
QATAR UNIVERSITY

COLLEGE OF ENGINEERING

OPTIMIZATION MODELS FOR MULTIPLE RESOURCE PLANNING

BY

NORAH MOHAMMED Z AL-DOSSARI

A Thesis Submitted to

the Faculty of the College of Engineering

in Partial Fulfillment of the Requirements for the Degree of

Masters of Science in Engineering Management

 June 2021

© 2021. Norah Mohammed Z Al-Dossari. All Rights Reserved.

ii

COMMITTEE PAGE

The members of the Committee approve the Thesis of

Norah defended on 19/04/2021.

Mohamed Haouari, Mohamed Kharbeche

 Thesis/Dissertation Supervisor

Tarek Elmakawi

Committee Member

Murat Kucukvar

Committee Member

Gulsah Koksalms

Committee Member

Approved:

Abdel Magid Hamouda, Dean, College of Engineering

iii

ABSTRACT

AL-DOSSARI, NORAH, MOHAMMED., Masters : June : 2021,

Masters of Science in Engineering Management

Title: Optimization Models for Multiple Resource Planning

Supervisor of Thesis: Mohamed, Haouari, Mohamed Kharbeche.

Multiple resource planning is a very crucial undertaking for most organizations. Apart

from reducing operational complexity, multiple resource planning facilitates efficient

allocation of resources which reduces costs by minimizing the cost of tardiness and the

cost for additional capacity. The current research investigates multiple resource loading

problems (MRLP). MRLPs are very prevalent in today’s organizational environments

and are particularly critical for organizations that handle concurrent, time-intensive, and

multiple-resource projects. Using data obtained from the Ministry of Administrative

Development, Labor and Social Affairs (ADLSA), an MRLP is proposed. The problem

utilizes data regarding staff, time, equipment, and finance to ensure efficient resource

allocation among competing projects. In particular, the thesis proposes a novel model

and solution approach for the MRLP. Computational experiments are then performed

on the model. The results show that the model performs well, even in higher instances.

The positive results attest to the effectiveness of the proposed MRLP problem.

iv

DEDICATION

I would like to wholeheartedly dedicate this thesis to my beloved parents, husband,

brothers, sisters, and my lovely daughters, who have been a source of strength and

encouragement. I would also like to dedicate the thesis to my professors who offered

guidance and support throughout the completion of the thesis.

Thanks for believing in me.

v

ACKNOWLEDGMENTS

I wish to express my sincere gratitude to the faculty and the thesis committee for their

unwavering support and encouragement. Thank you for providing guidance during the

completion of this research. The vision, experience, and sincerity motivated me to put

more effort into the thesis. The learning opportunities offered to me were invaluable

and will continue to shape my career going forward.

Completion of this thesis would not have been possible without the help and support of

my professor. It has been an honor and a privilege to work hand-in-hand with such a

sharp mind. I would specifically like to thank the professor for his understanding,

empathy, and friendship. I would also like to extend my gratitude to my family and say

thanks for their prayers and support. Lastly, to my caring and supportive husband: my

sincere gratitude. Your words of encouragement throughout the research have been

noted and deeply appreciated.

vi

TABLE OF CONTENTS

DEDICATION .. iv

ACKNOWLEDGMENTS ... v

LIST OF TABLES .. viii

LIST OF FIGURES .. ix

CHAPTER 1: INTRODUCTION .. 1

Introduction .. 1

Managing Multiple Projects ... 2

Resource Management ... 4

CHAPTER 2: LITERATURE REVIEWS ... 8

Literature Reviews ... 8

Existing Literature in Optimization Models ... 9

Optimization Solutions for Multiple Resource Planning ... 17

Resource-Constrained Project Scheduling Problem (RCPSP) 18

Resource Loading Problem (RLP) ... 23

Summary .. 25

Summary of different multi-resource planning models .. 26

CHAPTER 3: A NOVEL MODEL AND SOLUTION FOR THE MULTIPLE

RESOURCE LOADING PROBLEM.. 28

Problem Definition ... 28

vii

Approach/Methodology .. 29

Modelling Problem Formulation .. 29

Problem Formulation.. 30

Notation .. 30

Decision Variables .. 31

Model Formulation ... 32

CHAPTER 4: COMPUTATIONAL EXPERIMENTS ... 44

Introduction .. 44

Implementation... 44

Optimization Programming Language (OPL) .. 44

CPLEX.. 44

Description of the test instances ... 45

Performance of the proposed model ... 45

CHAPTER 5: CONCLUSION AND FUTURE RESEARCH 55

REFERENCES .. 57

viii

LIST OF TABLES

Table 1. Summary of the Literature Review and Comparison of Reviewed Models .. 27

Table 2. Example of SMSR – No Extra Capacity ... 33

Table 3. Example of SMSR – with Extra Capacity ... 36

Table 4. Example of SMMR .. 39

Table 5. Example of MMMR... 42

Table 6. Results of Group 1 Test Instances (10 Projects) .. 46

Table 7. Group 1 Test Instances CPU Time (10 Projects) ... 46

Table 8. Results of Group 2 Test Instances (20 Projects) .. 47

Table 9. Group 2 Test Instances CPU Time (20 Projects) ... 47

Table 10. Results of Group 3 Test Instances (30 Projects) .. 48

Table 11. Group 3 Test Instances CPU Time (30 Projects) ... 48

Table 12. Results of Group 4 Test Instances (50 Projects) .. 49

Table 13. Group 4 Test Instances CPU Time (50 Projects) ... 49

Table 14. Results of Group 5 Test Instances (100 Projects) .. 50

Table 15. Group 5 Test Instances CPU Time (100 Projects) 50

Table 16. Results of Group 6 Test Instances (200 Projects) .. 51

Table 17. Group 6 Test Instances CPU Time (200 Projects) 51

Table 18. Summary of CPU Running Time of All Instances 52

Table 19. Results of Multi-Mode Multi-Resources Model .. 54

ix

LIST OF FIGURES

Figure 1. Graphical presentation of SMSR - No Extra capacity 34

Figure 2. Graphical presentation of SMSR – With Extra capacity 36

Figure 3. Graphical presentation of SMMR for resource #1 39

Figure 4. Graphical presentation of SMMR for resource #2 40

Figure 5. Graphical presentation of MMMR for resource #1 42

Figure 6. Graphical presentation of MMMR for resource #2 43

Figure 7. CPU time for all groups test instances ... 53

1

CHAPTER 1: INTRODUCTION

1.1. Introduction

Efficient resource allocation and cost reduction are the ultimate goals for most high-

level managers of companies. Over the last few decades, optimization models have

emerged as effective tools for resource maximization and cost reduction for companies.

Resource planning and optimization are particularly crucial for companies that handle

multiple projects (Dooley et al. 2005). Project managers and planners in such

companies face significant problems regarding the effective allocation of finances,

staff, equipment, and other key resources to multiple projects. Optimization and

planning models can be used in virtually every aspect of resource planning. The main

objective is usually to ensure optimal resource allocation (revenue maximization, cost

minimization, and resource sequence utilization) while adhering to constraints

associated with resource availability. A key benefit of resource planning for companies

is that it facilitates efficient decision-making. Resources in organizations can take many

forms. These may be machines, equipment, crews, or vehicles. Resources facilitate the

completion of tasks that may have specific due dates. Companies are required to meet

specific due dates. Failure to complete tasks in time may result in losses (Rieck and J.

Zimmermann, 2015). A lot of existing optimization models for resource planning

provide a solution for single project optimization. However, with the increase in project

complexities and the operation of multiple projects by companies, there is a need for

the development and design of the optimization models for multiple resource planning

(Rieck and J. Zimmermann, 2015). Although project problems are generalizable,

companies that undertake single projects are likely to face different problems than those

implementing multiple projects. Because of the importance of resource planning and

optimization, optimization models have become subjects of significant interest.

2

1.2. Managing Multiple Projects

Multiple projects and resource planning are huge problems facing today’s

organizations. Project managers no longer have to deal with a single project at a time.

Like single project management, multiple project management also seeks to ensure that

projects meet the stipulated requirements of performance, time, and budget. The

management of multiple projects consists of key activities that include the formulation

of project goals, design of the project planning and implementation, and project

controlling (Rieck and J. Zimmermann, 2015). Most experts agree that the main issues

associated with project management are lack of clear project goals, mismatch between

project scope and project goals, poor identification and management of existing project

issues, poor teamwork and coordination, and inefficient resource utilization.

Project problems become more pronounced when dealing with multiple projects. In

particular, concurrent project management increases the challenges associated with

resource optimization and planning. In multiple projects, project deliverables are

viewed as an integrated set of portfolio activities (Dooley et al. 2005). As such, the

main responsibility of managers in multiple projects is to ensure control and to balance

resources optimally. There are four key challenges that project managers face in

multiple projects. The multiple project activities overlap is one of the main challenges.

In such a case, project activities may even overlap with day-to-day company operations,

sharing of company resources such as equipment and devices across different projects,

resource prioritization between projects based on their weights and modes, and meeting

key project deadlines.

Like in single projects, another key problem affecting multiple projects is the change

of scope. Change of scope occurs because of project alteration or expansion.

3

The change of scope may also occur due to unexpected circumstances that need

additional resources. Managing change of scope, especially for multiple projects,

requires flexibility in decision-making and the optimization of resources (Rieck and J.

Zimmermann, 2015).

In a study by Dooley et al. (2005), the main sources of failures in the management of

multiple projects are poor leadership, alignment of project goals and project objectives,

control, planning, and monitoring. Another key aspect that contributes to the failure of

multiple projects is that organizations do not learn from past project mistakes. By

learning from past mistakes organizations can incorporate past knowledge into existing

project models (Dooley et al. 2005). The reuse of knowledge learned from past mistakes

can significantly improve decision-making and problem-saving in existing project

models.

A critical aspect in multiple project management is resource planning and management.

It facilitates the efficient use and reuse of resources in a project. For instance, in

construction projects, the main resources are known as “the 3Ms”. These include

people, materials, and machinery. In resource planning and management, the key

objective is usually to prevent resource overload using three critical objective functions

(Rieck and J. Zimmermann, 2015). These functions include minimization of minimum

moments, maximum overload cost issues. This relates to the costs that are generated

when the use of a certain resource is exceeded, and the total adjustment cost issue that

occurs where there is a need to minimize costs that are caused by the increase in

resource utilization.

4

1.3 Resource Management

Resource management is a crucial aspect of project management, especially for

resource-constrained projects. In multiple project management, resources may be

limited by the simultaneous occurrence of two or more resource-intensive activities.

Resource planning and management techniques may therefore be useful to manage

resource usage and minimize resource variations. For any project, resource

management can be classified into three primary types: resource scheduling, resource

leveling, and resource allocation. Each of these categories can be modeled to ensure

optimal resource utilization.

Resource scheduling gives an overview of the utilization of resources in the period of

the project. Most researchers refer to resource scheduling as resource loading (Project

Management Institute, 2013). Resource scheduling is a widely used resource

management technique and is often used by project planners. Today, most projects

utilize computerized scheduling techniques which provide the ability to seamlessly

organize and present project information. resource scheduling can also be accomplished

using a network model process.

