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Abstract. Based on our previous work in PRD 89, 125023 (2014), we stress here (for the first
time) the regularization of the spatial wave function for the δ-contact interaction within the
relativistic Schrodinger equation. The D-dimensional inverse Fourier transform has been utilized
to map the momentum-space wave function to the spatial one. To regularize the logarithmic
blow up of the wave function as x → 0, we employed the dimensional regularization technique.
We assert that although the technique has been used here for the bound state only, the form
of the scattering states in momentum space assures the reliability of the same technique to
regularize the spatial scattering wave functions.

In particle physics, the asymptotic freedom property plays a vital role in describing strong
interactions. This property is responsible for the confinement of quarks inside protons (for
instance). In fact, the need for a theory with such property was based on the experimental
results from SLAC [1] where it has been discovered that fast electrons scatter from protons as
if they have scattered from quasi-free, point-like constituents inside the protons. At that time
there were no known theory that can describe the scattering pattern as QED shows an opposite
behavior. This leaded to the formulation of quantum chromodynamics, a non-abelian gauge field
theory with the group structure SU(3). InQCD, the number of colors is equal to or greater than
three to secure the existence of the asymptotic freedom [6, 8, 7]. In 1975, Symanzik [2] advocated
the simpler one-component (−ϕ4) scalar field theory and later the asymptotic freedom of this
theory has been stressed [3, 4, 5]. Other studies also stressed the existence of quantum field-like
properties in non-relativistic quantum mechanical theories [9, 10, 11, 12, 13, 14, 15, 16, 17, 18].
Very recently, we discovered the existence of such property in a relativistic Schrodinger equation
with contact interactions [19, 20].

In the relativistic Schrodinger equation where the kinetic term takes the form
√
p2 +m2,

certain precautions should be taken into account. According to Leutwyler’s non-interaction
theorem [21], the potential term to be added to that kinetic term should not let the theory
violating the principles of the special theory of relativity. In fact, the no-go theorem of Leutwyler
admits the singular contact interactions and thus there is no logic reason of excluding them from
relativistic quantum mechanical studies. The study of the singular contact interactions within
the context of relativistic Schrodinger equation enables us to avoid certain problems that do
exist in either Klein-Gordon or Dirac equations. For instance, the existence of Ghost states in
Klein-Gordon equation and the existence of holes in Dirac equation represent main problems
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in these theories when considering them as relativistic quantum mechanical theories. These
theories are in fact successful when considered as quantum field ones.

In Refs.[19, 20] we studied two types of one dimensional contact interactions within the
relativistic Schrodinger equation. Although the two potential terms are different, a type of
universality has been shown up. The universality characteristic is manifested in finding that the
two theories shares the same properties. However, the coupling in the two theories are of different
mass dimensions which reflects the need for using two different regularization techniques. For
the δ− potential, the coupling is dimensionless and thus the theory contains only logarithmic
type of divergences. On the other hand, the coupling in the δ′− potential has a length dimension
and the theory contains logarithmic, linear and quadratic type of divergences. For logarithmic
divergences both dimensional and cut off regularization lead to the same results but for other
type of divergences, dimensional regularization may not reflect the correct scale dependance (
for instance for the scalar ϕ4 field theory in 2 + 1 space-time dimensions, linear divergences
will not appear in using dimensional regularization). In our work in Refs. [19, 20], the two
theories have been regularized in momentum space and the spatial wave function has shown up
a logarithmic blow up as x approaches zero. In this work, we stress this point and show that
using dimensional regularization, one can show that the blow up of the wave function as x→ 0
can be regularized using dimensional regularization. This point has not been stressed before
and represents the main point of our work here.

To start, consider the relativistic Schrodinger equation in D dimensions of the form:√
p2 +m2Ψ(x1,x2, ...., xD) + λδ(x1,x2, ...., xD)Ψ(x1,x2, ...., xD) = EΨ(x1,x2, ...., xD). (1)

We have in momentum space the following quantities:

Ψ(x1,x2, ...., xD) =
1

(2π)D

∫
dDp Ψ̃(p) exp(i−→p · −→x ), (2)

Ψ(0, 0, ...0) =
1

(2π)D

∫
dDp Ψ̃(p), (3)

Ψ̃(p) =
λΨ(0, 0, ...0)(

EB −
√
p2 +m2

) . (4)

