 

eliminate it by becoming resistant to chemotherapeutic agents even in radiation, both ex-

tremely lethal to normal cells. Also, the fact of genomic abnormality, which is observed in 

cancer cells cannot be considered absolutely as the general causative factor but rather as 

the result. This is due to the fact that mutations, which are present in a cancer cell, manifest 

in frequencies (that is a mutation is present in a fraction of tumor cells) and not in their 

entirety (that is, a mutation is not present in all tumor samples). For example, a well-stud-

ied factor is the TP53 protein, for which dozens of mutations have been found to date, but 

which are also found in normal cells, without being a sufficient and necessary condition 

for carcinogenesis. 

One last point, and perhaps one of the most interesting, is the energy balance in can-

cer. One of the first theories of carcinogenesis was formulated by Otto Warburg, who ob-

served that mitochondria malfunctioned in cancer cells [27]. Up-to-date it is known that 

the energy needs of the cancer cell are not covered through oxidative phosphorylation, 

which has the highest efficiency in the oxidation of glucose but through glycolysis, which 

has a very low energy efficiency and a significant by-product, the lactic acid. Therefore, it 

has been suggested that carcinogenesis could be parallelized to the loss of energy effi-

ciency in a stem cell [21]. In other words, it has been suggested that cancer cells cannot 

maintain high levels of information and, therefore, have energy losses. 

However, taking a closer look at the aforementioned statement, it appears that it has 

an inherent error. In the case of tumors, the energy needs are much greater than those of 

a normal cell. In fact, we are talking about large amounts of wasted energy. To highlight 

our concept, let us consider that in oxidative phosphorylation one molecule of glucose 

produces 12 molecules of ATP while in glycolysis, one molecule of glucose produces 2 

molecules of ATP. This means that much larger amounts of energy must be expended (as 

units of glucose molecules, regardless of their final yield) in order to keep the cancer cell 

alive. Thus, from this point of view we can really talk about a waste of resources and not 

about reduction. In order to further determine whether the energy reduction formulation 

is true and, therefore, to link this to the fact that information retention is intertwined with 

work production, the work produced by a cancer cell must first be measured, both at rest 

as well as during division compared to a normal one. This question has not yet been an-

swered and is the subject of extensive research. 

2.3. The Information Flow 

With these thoughts in mind, we come to analyze an interesting part of our topic, as 

was suggested at the beginning of this paper. That is, what is the thermodynamic bearing 

of intelligence (from both sides)? Returning to the example of the Demon, we can ask the 

following question: does it matter, in terms of the energy burden that will be spent, 

whether the Demon is intelligent or not? In other words, will an intelligent Demon con-

sume more energy to achieve the separation of particles from a less intelligent one, even 

assuming that they will both follow the same process of measurements and criteria? The 

question, as far as we know, has not been answered. To complicate the matter a little more, 

if we consider that the energy required for the birth of a human being is W, is there a 

difference between WMore_Intelligent and WIntelligent? At this point we can assume that most likely 
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we do not have any differences in the energy load of the two subjects. Even if one or the 

other case requires more or less methylation, or different nucleotide sequences, the energy 

content of the genes and proteins that play a role in it is the same, and if not the same their 

differences would be negligible. In addition, both subjects, the smart and the less intelli-

gent, as they grow older will consume amounts of energy to grow and, therefore, we can 

assume that they will spend the same amounts (assuming that both subjects have equal 

treatment and as well as equal opportunities in education and life). Let us now turn to the 

subject of information. It is certain that in terms of information, both in terms of transmis-

sion, processing and storage, the more intelligent subject will be able to act with greater 

amounts of information than the intelligent subject and, therefore, based on what we have 

mentioned, larger amounts of energy will be required (Figure 4). 

 

Figure 4. Energy flow from conception to social beings. The transition from one stage to the next requires the expenditure 

of work (energy) yet the work produced at the final stage that is when the social subject is required to produce work, does 

not equal the total energy expenditure. In other words, WMore_Intelligent,1 + WMore_Intelligent,2 + WMore_Intelligent,3 + WMore_Intelligent,4 ≠ 

WInfo_More_Intelligent and WIntelligent,1 + WIntelligent,2+ WIntelligent,3 + WIntelligent,4 ≠ WInfo_Intelligent. 

In Figure 4 we present the transition flow from one state to the next from the stage of 

conception to the interaction with society. A paradox emerges from this diagram. How is 

it possible to start from the same energy levels, assuming that the energy costs (food, 

housing, education etc.) remain constant for both subjects but the effect of information 

flow, work production, is greater for one subject (the most intelligent) as compared to the 

intelligent subject? As mentioned, we have not encountered a study that deals with this 

issue in the literature. 

It is known that the brain consumes the largest amount of glucose as compared to 

other organs. Thinking is an expensive “sport”, but it has not yet been shown that a clever 

thought can “cost” more energy than a less smart thought. In fact, it could be just the 

opposite. A more intelligent mind expends less energy than a less intelligent mind to do 

exactly the same process. We return to the previous paradox. The sum of the work pro-

duced, from the moment of pregnancy until the moment of the first transmission of infor-

mation is ΣWMore_Intelligent ≅ ΣWIntelligent. This equality changes with the transmission of infor-

mation, where produced work increases in direct connection to the information obtained, 

which in turn produces more work. Yet, it is possible that two different subjects will pro-

duce very different levels of work based on their intelligence capacities. Based on these 

observations, it seems that the thermodynamic balance is disturbed. If we decide that the 

thermodynamic equilibrium must remain undisturbed there is one and only one theory 

that could support this. Yet, we still have the problem on how to quantify the effect of 

information on the intelligence and the subsequent produced work. That means if two 

subjects have consumed similar, or comparable amounts of energy to reach different in-

telligence levels, how is it possible that they will produce unequal amounts of work? For 

the law of thermodynamics to apply, there is only one explanation; information carries 

energy! This issue has not been studied to date and to the extent that we are able to know. 
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It would be extremely interesting (but also a big bioethical gap) to study this phenomenon, 

since we would contribute to a better understanding of the natural world that surrounds 

us. On that topic, an interesting work has investigated the thermodynamic cost of fast 

thought [28]. According to previous theories, information becomes meaningful if it can be 

“anchored” to relevant aspects of the preexisting cognitive structure, which are known as 

the “subsumers”. In this context, it is suggested that human cognitive functioning can be 

divided in two main categories; “intuition” (which it is referred to as “system 1”) and 