Resource leveling is concerned with addressing the peaks and valleys in the

management of resources without increasing the duration of the project. resource

leveling is accomplished by redistributing the start and finish activities using the float

time of non-critical activities. The goal of resource leveling is to reduce or eliminate

resource conflicts (Rieck and J. Zimmermann, 2015). Since project leveling only

interferes with noncritical activities, both the project duration and the critical remain

untouched. Resource leveling is often used when there is a fixed project completion

date.

5

Resource allocation also plays a key aspect in resource management. A proper

understanding of resource allocation is critical in the design of resource optimization

models. Resources allocation techniques set maximum limits for the specific project

activities according to existing heuristic models. The main objective of these techniques

is to schedule activities in a way that does not exceed existing resource limitations. In

this context, projects are finished in very short times.

In resource management, scheduling and planning are closely connected. As such,

neither of the problems can be solved in isolation. Both scheduling and planning affect

the decision-making of companies. For instance, in a factory setting, the relationship

between scheduling and planning must be considered because it influences several

aspects of decision-making such as the input factors, the inputs that require

optimization, the type of scheduling challenges, and the objective of the solution to the

problem. However, resource planning and scheduling may have differences that depend

on the level of differences in the solution models (Hariga and El-Sayegh, 2011). Other

sources of differences are the objective of the problem and the scheduled time.

Despite the differences, scheduling models are widely used in resource planning. The

models. In factories, scheduling methods are used to determine the ideal production

level and the storage levels that can satisfy a given level of demand given the cost.

Unlike scheduling models, however, planning models usually use aggregate models.

Aggregate models are required to subject specification to different costs. Planning

models may also be large because of the time-periods involved. The solutions of a

planning model can be used as an input to a scheduling problem. Aspects of planning

such as batching decisions determine the type of decision required at the scheduling

level.

6

Another key association between scheduling and planning is the flow of information

between them. In particular, an optimized schedule facilitates proper control

referencing. As will be illustrated in the below sections, researchers have historically

approached scheduling as an isolated problem. Today, most experts agree that

scheduling incorporates control and planning. Literature, in this area, considers

scheduling and planning as an integrated set of problems.

Scheduling and planning problems like “Resource-Constrained Project Scheduling

Problem (RCPSP)” and “Multiple Resource-Constrained Project Scheduling Problem

(MRCPSP)” are also subject to a wide range of constraints and characteristics.

Although these factors increase the complexities of the problems, they are needed to

increase the feasibility of solutions. Resource constraints may include utilities, auxiliary

units, and human resources. Resources can either be renewable or non-renewable. The

renewable category of resources can either be continuous or discrete. The different

classification shows the level of complexity that is associated with scheduling problems

and the diversity required in handling when designing industrial applications. Although

the current solution proposes a mixed integer model, there exist other approaches such

as metaheuristics, heuristics, and constraint programming.

1.4 Problem Motivation

Our main motivation to work on this problem comes from real issue in IT division at

the Ministry of Administrative Development, Labor and Social Affairs (ADLSA) in

Qatar. Project managers facing this issue in management of multiple projects. There are

a challenge in everyday management, how can project managers charge and developing

software or applications, for different ministries or different departments. The ministry

has many resources with different qualifications such as developers, programmers,

analysts, and projects managers. They have many projects, these projects are

7

independent, each project have specific due date. The main problem that projects

manager may face is how to allocate these resources within a given time horizon so that

they can complete the projects without having tardy tasks. How can projects manager

meet the requirements, is there a need to add extra capacity or need more staff to

complete all tasks without delaying the tasks to get the best allocation that will lead to

reduce the cost and time.

8

CHAPTER 2: LITERATURE REVIEWS

2.1 Literature Reviews

The current review investigates the existing optimization models for multiple resource

planning. The challenge of achieving optimal scheduling and resource planning has

been a subject of significant scholarly interest. To date, a wide variety of factors has

been used to attain optimization. These include dynamic programming, neural

networks, expert systems, linear programming, and genetic algorithms (Dooley et al.

2005). The review starts with an overview of the challenges that managers encounter

during multiple resource planning. The review then analyzes extant literature for

optimization and resource planning solutions for multiple projects.

2.2 Optimization Models

Optimization is mainly connected with the use of scientific models to determine the

best course of action during resource management. In recent years, optimization models

have become crucial tools in ensuring resource optimization and the economic

feasibility of projects. In particular, optimization models are widely applied in resource

planning, decision-making, and scheduling. With the advent of technology and

computing, sophisticated optimization models have been developed to solve the wide

range of issues associated with resource planning, scheduling, and optimization. The

four main categories of optimization models are analog methods, analytical methods,

heuristic methods, and metaheuristics algorithm methods.

Analog methods utilize dual series, electrical methods, and physical planning methods.

Analog methods are complex to design and are usually not reliable. Analytical methods

use mathematical methods to schedule different project tasks. However, the methods

are ineffective when used in large-scale projects (Project Management Institute, 2013).

Heuristic methods use computers to perform equations that facilitate project planning

and scheduling. Lastly, genetic algorithms are based on genetic science.

9

Some of the earliest used algorithms in project planning were evolutionary algorithms

(EA). EA algorithms are designed to mimic natural processes. These algorithms have

been used in the optimization of critical project areas such as resource scheduling, time-

cost trade-off, project control, risk prediction, finance-based scheduling, cost, and

duration estimation, logistic operations, equipment selection, scheduling, and financial

administration.

2.2.1 Existing Literature in Optimization Models

A wide range of optimization models exists in the literature. One of the earliest project

planning and optimization models was a simple heuristic algorithm called “the

Minimum Moment algorithm”. The primary objective of the model was resource

leveling and optimization. The model was proposed by Harris (1973). It was later

improved by Mohammed (2000) who took into consideration the free float factor of

activities and the selection criteria of resources. The model also minimized the

deviations between actual and optimal resource utilization. In a different study,

Ramlogan and Goulter (1998) designed a model to enable project scheduling and

resource-leveling. The model has three main objectives: optimal resource allocation,

internal resource allocation, and resource duration minimization. The researchers used

a mixed-integer model and a weighted multi-objective algorithm.

Several researchers have proposed meta-heuristic models for scheduling and resource

planning. A research by Senouci and Eldin (2004) proposed a metaheuristic based on a

“genetic algorithm”. The model concurrently performs resource allocation and leveling.

In a much recent study, Liao et.al (2011) provides a study of several metaheuristics

approaches to optimization.

The research then proposes a generic algorithm to minimize deviations in resource

10

scheduling and planning. In a different study, Hariga and El-Sayegh (2011) designed a

meta-heuristic optimization model for multi-resource leveling problems.

In summary, the main exact optimization models existing in the literature include zero-

one integer programming, dynamic programming, and implicit enumeration

(enumeration with branch bound). On the other hand, the main heuristic models are

multi-pass and single-pass methods. Tabu search, genetic algorithms, and simulated

annealing are the main metaheuristic approaches that have been used to solve MRCPSP.

Other heuristic solutions are population-based approaches, local search-oriented

approaches, neural networks, and forward-backward improvement. These methods are

widely used in different areas of multiple resource planning and management. The

methods are also associated with different sets of advantages and disadvantages. Some

are only suitable for small scale, while others can be applied in complex projects.

To solve MRCPSP problems, dynamic programming solutions divide problems into

sub-problems. After every small problem is solved, the program combines the solutions

to solve the whole problem. One of the first programs to solve an RCPSP problem was

developed by Carruthers and Battersby (1966). The program solved the problem by

finding the maximum path using the problem symmetry of the network. Although the

method was effective in solving a network problem, it could not be used to solve

practical problems.

A wide variety of research has been carried in an attempt to use zero-one integer

programming to solve MRCPSP problems. These include studies by Patterson and Roth

(1976) and Patterson and Huber (1974). In particular, there exist several programming

solutions to shop scheduling problems. A program developed by Patterson and Roth

(1976) performed linear programming as a solution to MRCPSP problems.

In particular, the study used a zero-one variable to distinguish between the start time

11

and finish time of multiple projects. On the other hand, Patterson and Huber (1974)

produced minimum duration schedules by using both bounding techniques and zero-

one programming.

As noted by the studies conducted by Patterson and Huber (1974) the number of

variables in the problem size in zero-integer programming increases as the problem size

increases. As a result, the programming is ineffective when solving complex problems.

Zero integer programming can therefore only be applied in simple or small-size

problems. It is ineffective in practical solutions. However, the structure of the zero-

integer algorithm has significantly reduced the computational efficiency in solving

MRCPSP problems. In particular, the program introduced implicit enumeration

algorithms that reduced the computational time for solving MRCPSP problems.

Branch and bound approaches have been widely used in solving implicit enumeration

issues. In these solutions, the model schedules and delays activities based on specific

precedence and resource constraints.

The number of schedules created in the model is dependent on the number of

combinations. The program is designed to create as many partial schedules as the

number of feasible combinations. Implicit enumeration with branch and bound have

been widely used in solving MRCPSP problems. These include solutions developed by

researchers like Fisher (1973), Hastings (1972), and Christofides et al. (1987).

In a branch and bound solution given by Davis and Heidorn (1971), the researchers find

the solution to an MRCPSP problem by transforming the problem into a problem that

seeks to find the shortest path in a graph. In such a setting, the solution can be

determined by scheduling tasks in a given period. The only drawback of the model is

that it is only applicable to easy problems and ineffective in solving complex problems.

Although they are widely applied, combinatorial approaches are known to have several

12

technical drawbacks. One of the primary drawbacks is that the models are only effective

in simple data sets. Very few models for solving complex data sets exist. Secondly,

existing solutions to multiple resource planning using combinatorial are ineffective in

solving both in terms of computational efficiency and solution quality. The problems

cannot provide effective solutions to complex practical problems with hundreds or

thousands of multiple project activities. These approaches are therefore only applicable

in small problems with a limited number of project activities. Some researchers have

also used “Lagrangian relaxation of resource constraints” to create lower bounds.

Lagrangian relaxation is a type of “linear programming relaxation” (Fisher 1973).

One of the most effective exact approaches was developed by Demeulemeester and

Herroelen (1992). The algorithm developed by the researchers performed well

compared to all other algorithms. Unlike the other algorithms, the one by

Demeulemeester and Herroelen (1992) is based on a technique called a “depth-first

solution”. In this technique, the nodes in the solution tree are representative of the

resource and partial schedules. On the other hand, branches represent different

combinations of activities. The computational results of the algorithms developed by

the researchers showed that they performed better when compared to other similar

algorithms. In a different branch and bound algorithm, Brucker et al. (1998) used

disjunctive constraints between a set of activities.

In a different study conducted by Mingozzi et al. (1998), the researchers designed a

zero to one linear program for MRCPSP problems. The main objective of the program

was to derive lower bounds with the capability of showing the most optimal path in the

graph. The developed algorithm showed that it could solve hard instances that other

algorithms were incapable of solving.

In a study by Dorndorf et al. (2000), the researchers developed a “branch-and-bound

13

algorithm” that computes the start and end times of activities. The algorithm uses a

“constraint-propagation technique” to reduce search space.

Priority-rule-based heuristic approaches have also been widely used to solve MRCPSP

problems. These approaches can broadly be categorized in two: single-pass and multi-

pass approach. “Multi-pass methods” can further be divided into three: “sampling

methods, forward-backward scheduling methods, and multi-priority rule methods”.