Here EB represents the bound state energy. Since Ψ(0, 0, ...0) is a quantity in position space,

it would be more plausible to express Ψ̃B(p) in terms of the momentum representations of all
quantities. So we put:

Ψ̃(p) =
λ

2π

∫
dDp

′
Ψ̃(p

′
)(

EB −
√
p2 +m2

) . (5)

In fact, this is a simple integral equation for which Ψ̃(p) given by:

Ψ̃(p) =
Aλ

2π
(
EB −

√
p2 +m2

) (6)

represents a solution, where A is a normalization constant. This solution will satisfy the integral
equation since when substituted back into integral equation we get:

Ψ̃(p) = λA

∫
dDp

′ λ

2π

(
EB−

√
(p′)

2
+m2

)
2π
(
EB −

√
p2 +m2

) , (7)
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we can employ the gap equation in Ref.[19] that reads:∫
dp

′

2π

(
EB −

√
(p′)

2
+m2

) =
1

λ
. (8)

Thus the form Ψ̃(p) in Eq.(6) represents a solution of the integral equation. This form of Ψ̃(p)
suggests that the regularization of λ will certainly regularize the wave function in momentum
space. Using dimensional regularization we get:

mD−1

λ(ε)
=

1

(2π)D

∫
dDp

1

EB −
√
p2 +m2

= I(EB)

= − 1

(2π)D

∫
dDp√
p2 +m2

− 1

(2π)D

∫ ∞∑
n=1

dDp
(EB)

n

(p2 +m2)
n+1
2

= − 1

(2π)D

∫
dDp√
p2 +m2

− EB

2π
√
m2 − E2

B

(
π + 2arcsin

EB

m

)

= − 1

(4π)
D
2

Γ
(
1−D
2

)
Γ
(
1
2

) (
1

m2

) 1−D
2

− EB

2π
√
m2 −E2

B

(
π + 2arcsin

EB

m

)

∝ 1

ϵ
+ (finite terms), ϵ = D − 1. (9)

The UV divergences in momentum space will have its manifestation in position-space as small-x
divergences. The position-space wave function is obtained via Fourier inverse transformation
of Ψ̃(p). Since the inverse Fourier transform is an integration over momentum, one can aim to
employ dimensional regularization to get a regularized wave function; a wave function that is
finite everywhere but scale dependent on the other hand. To do this let us consider the following:

Ψ̃(p) =
Aλ

2π
(
EB −

√
p2 +m2

)
= − 1

(2π)D
Aλ√
p2 +m2

− Aλ

(2π)D

∞∑
n=1

(EB)
n

(p2 +m2)
n+1
2

. (10)

In 1-dimension (D = 1), the spatial wave function takes the form:

Ψ(x) =
1

(2π)D

∫
dDp

exp (−i−→x · −→p )
E −

√
p2 +m2

= − 1

(2π)D

∫
dDp

exp (−i−→x · −→p )
(p2 +m2)

1
2

−Aλ√
π

∞∑
n=1

(
EB

m

)n(m|x|
2

)n/2 Kn/2(m|x|)
Γ
(
n+1
2

) , (11)

where Kn/2 are the modified Bessel functions of second kind. In fact, every term in the
summation above is finite in the limit D → 1 but the integral of the form:

T0(x) = − 1

(2π)D

∫
dDp

exp (−i−→x · −→p )
(p2 +m2)

1
2

(12)
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is logarithmic divergent by power counting and thus needs to be regularized. To do this let us
consider:

−→x · −→p = |x| |p| cos (θ) . (13)

In D dimensions, the volume element is

dDp = pD−1 sinD−2(ϕ1) sin
D−3(ϕ2) · · · sin(ϕD−2) dr dϕ1 dϕ2 · · · dϕD−1

where θ ≡ ϕ1. (14)

Then,

1

(2π)D

∫
dDp

exp (−i−→x · −→p )
(p2 +m2)

1
2

=
1

(2π)D

∫
dDp

exp (−i |x| |p| cos (ϕD−2))

(p2 +m2)
1
2

=
1

(2π)D

∫ 2π

ϕD−1=0

∫ π

ϕD−2=0
· · ·
∫ π

ϕ1=0

∫ ∞

0
pD−1 sinD−2(ϕ1) sin

D−3(ϕ2) · · · sin(ϕD−2)× (15)

×exp (−i |x| |p| cos (ϕD−2))