“reasoning” (which it is referred to as “system 2”). “Intuition” is thought to be the process 

of automatic, instinctive thought while “reasoning” is thought to be the voluntary, logi-

cally deductive type of thinking (which is actually much slower). Without getting into this 

theory in detail, it is proposed that the “thoughtful” process of an individual can be de-

scribed by: 

1 1
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where, I are the units of information that are used as input, si=s(t), S(s1, s2, …, sN) are the 

binding sites of cognitive structure (the “subsumers”) and 
i jS I jD I  is the similarity metric 

of information (I) and the cognitive structures. The 
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  term is the progressive 

differentiation of the learning process in a “system 1” type. Finally, 
i jS I jD I  is a normal-

ized metric that accounts for the correlation between si = s(t) and information I. The term 

( , )f s s  is an “exchange term” representing the sum of the self-interactions between 

“subsumers”, representing the process of integrative reconciliation governed by a “sys-

tem 2” type. Finally, the rate 
dS

dt
 is the modification rate of the cognitive structures with 

respect to time. If this reasoning could be applied to Maxwell’s Demon, then: 

i jS I j

dS
D I

dt
  (5)

where the change rate of cognitive structures, equal to the similarity metric, also called a 

“basal subsumption process”. These formulations were stated in order to separate be-

tween fast thinking (“intuition”) and slow thinking (“reasoning”). In another seminal 

work, the “fundamental equation of information science” has been proposed [29]. This 

statement, was considered to be the transition state of an information (I), with the effect 

of a cognitive framework. In particular, it was defined as:  

( ) ( )K S I K S S    (6)

where, the state of thinking K(S) is equal to the information I plus a next state K(S + ΔS). 

Given these formulations for a time-independent input, this equation can be solved as: 
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   (7)

where, K(S) and K(S + ΔS) could be the prior and later states of a Maxwell’s demon. 

Yet, what is the work produced by the information under “fast” and “slow” thinking? 

In a previous work, investigating the work from a “demon” it was suggested that the 

maximum work obtained could described by [30]: 

W kTI  (8)
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where, k is the Boltzmann constant, T the temperature and I the information quantity ex-

changed. Further on, it was suggested that the time-dependent solution to the formulation 

of Equation (8), is defined as [31]: 

max

0

( ) ( )
t

W t k TIdt kTI t   (9)

where k is the Boltzmann constant, T the temperature and I the information quantity ex-

changed in time t. Based on the aforementioned equations, the smaller the time interval 

the smaller the work produced, and vice versa. Yet, this could not always be true. Alt-

hough, these formulations describe probable differences between “fast” and “slow” think-

ing, they do not describe possible differences between “smart” and “less smart” thinking, 

where both can be “fast” or slow”, thus time-independent. Despite the intriguing ques-

tion, to the best of our knowledge there has been no known answer to date. 

2.4. Information and Genome 

Eukaryotic cells have three common characteristics: (a) they are enclosed in a mem-

brane isolated them from their surroundings, (b) they minimize entropy, functioning be-

yond thermodynamic equilibrium [21], and (c) they are compatible with life. The last trait 

includes both their well-being, but also their pathological state, such as cancer. Biological 

systems are also able to proliferate and exchange matter, energy and information with 

their surroundings [22]. Despite the fact that the three elements of information, i.e., “trans-

mission, processing and storage” make up an essential portrait for life, from the infor-

mation point of view, we know that an information transfer takes place in the processes 

of life, but we do not know how this is achieved. In addition, it becomes more complicated 

since the very meaning of information, its role and measurement in physical systems is a 

subject of research. In particular, in the genomic context it is certain that besides the mo-

lecular exchange during transcription and translation, the exchange of information takes 

place, but we do not know how. The content of information in biological systems has been 

approximated through the “memory” (that is the quantity) that a biological system can 

store and, thus, procure its dynamic evolution. Further on, a plausible hypothesis would 

be that in living systems it is probably not possible to separate the chemical “lattice” of 

life from its informational content [22]. Besides that, we are still not in position to define 

clearly how information is “saved” and transmitted in the genomic context. Several theo-

ries have been advanced, of which some include the conceptualization of the genomic 

information as a formal natural language [32,33], an algorithm [34], a mathematical model 

[35], or an informational theory aspect [36]. 

The information content of a eukaryotic cellular entity consists of the time-dependent 

accumulation of translated intracellular and acquired extracellular information. This in-

formation state controls the morphology and function of that cell, as well as its interaction 

with the external environment. Anomalies in cellular “informatics” can result in disease, 

as clearly exemplified by several genetic disorders [22,37]. 

A very elementary trait of biological systems that discriminates them from other 

physical dynamical systems, is the presence of the genome. In particular, the core infor-

mational content is in the DNA, which is transmitted through transcription (RNA) and 

translation (proteins) [38,39]. At the same time, life could be considered as the “cross-talk 

of genes” interacting in a complex order, of the storage, processing, and propagation of 

cellular information maintained in the genome. This general class of phenomenon can be 

addressed through information theory developed by Shannon [40] and Fisher [41] to 

measure information content and communication. Their studies have contributed to the 

physical sciences and biology [22,37]. 

In a previous work by Johnson, HA (1970), information theory was characterized as 

the “new calculus” for biology. It is apparent that living systems require imperatively 

matter and energy i.e., exchanging those with their environment. Moreover, it has been 
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emphasized that “life without information is likewise impossible” [42]. Since that time, remark-

able progress has been made towards understanding the informational basis for life. 

High-throughput methodologies allow the complete characterization of the RNA and pro-

tein contents of cellular populations and even of individual cells. The human genome (as 

well as the genome of other species) has been sequenced, and provided an immense 

amount of information. 

Biological systems (or living organisms) are complex systems, operating beyond the 

thermodynamic equilibrium. They can exchange energy and mass with their environ-

ment, and manifest self-sustainability, motion and self-protection at the same time. An-

other significant trait of biological systems is the presence of a genome, entailing these 

traits, and the ability of self-awareness of their existence. These traits make it difficult and 

complex to simulate them in artificial constructs. There are many approaches to simulate 

autonomous behavior, yet no one is conclusive. 