Heuristic approaches make use of different priority rules to generate schedules. Serial

Generation Scheme (SGS) are used to produce multiple schedules. In an SGS

methodology, feasible schedules use priority ranking and are built up in a stepwise

design. The two types of SGS are the serial SGS and the parallel SGS. Serial SGS works

as an activity-oriented scheme, whereas parallel SGS is a time-driven scheme. Both

types of SGS can be used to decode schedule representation.

In a “single pass method”, only one schedule is used. Some examples of priority rules

used in the single-pass approach are the earliest start time rule, the latest finish time

rule, and the most total successor rule. “Single-pass method” has been widely applied

to RCPSP problems.

A multi-pass method uses more than one schedule, each iteration is associated with a

different priority rule. The process is repeated several times until the optimal solution

is obtained. Several studies have used multi-priority rules to solve RCPSPs. In a multi-

pass method developed by Ulusoy and Özdamar (1989), the researchers use a Weighted

Resource Utilization and Precedence (WRUP) rule. The study compares the rule to

other rules such as Latest Finish Time (LFT) and Minimum Slack (MINSLK). The

study then establishes relations between the resource characteristics of RCPSPs and

heuristic techniques.

The results of the study showed that WRUP could solve problems at a higher success

14

rate than other types of heuristics. A multi-pass methodology was also used by Boctor

(1996). The study assessed several heuristic rules to investigate the relationship

between the obtained solutions and the number of heuristic rules applied. The study

showed that a combination of four or five heuristic rules can yield an optimal solution

for large RCPSP problems. The methods can be broadly classified into two: forward

back scheduling, multi priority rule, and sampling methods.

MRCPSP problems have also been solved using forward-backward scheduling

methods. In these methods, an SGS is used to iteratively perform a forward and

backward schedule.

Sampling methods have also been widely applied in solving MRCPSP problems.

Sampling methods use a combination of priority rules and SGS. Unlike forward back

scheduling methods, different schedules can be obtained from sampling methods. The

most optimal schedule is selected from the options. In a sampling technique developed

by Cooper (1976), a randomized technique is used to select the best schedule. Studies

that have used sampling methods have shown that the methods have higher

computational efficiency compared to other deterministic and heuristic methods.

As discussed earlier, the main types of metaheuristic approaches that have been applied

to solve MRCPSP problems are tabu search, simulated annealing, ant colonies, and

genetic algorithms. Since genetic algorithms were introduced by Holland (1975), they

have been widely used to solve MRCPSP problems. Today, genetic algorithms are used

both as an optimization technique and as a learning and adaptation model. In an

algorithm developed by Hartmann (1998), it was found that the results were better than

those produced by other simulated annealing techniques.

Simulated annealing techniques are used to solve complex combinatorial problems. The

15

technique through a search and improvement method. The basic concept of the format

is that it starts with a feasible solution then the algorithm periodically improves the

solution until no improvement is required. Researchers like Valls et al. (2005) and

Boctor (1996) have widely used the simulated annealing approach. In the study by

Boctor (1996), a non-preemptive technique for solving an MRCPSP problem is

proposed. The method is renewed from time to time. The method was found to have a

higher level of efficiency when compared to the tabu search method.

The study conducted by Bouleimen and Lecocq (2003) proposed a solution to an

MRCPSP problem using simulated annealing. The method used both SGS schedules

and an activity list representation to solve the MRCPSP and RCPSP problems. To solve

the RCPSP problem, a time-increasing process and an alternated activity process was

used. For the MRCPSP problem, the researchers used a mode search neighborhood and

a double embedded search loop. The study proved the algorithm has a higher level of

efficiency. In a simulated annealing study by Valls et al. (2005), it was shown that the

technique improved computational efficiency.

Tabu search has also been used to solve MRCPSP and RCPSP problems. The method

utilizes a combination of a heuristic and a “meta-heuristic method”. The meta-heuristic

was superimposed on the heuristic model. The technique works by avoiding cycle

entrainment and penalizing moves in different sets of iterations. The first step a tabu

search algorithm takes is matching the search to a local minimum. The search then

records moves in a tabu list to prevent any retracing of moves. The list is stored in a

tabu search record. The search algorithm was also studied by Nonobe and Ibaraki

(2002) as a solution to an RCPSP problem. The researchers use an activity list

representation, a serial SGS, and a neighborhood reduction mechanism.

The SGS also contained features such as the availability of renewable and non-

16

renewable resources and multi-mode processing.

In an ant colonies approach, a meta-heuristic approach is used to solve MRCPSP and

RCPSP problems. Using an ant colonies approach, Dorigo et al. (1996) applied “the

classical Traveling Salesman Problem (TSP)” technique. The solutions were found to

have a higher level of computational efficiency. The primary features of the system

were the use of heuristic procedures, distributed computations, and positive feedback.

The result of the experiment showed that the ant colonies approach was robust and

effective. In a different research, Merkle et al. (2002) used an ant colony approach to

solve an optimization problem. In the study, the authors combine heuristic and ant

colony algorithms. In particular, the method is combined with the paper algorithm

developed by Hartmann and Kolisch (2000). The combination yielded an algorithm

with an efficiency level that was higher than that provided by the other types of

algorithms (sampling method, tabu search, and simulated annealing).

Another approach that has been used to solve optimization problems is the local search-

oriented approach. Unlike other methods, the local search-oriented approach does not

rely on metaheuristic techniques. Researchers like Valls et al. (2005) and Palpant et al.

(2004) have attempted to use the local search-oriented approach. The study by Valls et

al. (2005) utilized a double phase algorithm that is based on the serial SGS and a

topological order representation. The method was found to result in a higher level of

computational efficiency.

Neural network approaches have also been used to solve scheduling and resource

allocation problems. In a study by Colak et al. (2005), the authors propose the use of a

neural network algorithm to solve an MRCPSP problem. The algorithm uses a

combination of an SGS based augmented neural network and a serial SGS.

The algorithm also uses a forward-back improvement technique in a hybrid approach.

17

The results of the study showed that the algorithm produced a good performance

compared to heuristic and deterministic approaches. The drawback of neural networks

is that they require a high level of training. These algorithms can therefore be classified

as trial and error algorithms.

2.3 Optimization Solutions for Multiple Resource Planning

As illustrated earlier, the problem of research planning and scheduling has always

existed in project management. The problems are higher in multiple projects compared

to single projects. Most of the existing research in resource optimization focuses on the

use of heuristic methods. Today optimization most models also utilize Genetic

algorithms (GA). These algorithms are based on natural selection processes and can be

used for constrained and unconstrained optimization problems (Senouci and Eldin,

2004). The algorithms copy the natural process of survival of the fitness and other

behavior of species. The metaheuristic developed by this algorithm can solve

optimization problems.

Genetic algorithm is a group of algorithms that model solutions to optimization

problems using a technique inspired by the process of evolution. In particular, genetic

algorithms encode optimization solutions in a way that mimics chromosome data

structures. Genetic algorithms act as function optimizers (Liao et.al, 2011). The

algorithms periodically modify a set of solutions to give the most optimal solution.

Genetic algorithms can particularly be used to solve problems with an objective

function that is stochastic, non-differentiable, nonlinear, or discontinuous.

The main components of a genetic algorithm are the cost, optimization function, and

18

optimization variables. Solutions to GA functions are computed using computer

simulations in which sets of abstract representations to optimization problems are

evolved periodically to give better solutions (Senouci and Eldin, 2004). The solutions

are expressed in the form of binary strings of 1s and 0s. Genetic algorithms first select

solutions randomly from a population. The solutions are then modified and evaluated

periodically and then used to form a new population. The algorithm arrives at an

optimal solution when the maximum number of evolutions is attained.

The key terms used in GA are fitness function, individuals, generations and populations,

and encoding. The fitness function is the function that the algorithm attempts to

optimize. In project management, the fitness functions may be designed to solve

scheduling or resource planning problems. Individuals are the point where fitness

functions are applied. The individual is the single solution to the computed fitness

problem. The solution which the algorithm is attempting to solve is designed using

chromosome parameters (Hariga and El-Sayegh, 2011). Strings are used to represent

chromosomes.

The term population is used to describe an array of individual solutions. With every

iteration, the algorithm performs a series of computations on the population to produce

children (a new set of the population). The algorithm selects the population that shows

high levels of fitness. Every newly generated population is called children (Senouci and

Eldin, 2004). Encoding is the process by which a solution is represented in the form of

a string. The string conveys the requisite details. The algorithm operates in the same

way genes reveal the character of a person. Each part of the solution is represented by

a bit in the algorithm. Value and binary encoding are both used in GAs.

2.3.1 Resource-Constrained Project Scheduling Problem (RCPSP)

19

In constrained resource planning, the primary objective of the problem is usually to

ensure efficient resource utilization. Such models can be modeled using combinatorial

auction. During the scheduling and distribution of resources, project managers of

different projects act like bidders competing for distributed resources. Each project in

multi-resource planning has a set of unique requirements such as (resource constraint,

the capacity of resources, and activities that project managers have to deal with). This

may include different lead times and different project processing requirements. Apart

from efficiently distributing resources, the model can allow project managers of

different projects to request a complex combination of resources. In multiple resource

planning, such combinations are referred to as multisets (Wellman et al., 2001).

Constrained-resource problems were in the early years solved using mathematical

models like a branch and bound, linear programming, integer programming, and

dynamic programming. Existing project scheduling solutions make significant use of

heuristic rules. Heuristics are widely used because of their simplicity and efficiency.

However, they do not always result in optimal solutions. Mathematical solution is

efficient on a small scale but inefficient in large scale complex problems.

Today, modeling solutions as Resource-Constrained Project Scheduling Problem

(RCPSP) are applied in a wide range of business solutions. These include cloud

computing workflow scheduling, software development, and manufacturing. RCPSP

mainly aims at finding the optimal start time of a resource-dependent activity and

optimizing performance in a way that resource constraints are respected.

RCPSPs are centralized and deterministic problems. As such, there exist available

information regarding the problem and a single decision-maker.

However, several assumptions have been developed to adopt the problems to respond

20

to the dynamic nature of today’s business world. Two primary factors are relevant in

the development of a dynamic-solutions to existing real-world problems. These are

distributed management and execution uncertainty. By factoring in distributed

management, existing models have to incorporate solutions that adhere to both privacy

and distributed decision-making. Execution uncertainty is also a critical factor in the

development of effective optimization and planning models. In particular, the

uncertainties experienced in multiple projects need to be incorporated into the models.

All the existing mechanisms for solving RCPSPs are broadly classified into two:

heuristic approaches and exact approaches. Exact approaches are those approaches

whose effectiveness and reliability have been statistically proven. On the other hand,

heuristic approaches are those that use computational techniques to find solutions to

problems. Most approached mainly concentrate on the development of Mixed Integer

Linear Programming (MILP) approaches to solve RCPSPs. After the development of

the MILP, solvers like CPLEX and Gurobi can then be used.

A wide range of MILP formulations is available in the literature. These include event-

based formulations, continuous-time formulations, and discrete formulations. Although

the models are known to be effective, studies have shown they are not scalable (Brucker

and Knust, 2012). Models that utilize exact approaches may be designed using

constraint programming techniques. Such a design finds the optimal schedule through

a combination of backtracking search and constraint propagation mechanisms. The key

techniques used in RCPSP problems are energetic reasoning, timetabling, lazy clause

generation, and edge fitting (Schutt et al., 2013).