(p2 +m2)
1
2

dpddϕ1 dϕ2 · · ·ϕD−2dϕD−1

Now, the integral In over the angles gives:

In =

∫ π

ϕ=0
sinn(ϕ)dϕ =

√
π

Γ(1+n
2 )

Γ(n2 + 1)
,

InIn−1 =
2π

n
,

In−2In−3 =
2π

n− 2
. (16)

Or in general, the inverse Fourier transform of the wave function in D-dimensions results in the
following form:

Ψ (x) = Am1−Dλ (2π)
D
2

∞∑
n=1

En−1
B

2−n/2n |x|−D/2 ( 1
m2

) 1
4
(−D−n)

(
m2

|x|

)−n/2
KD−n

2

(
|x|√

1
m2

)
Γ
(
n
2 + 1

) . (17)

This sum is rabidly convergent as it can be realized from Fig.1. In fact, this form represents the
solution of the original relativistic Schrodinger equation in D-dimensions which has not been
obtained before. In D = 1, the wave function is logarithmically divergent at the origin while for
the D = 2 case the wave function possesses logarithmic as well as linear type of divergences (in
momentum space but 1/x in position space). In D = 3 an extra quadratic type of divergences
appears. The divergences in higher dimensions (higher than 1) need more studies which will be
done in another work.

For |x| = 0, one can re-sum the series to get:

Ψ (0) = Am1−Dλ

π
D−1
2

(
1
m2

)−D/2


−E2

BΓ
(
1−D
2

)
2F1

(
1, 12 − D

2 ;
1
2 ;

E2
B

m2

)
+m2Γ

(
1−D
2

)
2F1

(
1, 12 − D

2 ;
1
2 ;

E2
B

m2

)
+
√
πEBmΓ

(
1− D

2

) (
1− E2

B
m2

)
D/2


√
m2
(
m2 − E2

B

) . (18)
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Figure 1. The bound state wave function for the summation of the first three terms (red)
compared to the first seven terms (black) for EB = 0.5 and m = 1. The figure shows a rapid
convergence of the series.

Expanding in powers of ϵ = D − 1, we obtain:

ψ (0) ∝ Aλ

(
1

ϵ
+ finite terms

)
. (19)

Since in Eq.(9) 1
λ ∝

(
1
ϵ + finite

)
, then as ϵ → 0, ψ (0) ∝ A. This means that the dimensional

regularization method regularizes the wave function in position space and no need for extra
renormalization conditions.

In fact, the logarithmic behavior of the wave function for small |x| values for the unregularized
wave function in our paper in Ref. [19] has been reflected here as ln 1

m in the regularized wave
function (position has an m−1 dimension in natural units). This result is very important as
one is not in a need for other renormalization conditions and the coupling renormalization
condition used in our paper in Ref. [19] is the only needed one to turn all physical quantities
finite. Although in the above discussion we stressed the regularization of the position-space
bound state wave function, the same argument can be extended for the scattering states wave
functions. In fact, the scattering state wave function in momentum space is given by [19]:

Ψ̃E(p) = δ(p−
√
E2 −m2) + δ(p+

√
E2 −m2) + Φ̃E(p),

Φ̃E(p) =
λ

π

1 + πΦE(0)

E −
√
p2 +m2

. (20)

While the first two terms in Ψ̃E(p) result in two plane waves in position space, the third term
has a similar behavior as the bound state. Accordingly, the inverse Fourier transform of the
Φ̃E(p) is logarithmic divergent and can thus be regularized in a similar way.

To conclude, we considered the singular contact interaction within the frame work of the
relativistic Schrodinger equation. The theory shows up rigorous quantum-field-like properties
such as asymptotic freedom and dimensional transmutation. Since the theory bears divergences
in some physical quantities, dimensional regularization has been employed to regularize the
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theory. In regularizing the theory in momentum space, the coupling renormalization condition
has been utilized. To obtain the spatial wave functions, a direct inverse Fourier transom can be
applied but then the position-space wave functions below up as |x| → 0 . This might lead to the
conclusion that the renormalization condition used for the coupling in momentum space is not
sufficient to turn all quantities finite in position space. However, based on the fact that position
space is totally equivalent to the momentum space, one should not obtain divergent quantities
in position space from already regularized quantities in momentum space. To lift this conflict,
we employed the D-dimensional inverse Fourier transform to map quantities from momentum
space to position space. In doing this, we found that the regularized wave functions in position
space are finite but rather scale dependent.
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