One of the main problems in simulating living systems is the transfer and processing 

of information. At the basic level information is transferred from DNA to mRNA to pro-

tein (with the exception of retroviruses, which transfer information in reverse, from RNA 

to DNA). The complexity of these mechanisms made their understanding tedious. Until 

the early 1990s, the main scientific approach was to study the different phenomena (i.e., 

molecules or cellular events) in a sequential order, meaning that researchers could dis-

cover the function and role(s) of biological molecules in small numbers and one step at a 

time. Yet, in the early 2000s high-throughput methodologies emerged (microarrays first 

emerged in 1995), and allowed the study of thousands (or even millions) of factors, sim-

ultaneously. Thus, due to the immense availability of data, the need for mathematical 

modelling emerged. 

Attempting to model biological systems is not new. The first approaches appeared in 

the advent of the 20th century. One of these was named physical biology. As Henri Poin-

care mentioned: “…life is a relationship among molecules and not a property of any mole-

cule…Science is built up of facts, as a house is with stones. But a collection of facts is no more a 

science than a heap of stones is a house…” [4,43]. Despite the immense availability in biolog-

ical data, we are still unable to comprehend the exact mechanics of information transition 

in biological systems. 

One of the main difficulties in simulating biological systems is that they are dynam-

ical in nature. That means that they can adapt to random changes in their environment 

over time. This “obstacle” remains crucial towards the construction of artificial autono-

mous dynamical systems or hybrids. These observations bring about another issue, which 

is the differentiation between stochasticity, randomness and “chaoticity”. Although what 

seems a rather trivial observation for living systems to be stochastic in nature, in reality 

they are chaotic. More specifically, biological systems are the ones that determine their 

equations of “motion”, instead of the classical paradigm where an equation can describe 

the motion of a system [44]. In the case of dynamical chaos, discovered by Poincare, no 

sufficient explanation was given why such systems follow infinitely dynamical trajecto-

ries or perturbations depending on their initial conditions [45]. To this problem, several 

approaches have been proposed where one relatively recent proposal was described as 

the “approximation-free, coordinate-free supersymmetric theory of stochastic partial differential 

equations” [44–47]. This theory, referred to as the supersymmetric theory of stochastic dy-

namics (STS) [48], entails the set of mathematical models, which present a large applica-

bility covering, dynamical systems, with and without noise. From the physical point of 

view, this theory describes the ubiquitous and “spontaneous”, long-range dynamical be-

havior of complex physical systems, such as earthquakes, neuro-avalanches, as living sys-

tems [44,47]. 

3. Applications “after” Information: To the Process of Learning 

Having the information at hand is not necessarily useful or work-producing. Infor-

mation must be converted to knowledge, through the process of learning. This concept 
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was studied by Bush and Mosteller (1957), where a general theory of learning and sto-

chastic process was proposed [43]. For several years investigators have been developing 

a mathematical model for describing a variety of experiments on animal and human learn-

ing. This model was closely related to that developed by Estes and further by Miller and 

McGill [49,50]. These models have led quite naturally into a study of a class of stochastic 

processes, which may be viewed as Markov chains with an infinite number of states. In 

applying the model to the analysis of experimental data, a number of problems in statis-

tical estimation have risen. A learning process, as the term is used, involves systematic 

changes in behavior; one type of behavior may become more frequent and another type 

of behavior may become less so. The authors describe this learning process in a situation 

where a choice of a number of given alternatives occurs periodically. Each occasion on 

which there is an opportunity for making a choice is called a trial. Typically, one observes 

that a particular alternative occurs increasingly frequently—this was called learning—un-

til the system stabilizes so that no more average changes in behavior occur—this was 

called the completion of learning. 

The concept of learning has been tested in several models, including living systems. 

In particular, experiments in mice have been used in order to test the learning process. 

The model proposed by Bush and Mosteller was applied to several sets of data. The first 

set included those reported by Stanley JC from seven rats in a T-maze experiment [51]. In 

each trial the rat could turn either left or right in the maze, and for the portion of Stanley’s 

data being considered, the rat always found food on one side, and never found food on 

the other side. The second set of data was obtained by Bush and Mosteller from five Har-

vard undergraduates operating a machine called the “two-armed bandit”. On each trial, 

the subject pushed one of two buttons; one choice was always followed by a penny reward 

and the other side never led to reward. The third set of data was obtained by Bush RR, 

Davis RL and Thompson GL on six high school students in Santa Monica, California. In 

this experiment, the subjects were presented with two ordinary playing cards, face down, 

in each trial, and they were told to turn over one of the two cards; if the card turned over 

was a heart or diamond they received a reward of a nickel [43,52,53]. All cards in one 

position were reward cards, and all cards in the other position were non-reward cards. In 

all three experiments, there was a reward choice and a non-reward choice, which was 

elementary to the learning process. 

3.1. Learning and Its Application in Information-Driven, Complex Artificial Life 

Information theory has lately been the point of attention for researchers who are in-

terested in the self-organization of artificial life or complex behavior. A concept of these 

approaches is derived from the notion that living organisms are information processing 

systems and in particular, knowledge processing systems. Recent research has also shown 

that the optimization of knowledge acquisition might be an evolutionary advantage. Alt-

hough these ideas are quite intriguing, much interest is focused on the question how a 

general principle can be found for acquiring an artificial system with an internal drive for 

innovation or curiosity, or even more complicated with self-awareness. These approaches 

concern an artificial system that is characterized by a craving for increasing access to in-

formation about itself and the environment [54]. Sooner or later, a strategy for an open-

ended, self-determined development of the artificial system will emerge [54]. 

The use of a proper measure for information was directly made clear by the develop-

ment of information-theoretic approaches. Maximum randomness processes, like noise, 

could be favored by the attempt to maximize Shannon’s information, making it, therefore, 

an indirectly feasible choice. Nevertheless, taking into account the fact that the behavior 

of an artificial system can be as random as possible, this would be an optimal solution. 

Alternatively, the Kolmogorov complexity is a factor that could be used. Schmidhuber’s 

approach to artificial curiosity and self-motivation was based on this factor. In addition, a 

set of a univariate and multivariate statistical set was introduced by Lungarella et al. 

(2005), for the information structure quantification in motor and sensory channels [54,55]. 
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In terms of emphasis, the generic criteria of information theory could vary. The different 

forms of focus, appear in the following examples: on maximization of empowerment; lack 

of homogeneity reduction over multiple agents’ states, evaluated either with Boltzmann 

entropy states of swarm-bots, or with Shannon entropy of rule-space difference; spatio-

temporal coordination increases into a modular intelligent robot, evaluated by the exceed-

ing entropy calculated through a variable time series states of modules, and so on. All 

these examples of self-organization driven by information is the appraisal of the percep-

tion-action loop (or sensorimotor) with regard to information theory. 