According to most studies, constraint programming-based approaches have a higher

level of computational efficiency compared to MILP based approaches.

This is mainly because of the reduction of search spaces by the active exploration of

21

constraints (Schutt et al., 2013). Most exact approaches run in exponential time to arrive

at the best solution. Since they are anytime algorithms, they can be terminated early

and still be able to provide the most optimal solution.

Heuristic approaches to solving RCPSP have also been widely studied. Perhaps the

most common approaches are metaheuristic approaches and schedule generation

schemes. Scheduled generation schemes perform operations using a set of priority rules.

They are thus simple and flexible. Because of these properties, scheduled generation

schemes are widely used in building solutions for RCPSPs (De Nijs and Klos, 2014).

On the other hand, metaheuristic techniques employ random techniques in the design

of searching algorithms. In general, metaheuristic-based algorithms require less

computational time compared to algorithms that utilize exact approaches.

Existing research also shows the use of combinatorial auction-based approaches to

solve scheduling problems in resource planning and optimization. Combinatorial

auction-based approaches for multiple resource planning have been used to solve

RCPSPs. The approach uses the Lagrangian decomposition in generating solutions to

problem combinations. However, the use of combinatorial auction-based approaches is

known to result in infeasible solutions and schedules (Wellman et al., 2001). Most

scholarly study has also gone into the development of planning and optimization

techniques for uncertain situations. Such solutions incorporate MILPs for deterministic

RCPSPs. The constraints ensure a low level of planning and schedule violation

(Varakantham et al., 2016).

2.3.1.1. Multimode Resource-Constrained Project Scheduling Problem (MRCPSP)

Non-preemptive execution techniques are the main techniques used in Multimode

“Resource-Constrained Project scheduling problems (MRCPSP)”.

These problems mimic the challenges experienced in solving multiple resource

22

optimization and planning problems (Varakantham et al., 2016). In particular, every

mode of execution has a set of execution requirements and a prescribed duration. The

resource requirement may be renewable or non-renewable. A wide range of solutions

to solve MRCPSPs have been proposed in the literature. These include simulated

annealing, heuristics, and serial scheduling schemes.

As an extension of the RCPSP, MRCPSP is concerned with the determination of

optimal scheduling in instances of shared resources. In MRCPSP, the duration of each

task is represented as a function of the resources and level of the resources used. As a

solution to multi-project planning, MRCPSP has been applied in scheduling and

resource optimization (Varakantham et al., 2016). Notably, MRCPSP is more complex

compare to RCPSP. The MRCPSP problem becomes non-deterministic polynomial-

time hard (NP-hard) when there are two or more resources are nonrenewable. The

complexity of MRCPSP is further increased in the instance where the model allows for

the choice of modes.

Relevant to the existing review, optimization solutions for multiple resource planning

can be organized in a set of precedence of activity sequence. To create a valid sequence,

researchers have used the Variable Neighborhood Search (VNS). In particular, a VNS

technique is associated with the exploration of neighborhood structures used in search

steps that generate an optimal solution. VNS based heuristic approaches significantly

increase the probability of obtaining the most optimal solution through random

selection. In a study by Chakrabortty, Abbasi, and Ryan (2019), the researchers found

a near-optimal solution for a multi-mode resource-constrained scheduling problem.

One of the first solutions to MRCPSP was developed by Boctor (1996).

The first solution developed by the researcher was a heuristic single-pass approach that

23

utilized a parallel scheduling scheme. In the model, activities are defined by the

decision set of the predecessors. In particular, the MLSK priority rule defines the

decision set. The mode with the shortest decision time defines the scheduled activity.

For simulated annealing, the algorithm is iterative and keeps repeating the solution until

an optimal solution is obtained.

In the simulated annealing (SA) algorithm, the solutions are represented in a list form

where a solution’s position represents its level of priority. Activities are then chosen at

random to result in a neighbor solution. In addition, the Shortest Feasible Mode (SFM)

rule is used to select the ideal activity mode. In a different study, Drexl and Grunewal

(1993) use a random sampling approach that utilizes a serial scheduling scheme with

an SPT priority rule. The ideal time of selected activities is then determined in

consideration of the existing constraints. The research resulted in a model solution with

a deviation of 3.5% from the optimal solution.

In research conducted by Hartman (2001), an MRCPSP problem is solved using a

genetic algorithm. The algorithm relies on a set of feasible activities and a combination

of different modes. The model also utilized a serial scheduling scheme to generate a

schedule. The researchers found that the genetic algorithm resulted in a better result

compared to the solution by periodic rule encoding. Some researchers have also

proposed a genetic-based local search algorithm. The first phase of the algorithm

performs a global search, whereas the second phase does a local search. The global

search collects elite solutions which then form the population of the second search.

2.3.2. Resource Loading Problem (RLP)

24

In a study by Hans (2001), the author studies RLP by factoring precedence constraints

and allowing pre-emption. After studying an RLP problem, a study by Kis (2005)

proposes a branch and cut algorithm. The authors describe an RLP problem as a project

scheduling task with high-intensity activities. To solve an RLP problem, Gademann

and Schutten (2005) propose a linear programming heuristic technique. In a study by

Wullink et al. (2004), the researchers propose a scenario-based approach to solve an

RLP problem. Unlike the study by Kis (2005) and Hans (2001), the study by Song et

al. (2019) proposes minimum intensities for order execution. With minimum

intensities, an advanced linear description of the feasible intensity is attained. The study

by Song et al. (2019) concludes that the branch-and-cut algorithm has a higher level of

efficiency.

RLP problems have also been investigated by researchers like Blazewicz et al. (2004)

where tasks are executed by several processors. In such a setting, task processing is

represented by a non-linear function of its allocated processors. In a study by Nattaf et

al. (2019), the researchers propose a resource scheduling solution for a resource

scheduling problem that aims to minimize resource consumption. A study by Fundeling

and Trautmann (2010) also solves a project scheduling problem. In particular, the study

investigates the minimum and maximum level of resource usage in the completion of a

project. In a different study, Naber and Kolisch (2014) provide a solution for an RCPSP

problem. Notably, the RCPSP solved by the researchers utilizes a flexible resource

profile. The authors use different MLP variations to solve the problem.

Time-indexed formulation has also been widely used to solve scheduling problems that

have fixed processing times. In a study by Sousa (1992), a single machine schedule is

performed using a time-indexed formulation.

The model was based on the strength of the linear programming relaxation. To solve

25

RCPSPs, some researchers have proposed several polyhedral solutions that have been

provided by researchers like Bianco and Caramia (2017) and Artigues (2019). Research

by Naber and Kolisch (2014) and Burgelman and Vanhoucke (2018) also provides

computational results for time-indexed formulations.

As illustrated by Song et al. (2019) resource planning and scheduling can also be

accomplished through the use of a branch-and-cut algorithm to solve a resource loading

problem (RLP). RLP problems can be designed to mimic the resource planning

challenges experienced in multiple projects. The development of RLP problems has

historically been driven by real-world problems. For instance, a study by De Boer

(1998) attempted to resolve employee scheduling and planning at a real-world

organization. In a different study, Belien et al. (2012) used an RLP problem to design

scheduling and workplace plans for the resources and equipment in an aircraft

company.

2.2.2.1 Resource Tardiness

There have also been studies that have addressed the problem of Resource Tardiness

Weighted Cost Minimization in Project Scheduling. A study by Shirzadeh Chaleshtari

(2017) analyzed the problem of maximization under the tardiness penalty costs. The

study uses a CPLEX solver-based algorithm and makes use of the original RCPSP

problem. CPLEX was compared to a branch and bound algorithm. The branch and

bound algorithms were found to have a higher level of efficiency. The study showed a

higher level of algorithm efficiency even at different levels of difficulty.

2.4 Summary

In the literature review, we started with existing literature in optimization models their

strengths and limitations, then we describe the main resource loading problem.

After that, we presented a brief description of the resource-constrained project

26

scheduling problem (RCPSP) and some studies related to the problem. Then, we

described the multimode resource-constrained project scheduling problem (MRCPSP)

and the most important researches related to the problem.

Chapter 3 will present the proposed model of optimization models for multiple resource

planning and the different enhancement procedures to fill the gap in the literature.

2.3. Summary of different multi-resource planning models

The below table gives a summary of the features of different multi-resource planning

and optimization models.

27

Table 1. Summary of the Literature Review and Comparison of Reviewed Models

Reviewed Author Year Method Datasets

1- Boctor 1996 Heuristic Own
2- Chakrabortty, R., Abbasi, A., &

Ryan, M.
2019 Heuristic Own

3- Drexl A. and J. Grunewald 1993 Heuristic Own
4- Dooley, Lupton, and D.

O’Sullivan
2005 Portfolio management Case study

5- Hartmann 2001 Generic Algorithm Project

Scheduling

Problem Library
6- Hariga and S. M. El-Sayegh 2011 Mixed binary linear optimization

model

Own

7- Liao 2011 Metaheuristics Own

8- Mohammed A. Salem Hiyassat 2000 Modification of minimum

approach

Own

9- Ramlogan, R., and I. C. Goulter 1989 Mixed Integer Model Own

10- Senouci A.B and N. N. Eldin 2004 Generic Algorithm Own

11- Shirzadeh Chaleshtari, A. 2017 CPLEX & a branch and bound

algorithm

Project

Scheduling

Problem Library

12- Carruthers and Battersby 1966 Critical path method Own

13- Patterson and Roth 1976 Zero-one integer programming Own

14- Patterson and Huber 1974 Zero-one integer programming Own

15- Fisher 1973 A branch-and-bound algorithm Own

16- Christofides et al. 1987 A branch-and-bound algorithm Own

17- Davis and Heidorn 1971 A branch-and-bound algorithm Own

18- Demeulemeester and

Herroelen

1992 A depth-first solution Own

19- Brucker et al. 1998 A depth-first solution Own

20- Mingozzi et al. 1998 A zero to one linear program Own

21- Dorndorf et al. 2000 A branch-and-bound algorithm Own

22- Ulusoy and Özdamar 1989 Weighted resource utilization and

precedence (WRUP)

Own

23- Cooper 1976 A combination of priority rules

and SGS

Own

24- Holland 1975 Genetic algorithms Own

25- Valls et al. 2005 Simulated Annealing Own

26- Bouleimen and Lecocq 2003 Simulated annealing Own

27- Nonobe and Ibaraki 2002 Tabu Search Own

28- Dorigo et al. 1996 Ant colonies approach Own

29- Merkle et al. 2002 Ant colony approach Own

30- Palpant et al. 2004 A local search-oriented approach Own

31- Colak et al. 2005 Neural networks Own

32- Kis 2005 A branch and cut algorithm Own

33- Gademann and Schutten 2005 A linear programming heuristic

technique

Own

34- Sousa 1992 A time-indexed formulation Own

35- Bianco and Caramia 2017 Polyhedral solution Own

36- Naber and Kolisch 2014 Time indexed formulations Own

37- Burgelman and Vanhoucke 2018 Time indexed formulations Own

28

CHAPTER 3: A NOVEL MODEL AND SOLUTION FOR THE MULTIPLE

RESOURCE LOADING PROBLEM

The current chapter gives an in-depth overview and solution for the MRLP problem. A

novel model and solution for the MRLP problem are presented. The model provides a

solution that minimizes time wastages and ensures efficient resource utilization in

resource-constrained planning. Apart from facilitating efficient allocation of scarce

resources, the model allows the complex combination of resources while taking into

account restrictions and time constraints.