For example, the amount of Shannon information from the environment that one 

agent is able to inject within its sensors through actions completion, influencing future 

perceptions and actions, is evaluated by empowerment. In technical terms, for the behav-

ior of a predetermined agent, the definition of the empowerment is stated as the agent’s 

motivation channel capacity: the channel’s max Mutual Information (MI), over the host of 

potential distributions of actions (i.e., the transmitted signal). At the same time, the ex-

ceeding entropy’s maximization throughout a time period, stated in Prokopenko et al. 

(2006), permits the change of logic of controllers (i.e., agent’s behavior changing) into a 

modular robot in a manner that manages to coordinate its actuators [54,56]. 

In nature, autonomy is an ambiguous phenomenon, as well as a significant dare in 

the artifacts world. One of the main characteristics of autonomy for both artificial and 

natural systems is noticed in the ability of autonomous investigation [57]. In the human 

and animal world, the capability to modify their own way of operation apart from a re-

quired feature for survival and adaptation into conditions, it also offers a knowledge sys-

tem with new information in order to improve its intellectual efficiency and development. 

Effective investigation in high-dimensional spaces is a significant challenge in the creation 

of learning systems. The well-known investigation-exploitation reciprocity was thor-

oughly studied concerning the field of augmented learning. In a Bayesian expression this 

reciprocity can be ideally solved, although it is untamed in computation. An even more 

dedicated solution to this concept is to deliver the agent with an internal stimulus for 

concentrating on specific stuff and, therefore, limiting the space of investigation. To ad-

dress this matter in an even more basic way, we contemplate procedures for goal-free 

investigation of a physical system’s dynamic properties as, for example, a robot. If the 

investigation is embedded in the agent by a self-identified manner, i.e., mostly as a deter-

ministic function of variables regarding the internal status despite, through a pseudo-ran-

dom generator, having the opportunity to elude the imprecation of dimensionality [57]. 

The reason is because certain particularities of the system, as for example restrictions and 

other implementation effects, are probably utilized in order to minimize the space for ex-

ploration. Therefore, a strategy of investigation that takes into account the specific envi-

ronment and body is essential for creating capable learning algorithms for robotic systems 

of high-dimension. The question is how goal-free exploration can be beneficial to finally 

aim at goals? 

In 2013, Martius et al. (2013) attempted to indicate that sort of coordinated patterns 

of a sensorimotor are developed that could be used for a quick construction of behaviors 

with extra complexity by using learning in a second level. Also, in a more direct view they 

can be combined with augmented learning where the standard adventitious investigation 

is replaced or increased by the goal-free investigation resulting probably in a considerable 

acceleration [57]. 

This is a general problem, the solution of which requires a basic example to be rela-

tive for a sizeable category of systems. Nowadays, information theory is at the cutting 

edge of the research, focusing on a group of relevant issues extending from evaluating 

and perceived to be autonomous systems even more capable of understanding problems 

of how the robot behavior’s self-organization is related with naturalness and inspiration 

in technical systems and biology [57]. 
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Systematically approaching the problem, both a lusty real-time algorithm in order to 

maximize the information measure and a suitable circumscription of that measure are re-

quired. Τhe entire information of the experience from the past that can be used is quanti-

fied by the prognostic information that results from a process in order to predict forth-

coming occurrences. From a technical view, in terms of time series, it can be determined 

as the reciprocal information, which ranges between the past and the future. It has been 

contended that prognostic information, also defined as transgression entropy and efficient 

measure intricacy, is the most physical complexity standard regarding the time series. By 

default, prognostic information that comes from sensor action is high when the artificial 

life succeeds in producing a flow of sensor values containing a large amount of infor-

mation (in the sense defined by Shannon) by using practices leading to prospective out-

comes. Consequently, by maximizing PI in an artificial life, the expectation is to show a 

high diversity of behavior and at the same time avoiding becoming purely random or 

chaotic. In the current status, somewhere between chaos and order, the artificial life will 

investigate the spectrum of its behavior in a way determined by itself under the sense 

already discussed above. From these rules a definition of a mechanism results for the var-

iability in behavior as a deterministic function which is created at the synaptic level. Re-

garding the linear systems, various features of the method for the PI maximization have 

been presented. Specifically, it could be proven that the principle cause the behavior space 

of the system to be explored in an orderly way. In a particular case with a stochastic oscil-

lator system, the PI maximization caused the system’s controller to sweep through the 

area of given frequencies. More importantly, if a latent oscillation is hosted by the world, 

the PI maximization will train the controller to result in a resonance with this innate form 

of the world. This is emboldening, since at least in this simple example, the meaning of 

maximizing the PI is to strengthen and recognize the latent forms of the robotic system. 

Common measures of information theory are improved in the steady state. For a robot, 

this is not sufficient regarding the behavioral development of self-defined processing. In 

addition, as far as the robotics are concerned, the application of measures of information 

theory is often confined to the occasion of an action space of definite state with distin-

guished sensor values and actions. In addition, these constraints are transcend in this 

manuscript so it can be immediately used in physical robots with state and action space 

of high dimension. Unlike to the linear case, an amount of new phenomena are introduced 

by the non-stationarity and the nonlinearities. For example, in a simple hysteresis system 

the self-switching dynamics as well as the unprompted coaction of systems are coupled 

in a physical way. In systems of high dimension one can observe reduced dimensionality 

patterns of behavior which are dependent on the body as well as on the robot’s environ-

ment. 

3.2. Information Theoretical Concepts in Artificial Life 

Nowadays, the researchers show an intensive interest regarding the question of find-

ing generic mechanisms which support systems such as artificial life to obtain more au-

tonomy. The approximations are broadly scattered, following several paths conforming 

with the certain categorization, as given in the work by Martius et al. (2013). Recently, 

information theory has been used in a group of approximations in robotics, to (i) perceive 

the way that the behavior can structure the input information, and (ii) proceed to the 

quantification of information nature that flows within the brain, as well as in a behaving 

robot [57]. Empowerment is considered as an interesting measure regarding the infor-

mation, which quantifies the Shannon’s information amount that can be “injected within” 

its sensor by an agent through the environment, in a way that affects future perceptions 

and actions. Lately, it has been proven that empowerment is a sustainable purpose for the 

self-defined behavior development in the problem of pole balancing and more agents re-

garding continuous domains. The exploration driven with PI maximization could also be 

considered as an alternative option to the homeokinesis principle since it has been suc-
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cessfully applied to a wide range of complex robotic systems. In addition, the aforemen-

tioned principle has been extended in order to create the core for self-organized and 

guided behavior. 

The self-directed and self-defined exploration for embedded and autonomous agents 

is intimately linked with many latest attempts to provide the artificial life with a moving 

system that produces internal re-compensation signals for learning amplification in pre-

determined tasks. An innovative work of Schmidhuber uses the progress of prediction as 

a re-compensation signal so as to inspire in the robot curiosity for new experiences [57]. 

The “playground experiment” includes related ideas that have been proposed. Also a few 

proposals formed by autonomy a hierarchy of capacities using the prognostic error of 

skills models or in a more abstract way to balance challenges and skills. Moreover, prog-

nostic information can be used as an inherent stimulus in learning enhancement or added 

appropriateness regarding the evolutionary robotics. This approximation brings in fur-

ther physical activities of the artificial life allowing an effective exploitation of embodi-

ment outcomes. Self-determined is implied as “based totally on its intrinsic laws”. In the 

animal kingdom, there is a growing substantiation which shows that the chain of animals 

from spineless creatures to mammals (including fish and birds) are endowed with an 

astonishing degree of diversity in response to a stimulation from the external environ-

ment. Hitherto, the reason for the creation of the particular variance in behavior has not 

been clarified. At the molecular level, the ideas are encompassed in the entire range from 

thermal fluctuations to quantum effects to the pure spontaneity assumption, rooting the 

variance in the presence of purely deterministic and intrinsic processes. If the behavioral 

variance in animals is provided in an identical manner, this can provide new awareness 

regarding the free will enigma. 

3.2.1. Predictive Information (PI) 

Regarding PI, a substantial aim is for the approach to be made independent of any 

discrimination either of the state or/and the action space in order for it to be directly useful 

in the approach of dynamical to artificial systems. The entire information of a previous 

experience is quantified by the PI of a process and it can be used in future events predic-

tion. From a technical point of view, it is determined as the MI between the past and the 

future. It has been disputed that PI, also called effective measure complexity and excess 

entropy, is considered as the most natural intricacy rate regarding the time series. 

The behaviors originated by the PI maximization are characterized by a high PI if the 

artificial life (due to its behavior) succeeds in producing a flow of sensory values contain-

ing high information (according the sense stated by Shannon) under the containment, alt-

hough the results of the robot actions can be still considered as predictable. Consequently, 

the expectation by maximizing the PI of the artificial life is to show a wide variance of 

behaviors but without getting purely random or chaotic. For this regime of work, covering 

the distance from order to chaos, somewhere in between might be expected from the arti-

ficial life to investigate its behavioral potentialities in a most efficient manner. The exact 

reason that this works is made clear in the specific dynamical system, which is analyzed 

below. 

3.2.2. Predictive Information and Dynamical Systems 

The application of measures in dynamical systems of artificial life regarding infor-

mation theory, in the vast majority is limited to the case of a space with finite state action 

and conspicuous sensor and actions values. Concerning the artificial dynamical systems, 

during the last 20 years the advent of a new tendency of control has been studied, which 

is penetrated more deeply in the approach of dynamical systems, using action and sensor 

variables in a continuous manner. This particular approach is very attractive since it al-

lows the effects of the embodiment to be exploited in a more efficient way and renders 

more natural motion regarding artificial life. For example, many prosperous realizations 
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of the “morphological computation” are accomplished by the use of recurrent neural net-

works which behave as the controller of the (dynamical) system consisting of the body, 

the brain, and the environment [54]. The approach of information theory regarding the 

representation of the dynamical systems needs still to be worked out in more detail. More-

over, this is the major motivation of this article, in order to present some initial results in 

this particular direction. 

Zahedi et al. (2010), suggested a generic learning norm which has been extracted from 

the PI in a space of specific state and action, by using the technique of natural gradient 

[54,58]. The approach, from the information theory view, can be considered also as an 

alternate to the homeokinesis principle as reported by Der and Liebscher (2002); a system-

atic approach to the behavioral self-organization which has been successfully applied in 

a wide number of intricate robotic systems [54,57,59]. In addition, the above principle has 

been extended also in order to constitute a basis for self-organized behavior [54,57,59]. 

Can an artificial system develop its skills totally by itself, guided by the single objec-

tive to obtain even more information regarding its body as well as its intercommunication 

with the world? The above question immediately generates further questions: (i) what is 

the proper information related with the artificial system, and (ii) how can one find a suit-

able learning norm that fulfills the gradual ascent on the measure of this information? 

However, in a linear world, there are already various effects that establish the value re-

lated with the principle of information maximization. Specifically, it has been presented 

that the noise characterized as anisotropic impels in a systematic way the system to look 

into its behavior space. In this case, the maximization of PI caused the sweeping of a sto-

chastic oscillator system’s controller via the space of existing frequencies. 

Above all else, if the world of the controller with which hosts are interacting in a 

latent oscillation, then by PI maximization the controller will memorize in order to become 

resonant with this particular internal manner of the world. This may considered as en-

couraging, because at least in a simple example as this one, the meaning of maximizing 

the PI is the amplification and recognition of the robotic system’s latent modes. In a way, 

by maximizing the PI, the artificial system will obtain the capability in detection of its 

physical prospects. Regarding the exception of isotropic noise, the principle of PI maximi-

zation conducts simple learning rules in which an entirely local formulation can be given. 

Actually, the standard back-propagation is only needed jointly with a Hebbian learning 

step [60–63]. Performing any operations that are non-local or sampling is not necessary. 

Indeed, this is a result of a system’s linearity as well as the noise’s isotropy. Nevertheless, 

the results of a report containing non-linear systems showed that an equivalent structure 

can also be obtained in the prevalent case [54]. This may be helpful in covering the gap by 

throwing bridges across the standard realizations of artificial neural network (the one 

with supervised learning) which present success in artificial life and the methods of infor-

mation theory which hitherto have been placed on the discretization basis and burdened 

with implicated learning rules and high sampling efforts. 