The chapter is divided into four distinct parts: section 3.1, section 3.2, section 3.3, and

section 3.4. Section 3.1 gives a detailed problem definition that prompts the

development of the novel model and solution for the MRLP. Section 3.2 introduces a

mixed-integer programming (MIP) formulation of the outlined problem. The third

section 3.3 describes the key model enhancement of the outlined problem. Lastly,

Section 3.4 introduces a MIP-based decomposition heuristic. The decomposition

heuristic is formulated to provide an efficient solution for large-scale instances.

3.1 Problem Definition

The current research provides a general solution for a multiple resource planning and

scheduling problem. MRLP problems arise in almost every organization undertaking

multiple projects. A lot of organizations today face multiple resource planning project

complexities, especially those in the construction, engineering, and manufacturing

industries. The key objective of multiple resource planning and the formulation of

MRLP problems is to ensure projects adhere to the key constraints of the project’s

performance, time, and budget.

29

3.1.1 Approach/Methodology

The MRLP seeks to create a solution that solves the four key challenges that project

managers encounter in day to day management of multiple projects. In particular, the

objective is to enhance project scheduling within a given time horizon to get the optimal

resource allocation solution that minimizes the cost of tardiness and the cost of

additional capacity if any.

Multiple project management involves balancing competing project interests. The main

responsibility of managers in such settings is to ensure multiple project objectives are

met. The key issues that may arise in the management of multiple projects are overlap

of activities and tasks, resource sharing, competing project deadlines, and resource

prioritization.

In multiple resource planning, resource allocation is often a problem because of time

criticality, dealing with high project demands, uncertainties, project constraints, and

dealing with competing priorities. The current problems focus on renewable resources

such as employees and machines. Such resources need optimal resource allocation that

minimizes the cost of tardiness and the cost of additional capacity. Failure to efficiently

allocate resources has been the main cause of project delays in multiple resource

planning.

3.1.2 Modelling Problem Formulation

A Multiple Resource Loading problems (MRLP) problem is formulated as a mixed-

integer linear programming (MILP) problem. The problem formulated in this chapter

can generally be applied in any multiple resource planning problem. The primary

objective of the model formulation is to develop an MRLP that minimizes the total cost

of tardiness and the total cost of additional capacity.

30

For each project, number of tasks, number of available resources, number of execution

modes of each task, consumption needed of each resource by different task under each

mode, starting date, duration, weight, cost of adding extra units of capacity to the

resource and the deadline is given.

Notably, the project is uploaded based on the processing time in which the resource

should be available at the time. Available resources can be identified based on capacity.

The objective functions and the constraint conditions can be achieved by integrating

constraints with decision variables.

3.2 Problem Formulation

3.2.1 Notation

For Multiple Resource Loading problems (MRLP), the number of tasks can be

represented as the set n number of tasks to be executed within H time frame. The H is

represented as a scheduling time horizon and is considered discrete for periods that are

similar in length. For the current model, the period (months) is represented as t. The

time t spans over a specific time interval represented as [t-1, t] for t = 1… H. The

amount of resources in the project is represented as r (r=1… R). The resources exist

such that there is no time t where the resources exceed the availability of renewable

resources R. Within each time t, there is a specific capacity brt of the main resource r.

Moreover, each task j (j = 1… n) is executed under mj number of execution modes.

Each task j (j = 1… n) has a consumption ajrk of resource r by task j under mode k. Each

task j (j = 1… n) has a processing time pjk under mode k. Each task j (j = 1… n) has a

real start date rj of the project. The due date of task j is given as dj. Each activity j is to

be completed within a duration pjk and in the utilization of a specified resource r. As

such each task has a specified duration and a set of resources, tasks are also assigned

different weights wj which denotes task significance/priority and cost of adding

capacity σrt. Specifically, σrt is the cost of adding one unit of resource r at time t.

31

In summary, the following is a list of input data and notation utilized in the study:

n: Number of tasks,

R: Number of resources,

H: Time horizon,

brt: Capacity of resource r at period t,

mj: Number of execution modes of task j,

ajrk: Consumption of resource r by task j under mode k,

pj: Processing time of task j under mode k,

rj : start date of the project

dj: Due date of task j,

wj: Weight of task j,

σrt: Cost of adding one unit of capacity to resource r at period t.

3.2.2 Decision Variables

We define the following decision variables:

xjk: Binary variable that takes value 1 if task j is executed under mode k, and 0 otherwise.

yjt: Binary variable that takes value 1 if task j is executed during period t, and 0

otherwise.

sjt: Binary variable that takes value 1 if task j starts at the beginning of period t, and 0

otherwise (that means, sjt = 1 ⇒ task j starts at time t).

fjt: Binary variable that takes value 1 if task j finishes at the end of period t, and 0

otherwise (that means, fjt = 1 ⇒ task j finishes at time t+1).

Tj: Tardiness of task j.

zrt: Additional capacity of resource r at period t.

32

3.2.3 Model Formulation

3.2.3.1 Model (1): Single Mode (SM), Single Resource (SR) with No Extra Capacity

Model (1) presents the basic formulation that using a single number of modes mj, and

a single number of resources R, without adding any additional capacity. The Model (1)

can be formulated as follows:

Model(1) (𝑆𝑀, 𝑆𝑅, 𝑁𝑜 𝑒𝑥𝑡𝑟𝑎 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦) ∶ 𝑀𝑖𝑛 ∑ 𝑤𝑗

𝑛

𝑗=1

𝑇𝑗
(1)

Subject to:

∑ 𝑆𝑗𝑡

𝐻

𝑡=1

= 1, 𝑗 = 1, … , 𝑛

(2)

∑ 𝑓𝑗𝑡

𝐻

𝑡=1

= 1, 𝑗 = 1, … , 𝑛

(3)

∑ 𝑡 𝑆𝑗𝑡

𝐻

𝑡=1

≥ 𝑟𝑗 , 𝑗 = 1, … , 𝑛

(4)

∑ 𝑡 𝑆𝑗𝑡

𝐻

𝑡=1

+ 𝑝𝑗 = ∑ 𝑡𝑓𝑗𝑡

𝐻

𝑡=1

, 𝑗 = 1, … , 𝑛

(5)

∑ 𝑆𝑗𝑡

𝑡

𝑡=1

− ∑ 𝑓𝑗𝑡

𝑡

𝑡=1

= 𝑦𝑗𝑡 , 𝑗 = 1, … , 𝑛; 𝑡 = 1, … , 𝐻

(6)

∑ 𝑎𝑗 𝑦𝑗𝑡

𝑛

𝑗=1

≤ 𝑏𝑡, 𝑡 = 1, … , 𝐻
(7)

𝑇𝑗 ≥ ∑ 𝑡𝑓𝑗𝑡

𝐻

𝑡=1

− 𝑑𝑗 , 𝑗 = 1, … , 𝑛
(8)

𝑦 𝑏𝑖𝑛𝑎𝑟𝑦, (9)

𝑇, 𝑦, 𝑠, 𝑓 ≥ 0, (10)

33

The objective function (1) minimizes the total penalty. Constraint (2) requires that each

task is assigned exactly to one start time. Constraint (3) requires that each task is

assigned exactly to one finish time. Constraint (4) requires that each task is starting at

least from the real start date. Constraint (5) enforces that the finish time of a task is

equal to the sum of its start time and processing time. Constraint (6) requires that if task

j has started processing at time given ∑ 𝑆𝑗𝑡
𝑡
𝑡=1 = 1 and its finishing time at time given

∑ 𝑓𝑗𝑡
𝑡
𝑡=1 = 1, then j is processed during the specified period and 𝑦𝑗𝑡 = 1. Constraint (7)

enforce the resource capacity constraint. Constraint (8) enforce the tardiness constraint.

Constraints (9), (10) are both for non-negativity. Table 2 below shows example of

SMSR without any additional capacity.

Table 2. Example of SMSR – No Extra Capacity

Project

ID

Duration

(Months) (pj)

Capacity

(bt)

Deadline

(dj)

Consumption

(aj)

Weight

(wj)

1

2

3

4

5

6

7

8

9

10

3

2

2

2

1

3

2

2

4

1

7

4

6

6

8

8

10

8

8

5

3

2

3

2

6

8

10

10

8

7

3

1

3

2

2

7

2

3

1

2

1

1

1

1

1

1

1

1

1

1

34

The exact solution is illustrated in the figure below.

Figure 1. Graphical presentation of SMSR - No Extra capacity

3.2.3.2 Model (2): Single Mode (SM), Single Resource (SR), with Extra Capacity

A variant formulation of Model (1) by adding a new objective function that minimizes

the total penalty and any additional capacity, and add constraint (18) which is the

capacity constraint can be formulated as follows:

Model(2) (𝑆𝑀, 𝑆𝑅, 𝐹𝐶) ∶ 𝑀𝑖𝑛 ∑ 𝑤𝑗

𝑛

𝑗=1

𝑇𝑗 + ∑ ∑ 𝜎𝑟𝑡 𝑧𝑟𝑡

𝐻

𝑡=1

𝑅

𝑟=1

(12)

Subject to:

∑ 𝑆𝑗𝑡

𝐻

𝑡=1

= 1, 𝑗 = 1, … , 𝑛

(13)

35

∑ 𝑓𝑗𝑡

𝐻

𝑡=1

= 1, 𝑗 = 1, … , 𝑛

(14)

∑ 𝑡 𝑆𝑗𝑡

𝐻

𝑡=1

≥ 𝑟𝑗 , 𝑗 = 1, … , 𝑛

(15)

∑ 𝑡 𝑆𝑗𝑡

𝐻

𝑡=1

+ 𝑝𝑗 = ∑ 𝑡𝑓𝑗𝑡

𝐻

𝑡=1

, 𝑗 = 1, … , 𝑛

(16)

∑ 𝑆𝑗𝑡

𝑡

𝑡=1

− ∑ 𝑓𝑗𝑡

𝑡

𝑡=1

= 𝑦𝑗𝑡 , 𝑗 = 1, … , 𝑛; 𝑡 = 1, … , 𝐻

(17)

∑ 𝑎𝑗 𝑦𝑗𝑡

𝑛

𝑗=1

≤ 𝑏𝑡 + 𝑧𝑟𝑡, 𝑡 = 1, … , 𝐻
(18)

𝑇𝑗 ≥ ∑ 𝑡𝑓𝑗𝑡

𝐻

𝑡=1

− 𝑑𝑗 , 𝑗 = 1, … , 𝑛

(19)

𝑦, 𝑧 𝑏𝑖𝑛𝑎𝑟𝑦, 20

𝑇, 𝑠, 𝑓 ≥ 0, (21)

The objective function (12) minimizes the total penalty and any additional capacity.

Constraint (13) requires that each task is assigned exactly to one start time. Constraint

(14) requires that each task is assigned exactly to one finish time. Constraint (15)

requires that each task is starting at least from the real start date. Constraint (16)

enforces that the finish time of a task is equal to the sum of its start time and processing

time. Constraint (17) requires that if task j has started processing at time given

∑ 𝑆𝑗𝑡
𝑡
𝑡=1 = 1 and its finishing time at time given ∑ 𝑓𝑗𝑡

𝑡
𝑡=1 = 1, then j is processed during

the specified period and 𝑦𝑗𝑡 = 1. Constraint (18) enforce the capacity constraint.