At that point, the question that arises is whether an artificial system could develop 

its capacity in order to achieve more self-consciousness on its own, guided by the sole 

purpose to collect information regarding the limits of its entity and intercommunications 

with its environment. This question raises at once further questions such as: (i) what is the 

artificial system’s relevant information, and (ii) in which way can one find a suitable learn-

ing rule that accomplishes the gradient ascent on a measure of this information? Com-

monly, in the linear world, various examples exist that show the PI maximization princi-

ple’s value. Specifically, the system explores its behavior space driven by the anisotropic 

noise. The PI maximization in this case sweeps the controller via the available frequencies’ 

space adjusting its behavior. The PI maximization implies the increase and identification 

of the robotic system’s latent modes. This is thought-provoking, because if a latent oscil-

lation is hosted by the world’s controller, in that case it will memorize to reciprocate using 

this particular intrinsic mode. As a result, in an artificial system the maximization of PI 
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provides to some extent the ability to detect possibilities and body limits. During the ex-

istence of isotropic noise, the principle of PI maximization, urge simple and clear learning 

rules, in which a local formulation can be given. In fact, a step of Hebbian learning along 

with standard backpropagation is what is needed. The examination or the implementation 

of any non-local tasks is not a requirement. Apparently, this is an outcome of the system 

as well as of the noise’s isotropy. In any case, the results of non-linear systems indicated 

that a potentially able to be compared structure can be achieved further in the general case 

as well as in approximations in any event [64]. This could fulfill the need to overcome the 

obstruction to standard neural network (with supervised learning) achievements. These 

are quite efficient concerning the artificial life and the techniques of data theory which 

depend so far on discretization and are getting in trouble with high examining attempts 

and the inclusive learning rules. 

3.3. Neuronal Systems as Forms of Artificial Life 

Once the brain interacts with the environment, it adapts in a constant manner and 

the form in which the environment is represented is entitled an “internal model”. The 

dynamical properties and the connectivity of neurons are the expression for internal mod-

els’ neurobiological basis. Consequently, the intercommunications between external de-

vices and neural tissues present a fundamental means for the connectivity investigation 

and the dynamical properties of neural populations. Valentino Braitenberg developed and 

suggested this idea in the 1980s in order to investigate and represent the neuronal popu-

lations’ dynamical behavior of in the lamprey’s brainstem [65]. The maintenance of the 

brainstem took place in vitro. Two types of artificial device were used for its connection 

in a closed loop: (a) a small mobile robot and (b) a simulated dynamical system. In both 

cases, the recorded extracellular signals control the device and its output was interpreted 

in a form of electrical stimuli, which transferred to the neural system. The objective of the 

initial study was to evaluate the dynamical dissociation in the preparation of neurons in 

a configuration in the form single-input/single-output. The dynamical dissociation refers 

to the number of variables of the state that determine the system’s output along with the 

applied input. Recent report’s results pointed out that whilst the particular neural system 

has considerable dynamical properties, its efficient intricacy, as set up by the dynamical 

dissociation, is rather temperate. In another study, a more specific situation has been con-

sidered, where a robotic device is controlled by the same section of the nervous system in 

a configuration of two-input/two-output. The input-output information from the neuro-

robotic preparation has been adapted to neural network models with different interior 

dynamics, providing thus the ability to observe for each model its generalization error. In 

the brain–machine interface context, a computational and experimental framework such 

as this equips the means in order to investigate neural plasticity as well as internal repre-

sentation. 

In neuroscience, information transfer has been the topic of intensive investigation. In 

its simplest form, neuronal processing consists of an input signal, a processing unit (which 

is actually the neuron itself) and an output, which is the occurring behavior (as described 

by Bush and Mosteller (1953)). Information flow takes place in sequences of symbols, 

which could correspond to trajectories of stochastic processes [66]. Early works on neu-

ronal information transmission, have found that information is transmitted by “signal 

trains” of discrete action potentials [67]. The first models investigated were simple neu-

ronal connections, where one input pulse produced one output signal. An interesting find-

ing of early works was that the brain was characterized by highly irregular, inter-spike 

activities, indicating that the spike-signal was noisy [67]. Hence, similar early works at-

tempted to reduce this irregularity by accounting for the average of multiple signals. Alt-

hough, this reduced the noise it is now known that even slight irregularities in brain sig-

nals still carry out messages [68]. The same was hypothesized for molecular signals in the 

cellular environment, which has been found that the most important differences were 

those that took place in infinitesimal ranges. Finally, it is possible that irregularities in 



Appl. Sci. 2021, 11, 3897 23 of 30 
 

neural signaling may actually represent the actual information transmission [67,68]. Over-

all, neuroscience stated two hypotheses, about the nature of neural information pro-

cessing. The first theory describes the neural code as a “temporal code”, which takes into 

account the neural “spike trains” (“Spike trains are a representation of neural activity. In 

neurophysiological studies, spike trains are obtained by detecting intra- or extracellularly 

the action potentials, but preserving only the time instant at which they occur. By neglect-

ing the stereotypical shape of an action potential, spike trains contain an abstraction of the 

neurophysiological recordings, preserving only the spike times” [69].) [70,71] and the sec-

ond theory are known as “rate code” theory assuming that the neural code in included in 

the spikes frequency, defined by the spikes emitted per second [72]. These processes can 

be described by different mathematical models, such as Markov and Bernoulli processes. 

However, even in its simplest form (just one neuron) understanding the mechanism of 

information transmission still remains elusive [73,74]. 

These topics are used in the field of computational neuroscience, where neurons are 

dealt with as binary electrochemical switches [75]. Several works have suggested that a 

spiking neuron can be considered as a system with memory, under two stable conditions 

[76], that are excited and not excited. This property leads to the idea that neurons firing or 

resting can be described as binary codes with 1 and 0 states, respectively. This assumption 

leads, in turn, to the definition of neural activity as a Shannon entropy phenomenon de-

scribed as: 

2 2

1 1
log (1 ) log
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H p p

p p

   
     

   
 (10)

where H is the number of bits of Shannon entropy in an action potential, and p is the action 

potential’s initial probability [76]. Equation (10) is used by numerous studies in order to 

estimate Shannon’s entropy in a binary probabilistic system. The most common method 

of information calculation for a neural spike is by dividing a signal into evenly distributed 

time intervals, where the excitation or resting can be assigned to 1 and 0 values. Another 

suggested method included the investigation of information in neural spikes in a relation 

between the input and output signals that would be the stimulus and the response 

[56,66,73,76]. 