Constraint (19) enforce the tardiness constraint. Constraints (20), (21) are both for non-

negativity.

The number of tasks is 10, The number of resources is 1, Number of execution modes

is 1. In this example, we modified the previous example by reducing the capacities of

36

the resource for project 6 and project 7. Table 3 shows example of SMSR with flexible

capacity.

Table 3. Example of SMSR – with Extra Capacity

The exact solution is depicted in the figure below.

Figure 2. Graphical presentation of SMSR – With Extra capacity

Project

ID

Duration

(Months) (pj)

Capacity

(bt)

Deadline

(dj)

Consumption

(aj)

Weight

(wj)

1

2

3

4

5

6

7

8

9

10

3

2

2

2

1

3

2

2

4

1

7

4

6

6

8

4

2

8

8

5

3

2

3

2

6

8

10

10

8

7

3

1

3

2

2

7

2

3

1

2

1

1

1

1

1

1

1

1

1

1

37

3.2.3.3 Model (3): Single Mode (SM), Multiple Resource (MR), with Extra Capacity

The previous Model (1) and (2) were based on a single resource. We modified the model

to solve more complex problems with multiple-number of resources R. Model (3) can

be formulated as follows:

Model(3) (𝑆𝑀, 𝑀𝑅, 𝐹𝐶) ∶ 𝑀𝑖𝑛 ∑ 𝑤𝑗

𝑛

𝑗=1

𝑇𝑗 + ∑ ∑ 𝜎𝑟𝑡 𝑧𝑟𝑡

𝐻

𝑡=1

𝑅

𝑟=1

(23)

Subject to:

∑ 𝑆𝑗𝑡

𝐻

𝑡=1

= 1, 𝑗 = 1, … , 𝑛

(24)

∑ 𝑓𝑗𝑡

𝐻

𝑡=1

= 1, 𝑗 = 1, … , 𝑛

(25)

∑ 𝑡 𝑆𝑗𝑡

𝐻

𝑡=1

≥ 𝑟𝑗 , 𝑗 = 1, … , 𝑛

(26)

∑ 𝑡 𝑆𝑗𝑡

𝐻

𝑡=1

+ ∑ 𝑝𝑗𝑘

 𝑚𝑗

𝑘=1

 𝑥𝑗𝑘 = ∑ 𝑡𝑓𝑗𝑡

𝐻

𝑡=1

, 𝑗 = 1, … , 𝑛

(27)

∑ 𝑆𝑗𝑡

𝑡

𝑡=1

− ∑ 𝑓𝑗𝑡

𝑡

𝑡=1

= 𝑦𝑗𝑡 , 𝑗 = 1, … , 𝑛; 𝑡 = 1, … , 𝐻

(28)

∑ ∑ 𝑎𝑗𝑟𝑘 𝑥𝑗𝑘 𝑦𝑗𝑡 ≤ 𝑏𝑟𝑡 + 𝑧𝑟𝑡,

 𝑚𝑗

𝑘=1

𝑛

𝑗=1

 𝑟 = 1, … , 𝑅, ; 𝑡 = 1, … , 𝐻

(29)

𝑇𝑗 ≥ ∑ 𝑡𝑓𝑗𝑡

𝐻

𝑡=1

− 𝑑𝑗 , 𝑗 = 1, … , 𝑛

(30)

𝑦, 𝑧 𝑏𝑖𝑛𝑎𝑟𝑦, (31)

𝑇, 𝑠, 𝑓 ≥ 0, (32)

The objective function (23) minimizes the total penalty and any additional capacity.

Constraint (24) requires that each task is assigned exactly to one start time. Constraint

38

(25) requires that each task is assigned exactly to one finish time. Constraint (26)

requires that each task is starting at least from the real start date. Constraint (27)

enforces that the finish time of a task is equal to the sum of its start time and processing

time. Constraint (28) requires that if task j has started processing at time given

∑ 𝑆𝑗𝑡
𝑡
𝑡=1 = 1 and its finishing time at time given ∑ 𝑓𝑗𝑡

𝑡
𝑡=1 = 1, then j is processed during

the specified period and 𝑦𝑗𝑡 = 1. Constraint (29) enforce the capacity constraint. It is

clear that this constraint is not linear. It can be linearized by setting 𝑢𝑗𝑘𝑡 = 𝑥𝑗𝑘 𝑦𝑗𝑡 for

j = 1, ..., n; r = 1, ...,R; t = 1, ...,H, and substituting (29) with

∑ ∑ 𝑎𝑗𝑟𝑘 𝑢𝑗𝑘𝑡

 𝑚𝑗

𝑘=1

≤ 𝑏𝑟𝑡 + 𝑧𝑟𝑡

𝑛

𝑗=1

 𝑟 = 1, … , 𝑅, ; 𝑡 = 1, … , 𝐻

(33)

𝑥𝑗𝑘 + 𝑦𝑗𝑡 ≤ 𝑢𝑗𝑘𝑡 + 1, 𝑗 = 1, … , 𝑛; 𝑅 = 1, … , 𝑚𝑗; 𝑡 = 1, … , 𝐻 (34)

Where u ≥ 0 (35)

Constraint (30) enforces for each task the relationship between its tardiness and its

corresponding finish time. Constraint (31) enforce linearization. Constraints (31), (32)

are both for non-negativity. Constraint (34) requires that if both 𝑥𝑗𝑘 and 𝑦𝑗𝑡 take value

1 then 𝑢𝑗𝑘𝑡 takes value 1 as well.

The number of tasks is 7, the number of resources is 2, Number of execution modes is

1. The capacity brt for resource #1 is 10, and for resource #2 is 12. Table 4, Shows

example of SMMR.

39

Table 4. Example of SMMR

Project

ID

Duration

(Months) (pj)

Start date

(rj)

Deadline

(dj)

R1

(ajr)

R2

(ajr)

Weight

(wj)

1

2

3

4

5

6

7

15

6

5

6

9

13

16

15

10

1

7

12

18

13

35

17

6

16

22

31

29

3

3

1

4

5

4

2

3

4

4

5

3

1

5

3

4

4

5

4

1

3

The figure below shows the optimal allocation of resource #1.

Figure 3. Graphical presentation of SMMR for resource #1

The figure below shows the optimal allocation of resource #2.

40

Figure 4. Graphical presentation of SMMR for resource #2

3.2.3.4 Model (4): Multiple modes (MM), Multiple Resources (MR), with Extra

Capacity

Model (4) is the last model that aims to solve problems with multiple execution modes

 𝑚𝑗 and multiple numbers of resources R. It can be formulated as follows:

Model(4) (𝑀𝑀, 𝑀𝑅, 𝐹𝐶) ∶ 𝑀𝑖𝑛 ∑ 𝑤𝑗

𝑛

𝑗=1

𝑇𝑗 + ∑ ∑ 𝜎𝑟𝑡 𝑧𝑟𝑡

𝐻

𝑡=1

𝑅

𝑟=1

(36)

Subject to:

∑ 𝑋𝑗𝑘

 𝑚𝑗

𝑘=1

= 1, 𝑗 = 1, … , 𝑛

(37)

∑ 𝑆𝑗𝑡

𝐻

𝑡=1

= 1, 𝑗 = 1, … , 𝑛

(38)

∑ 𝑓𝑗𝑡

𝐻

𝑡=1

= 1, 𝑗 = 1, … , 𝑛

(39)

∑ 𝑡 𝑆𝑗𝑡

𝐻

𝑡=1

≥ 𝑟𝑗 , 𝑗 = 1, … , 𝑛

(40)

41

∑ 𝑡 𝑆𝑗𝑡

𝐻

𝑡=1

+ ∑ 𝑝𝑗𝑘

 𝑚𝑗

𝑘=1

 𝑥𝑗𝑘 = ∑ 𝑡𝑓𝑗𝑡

𝐻

𝑡=1

, 𝑗 = 1, … , 𝑛

(41)

∑ 𝑆𝑗𝑡

𝑡

𝑡=1

− ∑ 𝑓𝑗𝑡

𝑡

𝑡=1

= 𝑦𝑗𝑡 , 𝑗 = 1, … , 𝑛; 𝑡 = 1, … , 𝐻

(42)

∑ ∑ 𝑎𝑗𝑟𝑘 𝑢𝑗𝑘𝑡

 𝑚𝑗

𝑘=1

≤ 𝑏𝑟𝑡 + 𝑧𝑟𝑡 𝑟 = 1, … , 𝑅, ; 𝑡 = 1, … , 𝐻

𝑛

𝑗=1

(43)

𝑇𝑗 ≥ ∑ 𝑡𝑓𝑗𝑡

𝐻

𝑡=1

− 𝑑𝑗 , 𝑗 = 1, … , 𝑛

(44)

𝑥𝑗𝑘 + 𝑦𝑗𝑡 ≤ 𝑢𝑗𝑘𝑡 + 1, 𝑗 = 1, … , 𝑛; 𝑅 = 1, … , 𝑚𝑗; 𝑡 = 1, … , 𝐻 (45)

𝑥, 𝑦, 𝑧 𝑏𝑖𝑛𝑎𝑟𝑦, (46)

𝑇, 𝑠, 𝑓, 𝑢 ≥ 0, (47)

The objective function (34) minimizes the total penalty and any additional capacity.

Constraint (35) requires that each task is assigned exactly to one mode. Constraint (36)

requires that each task is assigned exactly to one start time. Constraint (37) requires that

each task is assigned exactly to one finish time. Constraint (38) requires that each task

is starting at least from the real start date. Constraint (39) enforces that the finish time

of a task is equal to the sum of its start time and processing time. Constraint (40)

requires that if task j has started processing at time given ∑ 𝑆𝑗𝑡
𝑡
𝑡=1 = 1 and its finishing

time at time given ∑ 𝑓𝑗𝑡
𝑡
𝑡=1 = 1, then j is processed during the specified period and 𝑦𝑗𝑡

= 1. Constraint (41) enforce the capacity constraint. Constraint (42) enforce the

tardiness constraint. Constraint (43) enforce linearization. Constraints (44), (45) are

both for non-negativity.

The number of tasks is 7, the number of resources is 2, Number of execution modes is

2. The capacity brt for resource #1 is 10, and for resource #2 is 12. Table 5 Shows

example of MMMR.

42

Table 5. Example of MMMR

Project

ID

Mode 1

Duration

(Months)

(pj)

Mode 2

Duration

(Months)

(pj)

Start

date

(rj)

Deadline

(dj)

R1 R2 R1 R2 Weight

(wj)

1

2

3

4

5

6

7

15

6

5

6

9

13

16

20

7

4

9

10

12

15

15

10

1

7

12

18

13

35

17

6

16

22

31

29

3

3

1

4

5

4

2

3

4

4

5

3

1

5

1

3

1

4

2

2

2

3

4

4

5

3

1

2

3

4

4

5

4

1

3

The optimal resource 1 allocation is shown in the figure below.

Figure 5. Graphical presentation of MMMR for resource #1

The optimal resource 2 allocation is depicted in the figure below.