3.3.1. Neuro-Robotic Systems 

The critical objective for the development of efficient interactions between artificial 

devices and the brain is to understand and control neural plasticity and neural dynamics. 

Over the past decades, various experiments have addressed in a direct way the nervous 

system’s ability in internal models creation of the controlled dynamics. A joint element of 

these analyses is the establishment of an open interaction in both directions between an 

external system with dynamics able to be programmed and the biological controller. To 

understand the external system’s dynamics is considered as a fundamental challenge re-

garding the prosthetic devices’ control as well as the brain-machine interfaces’ clinical 

application, which deemed an emerging technology having a considerable clinical poten-

tial. In late studies, the measured information of primates’ motor cortex, seemed to be 

used for the robotic arms guidance or for the computer cursors movement [77]. Neverthe-

less, the nervous system training task for an artificial device control, is still discouraging. 

In robotic systems, the flexible illustration of a controlled beneficial load is performed 

typically by a programming language. Such a representation has a biological counterpart 

which is gathered in human brains by amendable (or even “plastic”) models of neural 

excitability and connectivity. These models could be considered as the biological pro-

gramming language’s components, the rules of which are still mostly unknown. There are 

various studies where the nervous system of a lamprey has been studied in detail and in 

particular its capability to generate and modulate the behavior regarding locomotion [77]. 
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A part of neural circuitry was selected which integrates sensory signals such as the ves-

tibular and generates motor commands for the stabilization of the body orientation during 

swimming. The particular system has been shown an adaptation: one-sided infestations 

of the capsules contained in the vestibule are followed by a sluggish restructuring of the 

neuron’s activities until the recovery of the proper postural control. This kind of adjust-

ment is the first indication of an internal model and the second indication is the learning 

after effects, which is an event that is observed when the disturbance is withdrawn and a 

mistaken behavior is observed while the invalid conditions are restored. One-sided infes-

tation is an inconvertible operation and so the after effects’ observation is improbable. 

However, this is not the hybrid systems case, in which the light sensors’ sensitivity can be 

disabled and then after adaptation is again enabled to observe the adaptation’s after ef-

fects. 

3.3.2. A Closed-Loop Brain/Machine Interface (BMI) for Estimating Neural Dynamics 

The interaction between external devices and a neural population is considered as a 

closed loop. This has the ability to be exploited in order to extract a short element of gen-

eral dynamical properties contained in the neural population. Latest studies that observed 

the hybrid systems’ behaviors have been used to estimate the neuron’s dynamical dimen-

sion in a reticular formation of lampreys. The dynamical dimension is defined as the num-

ber of variables of independent state determined at each instant, the output of a system. 

Mathematically speaking, the following state and output equations describe the connec-

tion of the artificial system to the neural tissue [65]. In the same way the neural prepara-

tion can be described as a dynamical system. The main hypothesis of this study was that 

there exists a state representation (s) of the neural preparation such that the changes of state are 

completely determined by the state itself and by the input to the neural preparation. 

3.3.3. Recurrent Dynamics in a Neuro-Artificial System 

Experimental results concerning the interaction of brain neural cells with a machine 

have been described by Karniel et al. (2005). In their work, a part of the brainstem of the 

Petromyzon marinus (sea lamprey) in its larval state, was considered as the experimental 

setup of the hybrid system’s neural component. This included the larvae anesthesia, using 

tricaine methanesulphonate, the dissection and maintenance of the whole brain obtained 

in Ringer’s solution in order to be continuously oxygenated, refrigerated and superfused 

[77]. 

The synapse vestibular/reticulospinal has been chosen, in their work, for the BMI for 

the following reasons: (a) it was comparatively well understood in regard to its physiol-

ogy and anatomy; (b) it permitted access to populations of neurons under visual control; 

and (c) the entire brain could certainly be retained in vitro by plunging it in low-temper-

ature Ringer’s solution. The neurons’ activity was recorded extracellularly in an area of 

the reticulated form, a relay which connects the vestibular, visual and tactile sensory sys-

tems, as well as central commands to the spinal cord’s locomotor centers. In the Posterior 

Rhombencephalic Reticular Nucleus (PRRN) axons, a recording electrode has been 

placed. 

In addition, among the Posterior Octavomotor Nucleus (nOMP) axons a unipolar 

electrode for stimulation of tungsten was placed. The stimulating electrode was placed on 

the side of the line in the middle and opposite to the electrode that records the signal is 

the point where the stimulating electrode is situated. The stimulating electrode was placed 

close to the nOMP, stimulating thus an extensive amount of fibers crossing the midline. 

This affected principally stimulant responses in the neurons that follow. A data acquisi-

tion card acquired the recorded signals at 10 kHz. The parameter of duration of maximum 

spike was set at 1 msec and the parameter of magnitude of least spike was set to 1.1 mV. 

To avoid any potential confusion among spikes and artifacts related with stimulus, the 

raw signal that acquired directly following each pulse/stimulus was refused. The duration 

of refused signal (the period of artifact annulment) was set to 3 msec. Their work has 
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shown that neuro-robotic systems provide an environment for studying the operation of 

the nervous system. 
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3.4. Challenges in Neuro-Artificial Systems 

Brain–machine interfaces are frequently investigated focusing on the machine to be 

used as tool for the disabled assistance. However, they can also be considered as hybrids 

of artificial life, where the traits of a biological system are exploited and connected to a 

machine-like instrumentation. To develop such tools, a necessity has arisen to gain a neu-

ral behavior comprehension from its operational aspect. The use of term “operational” 

hitherto, aims to distinguish the benefits by the signal behavior comprehension from the 

benefits of comprehension of the molecular and cellular underlying mechanisms. In the 

aforementioned experimental paradigms, a lamprey’s brainstem was set in communica-

tion with both physical artificial devices as well as with simulated ones. In the first exper-

iment, the simulated devices utilization allowed the estimation of the neural dynamics 

complexity, in terms of dimensionality in regard to its state and space. An advantageous 

feature of simulated devices similar to those used here, is the ability to establish arbitrary 

and well-structured dynamic properties. This provides the ability on the one side to de-

sign the simulated system for the excitement of considerably wide dynamical ranges and 

also on the other side to combine the neural tissue with different dimensions’ artificial 

systems in order to test the evaluated neural dynamics’ stability. The result of this initial 