43

Figure 6. Graphical presentation of MMMR for resource #2

3.2.3.5 Conclusion

This chapter proposed a mathematical model for the Multiple Resource Loading

Problem (MRLP). The notation was described, and the decision variables were defined.

The model formulation process was outlined which proved to be a challenging

undertaking. The MRLP model formulation was undertaken in four models: SMSR

with no extra capacity, SMSR with flexible capacity, SMMR model with flexible

capacity, and finally MMMR model with flexible capacity. For all four models,

different levels of constraints were used: time constraint, capacity constraint, tardiness.

Constraints were also used to enforce linearization and non-negativity. The following

chapter (4) present computational experiments to show the efficacy of the proposed

formulations.

44

CHAPTER 4: COMPUTATIONAL EXPERIMENTS

4.1 Introduction

This chapter gives a detailed overview of the computational experiments that were

performed in the proposed model. The objective of the computational experiments was

to investigate the effectiveness of the models. In particular, the proposed MRLP was

coded and implemented using real and randomly generated test instances. The

following sections explain the test instance implementation.

4.2 Implementation

To evaluate the model's empirical efficiency, the proposed mixed-integer problem was

implemented using computer software. The problem was coded with Eclipse IDE for

Java Developers 2019-12 (4.14.0) Version and was solved by using IBM ILOG CPLEX

Optimization Studio 20.1.0.0 version. The coding was done on Windows 10 operating

system with Intel i7@1.80 GHz, and 8.00 GB of RAM.

4.2.1 Optimization Programming Language (OPL)

The computational experiments also make use of optimization programming language

(OPL). OPL is a modeling tool for optimization problems that make use of algebraic

primitives and facilitates direct mapping of decision variables, sets, constraints, and

parameters. The IDE (Integrated Development Environment) is available under OPL.

Moreover, OPL is included in the CPLEX Studio package. Within the BM Decision

Optimization product family, users can either choose OPL or other programming

languages such as C+, Java, and Python.

4.2.2 CPLEX

IBM ILOG CPLEX Optimization Studio (CPLEX) is widely used to solve complex

optimization problems. The CPLEX program relies on constraint programming

techniques to solve mixed-integer optimization problems. CPLEX also contains the

45

ILOG CP Optimizer which is used to solve combinatorial optimization problems that

cannot be easily linearized with normal optimization programs.

4.2.3 Description of the test instances

The model was tested for effectiveness and efficiency. The current model used data

provided by the Ministry of Administrative Development, Labor and Social Affairs

(ADLSA) in Qatar. Ministry officials were approached and were requested to provide

the data regarding multiple resource planning in the ministry. Real-life data was

provided. The data from the ministry was used to randomly generate test instances. All

instances generated incorporated factors such as number of available resources, number

of modes, number of tasks, processing time, starting date, deadline required for the

completion of specific tasks, the weight of each task, and consumption needed from

each resource. The number of projects ranges from 10, 20, 30, 50, 100, and 200 projects.

For each project size, there are 10 test instances generated randomly by using the

uniform distribution. The processing time in weeks is between 6 and 104 weeks. The

duration in months can be obtained by dividing the duration in weeks by 4. The starting

date is between 1 and 24. The deadline is calculated by summation the duration in

months with the real start date. Resource #1 consumptions are between 1 and 4. On the

other hand, resource #2 consumptions are between 1 and 6. Finally, the priority for all

projects is between 1 and 5.

4.2.4 Performance of the proposed model

The results of our proposed model were assessed by the output of the codes

implemented in the IBM ILOG CPLEX Optimization Studio 20.1.0.0 version. Coding

was performed on Windows 10 operating system with Intel i7@1.80 GHz, and 8.00 GB

of RAM. The results of the model are computed in 6 different sizes of instances ranging

from 10 projects up to 200 projects.

46

4.2.4.1 Solving Group 1 Test Instances

Group 1 is the smallest problem size based on the number of tasks which is 10 tasks.

The number of resources for this group is 2. Solving this group was by using the real

data provided by (ADLSA) to randomly generate 10 test instances, each instance has

different values of parameters such as processing time (months), start date, due date,

consumption needed from resource #1, and resource #2, weight, and calculating

constraints for resource capacity each project. In reasonable time, all instances have

been solved to optimality. Table 6 and 7 shows results of group 1 test instances.

Table 6. Results of Group 1 Test Instances (10 Projects)

Instance # of constraints # of variables Run time (S)

1 482 1162 1.32

2 554 1354 1.28

3 554 1354 1.17

4 482 1162 1.05

5

6

7

8

9

10

458

602

542

518

590

518

1098

1482

1322

1258

1450

1258

1

1.11

0.95

0.99

0.94

0.92

Table 7. Group 1 Test Instances CPU Time (10 Projects)

CPU Run time (S)

Avg. 1.073

Max. 1.32

Min. 0.92

47

4.2.4.2 Solving Group 2 Test Instances

In Group 2, the number of tasks was increased to 20 projects. The number of resources

was set to 2. 20 instances were generated randomly with different parameter values. In

reasonable time, all instances have been solved to optimality. It is important to mention

that the maximum run time increased from 1.32 to 2.28 seconds. Table 8 and 9 displays

the results.

Table 8. Results of Group 2 Test Instances (20 Projects)

Instance # of constraints # of variables Run time (S)

1 1178 3058 2.28

2 1024 2624 1.44

3 1134 2934 1.67

4 1134 2934 1.72

5

6

7

8

9

10

1178

980

1112

892

1024

1090

3058

2500

2872

2252

2624

2810

1.58

1.53

1.72

1.45

1.46

1.56

Table 9. Group 2 Test Instances CPU Time (20 Projects)

CPU Run time (S)

Avg. 1.64

Max. 2.28

Min. 1.44

48

4.2.4.3 Solving Group 3 Test Instances

Moving to Group 3, the number of tasks was increased to 30 while keeping the same

number of resources. Maximum running time very similar to the previous group. All

instances were decided to optimize in a reasonable time. The results are shown in Table

10 and 11.

Table 10. Results of Group 3 Test Instances (30 Projects)

Instance # of constraints # of variables Run time (S)

1 1526 3986 2.01

2 1750 4630 2.23

3 1590 4170 1.91

4 1590 4170 2.08

5

6

7

8

9

10

1558

1398

1654

1750

1430

1430

4078

3618

4354

4630

3710

3710

2.23

2.02

2.14

2.19

1.82

1.96

Table 11. Group 3 Test Instances CPU Time (30 Projects)

CPU Run time (S)

Avg. 2.056

Max. 2.23

Min. 1.82

49

4.2.4.4 Solving Group 4 Test Instances

As for Group 4, the number of tasks increased to become 50 tasks in total, while

maintaining the resource number to 2. By adding more tasks, the maximum running

time slightly increased than the previous group. All instances have been solved to

optimality. The results are shown in Table 12 and 13.

Table 12. Results of Group 4 Test Instances (50 Projects)

Instance # of constraints # of variables Run time (S)

1

2

3

4

5

6

7

8

9

10

2642

2694

2746

2694

2746

2746

2642

2746

2694

2694

7042

7194

7346

7194

7346

7346

7042

7346

7194

7194

2.39

2.66

2.92

2.66

3.2

2.76

2.32

2.5

2.5

2.36

Table 13. Group 4 Test Instances CPU Time (50 Projects)

CPU Run time (S)

Avg. 2.627

Max. 3.2

Min. 2.32

50

4.2.4.5 Solving Group 5 Test Instances

In group 5, the number of tasks set to 100 tasks in total. Running time in this case has

a slight rise than the previous group of test instances. All instances have been solved to

optimality. The results are shown in Table 14 and 15.

Table 14. Results of Group 5 Test Instances (100 Projects)

Instance # of constraints # of variables Run time (S)

1

2

3

4

5

6

7

8

9

10

5498

5294

5294

5294

5498

5192

5294

5090

5396

5396

14898

14294

14294

14294

14898

13992

14294

13690

14596

14596

3.31

3.45

3.31

3.19

3.89

3.68

3.38

3.15

3.09

3.44

Table 15. Group 5 Test Instances CPU Time (100 Projects)

CPU Run time (S)

Avg. 3.389

Max. 3.89

Min. 3.09

51

4.2.4.6 Solving Group 6 Test Instances

As for group 6, the number of tasks was increased to solve extremely large-scale

problems, we set the number of tasks to be 200 tasks in total. Adding has increased the

running time. In this case, we found that the maximum time was 5.53 seconds. All

instances have been solved to optimality. The results are shown in Table 16 and 17.

Table 16. Results of Group 6 Test Instances (200 Projects)

Instance # of constraints # of variables Run time (S)

1

2

3

4

5

6

7

8

9

10

10898

10898

10292

10494

10898

10696

10696

10494

10898

10292

29698

29698

27892

28494

29698

29096

29096

28494

29698

27892

3.63

4.79

4.73

4.72

5.36

5.07

4.78

4.95

5.05

5.53

Table 17. Group 6 Test Instances CPU Time (200 Projects)

CPU Run time (S)

Avg. 4.861

Max. 5.53

Min. 3.63

52

4.2.4.7 Results Summary

As illustrated in Table 20, the average results from running the model instances were

solved in between 1.073 and 4.861 seconds. It is worth mentioning that the maximum

running time was 5.53 seconds for group 6 with up to 200 projects and on average it

takes less than 4.9 seconds to solve the largest problem. Table 18 shows summary of

CPU running time of all instances.

Table 18. Summary of CPU Running Time of All Instances

Problem size

Avg.

CPU time

Max.

Min.

10 1.073 1.32 0.92

20 1.641 2.28 1.44

30 2.056 2.23 1.82

50 2.627 3.2 2.32

100

200

3.389

4.861

3.89 3.09

5.53 3.63

53

Figure 7. CPU time for all groups test instances

To conclude, Figure 7, shows a summary of the main results of CPU time for the proposed

model of all computational experiments groups. This chart figures out the average,

maximum, and minimum run time for each group. The run time difference between all

experiments for the six groups. After testing all instances, and as the complexity of the test

instances increased, the CPU time has increased reasonably. The proposed model was

performed within a very short time (seconds) even when increasing complexity of tasks

number to 200, the maximum running time was completed in 5.53 seconds while the

average time-solving time is between 1.073 and 4.861 seconds.

4.2.4.8 Solving Multi-Mode, Multi-Resource (MMMR) Model with Extra Capacity

In this model, we solved the multi-mode multi-resource problem where we added more

complexity to the model by increasing the number of execution modes to become

multiple modes. We implemented the model by testing 2 groups of test instances, first

group includes 7 tasks the second group has 20 tasks. Each group has different

parameter values. In reasonable time, all instances have been solved to optimality.

Table 18. shows results of multi-mode, multi-resources model.

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5
5.5

6

Group 1 Group 2 Group 3 Group 4 Group 5 Group 6C
P

U
 t

im
e

(S
ec

o
n

d
s)

Problem size

CPU Time

Avg. Max Min

54

Table 19. Results of Multi-Mode Multi-Resources Model

Problem size # of constraints # of variables Run time (S)

7 (instance 1)

7 (instance 2)

20

847

847

2910

1316

1316

4650

1.29

1.48

9.11

55

CHAPTER 5: CONCLUSION AND FUTURE RESEARCH

In this paper, we presented the optimization models for multiple resource loading

(MRLP) to gives an overview and provides a solution that minimizes time wastages

and ensures efficient resource utilization for both single-mode and multi modes of

projects, while allows the combination of resources while considering restrictions and

time constraints to achieve optimal scheduling and resource planning. Our proposed

model applying the different enhancement procedures to fill the gap in the literature

and provide an efficient solution for multiple-mode with multiple resources large-scale

instances.

Real-life data was provided by the Ministry of Administrative Development (ADLSA)

to randomly generate test instances for (MRLP) models. Coding was performed on

Windows 10 by using IBM ILOG CPLEX Optimization Studio 20.1.0.0 version.

operating system with Intel i7@1.80 GHz, and 8.00 GB of RAM. We generated six

different groups of instances for the single-mode, multiple resource models while using

flexible extra capacity (SM, MR, FC). Then, we generated two groups to verify the

multiple-mode, multiple-resource model with flexible extra capacity (MMMR). All

instances generated different parameters such as number of available resources, number

of execution modes, number of tasks, processing time, starting date, deadline required

for the completion of specific tasks, the weight of each task, and consumption needed

from each resource. Furthermore, we illustrated the main results of CPU time for the

proposed model of all computational experiments groups and shows the effectiveness

of the proposed models.

56

Moving to the sustainable aspect, optimization models for multiple resource planning

aims to minimize time wastages and ensures efficient resource planning. By applying

these kinds of models, it ensures the best allocation of renewable resources such as

employees and machines, that minimize the impact of both energy and economic

aspects that may affect the total cost of completing projects and avoid any tardiness that

may cost some penalties.

Finally, as for future research directions, our paper provides a strong ground for future

research the model can be modified to adding further complexity to the problem such

as solving large scale instance, number of projects, number of execution modes, number

of resources and distributed tasks in a specific time horizon to ensures efficient of

resource utilization.

57

REFERENCES

1. Beliën, J., Cardoen, B., & Demeulemeester, E. (2012). Improving workforce

scheduling of aircraft line maintenance at Sabena Technics. Interfaces, 42(4),

352-364.

2. Bianco, L., & Caramia, M. (2013). A new formulation for the project scheduling

problem under limited resources. Flexible Services and Manufacturing

Journal, 25(1-2), 6-24.

3. Blazewicz, J., Machowiak, M., Weglarz, J., Kovalyov, M. Y., & Trystram, D.

(2004). Scheduling malleable tasks on parallel processors to minimize the

makespan. Annals of Operations Research, 129(1-4), 65.

4. Brucker, P. and Knust, S. (2012). Complex Scheduling. Springer

5. Boctor F.F, “An adaption of the simulated annealing algorithm for solving the

resource-constrained project scheduling problems,” Int. J. Prod. Res., vol. 34,

pp. 2335–2351, 1996.

6. Burgelman, J., & Vanhoucke, M. (2018). Maximising the weighted number of

activity execution modes in project planning. European Journal of Operational

Research, 270(3), 999-1013.

7. Carruthers, J. A., and Battersby, A. (1966). “Advances in Critical Path

Methods.” Operational Research Quarterly, 17(4): 359-380.

8. Chakrabortty, R., Abbasi, A., & Ryan, M. (2019). Multi-mode resource-

constrained project scheduling using modified variable neighborhood search

heuristic. International Transactions in Operational Research, 27(1), 138-167.

doi: 10.1111/itor.12644.

58

9. Christofides, N., Alvarez-Valdes, R., and Tamarit, J. M. (1987). “Project

Scheduling with Resource Constraints: A Branch and Bound Approach.”

European Journal of Operational Research, 29: 262-273.

10. Cooper, D. F. (1974). “An Experimental Investigation of Some Heuristics for

Scheduling Resource-constrained Project.” Ph.D. Thesis, Department of

Computer Science, University of Adelaide.

11. Davis, E. W., and Heidorn, G. E. (1971). “An Algorithm for Optimal Project

Scheduling under Multiple Resource Constraints.” Management Science,

17(12): B803-B816.

12. De Nijs, F. and Klos, T. (2014). A novel priority rule heuristic: Learning from

justification. In Proceedings of the Twenty-Fourth International Conference on

Automated Planning and Scheduling (ICAPS’14), pages 92–100.

13. De Boer, R. (1998). Resource-constrained multi-project management (Doctoral

dissertation, Ph.D. thesis, University of Twente, The Netherlands).

14. Dorndorf, U., Pesch, E., and Phan-Huy, T. (2000). “A Branch-and-Bound

Algorithm for the Resource-Constrained Project Scheduling Problem.”

Mathematical Methods of Operations Research, 52: 413-439.

15. Dorigo, M., Maniezzo, V., and Colorni, A. (1996). “Ant System: Optimization

by a Colony of Cooperating Agents.” IEEE Transactions on Systems, Man, and

Cybernetics-Part B, 26(1): 29-41.

16. Dooley, G. Lupton, and D. O’Sullivan (2005), “Multiple project management:

a modern competitive necessity,” J. Manuf. Technol. Manag., vol. 16, no. 5, pp.

466–482, Jul.

17. Drexl A. and J. Grunewald (1993), “Nonpreemptive multi-mode resource-

constrained project scheduling,” IIE Trans., vol. 25, pp. 74–81, 1993.

59

18. Fisher, M. (1973). “Optimal Solution of Scheduling Problems using Lagrange

Multipliers.” Part I: Operations Research, 21: 1114-1127. Part II: in S. E.

Elmaghraby (ed.), Symposium on the Theory of Scheduling and its

Applications, Springer, Berlin, 294-318.

19. Fündeling, C. U., & Trautmann, N. (2010). A priority-rule method for project

scheduling with work-content constraints. European Journal of Operational

Research, 203(3), 568-574.

20. Gademann, N., & Schutten, M. (2005). Linear-programming-based heuristics

for project capacity planning. Iie Transactions, 37(2), 153-165.

21. Hartmann, S., 2001. Project scheduling with multiple modes: a genetic

algorithm. Annals of Operations Research 102, 1–4, 111–135.

22. Harris R.B. (1973), Precedence and Arrow Networking Techniques for

Construction. University of Michigan.

23. Hariga and S. M. El-Sayegh, “Cost Optimization Model for the Multiresource

Leveling Problem with Allowed Activity Splitting,” J. Constr. Eng. Manag.,

vol. 137, no. 1, Jan. 2011.

24. Hans, E. (2001). Resource loading by branch-and-price techniques (Ph. D.

thesis). The Netherlands: University of Twente.

25. Hastings, N. A. J. (1972). “On Resource Allocation in Project Networks.”

Operational Research Quarterly, 23(2): 217-221.

26. Holland, J. K. (1975). Adaptation in Neural and Artificial Systems, University

of Michigan Press, Ann Arbor, MI.

27. Kis, T. (2005). A branch-and-cut algorithm for scheduling of projects with

variable-intensity activities. Mathematical programming, 103(3), 515-539.

60

28. Liao T.W, P. J. Egbelu, B. R. Sarker, and S. S. Leu, “Metaheuristics for project

and construction management – A state-of-the-art review,” Autom. Constr., vol.

20, no. 5, pp. 491–505, Aug. 2011.

29. Merkle, D., Middendorf, M., and Schmeck, H. (2002). “Ant Colony

Optimization for Resource-Constrained Project Scheduling.” IEEE

Transactions on Evolutionary Computation, 6(4): 333-346.

30. Mingozzi, A., Maniezzo, V., Ricciardelli, S., and Bianco, L. (1998). “An Exact

Algorithm for the Resource-Constrained Project Scheduling Problem Based on

a New Mathematical Formulation.” Management Science, 44(5): 714-729.

31. Mohammed A. Salem Hiyassat (2000), “Modification of Minimum Moment

Approach in Resource Leveling,” J. Constr. Eng. Manag., vol. 126, no. 4, pp.

278–284, Jul.

32. Naber, A., & Kolisch, R. (2014). MIP models for resource-constrained project

scheduling with flexible resource profiles. European Journal of Operational

Research, 239(2), 335-348.

33. Nattaf, M., Horváth, M., Kis, T., Artigues, C., & Lopez, P. (2019). Polyhedral

results and valid inequalities for the Continuous Energy-Constrained

Scheduling Problem. Discrete Applied Mathematics, 258, 188-203.

34. Patterson, J. H., and Huber, W. D. (1974). “A Horizon-Varying, Zero-One

Approach to Project Scheduling.” Management Science, 20(6): 990-998.

35. Patterson, J. H., and Roth, G. W. (1976). “Scheduling a Project under Multiple

Resource Constraints: A Zero-One Programming Approach.” AIIE

Transactions, 8: 449-455.

61

36. Palpant, M., Artigues, C., and Michelon, P. (2004). “LSSPER: Solving the

Resource-Constrained Project Scheduling Problem with Large Neighbourhood

Search.” Annals of Operations Research, 131: 237-257.

37. Project Management Institute. A Guide to the Project Management Body of

Knowledge, Fifth Edition. Newtown Square, Pa.: Project management Institute,

©2013, 2013.

38. Rieck. J and Zimmermann J. (2015), “Exact Methods for Resource Leveling

Problems,” in Handbook on Project Management and Scheduling Vol.1, C.

Schwindt and J. Zimmermann, Eds. Cham: Springer International Publishing,

pp. 361–387.

39. Ramlogan. R and I. C. Goulter, “Mixed Integer Model for Resource Allocation

in Project Management,” Eng. Optim., vol. 15, no. 2, pp. 97–111, Dec. 1989.

40. Schutt, A., Feydy, T., Stuckey, P. J., and Wallace, M. G. (2013). Solving

rcpsp/max by lazy clause generation. Journal of Scheduling, 16(3):273–289.

41. Senouci A.B and N. N. Eldin (2004), “Use of Genetic Algorithms in Resource

Scheduling of Construction Projects | Journal of Construction Engineering and

Management | Vol 130, No 6,” J. Constr. Eng. Manag., vol. 130, no. 6.

42. Shirzadeh Chaleshtari, A. (2017). Resource tardiness weighted cost

minimization in project scheduling. Advances in Operations Research, 2017.

43. Song, G., Kis, T., & Leus, R. (2019). Polyhedral results and branch-and-cut for

the resource loading problem. FEB Research Report KBI_1908.

44. Sousa, J. P., & Wolsey, L. A. (1992). A time indexed formulation of non-

preemptive single machine scheduling problems. Mathematical

programming, 54(1-3), 353-367.

62

45. Ulusoy, G., and Özdamar, L. (1989). “Heuristic Performance and

Network/Resource Characteristics in Resource-Constrained Project

Scheduling.” The Journal of the Operational Research Society, 40(12): 1145-

1152.

46. Wellman, M. P., Walsh, W. E., Wurman, P. R., and MacKie-Mason, J. K.

(2001). Auction protocols for decentralized scheduling. Games and economic

behavior, 35(1):271–303.

47. Wullink, G., Gademann, A. J. R. M., Hans, E. W., & van Harten, A. (2004).

Scenario-based approach for flexible resource loading under

uncertainty. International Journal of Production Research, 42(24), 5079-5098.

48. Varakantham, P., Fu, N., and Lau, H. C. (2016). A proactive sampling approach

to project scheduling under uncertainty. In Proceedings of the Thirtieth national

conference on Artificial intelligence (AAAI’16), pages 3195–3201.