study reveals the significance of the dynamical behavior even in a neural system of this 

particular simplicity, which between recording electrodes and stimulation consists of a 

single neurons layer. Nevertheless, the rather limited dimensionality which characterizes 

a behavior of single input/single output should be mentioned, with the range to be esti-

mated between the values 2 and 4. In other reports, methods have been developed for the 

separation of noise from chaotic dynamics, based on the progressive infusion of the arti-

ficial noise in enhancing quantities on the data which is under analysis [78,79]. It is im-

portant to highlight that recognition of the dynamics of a neural system is based on an 

external device interaction in a two way manner. This can be performed in conjunction 

with a diversity of methods for the non-linear dynamics exploration, but is surely not 

limited to the described approach. Regarding the second aforementioned experiment, a 

neuro/robotic hybrid system was used in order to examine the neural population proper-

ties driving a robot based on two wheels. Given the conjunctive observations of neural 

responses and of robot motions, it was deduced that a linear and dynamic network with 

repetitive connections, and on the same side of the body, is considered as the ideal model 

of the neural element operation. One account ascribes the repetitive dynamics to a realistic 

neural route. The potentiality for the contrary side of the body routes has been examined 

for pathways to the back and spinal cord. Nevertheless, it was noticed that a spinal cord 

surgical cross section has not shown any significant influence to the perceived dynamical 

behavior. One explanation doubtlessly recommends the existence of a local memory sys-

tem enunciated by essential neural properties [77]. The particular system could be a mech-

anism of any form, as in particular the gate for plateau contingent, competent of inducting 

a relationship among the trend of a neuron to kindle at one moment and the condition of 

the neuron until a couple tenths of seconds before. The important matter is the fact that 

the neural operation is not totally related to the synaptic input of a certain moment. The 

neural routes that were switched on contained principally vestibular afferents, despite the 

existence of visual and cutaneous routes as well. From a standpoint of information pro-

cessing, there is an essential equivalence degree between vestibular input and the optical 

switch which is generated by the sensors of robot. Both of them are right-left mechanisms 

and a phototaxis of positive sign matches the vertical direction tracking. The stimulus of 

semantics (gravity per light) is quite impossible to play an essential role in the present 

example. Hybrid neurorobotic systems offer a non-physical environment (in the sense of 

artificial) that is subject to reversible and controllable disturbances for examining the nerv-

ous system’s activity. In the other experiment, by changing the light sensors’ output gain 

a “reversible artificial lesion” it has been introduced. This process was attained as an al-

ternative to irrevocable surgical management, as for example the unilateral labyrinthec-

tomy which is the extraction of a vestibular organ. Compared with the actual lesion, the 
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artificial lesion provides an explicit benefit which is its total reversibility. Zelenin et al. 

(2000) presented another study for this kind of neurorobotic interfaces [77,80]. By contrast 

with our study in which a direct excitation was used, this study presents an electrical mo-

tor which was used for the lamprey rotation so as to give feedback by the lamprey’s nat-

ural sensory system. Neuro-robotic systems offer several significant advantages for the 

researcher as well as for the investigation of information transmission. This is achieved 

through the feedback that is provided from the artificial system and its sensors. The main 

idea behind the advantages of neuro-robotic systems, is that by changing the input-output 

and feedback mechanisms, it is possible to further study the function and information 

transmission in neural circuits. Examples of such mechanisms that need to be elucidated 

are the manifested plasticity of neurons, the connection between presynaptic input and 

post-synaptic activity, and others. The understanding of neural mechanics, could provide 

effective methods for “re-programming” neurons so that it can execute a desired task 

(whether this is desirable, is another question). This could be a central question for future 

research, since it could lead to the design and implementation of effective neural prosthe-

ses (or neural conscience re-programming?). Neural plasticity is probably the most im-

portant question that neuro-robotics could address. This could be a solid basis for estab-

lishing a working interaction between the nervous system and external devices. Neuro-

robotic interfaces provide a new instrument for the direct investigation of how plasticity 

can be harnessed for generating desired behaviors. 

4. Discussion 

One of the most interesting questions stated in previous works was: what makes a 

particle a particle (in terms of quantum physics) and a gene a gene [3]. Based on previous 

theories, what defines those entities is information. Nonetheless, this may be true for par-

ticles, but for genes it is not fully applicable. Genes are considered to carry information 

based on the type of protein they can be translated to, yet genes express a tremendous 

variety of RNA molecules ranging from mature mRNAs to circular RNAs which, how-

ever, do not translate to a protein they carry a significant amount of information. This 

difficulty in defining “what makes a gene, a gene” brought about the concept of “individ-

ualization” that is treating each biological entity as unique [3]. However, this could be 

considered as correct per se, some argumentation could be proposed. It is true that bio-

logical systems are so diverse in such a way that if one measures the expression of one 

gene in one specific tissue in one biological subject and the same gene in the exact same 

tissue in another biological subject these will be found to be different. How is it possible 

for the same gene to be different in two exactly similar situations? The answer could be 

that it is not the individual gene’s effect in a biological phenomenon but the network of 

genes that make the difference. In that concept, information and thermodynamics come 

into play. 

As mentioned, biological systems are open thermodynamic systems, exchanging en-

ergy with the environment in the form of heat, as well as mass in terms of nutrition, sig-

naling, endocytosis, exocytosis etc. From the point of view of classical mechanics, all pro-

cesses are deterministic with the exception of asymmetries due to the second law of ther-

modynamics and statistical mechanics, while biological phenomena could be described 

by informational mechanics [3,81]. In order for this to happen (that is to understand biolog-

ical mechanics through information) it is essential to set a framework that considers the 

dynamics between the biological entities and their environment. Ideally, this could ap-

proach determinism if this process could be described by the laws of physics. As a solution 

to this approach it has been proposed that computation could serve as an alternative for 

investigating the interconnection between issues of information, thermodynamics and life 

[3,81,82]. 
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5. Conclusions 

In the present work we have reviewed and reported on the context of information 

and its connection to living organisms as well as its applications in neuro-artificial sys-

tems. These topics are of great importance, and have endless applications. The autono-

mous dynamical systems require an understanding of the transmission of information in 

biological systems. This process is largely unknown, and its basic mechanics, still remain 

to be elucidated. Towards this direction, the application of stochastic processes is expected 

to play an important role, since the basic biological mechanisms are of a stochastic nature. 
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